xref: /openbmc/linux/fs/eventpoll.c (revision b24413180f5600bcb3bb70fbed5cf186b60864bd)
1 /*
2  *  fs/eventpoll.c (Efficient event retrieval implementation)
3  *  Copyright (C) 2001,...,2009	 Davide Libenzi
4  *
5  *  This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation; either version 2 of the License, or
8  *  (at your option) any later version.
9  *
10  *  Davide Libenzi <davidel@xmailserver.org>
11  *
12  */
13 
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched/signal.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/device.h>
37 #include <linux/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <linux/atomic.h>
41 #include <linux/proc_fs.h>
42 #include <linux/seq_file.h>
43 #include <linux/compat.h>
44 #include <linux/rculist.h>
45 #include <net/busy_poll.h>
46 
47 /*
48  * LOCKING:
49  * There are three level of locking required by epoll :
50  *
51  * 1) epmutex (mutex)
52  * 2) ep->mtx (mutex)
53  * 3) ep->lock (spinlock)
54  *
55  * The acquire order is the one listed above, from 1 to 3.
56  * We need a spinlock (ep->lock) because we manipulate objects
57  * from inside the poll callback, that might be triggered from
58  * a wake_up() that in turn might be called from IRQ context.
59  * So we can't sleep inside the poll callback and hence we need
60  * a spinlock. During the event transfer loop (from kernel to
61  * user space) we could end up sleeping due a copy_to_user(), so
62  * we need a lock that will allow us to sleep. This lock is a
63  * mutex (ep->mtx). It is acquired during the event transfer loop,
64  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
65  * Then we also need a global mutex to serialize eventpoll_release_file()
66  * and ep_free().
67  * This mutex is acquired by ep_free() during the epoll file
68  * cleanup path and it is also acquired by eventpoll_release_file()
69  * if a file has been pushed inside an epoll set and it is then
70  * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
71  * It is also acquired when inserting an epoll fd onto another epoll
72  * fd. We do this so that we walk the epoll tree and ensure that this
73  * insertion does not create a cycle of epoll file descriptors, which
74  * could lead to deadlock. We need a global mutex to prevent two
75  * simultaneous inserts (A into B and B into A) from racing and
76  * constructing a cycle without either insert observing that it is
77  * going to.
78  * It is necessary to acquire multiple "ep->mtx"es at once in the
79  * case when one epoll fd is added to another. In this case, we
80  * always acquire the locks in the order of nesting (i.e. after
81  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
82  * before e2->mtx). Since we disallow cycles of epoll file
83  * descriptors, this ensures that the mutexes are well-ordered. In
84  * order to communicate this nesting to lockdep, when walking a tree
85  * of epoll file descriptors, we use the current recursion depth as
86  * the lockdep subkey.
87  * It is possible to drop the "ep->mtx" and to use the global
88  * mutex "epmutex" (together with "ep->lock") to have it working,
89  * but having "ep->mtx" will make the interface more scalable.
90  * Events that require holding "epmutex" are very rare, while for
91  * normal operations the epoll private "ep->mtx" will guarantee
92  * a better scalability.
93  */
94 
95 /* Epoll private bits inside the event mask */
96 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
97 
98 #define EPOLLINOUT_BITS (POLLIN | POLLOUT)
99 
100 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | POLLERR | POLLHUP | \
101 				EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
102 
103 /* Maximum number of nesting allowed inside epoll sets */
104 #define EP_MAX_NESTS 4
105 
106 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
107 
108 #define EP_UNACTIVE_PTR ((void *) -1L)
109 
110 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
111 
112 struct epoll_filefd {
113 	struct file *file;
114 	int fd;
115 } __packed;
116 
117 /*
118  * Structure used to track possible nested calls, for too deep recursions
119  * and loop cycles.
120  */
121 struct nested_call_node {
122 	struct list_head llink;
123 	void *cookie;
124 	void *ctx;
125 };
126 
127 /*
128  * This structure is used as collector for nested calls, to check for
129  * maximum recursion dept and loop cycles.
130  */
131 struct nested_calls {
132 	struct list_head tasks_call_list;
133 	spinlock_t lock;
134 };
135 
136 /*
137  * Each file descriptor added to the eventpoll interface will
138  * have an entry of this type linked to the "rbr" RB tree.
139  * Avoid increasing the size of this struct, there can be many thousands
140  * of these on a server and we do not want this to take another cache line.
141  */
142 struct epitem {
143 	union {
144 		/* RB tree node links this structure to the eventpoll RB tree */
145 		struct rb_node rbn;
146 		/* Used to free the struct epitem */
147 		struct rcu_head rcu;
148 	};
149 
150 	/* List header used to link this structure to the eventpoll ready list */
151 	struct list_head rdllink;
152 
153 	/*
154 	 * Works together "struct eventpoll"->ovflist in keeping the
155 	 * single linked chain of items.
156 	 */
157 	struct epitem *next;
158 
159 	/* The file descriptor information this item refers to */
160 	struct epoll_filefd ffd;
161 
162 	/* Number of active wait queue attached to poll operations */
163 	int nwait;
164 
165 	/* List containing poll wait queues */
166 	struct list_head pwqlist;
167 
168 	/* The "container" of this item */
169 	struct eventpoll *ep;
170 
171 	/* List header used to link this item to the "struct file" items list */
172 	struct list_head fllink;
173 
174 	/* wakeup_source used when EPOLLWAKEUP is set */
175 	struct wakeup_source __rcu *ws;
176 
177 	/* The structure that describe the interested events and the source fd */
178 	struct epoll_event event;
179 };
180 
181 /*
182  * This structure is stored inside the "private_data" member of the file
183  * structure and represents the main data structure for the eventpoll
184  * interface.
185  */
186 struct eventpoll {
187 	/* Protect the access to this structure */
188 	spinlock_t lock;
189 
190 	/*
191 	 * This mutex is used to ensure that files are not removed
192 	 * while epoll is using them. This is held during the event
193 	 * collection loop, the file cleanup path, the epoll file exit
194 	 * code and the ctl operations.
195 	 */
196 	struct mutex mtx;
197 
198 	/* Wait queue used by sys_epoll_wait() */
199 	wait_queue_head_t wq;
200 
201 	/* Wait queue used by file->poll() */
202 	wait_queue_head_t poll_wait;
203 
204 	/* List of ready file descriptors */
205 	struct list_head rdllist;
206 
207 	/* RB tree root used to store monitored fd structs */
208 	struct rb_root_cached rbr;
209 
210 	/*
211 	 * This is a single linked list that chains all the "struct epitem" that
212 	 * happened while transferring ready events to userspace w/out
213 	 * holding ->lock.
214 	 */
215 	struct epitem *ovflist;
216 
217 	/* wakeup_source used when ep_scan_ready_list is running */
218 	struct wakeup_source *ws;
219 
220 	/* The user that created the eventpoll descriptor */
221 	struct user_struct *user;
222 
223 	struct file *file;
224 
225 	/* used to optimize loop detection check */
226 	int visited;
227 	struct list_head visited_list_link;
228 
229 #ifdef CONFIG_NET_RX_BUSY_POLL
230 	/* used to track busy poll napi_id */
231 	unsigned int napi_id;
232 #endif
233 };
234 
235 /* Wait structure used by the poll hooks */
236 struct eppoll_entry {
237 	/* List header used to link this structure to the "struct epitem" */
238 	struct list_head llink;
239 
240 	/* The "base" pointer is set to the container "struct epitem" */
241 	struct epitem *base;
242 
243 	/*
244 	 * Wait queue item that will be linked to the target file wait
245 	 * queue head.
246 	 */
247 	wait_queue_entry_t wait;
248 
249 	/* The wait queue head that linked the "wait" wait queue item */
250 	wait_queue_head_t *whead;
251 };
252 
253 /* Wrapper struct used by poll queueing */
254 struct ep_pqueue {
255 	poll_table pt;
256 	struct epitem *epi;
257 };
258 
259 /* Used by the ep_send_events() function as callback private data */
260 struct ep_send_events_data {
261 	int maxevents;
262 	struct epoll_event __user *events;
263 };
264 
265 /*
266  * Configuration options available inside /proc/sys/fs/epoll/
267  */
268 /* Maximum number of epoll watched descriptors, per user */
269 static long max_user_watches __read_mostly;
270 
271 /*
272  * This mutex is used to serialize ep_free() and eventpoll_release_file().
273  */
274 static DEFINE_MUTEX(epmutex);
275 
276 /* Used to check for epoll file descriptor inclusion loops */
277 static struct nested_calls poll_loop_ncalls;
278 
279 /* Used for safe wake up implementation */
280 static struct nested_calls poll_safewake_ncalls;
281 
282 /* Used to call file's f_op->poll() under the nested calls boundaries */
283 static struct nested_calls poll_readywalk_ncalls;
284 
285 /* Slab cache used to allocate "struct epitem" */
286 static struct kmem_cache *epi_cache __read_mostly;
287 
288 /* Slab cache used to allocate "struct eppoll_entry" */
289 static struct kmem_cache *pwq_cache __read_mostly;
290 
291 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
292 static LIST_HEAD(visited_list);
293 
294 /*
295  * List of files with newly added links, where we may need to limit the number
296  * of emanating paths. Protected by the epmutex.
297  */
298 static LIST_HEAD(tfile_check_list);
299 
300 #ifdef CONFIG_SYSCTL
301 
302 #include <linux/sysctl.h>
303 
304 static long zero;
305 static long long_max = LONG_MAX;
306 
307 struct ctl_table epoll_table[] = {
308 	{
309 		.procname	= "max_user_watches",
310 		.data		= &max_user_watches,
311 		.maxlen		= sizeof(max_user_watches),
312 		.mode		= 0644,
313 		.proc_handler	= proc_doulongvec_minmax,
314 		.extra1		= &zero,
315 		.extra2		= &long_max,
316 	},
317 	{ }
318 };
319 #endif /* CONFIG_SYSCTL */
320 
321 static const struct file_operations eventpoll_fops;
322 
323 static inline int is_file_epoll(struct file *f)
324 {
325 	return f->f_op == &eventpoll_fops;
326 }
327 
328 /* Setup the structure that is used as key for the RB tree */
329 static inline void ep_set_ffd(struct epoll_filefd *ffd,
330 			      struct file *file, int fd)
331 {
332 	ffd->file = file;
333 	ffd->fd = fd;
334 }
335 
336 /* Compare RB tree keys */
337 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
338 			     struct epoll_filefd *p2)
339 {
340 	return (p1->file > p2->file ? +1:
341 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
342 }
343 
344 /* Tells us if the item is currently linked */
345 static inline int ep_is_linked(struct list_head *p)
346 {
347 	return !list_empty(p);
348 }
349 
350 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
351 {
352 	return container_of(p, struct eppoll_entry, wait);
353 }
354 
355 /* Get the "struct epitem" from a wait queue pointer */
356 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
357 {
358 	return container_of(p, struct eppoll_entry, wait)->base;
359 }
360 
361 /* Get the "struct epitem" from an epoll queue wrapper */
362 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
363 {
364 	return container_of(p, struct ep_pqueue, pt)->epi;
365 }
366 
367 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
368 static inline int ep_op_has_event(int op)
369 {
370 	return op != EPOLL_CTL_DEL;
371 }
372 
373 /* Initialize the poll safe wake up structure */
374 static void ep_nested_calls_init(struct nested_calls *ncalls)
375 {
376 	INIT_LIST_HEAD(&ncalls->tasks_call_list);
377 	spin_lock_init(&ncalls->lock);
378 }
379 
380 /**
381  * ep_events_available - Checks if ready events might be available.
382  *
383  * @ep: Pointer to the eventpoll context.
384  *
385  * Returns: Returns a value different than zero if ready events are available,
386  *          or zero otherwise.
387  */
388 static inline int ep_events_available(struct eventpoll *ep)
389 {
390 	return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
391 }
392 
393 #ifdef CONFIG_NET_RX_BUSY_POLL
394 static bool ep_busy_loop_end(void *p, unsigned long start_time)
395 {
396 	struct eventpoll *ep = p;
397 
398 	return ep_events_available(ep) || busy_loop_timeout(start_time);
399 }
400 #endif /* CONFIG_NET_RX_BUSY_POLL */
401 
402 /*
403  * Busy poll if globally on and supporting sockets found && no events,
404  * busy loop will return if need_resched or ep_events_available.
405  *
406  * we must do our busy polling with irqs enabled
407  */
408 static void ep_busy_loop(struct eventpoll *ep, int nonblock)
409 {
410 #ifdef CONFIG_NET_RX_BUSY_POLL
411 	unsigned int napi_id = READ_ONCE(ep->napi_id);
412 
413 	if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
414 		napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep);
415 #endif
416 }
417 
418 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
419 {
420 #ifdef CONFIG_NET_RX_BUSY_POLL
421 	if (ep->napi_id)
422 		ep->napi_id = 0;
423 #endif
424 }
425 
426 /*
427  * Set epoll busy poll NAPI ID from sk.
428  */
429 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
430 {
431 #ifdef CONFIG_NET_RX_BUSY_POLL
432 	struct eventpoll *ep;
433 	unsigned int napi_id;
434 	struct socket *sock;
435 	struct sock *sk;
436 	int err;
437 
438 	if (!net_busy_loop_on())
439 		return;
440 
441 	sock = sock_from_file(epi->ffd.file, &err);
442 	if (!sock)
443 		return;
444 
445 	sk = sock->sk;
446 	if (!sk)
447 		return;
448 
449 	napi_id = READ_ONCE(sk->sk_napi_id);
450 	ep = epi->ep;
451 
452 	/* Non-NAPI IDs can be rejected
453 	 *	or
454 	 * Nothing to do if we already have this ID
455 	 */
456 	if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
457 		return;
458 
459 	/* record NAPI ID for use in next busy poll */
460 	ep->napi_id = napi_id;
461 #endif
462 }
463 
464 /**
465  * ep_call_nested - Perform a bound (possibly) nested call, by checking
466  *                  that the recursion limit is not exceeded, and that
467  *                  the same nested call (by the meaning of same cookie) is
468  *                  no re-entered.
469  *
470  * @ncalls: Pointer to the nested_calls structure to be used for this call.
471  * @max_nests: Maximum number of allowed nesting calls.
472  * @nproc: Nested call core function pointer.
473  * @priv: Opaque data to be passed to the @nproc callback.
474  * @cookie: Cookie to be used to identify this nested call.
475  * @ctx: This instance context.
476  *
477  * Returns: Returns the code returned by the @nproc callback, or -1 if
478  *          the maximum recursion limit has been exceeded.
479  */
480 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
481 			  int (*nproc)(void *, void *, int), void *priv,
482 			  void *cookie, void *ctx)
483 {
484 	int error, call_nests = 0;
485 	unsigned long flags;
486 	struct list_head *lsthead = &ncalls->tasks_call_list;
487 	struct nested_call_node *tncur;
488 	struct nested_call_node tnode;
489 
490 	spin_lock_irqsave(&ncalls->lock, flags);
491 
492 	/*
493 	 * Try to see if the current task is already inside this wakeup call.
494 	 * We use a list here, since the population inside this set is always
495 	 * very much limited.
496 	 */
497 	list_for_each_entry(tncur, lsthead, llink) {
498 		if (tncur->ctx == ctx &&
499 		    (tncur->cookie == cookie || ++call_nests > max_nests)) {
500 			/*
501 			 * Ops ... loop detected or maximum nest level reached.
502 			 * We abort this wake by breaking the cycle itself.
503 			 */
504 			error = -1;
505 			goto out_unlock;
506 		}
507 	}
508 
509 	/* Add the current task and cookie to the list */
510 	tnode.ctx = ctx;
511 	tnode.cookie = cookie;
512 	list_add(&tnode.llink, lsthead);
513 
514 	spin_unlock_irqrestore(&ncalls->lock, flags);
515 
516 	/* Call the nested function */
517 	error = (*nproc)(priv, cookie, call_nests);
518 
519 	/* Remove the current task from the list */
520 	spin_lock_irqsave(&ncalls->lock, flags);
521 	list_del(&tnode.llink);
522 out_unlock:
523 	spin_unlock_irqrestore(&ncalls->lock, flags);
524 
525 	return error;
526 }
527 
528 /*
529  * As described in commit 0ccf831cb lockdep: annotate epoll
530  * the use of wait queues used by epoll is done in a very controlled
531  * manner. Wake ups can nest inside each other, but are never done
532  * with the same locking. For example:
533  *
534  *   dfd = socket(...);
535  *   efd1 = epoll_create();
536  *   efd2 = epoll_create();
537  *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
538  *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
539  *
540  * When a packet arrives to the device underneath "dfd", the net code will
541  * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
542  * callback wakeup entry on that queue, and the wake_up() performed by the
543  * "dfd" net code will end up in ep_poll_callback(). At this point epoll
544  * (efd1) notices that it may have some event ready, so it needs to wake up
545  * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
546  * that ends up in another wake_up(), after having checked about the
547  * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
548  * avoid stack blasting.
549  *
550  * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
551  * this special case of epoll.
552  */
553 #ifdef CONFIG_DEBUG_LOCK_ALLOC
554 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
555 				     unsigned long events, int subclass)
556 {
557 	unsigned long flags;
558 
559 	spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
560 	wake_up_locked_poll(wqueue, events);
561 	spin_unlock_irqrestore(&wqueue->lock, flags);
562 }
563 #else
564 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
565 				     unsigned long events, int subclass)
566 {
567 	wake_up_poll(wqueue, events);
568 }
569 #endif
570 
571 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
572 {
573 	ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
574 			  1 + call_nests);
575 	return 0;
576 }
577 
578 /*
579  * Perform a safe wake up of the poll wait list. The problem is that
580  * with the new callback'd wake up system, it is possible that the
581  * poll callback is reentered from inside the call to wake_up() done
582  * on the poll wait queue head. The rule is that we cannot reenter the
583  * wake up code from the same task more than EP_MAX_NESTS times,
584  * and we cannot reenter the same wait queue head at all. This will
585  * enable to have a hierarchy of epoll file descriptor of no more than
586  * EP_MAX_NESTS deep.
587  */
588 static void ep_poll_safewake(wait_queue_head_t *wq)
589 {
590 	int this_cpu = get_cpu();
591 
592 	ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
593 		       ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
594 
595 	put_cpu();
596 }
597 
598 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
599 {
600 	wait_queue_head_t *whead;
601 
602 	rcu_read_lock();
603 	/*
604 	 * If it is cleared by POLLFREE, it should be rcu-safe.
605 	 * If we read NULL we need a barrier paired with
606 	 * smp_store_release() in ep_poll_callback(), otherwise
607 	 * we rely on whead->lock.
608 	 */
609 	whead = smp_load_acquire(&pwq->whead);
610 	if (whead)
611 		remove_wait_queue(whead, &pwq->wait);
612 	rcu_read_unlock();
613 }
614 
615 /*
616  * This function unregisters poll callbacks from the associated file
617  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
618  * ep_free).
619  */
620 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
621 {
622 	struct list_head *lsthead = &epi->pwqlist;
623 	struct eppoll_entry *pwq;
624 
625 	while (!list_empty(lsthead)) {
626 		pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
627 
628 		list_del(&pwq->llink);
629 		ep_remove_wait_queue(pwq);
630 		kmem_cache_free(pwq_cache, pwq);
631 	}
632 }
633 
634 /* call only when ep->mtx is held */
635 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
636 {
637 	return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
638 }
639 
640 /* call only when ep->mtx is held */
641 static inline void ep_pm_stay_awake(struct epitem *epi)
642 {
643 	struct wakeup_source *ws = ep_wakeup_source(epi);
644 
645 	if (ws)
646 		__pm_stay_awake(ws);
647 }
648 
649 static inline bool ep_has_wakeup_source(struct epitem *epi)
650 {
651 	return rcu_access_pointer(epi->ws) ? true : false;
652 }
653 
654 /* call when ep->mtx cannot be held (ep_poll_callback) */
655 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
656 {
657 	struct wakeup_source *ws;
658 
659 	rcu_read_lock();
660 	ws = rcu_dereference(epi->ws);
661 	if (ws)
662 		__pm_stay_awake(ws);
663 	rcu_read_unlock();
664 }
665 
666 /**
667  * ep_scan_ready_list - Scans the ready list in a way that makes possible for
668  *                      the scan code, to call f_op->poll(). Also allows for
669  *                      O(NumReady) performance.
670  *
671  * @ep: Pointer to the epoll private data structure.
672  * @sproc: Pointer to the scan callback.
673  * @priv: Private opaque data passed to the @sproc callback.
674  * @depth: The current depth of recursive f_op->poll calls.
675  * @ep_locked: caller already holds ep->mtx
676  *
677  * Returns: The same integer error code returned by the @sproc callback.
678  */
679 static int ep_scan_ready_list(struct eventpoll *ep,
680 			      int (*sproc)(struct eventpoll *,
681 					   struct list_head *, void *),
682 			      void *priv, int depth, bool ep_locked)
683 {
684 	int error, pwake = 0;
685 	unsigned long flags;
686 	struct epitem *epi, *nepi;
687 	LIST_HEAD(txlist);
688 
689 	/*
690 	 * We need to lock this because we could be hit by
691 	 * eventpoll_release_file() and epoll_ctl().
692 	 */
693 
694 	if (!ep_locked)
695 		mutex_lock_nested(&ep->mtx, depth);
696 
697 	/*
698 	 * Steal the ready list, and re-init the original one to the
699 	 * empty list. Also, set ep->ovflist to NULL so that events
700 	 * happening while looping w/out locks, are not lost. We cannot
701 	 * have the poll callback to queue directly on ep->rdllist,
702 	 * because we want the "sproc" callback to be able to do it
703 	 * in a lockless way.
704 	 */
705 	spin_lock_irqsave(&ep->lock, flags);
706 	list_splice_init(&ep->rdllist, &txlist);
707 	ep->ovflist = NULL;
708 	spin_unlock_irqrestore(&ep->lock, flags);
709 
710 	/*
711 	 * Now call the callback function.
712 	 */
713 	error = (*sproc)(ep, &txlist, priv);
714 
715 	spin_lock_irqsave(&ep->lock, flags);
716 	/*
717 	 * During the time we spent inside the "sproc" callback, some
718 	 * other events might have been queued by the poll callback.
719 	 * We re-insert them inside the main ready-list here.
720 	 */
721 	for (nepi = ep->ovflist; (epi = nepi) != NULL;
722 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
723 		/*
724 		 * We need to check if the item is already in the list.
725 		 * During the "sproc" callback execution time, items are
726 		 * queued into ->ovflist but the "txlist" might already
727 		 * contain them, and the list_splice() below takes care of them.
728 		 */
729 		if (!ep_is_linked(&epi->rdllink)) {
730 			list_add_tail(&epi->rdllink, &ep->rdllist);
731 			ep_pm_stay_awake(epi);
732 		}
733 	}
734 	/*
735 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
736 	 * releasing the lock, events will be queued in the normal way inside
737 	 * ep->rdllist.
738 	 */
739 	ep->ovflist = EP_UNACTIVE_PTR;
740 
741 	/*
742 	 * Quickly re-inject items left on "txlist".
743 	 */
744 	list_splice(&txlist, &ep->rdllist);
745 	__pm_relax(ep->ws);
746 
747 	if (!list_empty(&ep->rdllist)) {
748 		/*
749 		 * Wake up (if active) both the eventpoll wait list and
750 		 * the ->poll() wait list (delayed after we release the lock).
751 		 */
752 		if (waitqueue_active(&ep->wq))
753 			wake_up_locked(&ep->wq);
754 		if (waitqueue_active(&ep->poll_wait))
755 			pwake++;
756 	}
757 	spin_unlock_irqrestore(&ep->lock, flags);
758 
759 	if (!ep_locked)
760 		mutex_unlock(&ep->mtx);
761 
762 	/* We have to call this outside the lock */
763 	if (pwake)
764 		ep_poll_safewake(&ep->poll_wait);
765 
766 	return error;
767 }
768 
769 static void epi_rcu_free(struct rcu_head *head)
770 {
771 	struct epitem *epi = container_of(head, struct epitem, rcu);
772 	kmem_cache_free(epi_cache, epi);
773 }
774 
775 /*
776  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
777  * all the associated resources. Must be called with "mtx" held.
778  */
779 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
780 {
781 	unsigned long flags;
782 	struct file *file = epi->ffd.file;
783 
784 	/*
785 	 * Removes poll wait queue hooks. We _have_ to do this without holding
786 	 * the "ep->lock" otherwise a deadlock might occur. This because of the
787 	 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
788 	 * queue head lock when unregistering the wait queue. The wakeup callback
789 	 * will run by holding the wait queue head lock and will call our callback
790 	 * that will try to get "ep->lock".
791 	 */
792 	ep_unregister_pollwait(ep, epi);
793 
794 	/* Remove the current item from the list of epoll hooks */
795 	spin_lock(&file->f_lock);
796 	list_del_rcu(&epi->fllink);
797 	spin_unlock(&file->f_lock);
798 
799 	rb_erase_cached(&epi->rbn, &ep->rbr);
800 
801 	spin_lock_irqsave(&ep->lock, flags);
802 	if (ep_is_linked(&epi->rdllink))
803 		list_del_init(&epi->rdllink);
804 	spin_unlock_irqrestore(&ep->lock, flags);
805 
806 	wakeup_source_unregister(ep_wakeup_source(epi));
807 	/*
808 	 * At this point it is safe to free the eventpoll item. Use the union
809 	 * field epi->rcu, since we are trying to minimize the size of
810 	 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
811 	 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
812 	 * use of the rbn field.
813 	 */
814 	call_rcu(&epi->rcu, epi_rcu_free);
815 
816 	atomic_long_dec(&ep->user->epoll_watches);
817 
818 	return 0;
819 }
820 
821 static void ep_free(struct eventpoll *ep)
822 {
823 	struct rb_node *rbp;
824 	struct epitem *epi;
825 
826 	/* We need to release all tasks waiting for these file */
827 	if (waitqueue_active(&ep->poll_wait))
828 		ep_poll_safewake(&ep->poll_wait);
829 
830 	/*
831 	 * We need to lock this because we could be hit by
832 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
833 	 * We do not need to hold "ep->mtx" here because the epoll file
834 	 * is on the way to be removed and no one has references to it
835 	 * anymore. The only hit might come from eventpoll_release_file() but
836 	 * holding "epmutex" is sufficient here.
837 	 */
838 	mutex_lock(&epmutex);
839 
840 	/*
841 	 * Walks through the whole tree by unregistering poll callbacks.
842 	 */
843 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
844 		epi = rb_entry(rbp, struct epitem, rbn);
845 
846 		ep_unregister_pollwait(ep, epi);
847 		cond_resched();
848 	}
849 
850 	/*
851 	 * Walks through the whole tree by freeing each "struct epitem". At this
852 	 * point we are sure no poll callbacks will be lingering around, and also by
853 	 * holding "epmutex" we can be sure that no file cleanup code will hit
854 	 * us during this operation. So we can avoid the lock on "ep->lock".
855 	 * We do not need to lock ep->mtx, either, we only do it to prevent
856 	 * a lockdep warning.
857 	 */
858 	mutex_lock(&ep->mtx);
859 	while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
860 		epi = rb_entry(rbp, struct epitem, rbn);
861 		ep_remove(ep, epi);
862 		cond_resched();
863 	}
864 	mutex_unlock(&ep->mtx);
865 
866 	mutex_unlock(&epmutex);
867 	mutex_destroy(&ep->mtx);
868 	free_uid(ep->user);
869 	wakeup_source_unregister(ep->ws);
870 	kfree(ep);
871 }
872 
873 static int ep_eventpoll_release(struct inode *inode, struct file *file)
874 {
875 	struct eventpoll *ep = file->private_data;
876 
877 	if (ep)
878 		ep_free(ep);
879 
880 	return 0;
881 }
882 
883 static inline unsigned int ep_item_poll(struct epitem *epi, poll_table *pt)
884 {
885 	pt->_key = epi->event.events;
886 
887 	return epi->ffd.file->f_op->poll(epi->ffd.file, pt) & epi->event.events;
888 }
889 
890 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
891 			       void *priv)
892 {
893 	struct epitem *epi, *tmp;
894 	poll_table pt;
895 
896 	init_poll_funcptr(&pt, NULL);
897 
898 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
899 		if (ep_item_poll(epi, &pt))
900 			return POLLIN | POLLRDNORM;
901 		else {
902 			/*
903 			 * Item has been dropped into the ready list by the poll
904 			 * callback, but it's not actually ready, as far as
905 			 * caller requested events goes. We can remove it here.
906 			 */
907 			__pm_relax(ep_wakeup_source(epi));
908 			list_del_init(&epi->rdllink);
909 		}
910 	}
911 
912 	return 0;
913 }
914 
915 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
916 				 poll_table *pt);
917 
918 struct readyevents_arg {
919 	struct eventpoll *ep;
920 	bool locked;
921 };
922 
923 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
924 {
925 	struct readyevents_arg *arg = priv;
926 
927 	return ep_scan_ready_list(arg->ep, ep_read_events_proc, NULL,
928 				  call_nests + 1, arg->locked);
929 }
930 
931 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
932 {
933 	int pollflags;
934 	struct eventpoll *ep = file->private_data;
935 	struct readyevents_arg arg;
936 
937 	/*
938 	 * During ep_insert() we already hold the ep->mtx for the tfile.
939 	 * Prevent re-aquisition.
940 	 */
941 	arg.locked = wait && (wait->_qproc == ep_ptable_queue_proc);
942 	arg.ep = ep;
943 
944 	/* Insert inside our poll wait queue */
945 	poll_wait(file, &ep->poll_wait, wait);
946 
947 	/*
948 	 * Proceed to find out if wanted events are really available inside
949 	 * the ready list. This need to be done under ep_call_nested()
950 	 * supervision, since the call to f_op->poll() done on listed files
951 	 * could re-enter here.
952 	 */
953 	pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
954 				   ep_poll_readyevents_proc, &arg, ep, current);
955 
956 	return pollflags != -1 ? pollflags : 0;
957 }
958 
959 #ifdef CONFIG_PROC_FS
960 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
961 {
962 	struct eventpoll *ep = f->private_data;
963 	struct rb_node *rbp;
964 
965 	mutex_lock(&ep->mtx);
966 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
967 		struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
968 		struct inode *inode = file_inode(epi->ffd.file);
969 
970 		seq_printf(m, "tfd: %8d events: %8x data: %16llx "
971 			   " pos:%lli ino:%lx sdev:%x\n",
972 			   epi->ffd.fd, epi->event.events,
973 			   (long long)epi->event.data,
974 			   (long long)epi->ffd.file->f_pos,
975 			   inode->i_ino, inode->i_sb->s_dev);
976 		if (seq_has_overflowed(m))
977 			break;
978 	}
979 	mutex_unlock(&ep->mtx);
980 }
981 #endif
982 
983 /* File callbacks that implement the eventpoll file behaviour */
984 static const struct file_operations eventpoll_fops = {
985 #ifdef CONFIG_PROC_FS
986 	.show_fdinfo	= ep_show_fdinfo,
987 #endif
988 	.release	= ep_eventpoll_release,
989 	.poll		= ep_eventpoll_poll,
990 	.llseek		= noop_llseek,
991 };
992 
993 /*
994  * This is called from eventpoll_release() to unlink files from the eventpoll
995  * interface. We need to have this facility to cleanup correctly files that are
996  * closed without being removed from the eventpoll interface.
997  */
998 void eventpoll_release_file(struct file *file)
999 {
1000 	struct eventpoll *ep;
1001 	struct epitem *epi, *next;
1002 
1003 	/*
1004 	 * We don't want to get "file->f_lock" because it is not
1005 	 * necessary. It is not necessary because we're in the "struct file"
1006 	 * cleanup path, and this means that no one is using this file anymore.
1007 	 * So, for example, epoll_ctl() cannot hit here since if we reach this
1008 	 * point, the file counter already went to zero and fget() would fail.
1009 	 * The only hit might come from ep_free() but by holding the mutex
1010 	 * will correctly serialize the operation. We do need to acquire
1011 	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
1012 	 * from anywhere but ep_free().
1013 	 *
1014 	 * Besides, ep_remove() acquires the lock, so we can't hold it here.
1015 	 */
1016 	mutex_lock(&epmutex);
1017 	list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
1018 		ep = epi->ep;
1019 		mutex_lock_nested(&ep->mtx, 0);
1020 		ep_remove(ep, epi);
1021 		mutex_unlock(&ep->mtx);
1022 	}
1023 	mutex_unlock(&epmutex);
1024 }
1025 
1026 static int ep_alloc(struct eventpoll **pep)
1027 {
1028 	int error;
1029 	struct user_struct *user;
1030 	struct eventpoll *ep;
1031 
1032 	user = get_current_user();
1033 	error = -ENOMEM;
1034 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1035 	if (unlikely(!ep))
1036 		goto free_uid;
1037 
1038 	spin_lock_init(&ep->lock);
1039 	mutex_init(&ep->mtx);
1040 	init_waitqueue_head(&ep->wq);
1041 	init_waitqueue_head(&ep->poll_wait);
1042 	INIT_LIST_HEAD(&ep->rdllist);
1043 	ep->rbr = RB_ROOT_CACHED;
1044 	ep->ovflist = EP_UNACTIVE_PTR;
1045 	ep->user = user;
1046 
1047 	*pep = ep;
1048 
1049 	return 0;
1050 
1051 free_uid:
1052 	free_uid(user);
1053 	return error;
1054 }
1055 
1056 /*
1057  * Search the file inside the eventpoll tree. The RB tree operations
1058  * are protected by the "mtx" mutex, and ep_find() must be called with
1059  * "mtx" held.
1060  */
1061 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1062 {
1063 	int kcmp;
1064 	struct rb_node *rbp;
1065 	struct epitem *epi, *epir = NULL;
1066 	struct epoll_filefd ffd;
1067 
1068 	ep_set_ffd(&ffd, file, fd);
1069 	for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1070 		epi = rb_entry(rbp, struct epitem, rbn);
1071 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1072 		if (kcmp > 0)
1073 			rbp = rbp->rb_right;
1074 		else if (kcmp < 0)
1075 			rbp = rbp->rb_left;
1076 		else {
1077 			epir = epi;
1078 			break;
1079 		}
1080 	}
1081 
1082 	return epir;
1083 }
1084 
1085 #ifdef CONFIG_CHECKPOINT_RESTORE
1086 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1087 {
1088 	struct rb_node *rbp;
1089 	struct epitem *epi;
1090 
1091 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1092 		epi = rb_entry(rbp, struct epitem, rbn);
1093 		if (epi->ffd.fd == tfd) {
1094 			if (toff == 0)
1095 				return epi;
1096 			else
1097 				toff--;
1098 		}
1099 		cond_resched();
1100 	}
1101 
1102 	return NULL;
1103 }
1104 
1105 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1106 				     unsigned long toff)
1107 {
1108 	struct file *file_raw;
1109 	struct eventpoll *ep;
1110 	struct epitem *epi;
1111 
1112 	if (!is_file_epoll(file))
1113 		return ERR_PTR(-EINVAL);
1114 
1115 	ep = file->private_data;
1116 
1117 	mutex_lock(&ep->mtx);
1118 	epi = ep_find_tfd(ep, tfd, toff);
1119 	if (epi)
1120 		file_raw = epi->ffd.file;
1121 	else
1122 		file_raw = ERR_PTR(-ENOENT);
1123 	mutex_unlock(&ep->mtx);
1124 
1125 	return file_raw;
1126 }
1127 #endif /* CONFIG_CHECKPOINT_RESTORE */
1128 
1129 /*
1130  * This is the callback that is passed to the wait queue wakeup
1131  * mechanism. It is called by the stored file descriptors when they
1132  * have events to report.
1133  */
1134 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1135 {
1136 	int pwake = 0;
1137 	unsigned long flags;
1138 	struct epitem *epi = ep_item_from_wait(wait);
1139 	struct eventpoll *ep = epi->ep;
1140 	int ewake = 0;
1141 
1142 	spin_lock_irqsave(&ep->lock, flags);
1143 
1144 	ep_set_busy_poll_napi_id(epi);
1145 
1146 	/*
1147 	 * If the event mask does not contain any poll(2) event, we consider the
1148 	 * descriptor to be disabled. This condition is likely the effect of the
1149 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1150 	 * until the next EPOLL_CTL_MOD will be issued.
1151 	 */
1152 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
1153 		goto out_unlock;
1154 
1155 	/*
1156 	 * Check the events coming with the callback. At this stage, not
1157 	 * every device reports the events in the "key" parameter of the
1158 	 * callback. We need to be able to handle both cases here, hence the
1159 	 * test for "key" != NULL before the event match test.
1160 	 */
1161 	if (key && !((unsigned long) key & epi->event.events))
1162 		goto out_unlock;
1163 
1164 	/*
1165 	 * If we are transferring events to userspace, we can hold no locks
1166 	 * (because we're accessing user memory, and because of linux f_op->poll()
1167 	 * semantics). All the events that happen during that period of time are
1168 	 * chained in ep->ovflist and requeued later on.
1169 	 */
1170 	if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
1171 		if (epi->next == EP_UNACTIVE_PTR) {
1172 			epi->next = ep->ovflist;
1173 			ep->ovflist = epi;
1174 			if (epi->ws) {
1175 				/*
1176 				 * Activate ep->ws since epi->ws may get
1177 				 * deactivated at any time.
1178 				 */
1179 				__pm_stay_awake(ep->ws);
1180 			}
1181 
1182 		}
1183 		goto out_unlock;
1184 	}
1185 
1186 	/* If this file is already in the ready list we exit soon */
1187 	if (!ep_is_linked(&epi->rdllink)) {
1188 		list_add_tail(&epi->rdllink, &ep->rdllist);
1189 		ep_pm_stay_awake_rcu(epi);
1190 	}
1191 
1192 	/*
1193 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1194 	 * wait list.
1195 	 */
1196 	if (waitqueue_active(&ep->wq)) {
1197 		if ((epi->event.events & EPOLLEXCLUSIVE) &&
1198 					!((unsigned long)key & POLLFREE)) {
1199 			switch ((unsigned long)key & EPOLLINOUT_BITS) {
1200 			case POLLIN:
1201 				if (epi->event.events & POLLIN)
1202 					ewake = 1;
1203 				break;
1204 			case POLLOUT:
1205 				if (epi->event.events & POLLOUT)
1206 					ewake = 1;
1207 				break;
1208 			case 0:
1209 				ewake = 1;
1210 				break;
1211 			}
1212 		}
1213 		wake_up_locked(&ep->wq);
1214 	}
1215 	if (waitqueue_active(&ep->poll_wait))
1216 		pwake++;
1217 
1218 out_unlock:
1219 	spin_unlock_irqrestore(&ep->lock, flags);
1220 
1221 	/* We have to call this outside the lock */
1222 	if (pwake)
1223 		ep_poll_safewake(&ep->poll_wait);
1224 
1225 	if (!(epi->event.events & EPOLLEXCLUSIVE))
1226 		ewake = 1;
1227 
1228 	if ((unsigned long)key & POLLFREE) {
1229 		/*
1230 		 * If we race with ep_remove_wait_queue() it can miss
1231 		 * ->whead = NULL and do another remove_wait_queue() after
1232 		 * us, so we can't use __remove_wait_queue().
1233 		 */
1234 		list_del_init(&wait->entry);
1235 		/*
1236 		 * ->whead != NULL protects us from the race with ep_free()
1237 		 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1238 		 * held by the caller. Once we nullify it, nothing protects
1239 		 * ep/epi or even wait.
1240 		 */
1241 		smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1242 	}
1243 
1244 	return ewake;
1245 }
1246 
1247 /*
1248  * This is the callback that is used to add our wait queue to the
1249  * target file wakeup lists.
1250  */
1251 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1252 				 poll_table *pt)
1253 {
1254 	struct epitem *epi = ep_item_from_epqueue(pt);
1255 	struct eppoll_entry *pwq;
1256 
1257 	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1258 		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1259 		pwq->whead = whead;
1260 		pwq->base = epi;
1261 		if (epi->event.events & EPOLLEXCLUSIVE)
1262 			add_wait_queue_exclusive(whead, &pwq->wait);
1263 		else
1264 			add_wait_queue(whead, &pwq->wait);
1265 		list_add_tail(&pwq->llink, &epi->pwqlist);
1266 		epi->nwait++;
1267 	} else {
1268 		/* We have to signal that an error occurred */
1269 		epi->nwait = -1;
1270 	}
1271 }
1272 
1273 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1274 {
1275 	int kcmp;
1276 	struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1277 	struct epitem *epic;
1278 	bool leftmost = true;
1279 
1280 	while (*p) {
1281 		parent = *p;
1282 		epic = rb_entry(parent, struct epitem, rbn);
1283 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1284 		if (kcmp > 0) {
1285 			p = &parent->rb_right;
1286 			leftmost = false;
1287 		} else
1288 			p = &parent->rb_left;
1289 	}
1290 	rb_link_node(&epi->rbn, parent, p);
1291 	rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1292 }
1293 
1294 
1295 
1296 #define PATH_ARR_SIZE 5
1297 /*
1298  * These are the number paths of length 1 to 5, that we are allowing to emanate
1299  * from a single file of interest. For example, we allow 1000 paths of length
1300  * 1, to emanate from each file of interest. This essentially represents the
1301  * potential wakeup paths, which need to be limited in order to avoid massive
1302  * uncontrolled wakeup storms. The common use case should be a single ep which
1303  * is connected to n file sources. In this case each file source has 1 path
1304  * of length 1. Thus, the numbers below should be more than sufficient. These
1305  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1306  * and delete can't add additional paths. Protected by the epmutex.
1307  */
1308 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1309 static int path_count[PATH_ARR_SIZE];
1310 
1311 static int path_count_inc(int nests)
1312 {
1313 	/* Allow an arbitrary number of depth 1 paths */
1314 	if (nests == 0)
1315 		return 0;
1316 
1317 	if (++path_count[nests] > path_limits[nests])
1318 		return -1;
1319 	return 0;
1320 }
1321 
1322 static void path_count_init(void)
1323 {
1324 	int i;
1325 
1326 	for (i = 0; i < PATH_ARR_SIZE; i++)
1327 		path_count[i] = 0;
1328 }
1329 
1330 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1331 {
1332 	int error = 0;
1333 	struct file *file = priv;
1334 	struct file *child_file;
1335 	struct epitem *epi;
1336 
1337 	/* CTL_DEL can remove links here, but that can't increase our count */
1338 	rcu_read_lock();
1339 	list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1340 		child_file = epi->ep->file;
1341 		if (is_file_epoll(child_file)) {
1342 			if (list_empty(&child_file->f_ep_links)) {
1343 				if (path_count_inc(call_nests)) {
1344 					error = -1;
1345 					break;
1346 				}
1347 			} else {
1348 				error = ep_call_nested(&poll_loop_ncalls,
1349 							EP_MAX_NESTS,
1350 							reverse_path_check_proc,
1351 							child_file, child_file,
1352 							current);
1353 			}
1354 			if (error != 0)
1355 				break;
1356 		} else {
1357 			printk(KERN_ERR "reverse_path_check_proc: "
1358 				"file is not an ep!\n");
1359 		}
1360 	}
1361 	rcu_read_unlock();
1362 	return error;
1363 }
1364 
1365 /**
1366  * reverse_path_check - The tfile_check_list is list of file *, which have
1367  *                      links that are proposed to be newly added. We need to
1368  *                      make sure that those added links don't add too many
1369  *                      paths such that we will spend all our time waking up
1370  *                      eventpoll objects.
1371  *
1372  * Returns: Returns zero if the proposed links don't create too many paths,
1373  *	    -1 otherwise.
1374  */
1375 static int reverse_path_check(void)
1376 {
1377 	int error = 0;
1378 	struct file *current_file;
1379 
1380 	/* let's call this for all tfiles */
1381 	list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1382 		path_count_init();
1383 		error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1384 					reverse_path_check_proc, current_file,
1385 					current_file, current);
1386 		if (error)
1387 			break;
1388 	}
1389 	return error;
1390 }
1391 
1392 static int ep_create_wakeup_source(struct epitem *epi)
1393 {
1394 	const char *name;
1395 	struct wakeup_source *ws;
1396 
1397 	if (!epi->ep->ws) {
1398 		epi->ep->ws = wakeup_source_register("eventpoll");
1399 		if (!epi->ep->ws)
1400 			return -ENOMEM;
1401 	}
1402 
1403 	name = epi->ffd.file->f_path.dentry->d_name.name;
1404 	ws = wakeup_source_register(name);
1405 
1406 	if (!ws)
1407 		return -ENOMEM;
1408 	rcu_assign_pointer(epi->ws, ws);
1409 
1410 	return 0;
1411 }
1412 
1413 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1414 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1415 {
1416 	struct wakeup_source *ws = ep_wakeup_source(epi);
1417 
1418 	RCU_INIT_POINTER(epi->ws, NULL);
1419 
1420 	/*
1421 	 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1422 	 * used internally by wakeup_source_remove, too (called by
1423 	 * wakeup_source_unregister), so we cannot use call_rcu
1424 	 */
1425 	synchronize_rcu();
1426 	wakeup_source_unregister(ws);
1427 }
1428 
1429 /*
1430  * Must be called with "mtx" held.
1431  */
1432 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
1433 		     struct file *tfile, int fd, int full_check)
1434 {
1435 	int error, revents, pwake = 0;
1436 	unsigned long flags;
1437 	long user_watches;
1438 	struct epitem *epi;
1439 	struct ep_pqueue epq;
1440 
1441 	user_watches = atomic_long_read(&ep->user->epoll_watches);
1442 	if (unlikely(user_watches >= max_user_watches))
1443 		return -ENOSPC;
1444 	if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1445 		return -ENOMEM;
1446 
1447 	/* Item initialization follow here ... */
1448 	INIT_LIST_HEAD(&epi->rdllink);
1449 	INIT_LIST_HEAD(&epi->fllink);
1450 	INIT_LIST_HEAD(&epi->pwqlist);
1451 	epi->ep = ep;
1452 	ep_set_ffd(&epi->ffd, tfile, fd);
1453 	epi->event = *event;
1454 	epi->nwait = 0;
1455 	epi->next = EP_UNACTIVE_PTR;
1456 	if (epi->event.events & EPOLLWAKEUP) {
1457 		error = ep_create_wakeup_source(epi);
1458 		if (error)
1459 			goto error_create_wakeup_source;
1460 	} else {
1461 		RCU_INIT_POINTER(epi->ws, NULL);
1462 	}
1463 
1464 	/* Initialize the poll table using the queue callback */
1465 	epq.epi = epi;
1466 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1467 
1468 	/*
1469 	 * Attach the item to the poll hooks and get current event bits.
1470 	 * We can safely use the file* here because its usage count has
1471 	 * been increased by the caller of this function. Note that after
1472 	 * this operation completes, the poll callback can start hitting
1473 	 * the new item.
1474 	 */
1475 	revents = ep_item_poll(epi, &epq.pt);
1476 
1477 	/*
1478 	 * We have to check if something went wrong during the poll wait queue
1479 	 * install process. Namely an allocation for a wait queue failed due
1480 	 * high memory pressure.
1481 	 */
1482 	error = -ENOMEM;
1483 	if (epi->nwait < 0)
1484 		goto error_unregister;
1485 
1486 	/* Add the current item to the list of active epoll hook for this file */
1487 	spin_lock(&tfile->f_lock);
1488 	list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1489 	spin_unlock(&tfile->f_lock);
1490 
1491 	/*
1492 	 * Add the current item to the RB tree. All RB tree operations are
1493 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1494 	 */
1495 	ep_rbtree_insert(ep, epi);
1496 
1497 	/* now check if we've created too many backpaths */
1498 	error = -EINVAL;
1499 	if (full_check && reverse_path_check())
1500 		goto error_remove_epi;
1501 
1502 	/* We have to drop the new item inside our item list to keep track of it */
1503 	spin_lock_irqsave(&ep->lock, flags);
1504 
1505 	/* record NAPI ID of new item if present */
1506 	ep_set_busy_poll_napi_id(epi);
1507 
1508 	/* If the file is already "ready" we drop it inside the ready list */
1509 	if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
1510 		list_add_tail(&epi->rdllink, &ep->rdllist);
1511 		ep_pm_stay_awake(epi);
1512 
1513 		/* Notify waiting tasks that events are available */
1514 		if (waitqueue_active(&ep->wq))
1515 			wake_up_locked(&ep->wq);
1516 		if (waitqueue_active(&ep->poll_wait))
1517 			pwake++;
1518 	}
1519 
1520 	spin_unlock_irqrestore(&ep->lock, flags);
1521 
1522 	atomic_long_inc(&ep->user->epoll_watches);
1523 
1524 	/* We have to call this outside the lock */
1525 	if (pwake)
1526 		ep_poll_safewake(&ep->poll_wait);
1527 
1528 	return 0;
1529 
1530 error_remove_epi:
1531 	spin_lock(&tfile->f_lock);
1532 	list_del_rcu(&epi->fllink);
1533 	spin_unlock(&tfile->f_lock);
1534 
1535 	rb_erase_cached(&epi->rbn, &ep->rbr);
1536 
1537 error_unregister:
1538 	ep_unregister_pollwait(ep, epi);
1539 
1540 	/*
1541 	 * We need to do this because an event could have been arrived on some
1542 	 * allocated wait queue. Note that we don't care about the ep->ovflist
1543 	 * list, since that is used/cleaned only inside a section bound by "mtx".
1544 	 * And ep_insert() is called with "mtx" held.
1545 	 */
1546 	spin_lock_irqsave(&ep->lock, flags);
1547 	if (ep_is_linked(&epi->rdllink))
1548 		list_del_init(&epi->rdllink);
1549 	spin_unlock_irqrestore(&ep->lock, flags);
1550 
1551 	wakeup_source_unregister(ep_wakeup_source(epi));
1552 
1553 error_create_wakeup_source:
1554 	kmem_cache_free(epi_cache, epi);
1555 
1556 	return error;
1557 }
1558 
1559 /*
1560  * Modify the interest event mask by dropping an event if the new mask
1561  * has a match in the current file status. Must be called with "mtx" held.
1562  */
1563 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1564 {
1565 	int pwake = 0;
1566 	unsigned int revents;
1567 	poll_table pt;
1568 
1569 	init_poll_funcptr(&pt, NULL);
1570 
1571 	/*
1572 	 * Set the new event interest mask before calling f_op->poll();
1573 	 * otherwise we might miss an event that happens between the
1574 	 * f_op->poll() call and the new event set registering.
1575 	 */
1576 	epi->event.events = event->events; /* need barrier below */
1577 	epi->event.data = event->data; /* protected by mtx */
1578 	if (epi->event.events & EPOLLWAKEUP) {
1579 		if (!ep_has_wakeup_source(epi))
1580 			ep_create_wakeup_source(epi);
1581 	} else if (ep_has_wakeup_source(epi)) {
1582 		ep_destroy_wakeup_source(epi);
1583 	}
1584 
1585 	/*
1586 	 * The following barrier has two effects:
1587 	 *
1588 	 * 1) Flush epi changes above to other CPUs.  This ensures
1589 	 *    we do not miss events from ep_poll_callback if an
1590 	 *    event occurs immediately after we call f_op->poll().
1591 	 *    We need this because we did not take ep->lock while
1592 	 *    changing epi above (but ep_poll_callback does take
1593 	 *    ep->lock).
1594 	 *
1595 	 * 2) We also need to ensure we do not miss _past_ events
1596 	 *    when calling f_op->poll().  This barrier also
1597 	 *    pairs with the barrier in wq_has_sleeper (see
1598 	 *    comments for wq_has_sleeper).
1599 	 *
1600 	 * This barrier will now guarantee ep_poll_callback or f_op->poll
1601 	 * (or both) will notice the readiness of an item.
1602 	 */
1603 	smp_mb();
1604 
1605 	/*
1606 	 * Get current event bits. We can safely use the file* here because
1607 	 * its usage count has been increased by the caller of this function.
1608 	 */
1609 	revents = ep_item_poll(epi, &pt);
1610 
1611 	/*
1612 	 * If the item is "hot" and it is not registered inside the ready
1613 	 * list, push it inside.
1614 	 */
1615 	if (revents & event->events) {
1616 		spin_lock_irq(&ep->lock);
1617 		if (!ep_is_linked(&epi->rdllink)) {
1618 			list_add_tail(&epi->rdllink, &ep->rdllist);
1619 			ep_pm_stay_awake(epi);
1620 
1621 			/* Notify waiting tasks that events are available */
1622 			if (waitqueue_active(&ep->wq))
1623 				wake_up_locked(&ep->wq);
1624 			if (waitqueue_active(&ep->poll_wait))
1625 				pwake++;
1626 		}
1627 		spin_unlock_irq(&ep->lock);
1628 	}
1629 
1630 	/* We have to call this outside the lock */
1631 	if (pwake)
1632 		ep_poll_safewake(&ep->poll_wait);
1633 
1634 	return 0;
1635 }
1636 
1637 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1638 			       void *priv)
1639 {
1640 	struct ep_send_events_data *esed = priv;
1641 	int eventcnt;
1642 	unsigned int revents;
1643 	struct epitem *epi;
1644 	struct epoll_event __user *uevent;
1645 	struct wakeup_source *ws;
1646 	poll_table pt;
1647 
1648 	init_poll_funcptr(&pt, NULL);
1649 
1650 	/*
1651 	 * We can loop without lock because we are passed a task private list.
1652 	 * Items cannot vanish during the loop because ep_scan_ready_list() is
1653 	 * holding "mtx" during this call.
1654 	 */
1655 	for (eventcnt = 0, uevent = esed->events;
1656 	     !list_empty(head) && eventcnt < esed->maxevents;) {
1657 		epi = list_first_entry(head, struct epitem, rdllink);
1658 
1659 		/*
1660 		 * Activate ep->ws before deactivating epi->ws to prevent
1661 		 * triggering auto-suspend here (in case we reactive epi->ws
1662 		 * below).
1663 		 *
1664 		 * This could be rearranged to delay the deactivation of epi->ws
1665 		 * instead, but then epi->ws would temporarily be out of sync
1666 		 * with ep_is_linked().
1667 		 */
1668 		ws = ep_wakeup_source(epi);
1669 		if (ws) {
1670 			if (ws->active)
1671 				__pm_stay_awake(ep->ws);
1672 			__pm_relax(ws);
1673 		}
1674 
1675 		list_del_init(&epi->rdllink);
1676 
1677 		revents = ep_item_poll(epi, &pt);
1678 
1679 		/*
1680 		 * If the event mask intersect the caller-requested one,
1681 		 * deliver the event to userspace. Again, ep_scan_ready_list()
1682 		 * is holding "mtx", so no operations coming from userspace
1683 		 * can change the item.
1684 		 */
1685 		if (revents) {
1686 			if (__put_user(revents, &uevent->events) ||
1687 			    __put_user(epi->event.data, &uevent->data)) {
1688 				list_add(&epi->rdllink, head);
1689 				ep_pm_stay_awake(epi);
1690 				return eventcnt ? eventcnt : -EFAULT;
1691 			}
1692 			eventcnt++;
1693 			uevent++;
1694 			if (epi->event.events & EPOLLONESHOT)
1695 				epi->event.events &= EP_PRIVATE_BITS;
1696 			else if (!(epi->event.events & EPOLLET)) {
1697 				/*
1698 				 * If this file has been added with Level
1699 				 * Trigger mode, we need to insert back inside
1700 				 * the ready list, so that the next call to
1701 				 * epoll_wait() will check again the events
1702 				 * availability. At this point, no one can insert
1703 				 * into ep->rdllist besides us. The epoll_ctl()
1704 				 * callers are locked out by
1705 				 * ep_scan_ready_list() holding "mtx" and the
1706 				 * poll callback will queue them in ep->ovflist.
1707 				 */
1708 				list_add_tail(&epi->rdllink, &ep->rdllist);
1709 				ep_pm_stay_awake(epi);
1710 			}
1711 		}
1712 	}
1713 
1714 	return eventcnt;
1715 }
1716 
1717 static int ep_send_events(struct eventpoll *ep,
1718 			  struct epoll_event __user *events, int maxevents)
1719 {
1720 	struct ep_send_events_data esed;
1721 
1722 	esed.maxevents = maxevents;
1723 	esed.events = events;
1724 
1725 	return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1726 }
1727 
1728 static inline struct timespec64 ep_set_mstimeout(long ms)
1729 {
1730 	struct timespec64 now, ts = {
1731 		.tv_sec = ms / MSEC_PER_SEC,
1732 		.tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1733 	};
1734 
1735 	ktime_get_ts64(&now);
1736 	return timespec64_add_safe(now, ts);
1737 }
1738 
1739 /**
1740  * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1741  *           event buffer.
1742  *
1743  * @ep: Pointer to the eventpoll context.
1744  * @events: Pointer to the userspace buffer where the ready events should be
1745  *          stored.
1746  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1747  * @timeout: Maximum timeout for the ready events fetch operation, in
1748  *           milliseconds. If the @timeout is zero, the function will not block,
1749  *           while if the @timeout is less than zero, the function will block
1750  *           until at least one event has been retrieved (or an error
1751  *           occurred).
1752  *
1753  * Returns: Returns the number of ready events which have been fetched, or an
1754  *          error code, in case of error.
1755  */
1756 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1757 		   int maxevents, long timeout)
1758 {
1759 	int res = 0, eavail, timed_out = 0;
1760 	unsigned long flags;
1761 	u64 slack = 0;
1762 	wait_queue_entry_t wait;
1763 	ktime_t expires, *to = NULL;
1764 
1765 	if (timeout > 0) {
1766 		struct timespec64 end_time = ep_set_mstimeout(timeout);
1767 
1768 		slack = select_estimate_accuracy(&end_time);
1769 		to = &expires;
1770 		*to = timespec64_to_ktime(end_time);
1771 	} else if (timeout == 0) {
1772 		/*
1773 		 * Avoid the unnecessary trip to the wait queue loop, if the
1774 		 * caller specified a non blocking operation.
1775 		 */
1776 		timed_out = 1;
1777 		spin_lock_irqsave(&ep->lock, flags);
1778 		goto check_events;
1779 	}
1780 
1781 fetch_events:
1782 
1783 	if (!ep_events_available(ep))
1784 		ep_busy_loop(ep, timed_out);
1785 
1786 	spin_lock_irqsave(&ep->lock, flags);
1787 
1788 	if (!ep_events_available(ep)) {
1789 		/*
1790 		 * Busy poll timed out.  Drop NAPI ID for now, we can add
1791 		 * it back in when we have moved a socket with a valid NAPI
1792 		 * ID onto the ready list.
1793 		 */
1794 		ep_reset_busy_poll_napi_id(ep);
1795 
1796 		/*
1797 		 * We don't have any available event to return to the caller.
1798 		 * We need to sleep here, and we will be wake up by
1799 		 * ep_poll_callback() when events will become available.
1800 		 */
1801 		init_waitqueue_entry(&wait, current);
1802 		__add_wait_queue_exclusive(&ep->wq, &wait);
1803 
1804 		for (;;) {
1805 			/*
1806 			 * We don't want to sleep if the ep_poll_callback() sends us
1807 			 * a wakeup in between. That's why we set the task state
1808 			 * to TASK_INTERRUPTIBLE before doing the checks.
1809 			 */
1810 			set_current_state(TASK_INTERRUPTIBLE);
1811 			/*
1812 			 * Always short-circuit for fatal signals to allow
1813 			 * threads to make a timely exit without the chance of
1814 			 * finding more events available and fetching
1815 			 * repeatedly.
1816 			 */
1817 			if (fatal_signal_pending(current)) {
1818 				res = -EINTR;
1819 				break;
1820 			}
1821 			if (ep_events_available(ep) || timed_out)
1822 				break;
1823 			if (signal_pending(current)) {
1824 				res = -EINTR;
1825 				break;
1826 			}
1827 
1828 			spin_unlock_irqrestore(&ep->lock, flags);
1829 			if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1830 				timed_out = 1;
1831 
1832 			spin_lock_irqsave(&ep->lock, flags);
1833 		}
1834 
1835 		__remove_wait_queue(&ep->wq, &wait);
1836 		__set_current_state(TASK_RUNNING);
1837 	}
1838 check_events:
1839 	/* Is it worth to try to dig for events ? */
1840 	eavail = ep_events_available(ep);
1841 
1842 	spin_unlock_irqrestore(&ep->lock, flags);
1843 
1844 	/*
1845 	 * Try to transfer events to user space. In case we get 0 events and
1846 	 * there's still timeout left over, we go trying again in search of
1847 	 * more luck.
1848 	 */
1849 	if (!res && eavail &&
1850 	    !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1851 		goto fetch_events;
1852 
1853 	return res;
1854 }
1855 
1856 /**
1857  * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1858  *                      API, to verify that adding an epoll file inside another
1859  *                      epoll structure, does not violate the constraints, in
1860  *                      terms of closed loops, or too deep chains (which can
1861  *                      result in excessive stack usage).
1862  *
1863  * @priv: Pointer to the epoll file to be currently checked.
1864  * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1865  *          data structure pointer.
1866  * @call_nests: Current dept of the @ep_call_nested() call stack.
1867  *
1868  * Returns: Returns zero if adding the epoll @file inside current epoll
1869  *          structure @ep does not violate the constraints, or -1 otherwise.
1870  */
1871 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1872 {
1873 	int error = 0;
1874 	struct file *file = priv;
1875 	struct eventpoll *ep = file->private_data;
1876 	struct eventpoll *ep_tovisit;
1877 	struct rb_node *rbp;
1878 	struct epitem *epi;
1879 
1880 	mutex_lock_nested(&ep->mtx, call_nests + 1);
1881 	ep->visited = 1;
1882 	list_add(&ep->visited_list_link, &visited_list);
1883 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1884 		epi = rb_entry(rbp, struct epitem, rbn);
1885 		if (unlikely(is_file_epoll(epi->ffd.file))) {
1886 			ep_tovisit = epi->ffd.file->private_data;
1887 			if (ep_tovisit->visited)
1888 				continue;
1889 			error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1890 					ep_loop_check_proc, epi->ffd.file,
1891 					ep_tovisit, current);
1892 			if (error != 0)
1893 				break;
1894 		} else {
1895 			/*
1896 			 * If we've reached a file that is not associated with
1897 			 * an ep, then we need to check if the newly added
1898 			 * links are going to add too many wakeup paths. We do
1899 			 * this by adding it to the tfile_check_list, if it's
1900 			 * not already there, and calling reverse_path_check()
1901 			 * during ep_insert().
1902 			 */
1903 			if (list_empty(&epi->ffd.file->f_tfile_llink))
1904 				list_add(&epi->ffd.file->f_tfile_llink,
1905 					 &tfile_check_list);
1906 		}
1907 	}
1908 	mutex_unlock(&ep->mtx);
1909 
1910 	return error;
1911 }
1912 
1913 /**
1914  * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1915  *                 another epoll file (represented by @ep) does not create
1916  *                 closed loops or too deep chains.
1917  *
1918  * @ep: Pointer to the epoll private data structure.
1919  * @file: Pointer to the epoll file to be checked.
1920  *
1921  * Returns: Returns zero if adding the epoll @file inside current epoll
1922  *          structure @ep does not violate the constraints, or -1 otherwise.
1923  */
1924 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1925 {
1926 	int ret;
1927 	struct eventpoll *ep_cur, *ep_next;
1928 
1929 	ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1930 			      ep_loop_check_proc, file, ep, current);
1931 	/* clear visited list */
1932 	list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
1933 							visited_list_link) {
1934 		ep_cur->visited = 0;
1935 		list_del(&ep_cur->visited_list_link);
1936 	}
1937 	return ret;
1938 }
1939 
1940 static void clear_tfile_check_list(void)
1941 {
1942 	struct file *file;
1943 
1944 	/* first clear the tfile_check_list */
1945 	while (!list_empty(&tfile_check_list)) {
1946 		file = list_first_entry(&tfile_check_list, struct file,
1947 					f_tfile_llink);
1948 		list_del_init(&file->f_tfile_llink);
1949 	}
1950 	INIT_LIST_HEAD(&tfile_check_list);
1951 }
1952 
1953 /*
1954  * Open an eventpoll file descriptor.
1955  */
1956 SYSCALL_DEFINE1(epoll_create1, int, flags)
1957 {
1958 	int error, fd;
1959 	struct eventpoll *ep = NULL;
1960 	struct file *file;
1961 
1962 	/* Check the EPOLL_* constant for consistency.  */
1963 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1964 
1965 	if (flags & ~EPOLL_CLOEXEC)
1966 		return -EINVAL;
1967 	/*
1968 	 * Create the internal data structure ("struct eventpoll").
1969 	 */
1970 	error = ep_alloc(&ep);
1971 	if (error < 0)
1972 		return error;
1973 	/*
1974 	 * Creates all the items needed to setup an eventpoll file. That is,
1975 	 * a file structure and a free file descriptor.
1976 	 */
1977 	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1978 	if (fd < 0) {
1979 		error = fd;
1980 		goto out_free_ep;
1981 	}
1982 	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1983 				 O_RDWR | (flags & O_CLOEXEC));
1984 	if (IS_ERR(file)) {
1985 		error = PTR_ERR(file);
1986 		goto out_free_fd;
1987 	}
1988 	ep->file = file;
1989 	fd_install(fd, file);
1990 	return fd;
1991 
1992 out_free_fd:
1993 	put_unused_fd(fd);
1994 out_free_ep:
1995 	ep_free(ep);
1996 	return error;
1997 }
1998 
1999 SYSCALL_DEFINE1(epoll_create, int, size)
2000 {
2001 	if (size <= 0)
2002 		return -EINVAL;
2003 
2004 	return sys_epoll_create1(0);
2005 }
2006 
2007 /*
2008  * The following function implements the controller interface for
2009  * the eventpoll file that enables the insertion/removal/change of
2010  * file descriptors inside the interest set.
2011  */
2012 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2013 		struct epoll_event __user *, event)
2014 {
2015 	int error;
2016 	int full_check = 0;
2017 	struct fd f, tf;
2018 	struct eventpoll *ep;
2019 	struct epitem *epi;
2020 	struct epoll_event epds;
2021 	struct eventpoll *tep = NULL;
2022 
2023 	error = -EFAULT;
2024 	if (ep_op_has_event(op) &&
2025 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
2026 		goto error_return;
2027 
2028 	error = -EBADF;
2029 	f = fdget(epfd);
2030 	if (!f.file)
2031 		goto error_return;
2032 
2033 	/* Get the "struct file *" for the target file */
2034 	tf = fdget(fd);
2035 	if (!tf.file)
2036 		goto error_fput;
2037 
2038 	/* The target file descriptor must support poll */
2039 	error = -EPERM;
2040 	if (!tf.file->f_op->poll)
2041 		goto error_tgt_fput;
2042 
2043 	/* Check if EPOLLWAKEUP is allowed */
2044 	if (ep_op_has_event(op))
2045 		ep_take_care_of_epollwakeup(&epds);
2046 
2047 	/*
2048 	 * We have to check that the file structure underneath the file descriptor
2049 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
2050 	 * adding an epoll file descriptor inside itself.
2051 	 */
2052 	error = -EINVAL;
2053 	if (f.file == tf.file || !is_file_epoll(f.file))
2054 		goto error_tgt_fput;
2055 
2056 	/*
2057 	 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2058 	 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2059 	 * Also, we do not currently supported nested exclusive wakeups.
2060 	 */
2061 	if (ep_op_has_event(op) && (epds.events & EPOLLEXCLUSIVE)) {
2062 		if (op == EPOLL_CTL_MOD)
2063 			goto error_tgt_fput;
2064 		if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2065 				(epds.events & ~EPOLLEXCLUSIVE_OK_BITS)))
2066 			goto error_tgt_fput;
2067 	}
2068 
2069 	/*
2070 	 * At this point it is safe to assume that the "private_data" contains
2071 	 * our own data structure.
2072 	 */
2073 	ep = f.file->private_data;
2074 
2075 	/*
2076 	 * When we insert an epoll file descriptor, inside another epoll file
2077 	 * descriptor, there is the change of creating closed loops, which are
2078 	 * better be handled here, than in more critical paths. While we are
2079 	 * checking for loops we also determine the list of files reachable
2080 	 * and hang them on the tfile_check_list, so we can check that we
2081 	 * haven't created too many possible wakeup paths.
2082 	 *
2083 	 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2084 	 * the epoll file descriptor is attaching directly to a wakeup source,
2085 	 * unless the epoll file descriptor is nested. The purpose of taking the
2086 	 * 'epmutex' on add is to prevent complex toplogies such as loops and
2087 	 * deep wakeup paths from forming in parallel through multiple
2088 	 * EPOLL_CTL_ADD operations.
2089 	 */
2090 	mutex_lock_nested(&ep->mtx, 0);
2091 	if (op == EPOLL_CTL_ADD) {
2092 		if (!list_empty(&f.file->f_ep_links) ||
2093 						is_file_epoll(tf.file)) {
2094 			full_check = 1;
2095 			mutex_unlock(&ep->mtx);
2096 			mutex_lock(&epmutex);
2097 			if (is_file_epoll(tf.file)) {
2098 				error = -ELOOP;
2099 				if (ep_loop_check(ep, tf.file) != 0) {
2100 					clear_tfile_check_list();
2101 					goto error_tgt_fput;
2102 				}
2103 			} else
2104 				list_add(&tf.file->f_tfile_llink,
2105 							&tfile_check_list);
2106 			mutex_lock_nested(&ep->mtx, 0);
2107 			if (is_file_epoll(tf.file)) {
2108 				tep = tf.file->private_data;
2109 				mutex_lock_nested(&tep->mtx, 1);
2110 			}
2111 		}
2112 	}
2113 
2114 	/*
2115 	 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2116 	 * above, we can be sure to be able to use the item looked up by
2117 	 * ep_find() till we release the mutex.
2118 	 */
2119 	epi = ep_find(ep, tf.file, fd);
2120 
2121 	error = -EINVAL;
2122 	switch (op) {
2123 	case EPOLL_CTL_ADD:
2124 		if (!epi) {
2125 			epds.events |= POLLERR | POLLHUP;
2126 			error = ep_insert(ep, &epds, tf.file, fd, full_check);
2127 		} else
2128 			error = -EEXIST;
2129 		if (full_check)
2130 			clear_tfile_check_list();
2131 		break;
2132 	case EPOLL_CTL_DEL:
2133 		if (epi)
2134 			error = ep_remove(ep, epi);
2135 		else
2136 			error = -ENOENT;
2137 		break;
2138 	case EPOLL_CTL_MOD:
2139 		if (epi) {
2140 			if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2141 				epds.events |= POLLERR | POLLHUP;
2142 				error = ep_modify(ep, epi, &epds);
2143 			}
2144 		} else
2145 			error = -ENOENT;
2146 		break;
2147 	}
2148 	if (tep != NULL)
2149 		mutex_unlock(&tep->mtx);
2150 	mutex_unlock(&ep->mtx);
2151 
2152 error_tgt_fput:
2153 	if (full_check)
2154 		mutex_unlock(&epmutex);
2155 
2156 	fdput(tf);
2157 error_fput:
2158 	fdput(f);
2159 error_return:
2160 
2161 	return error;
2162 }
2163 
2164 /*
2165  * Implement the event wait interface for the eventpoll file. It is the kernel
2166  * part of the user space epoll_wait(2).
2167  */
2168 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2169 		int, maxevents, int, timeout)
2170 {
2171 	int error;
2172 	struct fd f;
2173 	struct eventpoll *ep;
2174 
2175 	/* The maximum number of event must be greater than zero */
2176 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2177 		return -EINVAL;
2178 
2179 	/* Verify that the area passed by the user is writeable */
2180 	if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event)))
2181 		return -EFAULT;
2182 
2183 	/* Get the "struct file *" for the eventpoll file */
2184 	f = fdget(epfd);
2185 	if (!f.file)
2186 		return -EBADF;
2187 
2188 	/*
2189 	 * We have to check that the file structure underneath the fd
2190 	 * the user passed to us _is_ an eventpoll file.
2191 	 */
2192 	error = -EINVAL;
2193 	if (!is_file_epoll(f.file))
2194 		goto error_fput;
2195 
2196 	/*
2197 	 * At this point it is safe to assume that the "private_data" contains
2198 	 * our own data structure.
2199 	 */
2200 	ep = f.file->private_data;
2201 
2202 	/* Time to fish for events ... */
2203 	error = ep_poll(ep, events, maxevents, timeout);
2204 
2205 error_fput:
2206 	fdput(f);
2207 	return error;
2208 }
2209 
2210 /*
2211  * Implement the event wait interface for the eventpoll file. It is the kernel
2212  * part of the user space epoll_pwait(2).
2213  */
2214 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2215 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2216 		size_t, sigsetsize)
2217 {
2218 	int error;
2219 	sigset_t ksigmask, sigsaved;
2220 
2221 	/*
2222 	 * If the caller wants a certain signal mask to be set during the wait,
2223 	 * we apply it here.
2224 	 */
2225 	if (sigmask) {
2226 		if (sigsetsize != sizeof(sigset_t))
2227 			return -EINVAL;
2228 		if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
2229 			return -EFAULT;
2230 		sigsaved = current->blocked;
2231 		set_current_blocked(&ksigmask);
2232 	}
2233 
2234 	error = sys_epoll_wait(epfd, events, maxevents, timeout);
2235 
2236 	/*
2237 	 * If we changed the signal mask, we need to restore the original one.
2238 	 * In case we've got a signal while waiting, we do not restore the
2239 	 * signal mask yet, and we allow do_signal() to deliver the signal on
2240 	 * the way back to userspace, before the signal mask is restored.
2241 	 */
2242 	if (sigmask) {
2243 		if (error == -EINTR) {
2244 			memcpy(&current->saved_sigmask, &sigsaved,
2245 			       sizeof(sigsaved));
2246 			set_restore_sigmask();
2247 		} else
2248 			set_current_blocked(&sigsaved);
2249 	}
2250 
2251 	return error;
2252 }
2253 
2254 #ifdef CONFIG_COMPAT
2255 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2256 			struct epoll_event __user *, events,
2257 			int, maxevents, int, timeout,
2258 			const compat_sigset_t __user *, sigmask,
2259 			compat_size_t, sigsetsize)
2260 {
2261 	long err;
2262 	compat_sigset_t csigmask;
2263 	sigset_t ksigmask, sigsaved;
2264 
2265 	/*
2266 	 * If the caller wants a certain signal mask to be set during the wait,
2267 	 * we apply it here.
2268 	 */
2269 	if (sigmask) {
2270 		if (sigsetsize != sizeof(compat_sigset_t))
2271 			return -EINVAL;
2272 		if (copy_from_user(&csigmask, sigmask, sizeof(csigmask)))
2273 			return -EFAULT;
2274 		sigset_from_compat(&ksigmask, &csigmask);
2275 		sigsaved = current->blocked;
2276 		set_current_blocked(&ksigmask);
2277 	}
2278 
2279 	err = sys_epoll_wait(epfd, events, maxevents, timeout);
2280 
2281 	/*
2282 	 * If we changed the signal mask, we need to restore the original one.
2283 	 * In case we've got a signal while waiting, we do not restore the
2284 	 * signal mask yet, and we allow do_signal() to deliver the signal on
2285 	 * the way back to userspace, before the signal mask is restored.
2286 	 */
2287 	if (sigmask) {
2288 		if (err == -EINTR) {
2289 			memcpy(&current->saved_sigmask, &sigsaved,
2290 			       sizeof(sigsaved));
2291 			set_restore_sigmask();
2292 		} else
2293 			set_current_blocked(&sigsaved);
2294 	}
2295 
2296 	return err;
2297 }
2298 #endif
2299 
2300 static int __init eventpoll_init(void)
2301 {
2302 	struct sysinfo si;
2303 
2304 	si_meminfo(&si);
2305 	/*
2306 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2307 	 */
2308 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2309 		EP_ITEM_COST;
2310 	BUG_ON(max_user_watches < 0);
2311 
2312 	/*
2313 	 * Initialize the structure used to perform epoll file descriptor
2314 	 * inclusion loops checks.
2315 	 */
2316 	ep_nested_calls_init(&poll_loop_ncalls);
2317 
2318 	/* Initialize the structure used to perform safe poll wait head wake ups */
2319 	ep_nested_calls_init(&poll_safewake_ncalls);
2320 
2321 	/* Initialize the structure used to perform file's f_op->poll() calls */
2322 	ep_nested_calls_init(&poll_readywalk_ncalls);
2323 
2324 	/*
2325 	 * We can have many thousands of epitems, so prevent this from
2326 	 * using an extra cache line on 64-bit (and smaller) CPUs
2327 	 */
2328 	BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2329 
2330 	/* Allocates slab cache used to allocate "struct epitem" items */
2331 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2332 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2333 
2334 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
2335 	pwq_cache = kmem_cache_create("eventpoll_pwq",
2336 			sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
2337 
2338 	return 0;
2339 }
2340 fs_initcall(eventpoll_init);
2341