xref: /openbmc/linux/fs/eventpoll.c (revision b595076a)
1 /*
2  *  fs/eventpoll.c (Efficient event retrieval implementation)
3  *  Copyright (C) 2001,...,2009	 Davide Libenzi
4  *
5  *  This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation; either version 2 of the License, or
8  *  (at your option) any later version.
9  *
10  *  Davide Libenzi <davidel@xmailserver.org>
11  *
12  */
13 
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <asm/uaccess.h>
37 #include <asm/system.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <asm/atomic.h>
41 
42 /*
43  * LOCKING:
44  * There are three level of locking required by epoll :
45  *
46  * 1) epmutex (mutex)
47  * 2) ep->mtx (mutex)
48  * 3) ep->lock (spinlock)
49  *
50  * The acquire order is the one listed above, from 1 to 3.
51  * We need a spinlock (ep->lock) because we manipulate objects
52  * from inside the poll callback, that might be triggered from
53  * a wake_up() that in turn might be called from IRQ context.
54  * So we can't sleep inside the poll callback and hence we need
55  * a spinlock. During the event transfer loop (from kernel to
56  * user space) we could end up sleeping due a copy_to_user(), so
57  * we need a lock that will allow us to sleep. This lock is a
58  * mutex (ep->mtx). It is acquired during the event transfer loop,
59  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60  * Then we also need a global mutex to serialize eventpoll_release_file()
61  * and ep_free().
62  * This mutex is acquired by ep_free() during the epoll file
63  * cleanup path and it is also acquired by eventpoll_release_file()
64  * if a file has been pushed inside an epoll set and it is then
65  * close()d without a previous call toepoll_ctl(EPOLL_CTL_DEL).
66  * It is possible to drop the "ep->mtx" and to use the global
67  * mutex "epmutex" (together with "ep->lock") to have it working,
68  * but having "ep->mtx" will make the interface more scalable.
69  * Events that require holding "epmutex" are very rare, while for
70  * normal operations the epoll private "ep->mtx" will guarantee
71  * a better scalability.
72  */
73 
74 /* Epoll private bits inside the event mask */
75 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET)
76 
77 /* Maximum number of nesting allowed inside epoll sets */
78 #define EP_MAX_NESTS 4
79 
80 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
81 
82 #define EP_UNACTIVE_PTR ((void *) -1L)
83 
84 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
85 
86 struct epoll_filefd {
87 	struct file *file;
88 	int fd;
89 };
90 
91 /*
92  * Structure used to track possible nested calls, for too deep recursions
93  * and loop cycles.
94  */
95 struct nested_call_node {
96 	struct list_head llink;
97 	void *cookie;
98 	void *ctx;
99 };
100 
101 /*
102  * This structure is used as collector for nested calls, to check for
103  * maximum recursion dept and loop cycles.
104  */
105 struct nested_calls {
106 	struct list_head tasks_call_list;
107 	spinlock_t lock;
108 };
109 
110 /*
111  * Each file descriptor added to the eventpoll interface will
112  * have an entry of this type linked to the "rbr" RB tree.
113  */
114 struct epitem {
115 	/* RB tree node used to link this structure to the eventpoll RB tree */
116 	struct rb_node rbn;
117 
118 	/* List header used to link this structure to the eventpoll ready list */
119 	struct list_head rdllink;
120 
121 	/*
122 	 * Works together "struct eventpoll"->ovflist in keeping the
123 	 * single linked chain of items.
124 	 */
125 	struct epitem *next;
126 
127 	/* The file descriptor information this item refers to */
128 	struct epoll_filefd ffd;
129 
130 	/* Number of active wait queue attached to poll operations */
131 	int nwait;
132 
133 	/* List containing poll wait queues */
134 	struct list_head pwqlist;
135 
136 	/* The "container" of this item */
137 	struct eventpoll *ep;
138 
139 	/* List header used to link this item to the "struct file" items list */
140 	struct list_head fllink;
141 
142 	/* The structure that describe the interested events and the source fd */
143 	struct epoll_event event;
144 };
145 
146 /*
147  * This structure is stored inside the "private_data" member of the file
148  * structure and rapresent the main data sructure for the eventpoll
149  * interface.
150  */
151 struct eventpoll {
152 	/* Protect the this structure access */
153 	spinlock_t lock;
154 
155 	/*
156 	 * This mutex is used to ensure that files are not removed
157 	 * while epoll is using them. This is held during the event
158 	 * collection loop, the file cleanup path, the epoll file exit
159 	 * code and the ctl operations.
160 	 */
161 	struct mutex mtx;
162 
163 	/* Wait queue used by sys_epoll_wait() */
164 	wait_queue_head_t wq;
165 
166 	/* Wait queue used by file->poll() */
167 	wait_queue_head_t poll_wait;
168 
169 	/* List of ready file descriptors */
170 	struct list_head rdllist;
171 
172 	/* RB tree root used to store monitored fd structs */
173 	struct rb_root rbr;
174 
175 	/*
176 	 * This is a single linked list that chains all the "struct epitem" that
177 	 * happened while transfering ready events to userspace w/out
178 	 * holding ->lock.
179 	 */
180 	struct epitem *ovflist;
181 
182 	/* The user that created the eventpoll descriptor */
183 	struct user_struct *user;
184 };
185 
186 /* Wait structure used by the poll hooks */
187 struct eppoll_entry {
188 	/* List header used to link this structure to the "struct epitem" */
189 	struct list_head llink;
190 
191 	/* The "base" pointer is set to the container "struct epitem" */
192 	struct epitem *base;
193 
194 	/*
195 	 * Wait queue item that will be linked to the target file wait
196 	 * queue head.
197 	 */
198 	wait_queue_t wait;
199 
200 	/* The wait queue head that linked the "wait" wait queue item */
201 	wait_queue_head_t *whead;
202 };
203 
204 /* Wrapper struct used by poll queueing */
205 struct ep_pqueue {
206 	poll_table pt;
207 	struct epitem *epi;
208 };
209 
210 /* Used by the ep_send_events() function as callback private data */
211 struct ep_send_events_data {
212 	int maxevents;
213 	struct epoll_event __user *events;
214 };
215 
216 /*
217  * Configuration options available inside /proc/sys/fs/epoll/
218  */
219 /* Maximum number of epoll watched descriptors, per user */
220 static int max_user_watches __read_mostly;
221 
222 /*
223  * This mutex is used to serialize ep_free() and eventpoll_release_file().
224  */
225 static DEFINE_MUTEX(epmutex);
226 
227 /* Used for safe wake up implementation */
228 static struct nested_calls poll_safewake_ncalls;
229 
230 /* Used to call file's f_op->poll() under the nested calls boundaries */
231 static struct nested_calls poll_readywalk_ncalls;
232 
233 /* Slab cache used to allocate "struct epitem" */
234 static struct kmem_cache *epi_cache __read_mostly;
235 
236 /* Slab cache used to allocate "struct eppoll_entry" */
237 static struct kmem_cache *pwq_cache __read_mostly;
238 
239 #ifdef CONFIG_SYSCTL
240 
241 #include <linux/sysctl.h>
242 
243 static int zero;
244 
245 ctl_table epoll_table[] = {
246 	{
247 		.procname	= "max_user_watches",
248 		.data		= &max_user_watches,
249 		.maxlen		= sizeof(int),
250 		.mode		= 0644,
251 		.proc_handler	= proc_dointvec_minmax,
252 		.extra1		= &zero,
253 	},
254 	{ }
255 };
256 #endif /* CONFIG_SYSCTL */
257 
258 
259 /* Setup the structure that is used as key for the RB tree */
260 static inline void ep_set_ffd(struct epoll_filefd *ffd,
261 			      struct file *file, int fd)
262 {
263 	ffd->file = file;
264 	ffd->fd = fd;
265 }
266 
267 /* Compare RB tree keys */
268 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
269 			     struct epoll_filefd *p2)
270 {
271 	return (p1->file > p2->file ? +1:
272 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
273 }
274 
275 /* Tells us if the item is currently linked */
276 static inline int ep_is_linked(struct list_head *p)
277 {
278 	return !list_empty(p);
279 }
280 
281 /* Get the "struct epitem" from a wait queue pointer */
282 static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
283 {
284 	return container_of(p, struct eppoll_entry, wait)->base;
285 }
286 
287 /* Get the "struct epitem" from an epoll queue wrapper */
288 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
289 {
290 	return container_of(p, struct ep_pqueue, pt)->epi;
291 }
292 
293 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
294 static inline int ep_op_has_event(int op)
295 {
296 	return op != EPOLL_CTL_DEL;
297 }
298 
299 /* Initialize the poll safe wake up structure */
300 static void ep_nested_calls_init(struct nested_calls *ncalls)
301 {
302 	INIT_LIST_HEAD(&ncalls->tasks_call_list);
303 	spin_lock_init(&ncalls->lock);
304 }
305 
306 /**
307  * ep_call_nested - Perform a bound (possibly) nested call, by checking
308  *                  that the recursion limit is not exceeded, and that
309  *                  the same nested call (by the meaning of same cookie) is
310  *                  no re-entered.
311  *
312  * @ncalls: Pointer to the nested_calls structure to be used for this call.
313  * @max_nests: Maximum number of allowed nesting calls.
314  * @nproc: Nested call core function pointer.
315  * @priv: Opaque data to be passed to the @nproc callback.
316  * @cookie: Cookie to be used to identify this nested call.
317  * @ctx: This instance context.
318  *
319  * Returns: Returns the code returned by the @nproc callback, or -1 if
320  *          the maximum recursion limit has been exceeded.
321  */
322 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
323 			  int (*nproc)(void *, void *, int), void *priv,
324 			  void *cookie, void *ctx)
325 {
326 	int error, call_nests = 0;
327 	unsigned long flags;
328 	struct list_head *lsthead = &ncalls->tasks_call_list;
329 	struct nested_call_node *tncur;
330 	struct nested_call_node tnode;
331 
332 	spin_lock_irqsave(&ncalls->lock, flags);
333 
334 	/*
335 	 * Try to see if the current task is already inside this wakeup call.
336 	 * We use a list here, since the population inside this set is always
337 	 * very much limited.
338 	 */
339 	list_for_each_entry(tncur, lsthead, llink) {
340 		if (tncur->ctx == ctx &&
341 		    (tncur->cookie == cookie || ++call_nests > max_nests)) {
342 			/*
343 			 * Ops ... loop detected or maximum nest level reached.
344 			 * We abort this wake by breaking the cycle itself.
345 			 */
346 			error = -1;
347 			goto out_unlock;
348 		}
349 	}
350 
351 	/* Add the current task and cookie to the list */
352 	tnode.ctx = ctx;
353 	tnode.cookie = cookie;
354 	list_add(&tnode.llink, lsthead);
355 
356 	spin_unlock_irqrestore(&ncalls->lock, flags);
357 
358 	/* Call the nested function */
359 	error = (*nproc)(priv, cookie, call_nests);
360 
361 	/* Remove the current task from the list */
362 	spin_lock_irqsave(&ncalls->lock, flags);
363 	list_del(&tnode.llink);
364 out_unlock:
365 	spin_unlock_irqrestore(&ncalls->lock, flags);
366 
367 	return error;
368 }
369 
370 #ifdef CONFIG_DEBUG_LOCK_ALLOC
371 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
372 				     unsigned long events, int subclass)
373 {
374 	unsigned long flags;
375 
376 	spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
377 	wake_up_locked_poll(wqueue, events);
378 	spin_unlock_irqrestore(&wqueue->lock, flags);
379 }
380 #else
381 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
382 				     unsigned long events, int subclass)
383 {
384 	wake_up_poll(wqueue, events);
385 }
386 #endif
387 
388 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
389 {
390 	ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
391 			  1 + call_nests);
392 	return 0;
393 }
394 
395 /*
396  * Perform a safe wake up of the poll wait list. The problem is that
397  * with the new callback'd wake up system, it is possible that the
398  * poll callback is reentered from inside the call to wake_up() done
399  * on the poll wait queue head. The rule is that we cannot reenter the
400  * wake up code from the same task more than EP_MAX_NESTS times,
401  * and we cannot reenter the same wait queue head at all. This will
402  * enable to have a hierarchy of epoll file descriptor of no more than
403  * EP_MAX_NESTS deep.
404  */
405 static void ep_poll_safewake(wait_queue_head_t *wq)
406 {
407 	int this_cpu = get_cpu();
408 
409 	ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
410 		       ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
411 
412 	put_cpu();
413 }
414 
415 /*
416  * This function unregisters poll callbacks from the associated file
417  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
418  * ep_free).
419  */
420 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
421 {
422 	struct list_head *lsthead = &epi->pwqlist;
423 	struct eppoll_entry *pwq;
424 
425 	while (!list_empty(lsthead)) {
426 		pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
427 
428 		list_del(&pwq->llink);
429 		remove_wait_queue(pwq->whead, &pwq->wait);
430 		kmem_cache_free(pwq_cache, pwq);
431 	}
432 }
433 
434 /**
435  * ep_scan_ready_list - Scans the ready list in a way that makes possible for
436  *                      the scan code, to call f_op->poll(). Also allows for
437  *                      O(NumReady) performance.
438  *
439  * @ep: Pointer to the epoll private data structure.
440  * @sproc: Pointer to the scan callback.
441  * @priv: Private opaque data passed to the @sproc callback.
442  *
443  * Returns: The same integer error code returned by the @sproc callback.
444  */
445 static int ep_scan_ready_list(struct eventpoll *ep,
446 			      int (*sproc)(struct eventpoll *,
447 					   struct list_head *, void *),
448 			      void *priv)
449 {
450 	int error, pwake = 0;
451 	unsigned long flags;
452 	struct epitem *epi, *nepi;
453 	LIST_HEAD(txlist);
454 
455 	/*
456 	 * We need to lock this because we could be hit by
457 	 * eventpoll_release_file() and epoll_ctl().
458 	 */
459 	mutex_lock(&ep->mtx);
460 
461 	/*
462 	 * Steal the ready list, and re-init the original one to the
463 	 * empty list. Also, set ep->ovflist to NULL so that events
464 	 * happening while looping w/out locks, are not lost. We cannot
465 	 * have the poll callback to queue directly on ep->rdllist,
466 	 * because we want the "sproc" callback to be able to do it
467 	 * in a lockless way.
468 	 */
469 	spin_lock_irqsave(&ep->lock, flags);
470 	list_splice_init(&ep->rdllist, &txlist);
471 	ep->ovflist = NULL;
472 	spin_unlock_irqrestore(&ep->lock, flags);
473 
474 	/*
475 	 * Now call the callback function.
476 	 */
477 	error = (*sproc)(ep, &txlist, priv);
478 
479 	spin_lock_irqsave(&ep->lock, flags);
480 	/*
481 	 * During the time we spent inside the "sproc" callback, some
482 	 * other events might have been queued by the poll callback.
483 	 * We re-insert them inside the main ready-list here.
484 	 */
485 	for (nepi = ep->ovflist; (epi = nepi) != NULL;
486 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
487 		/*
488 		 * We need to check if the item is already in the list.
489 		 * During the "sproc" callback execution time, items are
490 		 * queued into ->ovflist but the "txlist" might already
491 		 * contain them, and the list_splice() below takes care of them.
492 		 */
493 		if (!ep_is_linked(&epi->rdllink))
494 			list_add_tail(&epi->rdllink, &ep->rdllist);
495 	}
496 	/*
497 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
498 	 * releasing the lock, events will be queued in the normal way inside
499 	 * ep->rdllist.
500 	 */
501 	ep->ovflist = EP_UNACTIVE_PTR;
502 
503 	/*
504 	 * Quickly re-inject items left on "txlist".
505 	 */
506 	list_splice(&txlist, &ep->rdllist);
507 
508 	if (!list_empty(&ep->rdllist)) {
509 		/*
510 		 * Wake up (if active) both the eventpoll wait list and
511 		 * the ->poll() wait list (delayed after we release the lock).
512 		 */
513 		if (waitqueue_active(&ep->wq))
514 			wake_up_locked(&ep->wq);
515 		if (waitqueue_active(&ep->poll_wait))
516 			pwake++;
517 	}
518 	spin_unlock_irqrestore(&ep->lock, flags);
519 
520 	mutex_unlock(&ep->mtx);
521 
522 	/* We have to call this outside the lock */
523 	if (pwake)
524 		ep_poll_safewake(&ep->poll_wait);
525 
526 	return error;
527 }
528 
529 /*
530  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
531  * all the associated resources. Must be called with "mtx" held.
532  */
533 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
534 {
535 	unsigned long flags;
536 	struct file *file = epi->ffd.file;
537 
538 	/*
539 	 * Removes poll wait queue hooks. We _have_ to do this without holding
540 	 * the "ep->lock" otherwise a deadlock might occur. This because of the
541 	 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
542 	 * queue head lock when unregistering the wait queue. The wakeup callback
543 	 * will run by holding the wait queue head lock and will call our callback
544 	 * that will try to get "ep->lock".
545 	 */
546 	ep_unregister_pollwait(ep, epi);
547 
548 	/* Remove the current item from the list of epoll hooks */
549 	spin_lock(&file->f_lock);
550 	if (ep_is_linked(&epi->fllink))
551 		list_del_init(&epi->fllink);
552 	spin_unlock(&file->f_lock);
553 
554 	rb_erase(&epi->rbn, &ep->rbr);
555 
556 	spin_lock_irqsave(&ep->lock, flags);
557 	if (ep_is_linked(&epi->rdllink))
558 		list_del_init(&epi->rdllink);
559 	spin_unlock_irqrestore(&ep->lock, flags);
560 
561 	/* At this point it is safe to free the eventpoll item */
562 	kmem_cache_free(epi_cache, epi);
563 
564 	atomic_dec(&ep->user->epoll_watches);
565 
566 	return 0;
567 }
568 
569 static void ep_free(struct eventpoll *ep)
570 {
571 	struct rb_node *rbp;
572 	struct epitem *epi;
573 
574 	/* We need to release all tasks waiting for these file */
575 	if (waitqueue_active(&ep->poll_wait))
576 		ep_poll_safewake(&ep->poll_wait);
577 
578 	/*
579 	 * We need to lock this because we could be hit by
580 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
581 	 * We do not need to hold "ep->mtx" here because the epoll file
582 	 * is on the way to be removed and no one has references to it
583 	 * anymore. The only hit might come from eventpoll_release_file() but
584 	 * holding "epmutex" is sufficent here.
585 	 */
586 	mutex_lock(&epmutex);
587 
588 	/*
589 	 * Walks through the whole tree by unregistering poll callbacks.
590 	 */
591 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
592 		epi = rb_entry(rbp, struct epitem, rbn);
593 
594 		ep_unregister_pollwait(ep, epi);
595 	}
596 
597 	/*
598 	 * Walks through the whole tree by freeing each "struct epitem". At this
599 	 * point we are sure no poll callbacks will be lingering around, and also by
600 	 * holding "epmutex" we can be sure that no file cleanup code will hit
601 	 * us during this operation. So we can avoid the lock on "ep->lock".
602 	 */
603 	while ((rbp = rb_first(&ep->rbr)) != NULL) {
604 		epi = rb_entry(rbp, struct epitem, rbn);
605 		ep_remove(ep, epi);
606 	}
607 
608 	mutex_unlock(&epmutex);
609 	mutex_destroy(&ep->mtx);
610 	free_uid(ep->user);
611 	kfree(ep);
612 }
613 
614 static int ep_eventpoll_release(struct inode *inode, struct file *file)
615 {
616 	struct eventpoll *ep = file->private_data;
617 
618 	if (ep)
619 		ep_free(ep);
620 
621 	return 0;
622 }
623 
624 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
625 			       void *priv)
626 {
627 	struct epitem *epi, *tmp;
628 
629 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
630 		if (epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
631 		    epi->event.events)
632 			return POLLIN | POLLRDNORM;
633 		else {
634 			/*
635 			 * Item has been dropped into the ready list by the poll
636 			 * callback, but it's not actually ready, as far as
637 			 * caller requested events goes. We can remove it here.
638 			 */
639 			list_del_init(&epi->rdllink);
640 		}
641 	}
642 
643 	return 0;
644 }
645 
646 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
647 {
648 	return ep_scan_ready_list(priv, ep_read_events_proc, NULL);
649 }
650 
651 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
652 {
653 	int pollflags;
654 	struct eventpoll *ep = file->private_data;
655 
656 	/* Insert inside our poll wait queue */
657 	poll_wait(file, &ep->poll_wait, wait);
658 
659 	/*
660 	 * Proceed to find out if wanted events are really available inside
661 	 * the ready list. This need to be done under ep_call_nested()
662 	 * supervision, since the call to f_op->poll() done on listed files
663 	 * could re-enter here.
664 	 */
665 	pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
666 				   ep_poll_readyevents_proc, ep, ep, current);
667 
668 	return pollflags != -1 ? pollflags : 0;
669 }
670 
671 /* File callbacks that implement the eventpoll file behaviour */
672 static const struct file_operations eventpoll_fops = {
673 	.release	= ep_eventpoll_release,
674 	.poll		= ep_eventpoll_poll,
675 	.llseek		= noop_llseek,
676 };
677 
678 /* Fast test to see if the file is an evenpoll file */
679 static inline int is_file_epoll(struct file *f)
680 {
681 	return f->f_op == &eventpoll_fops;
682 }
683 
684 /*
685  * This is called from eventpoll_release() to unlink files from the eventpoll
686  * interface. We need to have this facility to cleanup correctly files that are
687  * closed without being removed from the eventpoll interface.
688  */
689 void eventpoll_release_file(struct file *file)
690 {
691 	struct list_head *lsthead = &file->f_ep_links;
692 	struct eventpoll *ep;
693 	struct epitem *epi;
694 
695 	/*
696 	 * We don't want to get "file->f_lock" because it is not
697 	 * necessary. It is not necessary because we're in the "struct file"
698 	 * cleanup path, and this means that noone is using this file anymore.
699 	 * So, for example, epoll_ctl() cannot hit here since if we reach this
700 	 * point, the file counter already went to zero and fget() would fail.
701 	 * The only hit might come from ep_free() but by holding the mutex
702 	 * will correctly serialize the operation. We do need to acquire
703 	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
704 	 * from anywhere but ep_free().
705 	 *
706 	 * Besides, ep_remove() acquires the lock, so we can't hold it here.
707 	 */
708 	mutex_lock(&epmutex);
709 
710 	while (!list_empty(lsthead)) {
711 		epi = list_first_entry(lsthead, struct epitem, fllink);
712 
713 		ep = epi->ep;
714 		list_del_init(&epi->fllink);
715 		mutex_lock(&ep->mtx);
716 		ep_remove(ep, epi);
717 		mutex_unlock(&ep->mtx);
718 	}
719 
720 	mutex_unlock(&epmutex);
721 }
722 
723 static int ep_alloc(struct eventpoll **pep)
724 {
725 	int error;
726 	struct user_struct *user;
727 	struct eventpoll *ep;
728 
729 	user = get_current_user();
730 	error = -ENOMEM;
731 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
732 	if (unlikely(!ep))
733 		goto free_uid;
734 
735 	spin_lock_init(&ep->lock);
736 	mutex_init(&ep->mtx);
737 	init_waitqueue_head(&ep->wq);
738 	init_waitqueue_head(&ep->poll_wait);
739 	INIT_LIST_HEAD(&ep->rdllist);
740 	ep->rbr = RB_ROOT;
741 	ep->ovflist = EP_UNACTIVE_PTR;
742 	ep->user = user;
743 
744 	*pep = ep;
745 
746 	return 0;
747 
748 free_uid:
749 	free_uid(user);
750 	return error;
751 }
752 
753 /*
754  * Search the file inside the eventpoll tree. The RB tree operations
755  * are protected by the "mtx" mutex, and ep_find() must be called with
756  * "mtx" held.
757  */
758 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
759 {
760 	int kcmp;
761 	struct rb_node *rbp;
762 	struct epitem *epi, *epir = NULL;
763 	struct epoll_filefd ffd;
764 
765 	ep_set_ffd(&ffd, file, fd);
766 	for (rbp = ep->rbr.rb_node; rbp; ) {
767 		epi = rb_entry(rbp, struct epitem, rbn);
768 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
769 		if (kcmp > 0)
770 			rbp = rbp->rb_right;
771 		else if (kcmp < 0)
772 			rbp = rbp->rb_left;
773 		else {
774 			epir = epi;
775 			break;
776 		}
777 	}
778 
779 	return epir;
780 }
781 
782 /*
783  * This is the callback that is passed to the wait queue wakeup
784  * machanism. It is called by the stored file descriptors when they
785  * have events to report.
786  */
787 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
788 {
789 	int pwake = 0;
790 	unsigned long flags;
791 	struct epitem *epi = ep_item_from_wait(wait);
792 	struct eventpoll *ep = epi->ep;
793 
794 	spin_lock_irqsave(&ep->lock, flags);
795 
796 	/*
797 	 * If the event mask does not contain any poll(2) event, we consider the
798 	 * descriptor to be disabled. This condition is likely the effect of the
799 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
800 	 * until the next EPOLL_CTL_MOD will be issued.
801 	 */
802 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
803 		goto out_unlock;
804 
805 	/*
806 	 * Check the events coming with the callback. At this stage, not
807 	 * every device reports the events in the "key" parameter of the
808 	 * callback. We need to be able to handle both cases here, hence the
809 	 * test for "key" != NULL before the event match test.
810 	 */
811 	if (key && !((unsigned long) key & epi->event.events))
812 		goto out_unlock;
813 
814 	/*
815 	 * If we are trasfering events to userspace, we can hold no locks
816 	 * (because we're accessing user memory, and because of linux f_op->poll()
817 	 * semantics). All the events that happens during that period of time are
818 	 * chained in ep->ovflist and requeued later on.
819 	 */
820 	if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
821 		if (epi->next == EP_UNACTIVE_PTR) {
822 			epi->next = ep->ovflist;
823 			ep->ovflist = epi;
824 		}
825 		goto out_unlock;
826 	}
827 
828 	/* If this file is already in the ready list we exit soon */
829 	if (!ep_is_linked(&epi->rdllink))
830 		list_add_tail(&epi->rdllink, &ep->rdllist);
831 
832 	/*
833 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
834 	 * wait list.
835 	 */
836 	if (waitqueue_active(&ep->wq))
837 		wake_up_locked(&ep->wq);
838 	if (waitqueue_active(&ep->poll_wait))
839 		pwake++;
840 
841 out_unlock:
842 	spin_unlock_irqrestore(&ep->lock, flags);
843 
844 	/* We have to call this outside the lock */
845 	if (pwake)
846 		ep_poll_safewake(&ep->poll_wait);
847 
848 	return 1;
849 }
850 
851 /*
852  * This is the callback that is used to add our wait queue to the
853  * target file wakeup lists.
854  */
855 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
856 				 poll_table *pt)
857 {
858 	struct epitem *epi = ep_item_from_epqueue(pt);
859 	struct eppoll_entry *pwq;
860 
861 	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
862 		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
863 		pwq->whead = whead;
864 		pwq->base = epi;
865 		add_wait_queue(whead, &pwq->wait);
866 		list_add_tail(&pwq->llink, &epi->pwqlist);
867 		epi->nwait++;
868 	} else {
869 		/* We have to signal that an error occurred */
870 		epi->nwait = -1;
871 	}
872 }
873 
874 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
875 {
876 	int kcmp;
877 	struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
878 	struct epitem *epic;
879 
880 	while (*p) {
881 		parent = *p;
882 		epic = rb_entry(parent, struct epitem, rbn);
883 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
884 		if (kcmp > 0)
885 			p = &parent->rb_right;
886 		else
887 			p = &parent->rb_left;
888 	}
889 	rb_link_node(&epi->rbn, parent, p);
890 	rb_insert_color(&epi->rbn, &ep->rbr);
891 }
892 
893 /*
894  * Must be called with "mtx" held.
895  */
896 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
897 		     struct file *tfile, int fd)
898 {
899 	int error, revents, pwake = 0;
900 	unsigned long flags;
901 	struct epitem *epi;
902 	struct ep_pqueue epq;
903 
904 	if (unlikely(atomic_read(&ep->user->epoll_watches) >=
905 		     max_user_watches))
906 		return -ENOSPC;
907 	if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
908 		return -ENOMEM;
909 
910 	/* Item initialization follow here ... */
911 	INIT_LIST_HEAD(&epi->rdllink);
912 	INIT_LIST_HEAD(&epi->fllink);
913 	INIT_LIST_HEAD(&epi->pwqlist);
914 	epi->ep = ep;
915 	ep_set_ffd(&epi->ffd, tfile, fd);
916 	epi->event = *event;
917 	epi->nwait = 0;
918 	epi->next = EP_UNACTIVE_PTR;
919 
920 	/* Initialize the poll table using the queue callback */
921 	epq.epi = epi;
922 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
923 
924 	/*
925 	 * Attach the item to the poll hooks and get current event bits.
926 	 * We can safely use the file* here because its usage count has
927 	 * been increased by the caller of this function. Note that after
928 	 * this operation completes, the poll callback can start hitting
929 	 * the new item.
930 	 */
931 	revents = tfile->f_op->poll(tfile, &epq.pt);
932 
933 	/*
934 	 * We have to check if something went wrong during the poll wait queue
935 	 * install process. Namely an allocation for a wait queue failed due
936 	 * high memory pressure.
937 	 */
938 	error = -ENOMEM;
939 	if (epi->nwait < 0)
940 		goto error_unregister;
941 
942 	/* Add the current item to the list of active epoll hook for this file */
943 	spin_lock(&tfile->f_lock);
944 	list_add_tail(&epi->fllink, &tfile->f_ep_links);
945 	spin_unlock(&tfile->f_lock);
946 
947 	/*
948 	 * Add the current item to the RB tree. All RB tree operations are
949 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
950 	 */
951 	ep_rbtree_insert(ep, epi);
952 
953 	/* We have to drop the new item inside our item list to keep track of it */
954 	spin_lock_irqsave(&ep->lock, flags);
955 
956 	/* If the file is already "ready" we drop it inside the ready list */
957 	if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
958 		list_add_tail(&epi->rdllink, &ep->rdllist);
959 
960 		/* Notify waiting tasks that events are available */
961 		if (waitqueue_active(&ep->wq))
962 			wake_up_locked(&ep->wq);
963 		if (waitqueue_active(&ep->poll_wait))
964 			pwake++;
965 	}
966 
967 	spin_unlock_irqrestore(&ep->lock, flags);
968 
969 	atomic_inc(&ep->user->epoll_watches);
970 
971 	/* We have to call this outside the lock */
972 	if (pwake)
973 		ep_poll_safewake(&ep->poll_wait);
974 
975 	return 0;
976 
977 error_unregister:
978 	ep_unregister_pollwait(ep, epi);
979 
980 	/*
981 	 * We need to do this because an event could have been arrived on some
982 	 * allocated wait queue. Note that we don't care about the ep->ovflist
983 	 * list, since that is used/cleaned only inside a section bound by "mtx".
984 	 * And ep_insert() is called with "mtx" held.
985 	 */
986 	spin_lock_irqsave(&ep->lock, flags);
987 	if (ep_is_linked(&epi->rdllink))
988 		list_del_init(&epi->rdllink);
989 	spin_unlock_irqrestore(&ep->lock, flags);
990 
991 	kmem_cache_free(epi_cache, epi);
992 
993 	return error;
994 }
995 
996 /*
997  * Modify the interest event mask by dropping an event if the new mask
998  * has a match in the current file status. Must be called with "mtx" held.
999  */
1000 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1001 {
1002 	int pwake = 0;
1003 	unsigned int revents;
1004 
1005 	/*
1006 	 * Set the new event interest mask before calling f_op->poll();
1007 	 * otherwise we might miss an event that happens between the
1008 	 * f_op->poll() call and the new event set registering.
1009 	 */
1010 	epi->event.events = event->events;
1011 	epi->event.data = event->data; /* protected by mtx */
1012 
1013 	/*
1014 	 * Get current event bits. We can safely use the file* here because
1015 	 * its usage count has been increased by the caller of this function.
1016 	 */
1017 	revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);
1018 
1019 	/*
1020 	 * If the item is "hot" and it is not registered inside the ready
1021 	 * list, push it inside.
1022 	 */
1023 	if (revents & event->events) {
1024 		spin_lock_irq(&ep->lock);
1025 		if (!ep_is_linked(&epi->rdllink)) {
1026 			list_add_tail(&epi->rdllink, &ep->rdllist);
1027 
1028 			/* Notify waiting tasks that events are available */
1029 			if (waitqueue_active(&ep->wq))
1030 				wake_up_locked(&ep->wq);
1031 			if (waitqueue_active(&ep->poll_wait))
1032 				pwake++;
1033 		}
1034 		spin_unlock_irq(&ep->lock);
1035 	}
1036 
1037 	/* We have to call this outside the lock */
1038 	if (pwake)
1039 		ep_poll_safewake(&ep->poll_wait);
1040 
1041 	return 0;
1042 }
1043 
1044 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1045 			       void *priv)
1046 {
1047 	struct ep_send_events_data *esed = priv;
1048 	int eventcnt;
1049 	unsigned int revents;
1050 	struct epitem *epi;
1051 	struct epoll_event __user *uevent;
1052 
1053 	/*
1054 	 * We can loop without lock because we are passed a task private list.
1055 	 * Items cannot vanish during the loop because ep_scan_ready_list() is
1056 	 * holding "mtx" during this call.
1057 	 */
1058 	for (eventcnt = 0, uevent = esed->events;
1059 	     !list_empty(head) && eventcnt < esed->maxevents;) {
1060 		epi = list_first_entry(head, struct epitem, rdllink);
1061 
1062 		list_del_init(&epi->rdllink);
1063 
1064 		revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
1065 			epi->event.events;
1066 
1067 		/*
1068 		 * If the event mask intersect the caller-requested one,
1069 		 * deliver the event to userspace. Again, ep_scan_ready_list()
1070 		 * is holding "mtx", so no operations coming from userspace
1071 		 * can change the item.
1072 		 */
1073 		if (revents) {
1074 			if (__put_user(revents, &uevent->events) ||
1075 			    __put_user(epi->event.data, &uevent->data)) {
1076 				list_add(&epi->rdllink, head);
1077 				return eventcnt ? eventcnt : -EFAULT;
1078 			}
1079 			eventcnt++;
1080 			uevent++;
1081 			if (epi->event.events & EPOLLONESHOT)
1082 				epi->event.events &= EP_PRIVATE_BITS;
1083 			else if (!(epi->event.events & EPOLLET)) {
1084 				/*
1085 				 * If this file has been added with Level
1086 				 * Trigger mode, we need to insert back inside
1087 				 * the ready list, so that the next call to
1088 				 * epoll_wait() will check again the events
1089 				 * availability. At this point, noone can insert
1090 				 * into ep->rdllist besides us. The epoll_ctl()
1091 				 * callers are locked out by
1092 				 * ep_scan_ready_list() holding "mtx" and the
1093 				 * poll callback will queue them in ep->ovflist.
1094 				 */
1095 				list_add_tail(&epi->rdllink, &ep->rdllist);
1096 			}
1097 		}
1098 	}
1099 
1100 	return eventcnt;
1101 }
1102 
1103 static int ep_send_events(struct eventpoll *ep,
1104 			  struct epoll_event __user *events, int maxevents)
1105 {
1106 	struct ep_send_events_data esed;
1107 
1108 	esed.maxevents = maxevents;
1109 	esed.events = events;
1110 
1111 	return ep_scan_ready_list(ep, ep_send_events_proc, &esed);
1112 }
1113 
1114 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1115 		   int maxevents, long timeout)
1116 {
1117 	int res, eavail, timed_out = 0;
1118 	unsigned long flags;
1119 	long slack;
1120 	wait_queue_t wait;
1121 	struct timespec end_time;
1122 	ktime_t expires, *to = NULL;
1123 
1124 	if (timeout > 0) {
1125 		ktime_get_ts(&end_time);
1126 		timespec_add_ns(&end_time, (u64)timeout * NSEC_PER_MSEC);
1127 		slack = select_estimate_accuracy(&end_time);
1128 		to = &expires;
1129 		*to = timespec_to_ktime(end_time);
1130 	} else if (timeout == 0) {
1131 		timed_out = 1;
1132 	}
1133 
1134 retry:
1135 	spin_lock_irqsave(&ep->lock, flags);
1136 
1137 	res = 0;
1138 	if (list_empty(&ep->rdllist)) {
1139 		/*
1140 		 * We don't have any available event to return to the caller.
1141 		 * We need to sleep here, and we will be wake up by
1142 		 * ep_poll_callback() when events will become available.
1143 		 */
1144 		init_waitqueue_entry(&wait, current);
1145 		__add_wait_queue_exclusive(&ep->wq, &wait);
1146 
1147 		for (;;) {
1148 			/*
1149 			 * We don't want to sleep if the ep_poll_callback() sends us
1150 			 * a wakeup in between. That's why we set the task state
1151 			 * to TASK_INTERRUPTIBLE before doing the checks.
1152 			 */
1153 			set_current_state(TASK_INTERRUPTIBLE);
1154 			if (!list_empty(&ep->rdllist) || timed_out)
1155 				break;
1156 			if (signal_pending(current)) {
1157 				res = -EINTR;
1158 				break;
1159 			}
1160 
1161 			spin_unlock_irqrestore(&ep->lock, flags);
1162 			if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1163 				timed_out = 1;
1164 
1165 			spin_lock_irqsave(&ep->lock, flags);
1166 		}
1167 		__remove_wait_queue(&ep->wq, &wait);
1168 
1169 		set_current_state(TASK_RUNNING);
1170 	}
1171 	/* Is it worth to try to dig for events ? */
1172 	eavail = !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
1173 
1174 	spin_unlock_irqrestore(&ep->lock, flags);
1175 
1176 	/*
1177 	 * Try to transfer events to user space. In case we get 0 events and
1178 	 * there's still timeout left over, we go trying again in search of
1179 	 * more luck.
1180 	 */
1181 	if (!res && eavail &&
1182 	    !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1183 		goto retry;
1184 
1185 	return res;
1186 }
1187 
1188 /*
1189  * Open an eventpoll file descriptor.
1190  */
1191 SYSCALL_DEFINE1(epoll_create1, int, flags)
1192 {
1193 	int error;
1194 	struct eventpoll *ep = NULL;
1195 
1196 	/* Check the EPOLL_* constant for consistency.  */
1197 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1198 
1199 	if (flags & ~EPOLL_CLOEXEC)
1200 		return -EINVAL;
1201 	/*
1202 	 * Create the internal data structure ("struct eventpoll").
1203 	 */
1204 	error = ep_alloc(&ep);
1205 	if (error < 0)
1206 		return error;
1207 	/*
1208 	 * Creates all the items needed to setup an eventpoll file. That is,
1209 	 * a file structure and a free file descriptor.
1210 	 */
1211 	error = anon_inode_getfd("[eventpoll]", &eventpoll_fops, ep,
1212 				 O_RDWR | (flags & O_CLOEXEC));
1213 	if (error < 0)
1214 		ep_free(ep);
1215 
1216 	return error;
1217 }
1218 
1219 SYSCALL_DEFINE1(epoll_create, int, size)
1220 {
1221 	if (size <= 0)
1222 		return -EINVAL;
1223 
1224 	return sys_epoll_create1(0);
1225 }
1226 
1227 /*
1228  * The following function implements the controller interface for
1229  * the eventpoll file that enables the insertion/removal/change of
1230  * file descriptors inside the interest set.
1231  */
1232 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1233 		struct epoll_event __user *, event)
1234 {
1235 	int error;
1236 	struct file *file, *tfile;
1237 	struct eventpoll *ep;
1238 	struct epitem *epi;
1239 	struct epoll_event epds;
1240 
1241 	error = -EFAULT;
1242 	if (ep_op_has_event(op) &&
1243 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
1244 		goto error_return;
1245 
1246 	/* Get the "struct file *" for the eventpoll file */
1247 	error = -EBADF;
1248 	file = fget(epfd);
1249 	if (!file)
1250 		goto error_return;
1251 
1252 	/* Get the "struct file *" for the target file */
1253 	tfile = fget(fd);
1254 	if (!tfile)
1255 		goto error_fput;
1256 
1257 	/* The target file descriptor must support poll */
1258 	error = -EPERM;
1259 	if (!tfile->f_op || !tfile->f_op->poll)
1260 		goto error_tgt_fput;
1261 
1262 	/*
1263 	 * We have to check that the file structure underneath the file descriptor
1264 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
1265 	 * adding an epoll file descriptor inside itself.
1266 	 */
1267 	error = -EINVAL;
1268 	if (file == tfile || !is_file_epoll(file))
1269 		goto error_tgt_fput;
1270 
1271 	/*
1272 	 * At this point it is safe to assume that the "private_data" contains
1273 	 * our own data structure.
1274 	 */
1275 	ep = file->private_data;
1276 
1277 	mutex_lock(&ep->mtx);
1278 
1279 	/*
1280 	 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1281 	 * above, we can be sure to be able to use the item looked up by
1282 	 * ep_find() till we release the mutex.
1283 	 */
1284 	epi = ep_find(ep, tfile, fd);
1285 
1286 	error = -EINVAL;
1287 	switch (op) {
1288 	case EPOLL_CTL_ADD:
1289 		if (!epi) {
1290 			epds.events |= POLLERR | POLLHUP;
1291 			error = ep_insert(ep, &epds, tfile, fd);
1292 		} else
1293 			error = -EEXIST;
1294 		break;
1295 	case EPOLL_CTL_DEL:
1296 		if (epi)
1297 			error = ep_remove(ep, epi);
1298 		else
1299 			error = -ENOENT;
1300 		break;
1301 	case EPOLL_CTL_MOD:
1302 		if (epi) {
1303 			epds.events |= POLLERR | POLLHUP;
1304 			error = ep_modify(ep, epi, &epds);
1305 		} else
1306 			error = -ENOENT;
1307 		break;
1308 	}
1309 	mutex_unlock(&ep->mtx);
1310 
1311 error_tgt_fput:
1312 	fput(tfile);
1313 error_fput:
1314 	fput(file);
1315 error_return:
1316 
1317 	return error;
1318 }
1319 
1320 /*
1321  * Implement the event wait interface for the eventpoll file. It is the kernel
1322  * part of the user space epoll_wait(2).
1323  */
1324 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
1325 		int, maxevents, int, timeout)
1326 {
1327 	int error;
1328 	struct file *file;
1329 	struct eventpoll *ep;
1330 
1331 	/* The maximum number of event must be greater than zero */
1332 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1333 		return -EINVAL;
1334 
1335 	/* Verify that the area passed by the user is writeable */
1336 	if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) {
1337 		error = -EFAULT;
1338 		goto error_return;
1339 	}
1340 
1341 	/* Get the "struct file *" for the eventpoll file */
1342 	error = -EBADF;
1343 	file = fget(epfd);
1344 	if (!file)
1345 		goto error_return;
1346 
1347 	/*
1348 	 * We have to check that the file structure underneath the fd
1349 	 * the user passed to us _is_ an eventpoll file.
1350 	 */
1351 	error = -EINVAL;
1352 	if (!is_file_epoll(file))
1353 		goto error_fput;
1354 
1355 	/*
1356 	 * At this point it is safe to assume that the "private_data" contains
1357 	 * our own data structure.
1358 	 */
1359 	ep = file->private_data;
1360 
1361 	/* Time to fish for events ... */
1362 	error = ep_poll(ep, events, maxevents, timeout);
1363 
1364 error_fput:
1365 	fput(file);
1366 error_return:
1367 
1368 	return error;
1369 }
1370 
1371 #ifdef HAVE_SET_RESTORE_SIGMASK
1372 
1373 /*
1374  * Implement the event wait interface for the eventpoll file. It is the kernel
1375  * part of the user space epoll_pwait(2).
1376  */
1377 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
1378 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
1379 		size_t, sigsetsize)
1380 {
1381 	int error;
1382 	sigset_t ksigmask, sigsaved;
1383 
1384 	/*
1385 	 * If the caller wants a certain signal mask to be set during the wait,
1386 	 * we apply it here.
1387 	 */
1388 	if (sigmask) {
1389 		if (sigsetsize != sizeof(sigset_t))
1390 			return -EINVAL;
1391 		if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
1392 			return -EFAULT;
1393 		sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
1394 		sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1395 	}
1396 
1397 	error = sys_epoll_wait(epfd, events, maxevents, timeout);
1398 
1399 	/*
1400 	 * If we changed the signal mask, we need to restore the original one.
1401 	 * In case we've got a signal while waiting, we do not restore the
1402 	 * signal mask yet, and we allow do_signal() to deliver the signal on
1403 	 * the way back to userspace, before the signal mask is restored.
1404 	 */
1405 	if (sigmask) {
1406 		if (error == -EINTR) {
1407 			memcpy(&current->saved_sigmask, &sigsaved,
1408 			       sizeof(sigsaved));
1409 			set_restore_sigmask();
1410 		} else
1411 			sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1412 	}
1413 
1414 	return error;
1415 }
1416 
1417 #endif /* HAVE_SET_RESTORE_SIGMASK */
1418 
1419 static int __init eventpoll_init(void)
1420 {
1421 	struct sysinfo si;
1422 
1423 	si_meminfo(&si);
1424 	/*
1425 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
1426 	 */
1427 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
1428 		EP_ITEM_COST;
1429 
1430 	/* Initialize the structure used to perform safe poll wait head wake ups */
1431 	ep_nested_calls_init(&poll_safewake_ncalls);
1432 
1433 	/* Initialize the structure used to perform file's f_op->poll() calls */
1434 	ep_nested_calls_init(&poll_readywalk_ncalls);
1435 
1436 	/* Allocates slab cache used to allocate "struct epitem" items */
1437 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
1438 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1439 
1440 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
1441 	pwq_cache = kmem_cache_create("eventpoll_pwq",
1442 			sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
1443 
1444 	return 0;
1445 }
1446 fs_initcall(eventpoll_init);
1447