xref: /openbmc/linux/fs/eventpoll.c (revision abe9af53)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  fs/eventpoll.c (Efficient event retrieval implementation)
4  *  Copyright (C) 2001,...,2009	 Davide Libenzi
5  *
6  *  Davide Libenzi <davidel@xmailserver.org>
7  */
8 
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/uaccess.h>
33 #include <asm/io.h>
34 #include <asm/mman.h>
35 #include <linux/atomic.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/compat.h>
39 #include <linux/rculist.h>
40 #include <net/busy_poll.h>
41 
42 /*
43  * LOCKING:
44  * There are three level of locking required by epoll :
45  *
46  * 1) epmutex (mutex)
47  * 2) ep->mtx (mutex)
48  * 3) ep->lock (rwlock)
49  *
50  * The acquire order is the one listed above, from 1 to 3.
51  * We need a rwlock (ep->lock) because we manipulate objects
52  * from inside the poll callback, that might be triggered from
53  * a wake_up() that in turn might be called from IRQ context.
54  * So we can't sleep inside the poll callback and hence we need
55  * a spinlock. During the event transfer loop (from kernel to
56  * user space) we could end up sleeping due a copy_to_user(), so
57  * we need a lock that will allow us to sleep. This lock is a
58  * mutex (ep->mtx). It is acquired during the event transfer loop,
59  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60  * Then we also need a global mutex to serialize eventpoll_release_file()
61  * and ep_free().
62  * This mutex is acquired by ep_free() during the epoll file
63  * cleanup path and it is also acquired by eventpoll_release_file()
64  * if a file has been pushed inside an epoll set and it is then
65  * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
66  * It is also acquired when inserting an epoll fd onto another epoll
67  * fd. We do this so that we walk the epoll tree and ensure that this
68  * insertion does not create a cycle of epoll file descriptors, which
69  * could lead to deadlock. We need a global mutex to prevent two
70  * simultaneous inserts (A into B and B into A) from racing and
71  * constructing a cycle without either insert observing that it is
72  * going to.
73  * It is necessary to acquire multiple "ep->mtx"es at once in the
74  * case when one epoll fd is added to another. In this case, we
75  * always acquire the locks in the order of nesting (i.e. after
76  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
77  * before e2->mtx). Since we disallow cycles of epoll file
78  * descriptors, this ensures that the mutexes are well-ordered. In
79  * order to communicate this nesting to lockdep, when walking a tree
80  * of epoll file descriptors, we use the current recursion depth as
81  * the lockdep subkey.
82  * It is possible to drop the "ep->mtx" and to use the global
83  * mutex "epmutex" (together with "ep->lock") to have it working,
84  * but having "ep->mtx" will make the interface more scalable.
85  * Events that require holding "epmutex" are very rare, while for
86  * normal operations the epoll private "ep->mtx" will guarantee
87  * a better scalability.
88  */
89 
90 /* Epoll private bits inside the event mask */
91 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
92 
93 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
94 
95 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
96 				EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
97 
98 /* Maximum number of nesting allowed inside epoll sets */
99 #define EP_MAX_NESTS 4
100 
101 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
102 
103 #define EP_UNACTIVE_PTR ((void *) -1L)
104 
105 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
106 
107 struct epoll_filefd {
108 	struct file *file;
109 	int fd;
110 } __packed;
111 
112 /*
113  * Structure used to track possible nested calls, for too deep recursions
114  * and loop cycles.
115  */
116 struct nested_call_node {
117 	struct list_head llink;
118 	void *cookie;
119 	void *ctx;
120 };
121 
122 /*
123  * This structure is used as collector for nested calls, to check for
124  * maximum recursion dept and loop cycles.
125  */
126 struct nested_calls {
127 	struct list_head tasks_call_list;
128 	spinlock_t lock;
129 };
130 
131 /*
132  * Each file descriptor added to the eventpoll interface will
133  * have an entry of this type linked to the "rbr" RB tree.
134  * Avoid increasing the size of this struct, there can be many thousands
135  * of these on a server and we do not want this to take another cache line.
136  */
137 struct epitem {
138 	union {
139 		/* RB tree node links this structure to the eventpoll RB tree */
140 		struct rb_node rbn;
141 		/* Used to free the struct epitem */
142 		struct rcu_head rcu;
143 	};
144 
145 	/* List header used to link this structure to the eventpoll ready list */
146 	struct list_head rdllink;
147 
148 	/*
149 	 * Works together "struct eventpoll"->ovflist in keeping the
150 	 * single linked chain of items.
151 	 */
152 	struct epitem *next;
153 
154 	/* The file descriptor information this item refers to */
155 	struct epoll_filefd ffd;
156 
157 	/* Number of active wait queue attached to poll operations */
158 	int nwait;
159 
160 	/* List containing poll wait queues */
161 	struct list_head pwqlist;
162 
163 	/* The "container" of this item */
164 	struct eventpoll *ep;
165 
166 	/* List header used to link this item to the "struct file" items list */
167 	struct list_head fllink;
168 
169 	/* wakeup_source used when EPOLLWAKEUP is set */
170 	struct wakeup_source __rcu *ws;
171 
172 	/* The structure that describe the interested events and the source fd */
173 	struct epoll_event event;
174 };
175 
176 /*
177  * This structure is stored inside the "private_data" member of the file
178  * structure and represents the main data structure for the eventpoll
179  * interface.
180  */
181 struct eventpoll {
182 	/*
183 	 * This mutex is used to ensure that files are not removed
184 	 * while epoll is using them. This is held during the event
185 	 * collection loop, the file cleanup path, the epoll file exit
186 	 * code and the ctl operations.
187 	 */
188 	struct mutex mtx;
189 
190 	/* Wait queue used by sys_epoll_wait() */
191 	wait_queue_head_t wq;
192 
193 	/* Wait queue used by file->poll() */
194 	wait_queue_head_t poll_wait;
195 
196 	/* List of ready file descriptors */
197 	struct list_head rdllist;
198 
199 	/* Lock which protects rdllist and ovflist */
200 	rwlock_t lock;
201 
202 	/* RB tree root used to store monitored fd structs */
203 	struct rb_root_cached rbr;
204 
205 	/*
206 	 * This is a single linked list that chains all the "struct epitem" that
207 	 * happened while transferring ready events to userspace w/out
208 	 * holding ->lock.
209 	 */
210 	struct epitem *ovflist;
211 
212 	/* wakeup_source used when ep_scan_ready_list is running */
213 	struct wakeup_source *ws;
214 
215 	/* The user that created the eventpoll descriptor */
216 	struct user_struct *user;
217 
218 	struct file *file;
219 
220 	/* used to optimize loop detection check */
221 	u64 gen;
222 
223 #ifdef CONFIG_NET_RX_BUSY_POLL
224 	/* used to track busy poll napi_id */
225 	unsigned int napi_id;
226 #endif
227 
228 #ifdef CONFIG_DEBUG_LOCK_ALLOC
229 	/* tracks wakeup nests for lockdep validation */
230 	u8 nests;
231 #endif
232 };
233 
234 /* Wait structure used by the poll hooks */
235 struct eppoll_entry {
236 	/* List header used to link this structure to the "struct epitem" */
237 	struct list_head llink;
238 
239 	/* The "base" pointer is set to the container "struct epitem" */
240 	struct epitem *base;
241 
242 	/*
243 	 * Wait queue item that will be linked to the target file wait
244 	 * queue head.
245 	 */
246 	wait_queue_entry_t wait;
247 
248 	/* The wait queue head that linked the "wait" wait queue item */
249 	wait_queue_head_t *whead;
250 };
251 
252 /* Wrapper struct used by poll queueing */
253 struct ep_pqueue {
254 	poll_table pt;
255 	struct epitem *epi;
256 };
257 
258 /* Used by the ep_send_events() function as callback private data */
259 struct ep_send_events_data {
260 	int maxevents;
261 	struct epoll_event __user *events;
262 	int res;
263 };
264 
265 /*
266  * Configuration options available inside /proc/sys/fs/epoll/
267  */
268 /* Maximum number of epoll watched descriptors, per user */
269 static long max_user_watches __read_mostly;
270 
271 /*
272  * This mutex is used to serialize ep_free() and eventpoll_release_file().
273  */
274 static DEFINE_MUTEX(epmutex);
275 
276 static u64 loop_check_gen = 0;
277 
278 /* Used to check for epoll file descriptor inclusion loops */
279 static struct nested_calls poll_loop_ncalls;
280 
281 /* Slab cache used to allocate "struct epitem" */
282 static struct kmem_cache *epi_cache __read_mostly;
283 
284 /* Slab cache used to allocate "struct eppoll_entry" */
285 static struct kmem_cache *pwq_cache __read_mostly;
286 
287 /*
288  * List of files with newly added links, where we may need to limit the number
289  * of emanating paths. Protected by the epmutex.
290  */
291 static LIST_HEAD(tfile_check_list);
292 
293 #ifdef CONFIG_SYSCTL
294 
295 #include <linux/sysctl.h>
296 
297 static long long_zero;
298 static long long_max = LONG_MAX;
299 
300 struct ctl_table epoll_table[] = {
301 	{
302 		.procname	= "max_user_watches",
303 		.data		= &max_user_watches,
304 		.maxlen		= sizeof(max_user_watches),
305 		.mode		= 0644,
306 		.proc_handler	= proc_doulongvec_minmax,
307 		.extra1		= &long_zero,
308 		.extra2		= &long_max,
309 	},
310 	{ }
311 };
312 #endif /* CONFIG_SYSCTL */
313 
314 static const struct file_operations eventpoll_fops;
315 
316 static inline int is_file_epoll(struct file *f)
317 {
318 	return f->f_op == &eventpoll_fops;
319 }
320 
321 /* Setup the structure that is used as key for the RB tree */
322 static inline void ep_set_ffd(struct epoll_filefd *ffd,
323 			      struct file *file, int fd)
324 {
325 	ffd->file = file;
326 	ffd->fd = fd;
327 }
328 
329 /* Compare RB tree keys */
330 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
331 			     struct epoll_filefd *p2)
332 {
333 	return (p1->file > p2->file ? +1:
334 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
335 }
336 
337 /* Tells us if the item is currently linked */
338 static inline int ep_is_linked(struct epitem *epi)
339 {
340 	return !list_empty(&epi->rdllink);
341 }
342 
343 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
344 {
345 	return container_of(p, struct eppoll_entry, wait);
346 }
347 
348 /* Get the "struct epitem" from a wait queue pointer */
349 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
350 {
351 	return container_of(p, struct eppoll_entry, wait)->base;
352 }
353 
354 /* Get the "struct epitem" from an epoll queue wrapper */
355 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
356 {
357 	return container_of(p, struct ep_pqueue, pt)->epi;
358 }
359 
360 /* Initialize the poll safe wake up structure */
361 static void ep_nested_calls_init(struct nested_calls *ncalls)
362 {
363 	INIT_LIST_HEAD(&ncalls->tasks_call_list);
364 	spin_lock_init(&ncalls->lock);
365 }
366 
367 /**
368  * ep_events_available - Checks if ready events might be available.
369  *
370  * @ep: Pointer to the eventpoll context.
371  *
372  * Returns: Returns a value different than zero if ready events are available,
373  *          or zero otherwise.
374  */
375 static inline int ep_events_available(struct eventpoll *ep)
376 {
377 	return !list_empty_careful(&ep->rdllist) ||
378 		READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
379 }
380 
381 #ifdef CONFIG_NET_RX_BUSY_POLL
382 static bool ep_busy_loop_end(void *p, unsigned long start_time)
383 {
384 	struct eventpoll *ep = p;
385 
386 	return ep_events_available(ep) || busy_loop_timeout(start_time);
387 }
388 
389 /*
390  * Busy poll if globally on and supporting sockets found && no events,
391  * busy loop will return if need_resched or ep_events_available.
392  *
393  * we must do our busy polling with irqs enabled
394  */
395 static void ep_busy_loop(struct eventpoll *ep, int nonblock)
396 {
397 	unsigned int napi_id = READ_ONCE(ep->napi_id);
398 
399 	if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
400 		napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep);
401 }
402 
403 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
404 {
405 	if (ep->napi_id)
406 		ep->napi_id = 0;
407 }
408 
409 /*
410  * Set epoll busy poll NAPI ID from sk.
411  */
412 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
413 {
414 	struct eventpoll *ep;
415 	unsigned int napi_id;
416 	struct socket *sock;
417 	struct sock *sk;
418 	int err;
419 
420 	if (!net_busy_loop_on())
421 		return;
422 
423 	sock = sock_from_file(epi->ffd.file, &err);
424 	if (!sock)
425 		return;
426 
427 	sk = sock->sk;
428 	if (!sk)
429 		return;
430 
431 	napi_id = READ_ONCE(sk->sk_napi_id);
432 	ep = epi->ep;
433 
434 	/* Non-NAPI IDs can be rejected
435 	 *	or
436 	 * Nothing to do if we already have this ID
437 	 */
438 	if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
439 		return;
440 
441 	/* record NAPI ID for use in next busy poll */
442 	ep->napi_id = napi_id;
443 }
444 
445 #else
446 
447 static inline void ep_busy_loop(struct eventpoll *ep, int nonblock)
448 {
449 }
450 
451 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
452 {
453 }
454 
455 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
456 {
457 }
458 
459 #endif /* CONFIG_NET_RX_BUSY_POLL */
460 
461 /**
462  * ep_call_nested - Perform a bound (possibly) nested call, by checking
463  *                  that the recursion limit is not exceeded, and that
464  *                  the same nested call (by the meaning of same cookie) is
465  *                  no re-entered.
466  *
467  * @ncalls: Pointer to the nested_calls structure to be used for this call.
468  * @nproc: Nested call core function pointer.
469  * @priv: Opaque data to be passed to the @nproc callback.
470  * @cookie: Cookie to be used to identify this nested call.
471  * @ctx: This instance context.
472  *
473  * Returns: Returns the code returned by the @nproc callback, or -1 if
474  *          the maximum recursion limit has been exceeded.
475  */
476 static int ep_call_nested(struct nested_calls *ncalls,
477 			  int (*nproc)(void *, void *, int), void *priv,
478 			  void *cookie, void *ctx)
479 {
480 	int error, call_nests = 0;
481 	unsigned long flags;
482 	struct list_head *lsthead = &ncalls->tasks_call_list;
483 	struct nested_call_node *tncur;
484 	struct nested_call_node tnode;
485 
486 	spin_lock_irqsave(&ncalls->lock, flags);
487 
488 	/*
489 	 * Try to see if the current task is already inside this wakeup call.
490 	 * We use a list here, since the population inside this set is always
491 	 * very much limited.
492 	 */
493 	list_for_each_entry(tncur, lsthead, llink) {
494 		if (tncur->ctx == ctx &&
495 		    (tncur->cookie == cookie || ++call_nests > EP_MAX_NESTS)) {
496 			/*
497 			 * Ops ... loop detected or maximum nest level reached.
498 			 * We abort this wake by breaking the cycle itself.
499 			 */
500 			error = -1;
501 			goto out_unlock;
502 		}
503 	}
504 
505 	/* Add the current task and cookie to the list */
506 	tnode.ctx = ctx;
507 	tnode.cookie = cookie;
508 	list_add(&tnode.llink, lsthead);
509 
510 	spin_unlock_irqrestore(&ncalls->lock, flags);
511 
512 	/* Call the nested function */
513 	error = (*nproc)(priv, cookie, call_nests);
514 
515 	/* Remove the current task from the list */
516 	spin_lock_irqsave(&ncalls->lock, flags);
517 	list_del(&tnode.llink);
518 out_unlock:
519 	spin_unlock_irqrestore(&ncalls->lock, flags);
520 
521 	return error;
522 }
523 
524 /*
525  * As described in commit 0ccf831cb lockdep: annotate epoll
526  * the use of wait queues used by epoll is done in a very controlled
527  * manner. Wake ups can nest inside each other, but are never done
528  * with the same locking. For example:
529  *
530  *   dfd = socket(...);
531  *   efd1 = epoll_create();
532  *   efd2 = epoll_create();
533  *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
534  *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
535  *
536  * When a packet arrives to the device underneath "dfd", the net code will
537  * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
538  * callback wakeup entry on that queue, and the wake_up() performed by the
539  * "dfd" net code will end up in ep_poll_callback(). At this point epoll
540  * (efd1) notices that it may have some event ready, so it needs to wake up
541  * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
542  * that ends up in another wake_up(), after having checked about the
543  * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
544  * avoid stack blasting.
545  *
546  * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
547  * this special case of epoll.
548  */
549 #ifdef CONFIG_DEBUG_LOCK_ALLOC
550 
551 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
552 {
553 	struct eventpoll *ep_src;
554 	unsigned long flags;
555 	u8 nests = 0;
556 
557 	/*
558 	 * To set the subclass or nesting level for spin_lock_irqsave_nested()
559 	 * it might be natural to create a per-cpu nest count. However, since
560 	 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
561 	 * schedule() in the -rt kernel, the per-cpu variable are no longer
562 	 * protected. Thus, we are introducing a per eventpoll nest field.
563 	 * If we are not being call from ep_poll_callback(), epi is NULL and
564 	 * we are at the first level of nesting, 0. Otherwise, we are being
565 	 * called from ep_poll_callback() and if a previous wakeup source is
566 	 * not an epoll file itself, we are at depth 1 since the wakeup source
567 	 * is depth 0. If the wakeup source is a previous epoll file in the
568 	 * wakeup chain then we use its nests value and record ours as
569 	 * nests + 1. The previous epoll file nests value is stable since its
570 	 * already holding its own poll_wait.lock.
571 	 */
572 	if (epi) {
573 		if ((is_file_epoll(epi->ffd.file))) {
574 			ep_src = epi->ffd.file->private_data;
575 			nests = ep_src->nests;
576 		} else {
577 			nests = 1;
578 		}
579 	}
580 	spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
581 	ep->nests = nests + 1;
582 	wake_up_locked_poll(&ep->poll_wait, EPOLLIN);
583 	ep->nests = 0;
584 	spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
585 }
586 
587 #else
588 
589 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
590 {
591 	wake_up_poll(&ep->poll_wait, EPOLLIN);
592 }
593 
594 #endif
595 
596 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
597 {
598 	wait_queue_head_t *whead;
599 
600 	rcu_read_lock();
601 	/*
602 	 * If it is cleared by POLLFREE, it should be rcu-safe.
603 	 * If we read NULL we need a barrier paired with
604 	 * smp_store_release() in ep_poll_callback(), otherwise
605 	 * we rely on whead->lock.
606 	 */
607 	whead = smp_load_acquire(&pwq->whead);
608 	if (whead)
609 		remove_wait_queue(whead, &pwq->wait);
610 	rcu_read_unlock();
611 }
612 
613 /*
614  * This function unregisters poll callbacks from the associated file
615  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
616  * ep_free).
617  */
618 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
619 {
620 	struct list_head *lsthead = &epi->pwqlist;
621 	struct eppoll_entry *pwq;
622 
623 	while (!list_empty(lsthead)) {
624 		pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
625 
626 		list_del(&pwq->llink);
627 		ep_remove_wait_queue(pwq);
628 		kmem_cache_free(pwq_cache, pwq);
629 	}
630 }
631 
632 /* call only when ep->mtx is held */
633 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
634 {
635 	return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
636 }
637 
638 /* call only when ep->mtx is held */
639 static inline void ep_pm_stay_awake(struct epitem *epi)
640 {
641 	struct wakeup_source *ws = ep_wakeup_source(epi);
642 
643 	if (ws)
644 		__pm_stay_awake(ws);
645 }
646 
647 static inline bool ep_has_wakeup_source(struct epitem *epi)
648 {
649 	return rcu_access_pointer(epi->ws) ? true : false;
650 }
651 
652 /* call when ep->mtx cannot be held (ep_poll_callback) */
653 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
654 {
655 	struct wakeup_source *ws;
656 
657 	rcu_read_lock();
658 	ws = rcu_dereference(epi->ws);
659 	if (ws)
660 		__pm_stay_awake(ws);
661 	rcu_read_unlock();
662 }
663 
664 /**
665  * ep_scan_ready_list - Scans the ready list in a way that makes possible for
666  *                      the scan code, to call f_op->poll(). Also allows for
667  *                      O(NumReady) performance.
668  *
669  * @ep: Pointer to the epoll private data structure.
670  * @sproc: Pointer to the scan callback.
671  * @priv: Private opaque data passed to the @sproc callback.
672  * @depth: The current depth of recursive f_op->poll calls.
673  * @ep_locked: caller already holds ep->mtx
674  *
675  * Returns: The same integer error code returned by the @sproc callback.
676  */
677 static __poll_t ep_scan_ready_list(struct eventpoll *ep,
678 			      __poll_t (*sproc)(struct eventpoll *,
679 					   struct list_head *, void *),
680 			      void *priv, int depth, bool ep_locked)
681 {
682 	__poll_t res;
683 	struct epitem *epi, *nepi;
684 	LIST_HEAD(txlist);
685 
686 	lockdep_assert_irqs_enabled();
687 
688 	/*
689 	 * We need to lock this because we could be hit by
690 	 * eventpoll_release_file() and epoll_ctl().
691 	 */
692 
693 	if (!ep_locked)
694 		mutex_lock_nested(&ep->mtx, depth);
695 
696 	/*
697 	 * Steal the ready list, and re-init the original one to the
698 	 * empty list. Also, set ep->ovflist to NULL so that events
699 	 * happening while looping w/out locks, are not lost. We cannot
700 	 * have the poll callback to queue directly on ep->rdllist,
701 	 * because we want the "sproc" callback to be able to do it
702 	 * in a lockless way.
703 	 */
704 	write_lock_irq(&ep->lock);
705 	list_splice_init(&ep->rdllist, &txlist);
706 	WRITE_ONCE(ep->ovflist, NULL);
707 	write_unlock_irq(&ep->lock);
708 
709 	/*
710 	 * Now call the callback function.
711 	 */
712 	res = (*sproc)(ep, &txlist, priv);
713 
714 	write_lock_irq(&ep->lock);
715 	/*
716 	 * During the time we spent inside the "sproc" callback, some
717 	 * other events might have been queued by the poll callback.
718 	 * We re-insert them inside the main ready-list here.
719 	 */
720 	for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
721 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
722 		/*
723 		 * We need to check if the item is already in the list.
724 		 * During the "sproc" callback execution time, items are
725 		 * queued into ->ovflist but the "txlist" might already
726 		 * contain them, and the list_splice() below takes care of them.
727 		 */
728 		if (!ep_is_linked(epi)) {
729 			/*
730 			 * ->ovflist is LIFO, so we have to reverse it in order
731 			 * to keep in FIFO.
732 			 */
733 			list_add(&epi->rdllink, &ep->rdllist);
734 			ep_pm_stay_awake(epi);
735 		}
736 	}
737 	/*
738 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
739 	 * releasing the lock, events will be queued in the normal way inside
740 	 * ep->rdllist.
741 	 */
742 	WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
743 
744 	/*
745 	 * Quickly re-inject items left on "txlist".
746 	 */
747 	list_splice(&txlist, &ep->rdllist);
748 	__pm_relax(ep->ws);
749 	write_unlock_irq(&ep->lock);
750 
751 	if (!ep_locked)
752 		mutex_unlock(&ep->mtx);
753 
754 	return res;
755 }
756 
757 static void epi_rcu_free(struct rcu_head *head)
758 {
759 	struct epitem *epi = container_of(head, struct epitem, rcu);
760 	kmem_cache_free(epi_cache, epi);
761 }
762 
763 /*
764  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
765  * all the associated resources. Must be called with "mtx" held.
766  */
767 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
768 {
769 	struct file *file = epi->ffd.file;
770 
771 	lockdep_assert_irqs_enabled();
772 
773 	/*
774 	 * Removes poll wait queue hooks.
775 	 */
776 	ep_unregister_pollwait(ep, epi);
777 
778 	/* Remove the current item from the list of epoll hooks */
779 	spin_lock(&file->f_lock);
780 	list_del_rcu(&epi->fllink);
781 	spin_unlock(&file->f_lock);
782 
783 	rb_erase_cached(&epi->rbn, &ep->rbr);
784 
785 	write_lock_irq(&ep->lock);
786 	if (ep_is_linked(epi))
787 		list_del_init(&epi->rdllink);
788 	write_unlock_irq(&ep->lock);
789 
790 	wakeup_source_unregister(ep_wakeup_source(epi));
791 	/*
792 	 * At this point it is safe to free the eventpoll item. Use the union
793 	 * field epi->rcu, since we are trying to minimize the size of
794 	 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
795 	 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
796 	 * use of the rbn field.
797 	 */
798 	call_rcu(&epi->rcu, epi_rcu_free);
799 
800 	atomic_long_dec(&ep->user->epoll_watches);
801 
802 	return 0;
803 }
804 
805 static void ep_free(struct eventpoll *ep)
806 {
807 	struct rb_node *rbp;
808 	struct epitem *epi;
809 
810 	/* We need to release all tasks waiting for these file */
811 	if (waitqueue_active(&ep->poll_wait))
812 		ep_poll_safewake(ep, NULL);
813 
814 	/*
815 	 * We need to lock this because we could be hit by
816 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
817 	 * We do not need to hold "ep->mtx" here because the epoll file
818 	 * is on the way to be removed and no one has references to it
819 	 * anymore. The only hit might come from eventpoll_release_file() but
820 	 * holding "epmutex" is sufficient here.
821 	 */
822 	mutex_lock(&epmutex);
823 
824 	/*
825 	 * Walks through the whole tree by unregistering poll callbacks.
826 	 */
827 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
828 		epi = rb_entry(rbp, struct epitem, rbn);
829 
830 		ep_unregister_pollwait(ep, epi);
831 		cond_resched();
832 	}
833 
834 	/*
835 	 * Walks through the whole tree by freeing each "struct epitem". At this
836 	 * point we are sure no poll callbacks will be lingering around, and also by
837 	 * holding "epmutex" we can be sure that no file cleanup code will hit
838 	 * us during this operation. So we can avoid the lock on "ep->lock".
839 	 * We do not need to lock ep->mtx, either, we only do it to prevent
840 	 * a lockdep warning.
841 	 */
842 	mutex_lock(&ep->mtx);
843 	while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
844 		epi = rb_entry(rbp, struct epitem, rbn);
845 		ep_remove(ep, epi);
846 		cond_resched();
847 	}
848 	mutex_unlock(&ep->mtx);
849 
850 	mutex_unlock(&epmutex);
851 	mutex_destroy(&ep->mtx);
852 	free_uid(ep->user);
853 	wakeup_source_unregister(ep->ws);
854 	kfree(ep);
855 }
856 
857 static int ep_eventpoll_release(struct inode *inode, struct file *file)
858 {
859 	struct eventpoll *ep = file->private_data;
860 
861 	if (ep)
862 		ep_free(ep);
863 
864 	return 0;
865 }
866 
867 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
868 			       void *priv);
869 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
870 				 poll_table *pt);
871 
872 /*
873  * Differs from ep_eventpoll_poll() in that internal callers already have
874  * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
875  * is correctly annotated.
876  */
877 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
878 				 int depth)
879 {
880 	struct eventpoll *ep;
881 	bool locked;
882 
883 	pt->_key = epi->event.events;
884 	if (!is_file_epoll(epi->ffd.file))
885 		return vfs_poll(epi->ffd.file, pt) & epi->event.events;
886 
887 	ep = epi->ffd.file->private_data;
888 	poll_wait(epi->ffd.file, &ep->poll_wait, pt);
889 	locked = pt && (pt->_qproc == ep_ptable_queue_proc);
890 
891 	return ep_scan_ready_list(epi->ffd.file->private_data,
892 				  ep_read_events_proc, &depth, depth,
893 				  locked) & epi->event.events;
894 }
895 
896 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
897 			       void *priv)
898 {
899 	struct epitem *epi, *tmp;
900 	poll_table pt;
901 	int depth = *(int *)priv;
902 
903 	init_poll_funcptr(&pt, NULL);
904 	depth++;
905 
906 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
907 		if (ep_item_poll(epi, &pt, depth)) {
908 			return EPOLLIN | EPOLLRDNORM;
909 		} else {
910 			/*
911 			 * Item has been dropped into the ready list by the poll
912 			 * callback, but it's not actually ready, as far as
913 			 * caller requested events goes. We can remove it here.
914 			 */
915 			__pm_relax(ep_wakeup_source(epi));
916 			list_del_init(&epi->rdllink);
917 		}
918 	}
919 
920 	return 0;
921 }
922 
923 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
924 {
925 	struct eventpoll *ep = file->private_data;
926 	int depth = 0;
927 
928 	/* Insert inside our poll wait queue */
929 	poll_wait(file, &ep->poll_wait, wait);
930 
931 	/*
932 	 * Proceed to find out if wanted events are really available inside
933 	 * the ready list.
934 	 */
935 	return ep_scan_ready_list(ep, ep_read_events_proc,
936 				  &depth, depth, false);
937 }
938 
939 #ifdef CONFIG_PROC_FS
940 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
941 {
942 	struct eventpoll *ep = f->private_data;
943 	struct rb_node *rbp;
944 
945 	mutex_lock(&ep->mtx);
946 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
947 		struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
948 		struct inode *inode = file_inode(epi->ffd.file);
949 
950 		seq_printf(m, "tfd: %8d events: %8x data: %16llx "
951 			   " pos:%lli ino:%lx sdev:%x\n",
952 			   epi->ffd.fd, epi->event.events,
953 			   (long long)epi->event.data,
954 			   (long long)epi->ffd.file->f_pos,
955 			   inode->i_ino, inode->i_sb->s_dev);
956 		if (seq_has_overflowed(m))
957 			break;
958 	}
959 	mutex_unlock(&ep->mtx);
960 }
961 #endif
962 
963 /* File callbacks that implement the eventpoll file behaviour */
964 static const struct file_operations eventpoll_fops = {
965 #ifdef CONFIG_PROC_FS
966 	.show_fdinfo	= ep_show_fdinfo,
967 #endif
968 	.release	= ep_eventpoll_release,
969 	.poll		= ep_eventpoll_poll,
970 	.llseek		= noop_llseek,
971 };
972 
973 /*
974  * This is called from eventpoll_release() to unlink files from the eventpoll
975  * interface. We need to have this facility to cleanup correctly files that are
976  * closed without being removed from the eventpoll interface.
977  */
978 void eventpoll_release_file(struct file *file)
979 {
980 	struct eventpoll *ep;
981 	struct epitem *epi, *next;
982 
983 	/*
984 	 * We don't want to get "file->f_lock" because it is not
985 	 * necessary. It is not necessary because we're in the "struct file"
986 	 * cleanup path, and this means that no one is using this file anymore.
987 	 * So, for example, epoll_ctl() cannot hit here since if we reach this
988 	 * point, the file counter already went to zero and fget() would fail.
989 	 * The only hit might come from ep_free() but by holding the mutex
990 	 * will correctly serialize the operation. We do need to acquire
991 	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
992 	 * from anywhere but ep_free().
993 	 *
994 	 * Besides, ep_remove() acquires the lock, so we can't hold it here.
995 	 */
996 	mutex_lock(&epmutex);
997 	list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
998 		ep = epi->ep;
999 		mutex_lock_nested(&ep->mtx, 0);
1000 		ep_remove(ep, epi);
1001 		mutex_unlock(&ep->mtx);
1002 	}
1003 	mutex_unlock(&epmutex);
1004 }
1005 
1006 static int ep_alloc(struct eventpoll **pep)
1007 {
1008 	int error;
1009 	struct user_struct *user;
1010 	struct eventpoll *ep;
1011 
1012 	user = get_current_user();
1013 	error = -ENOMEM;
1014 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1015 	if (unlikely(!ep))
1016 		goto free_uid;
1017 
1018 	mutex_init(&ep->mtx);
1019 	rwlock_init(&ep->lock);
1020 	init_waitqueue_head(&ep->wq);
1021 	init_waitqueue_head(&ep->poll_wait);
1022 	INIT_LIST_HEAD(&ep->rdllist);
1023 	ep->rbr = RB_ROOT_CACHED;
1024 	ep->ovflist = EP_UNACTIVE_PTR;
1025 	ep->user = user;
1026 
1027 	*pep = ep;
1028 
1029 	return 0;
1030 
1031 free_uid:
1032 	free_uid(user);
1033 	return error;
1034 }
1035 
1036 /*
1037  * Search the file inside the eventpoll tree. The RB tree operations
1038  * are protected by the "mtx" mutex, and ep_find() must be called with
1039  * "mtx" held.
1040  */
1041 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1042 {
1043 	int kcmp;
1044 	struct rb_node *rbp;
1045 	struct epitem *epi, *epir = NULL;
1046 	struct epoll_filefd ffd;
1047 
1048 	ep_set_ffd(&ffd, file, fd);
1049 	for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1050 		epi = rb_entry(rbp, struct epitem, rbn);
1051 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1052 		if (kcmp > 0)
1053 			rbp = rbp->rb_right;
1054 		else if (kcmp < 0)
1055 			rbp = rbp->rb_left;
1056 		else {
1057 			epir = epi;
1058 			break;
1059 		}
1060 	}
1061 
1062 	return epir;
1063 }
1064 
1065 #ifdef CONFIG_CHECKPOINT_RESTORE
1066 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1067 {
1068 	struct rb_node *rbp;
1069 	struct epitem *epi;
1070 
1071 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1072 		epi = rb_entry(rbp, struct epitem, rbn);
1073 		if (epi->ffd.fd == tfd) {
1074 			if (toff == 0)
1075 				return epi;
1076 			else
1077 				toff--;
1078 		}
1079 		cond_resched();
1080 	}
1081 
1082 	return NULL;
1083 }
1084 
1085 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1086 				     unsigned long toff)
1087 {
1088 	struct file *file_raw;
1089 	struct eventpoll *ep;
1090 	struct epitem *epi;
1091 
1092 	if (!is_file_epoll(file))
1093 		return ERR_PTR(-EINVAL);
1094 
1095 	ep = file->private_data;
1096 
1097 	mutex_lock(&ep->mtx);
1098 	epi = ep_find_tfd(ep, tfd, toff);
1099 	if (epi)
1100 		file_raw = epi->ffd.file;
1101 	else
1102 		file_raw = ERR_PTR(-ENOENT);
1103 	mutex_unlock(&ep->mtx);
1104 
1105 	return file_raw;
1106 }
1107 #endif /* CONFIG_CHECKPOINT_RESTORE */
1108 
1109 /**
1110  * Adds a new entry to the tail of the list in a lockless way, i.e.
1111  * multiple CPUs are allowed to call this function concurrently.
1112  *
1113  * Beware: it is necessary to prevent any other modifications of the
1114  *         existing list until all changes are completed, in other words
1115  *         concurrent list_add_tail_lockless() calls should be protected
1116  *         with a read lock, where write lock acts as a barrier which
1117  *         makes sure all list_add_tail_lockless() calls are fully
1118  *         completed.
1119  *
1120  *        Also an element can be locklessly added to the list only in one
1121  *        direction i.e. either to the tail either to the head, otherwise
1122  *        concurrent access will corrupt the list.
1123  *
1124  * Returns %false if element has been already added to the list, %true
1125  * otherwise.
1126  */
1127 static inline bool list_add_tail_lockless(struct list_head *new,
1128 					  struct list_head *head)
1129 {
1130 	struct list_head *prev;
1131 
1132 	/*
1133 	 * This is simple 'new->next = head' operation, but cmpxchg()
1134 	 * is used in order to detect that same element has been just
1135 	 * added to the list from another CPU: the winner observes
1136 	 * new->next == new.
1137 	 */
1138 	if (cmpxchg(&new->next, new, head) != new)
1139 		return false;
1140 
1141 	/*
1142 	 * Initially ->next of a new element must be updated with the head
1143 	 * (we are inserting to the tail) and only then pointers are atomically
1144 	 * exchanged.  XCHG guarantees memory ordering, thus ->next should be
1145 	 * updated before pointers are actually swapped and pointers are
1146 	 * swapped before prev->next is updated.
1147 	 */
1148 
1149 	prev = xchg(&head->prev, new);
1150 
1151 	/*
1152 	 * It is safe to modify prev->next and new->prev, because a new element
1153 	 * is added only to the tail and new->next is updated before XCHG.
1154 	 */
1155 
1156 	prev->next = new;
1157 	new->prev = prev;
1158 
1159 	return true;
1160 }
1161 
1162 /**
1163  * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1164  * i.e. multiple CPUs are allowed to call this function concurrently.
1165  *
1166  * Returns %false if epi element has been already chained, %true otherwise.
1167  */
1168 static inline bool chain_epi_lockless(struct epitem *epi)
1169 {
1170 	struct eventpoll *ep = epi->ep;
1171 
1172 	/* Fast preliminary check */
1173 	if (epi->next != EP_UNACTIVE_PTR)
1174 		return false;
1175 
1176 	/* Check that the same epi has not been just chained from another CPU */
1177 	if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1178 		return false;
1179 
1180 	/* Atomically exchange tail */
1181 	epi->next = xchg(&ep->ovflist, epi);
1182 
1183 	return true;
1184 }
1185 
1186 /*
1187  * This is the callback that is passed to the wait queue wakeup
1188  * mechanism. It is called by the stored file descriptors when they
1189  * have events to report.
1190  *
1191  * This callback takes a read lock in order not to content with concurrent
1192  * events from another file descriptors, thus all modifications to ->rdllist
1193  * or ->ovflist are lockless.  Read lock is paired with the write lock from
1194  * ep_scan_ready_list(), which stops all list modifications and guarantees
1195  * that lists state is seen correctly.
1196  *
1197  * Another thing worth to mention is that ep_poll_callback() can be called
1198  * concurrently for the same @epi from different CPUs if poll table was inited
1199  * with several wait queues entries.  Plural wakeup from different CPUs of a
1200  * single wait queue is serialized by wq.lock, but the case when multiple wait
1201  * queues are used should be detected accordingly.  This is detected using
1202  * cmpxchg() operation.
1203  */
1204 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1205 {
1206 	int pwake = 0;
1207 	struct epitem *epi = ep_item_from_wait(wait);
1208 	struct eventpoll *ep = epi->ep;
1209 	__poll_t pollflags = key_to_poll(key);
1210 	unsigned long flags;
1211 	int ewake = 0;
1212 
1213 	read_lock_irqsave(&ep->lock, flags);
1214 
1215 	ep_set_busy_poll_napi_id(epi);
1216 
1217 	/*
1218 	 * If the event mask does not contain any poll(2) event, we consider the
1219 	 * descriptor to be disabled. This condition is likely the effect of the
1220 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1221 	 * until the next EPOLL_CTL_MOD will be issued.
1222 	 */
1223 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
1224 		goto out_unlock;
1225 
1226 	/*
1227 	 * Check the events coming with the callback. At this stage, not
1228 	 * every device reports the events in the "key" parameter of the
1229 	 * callback. We need to be able to handle both cases here, hence the
1230 	 * test for "key" != NULL before the event match test.
1231 	 */
1232 	if (pollflags && !(pollflags & epi->event.events))
1233 		goto out_unlock;
1234 
1235 	/*
1236 	 * If we are transferring events to userspace, we can hold no locks
1237 	 * (because we're accessing user memory, and because of linux f_op->poll()
1238 	 * semantics). All the events that happen during that period of time are
1239 	 * chained in ep->ovflist and requeued later on.
1240 	 */
1241 	if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1242 		if (chain_epi_lockless(epi))
1243 			ep_pm_stay_awake_rcu(epi);
1244 	} else if (!ep_is_linked(epi)) {
1245 		/* In the usual case, add event to ready list. */
1246 		if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1247 			ep_pm_stay_awake_rcu(epi);
1248 	}
1249 
1250 	/*
1251 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1252 	 * wait list.
1253 	 */
1254 	if (waitqueue_active(&ep->wq)) {
1255 		if ((epi->event.events & EPOLLEXCLUSIVE) &&
1256 					!(pollflags & POLLFREE)) {
1257 			switch (pollflags & EPOLLINOUT_BITS) {
1258 			case EPOLLIN:
1259 				if (epi->event.events & EPOLLIN)
1260 					ewake = 1;
1261 				break;
1262 			case EPOLLOUT:
1263 				if (epi->event.events & EPOLLOUT)
1264 					ewake = 1;
1265 				break;
1266 			case 0:
1267 				ewake = 1;
1268 				break;
1269 			}
1270 		}
1271 		wake_up(&ep->wq);
1272 	}
1273 	if (waitqueue_active(&ep->poll_wait))
1274 		pwake++;
1275 
1276 out_unlock:
1277 	read_unlock_irqrestore(&ep->lock, flags);
1278 
1279 	/* We have to call this outside the lock */
1280 	if (pwake)
1281 		ep_poll_safewake(ep, epi);
1282 
1283 	if (!(epi->event.events & EPOLLEXCLUSIVE))
1284 		ewake = 1;
1285 
1286 	if (pollflags & POLLFREE) {
1287 		/*
1288 		 * If we race with ep_remove_wait_queue() it can miss
1289 		 * ->whead = NULL and do another remove_wait_queue() after
1290 		 * us, so we can't use __remove_wait_queue().
1291 		 */
1292 		list_del_init(&wait->entry);
1293 		/*
1294 		 * ->whead != NULL protects us from the race with ep_free()
1295 		 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1296 		 * held by the caller. Once we nullify it, nothing protects
1297 		 * ep/epi or even wait.
1298 		 */
1299 		smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1300 	}
1301 
1302 	return ewake;
1303 }
1304 
1305 /*
1306  * This is the callback that is used to add our wait queue to the
1307  * target file wakeup lists.
1308  */
1309 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1310 				 poll_table *pt)
1311 {
1312 	struct epitem *epi = ep_item_from_epqueue(pt);
1313 	struct eppoll_entry *pwq;
1314 
1315 	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1316 		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1317 		pwq->whead = whead;
1318 		pwq->base = epi;
1319 		if (epi->event.events & EPOLLEXCLUSIVE)
1320 			add_wait_queue_exclusive(whead, &pwq->wait);
1321 		else
1322 			add_wait_queue(whead, &pwq->wait);
1323 		list_add_tail(&pwq->llink, &epi->pwqlist);
1324 		epi->nwait++;
1325 	} else {
1326 		/* We have to signal that an error occurred */
1327 		epi->nwait = -1;
1328 	}
1329 }
1330 
1331 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1332 {
1333 	int kcmp;
1334 	struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1335 	struct epitem *epic;
1336 	bool leftmost = true;
1337 
1338 	while (*p) {
1339 		parent = *p;
1340 		epic = rb_entry(parent, struct epitem, rbn);
1341 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1342 		if (kcmp > 0) {
1343 			p = &parent->rb_right;
1344 			leftmost = false;
1345 		} else
1346 			p = &parent->rb_left;
1347 	}
1348 	rb_link_node(&epi->rbn, parent, p);
1349 	rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1350 }
1351 
1352 
1353 
1354 #define PATH_ARR_SIZE 5
1355 /*
1356  * These are the number paths of length 1 to 5, that we are allowing to emanate
1357  * from a single file of interest. For example, we allow 1000 paths of length
1358  * 1, to emanate from each file of interest. This essentially represents the
1359  * potential wakeup paths, which need to be limited in order to avoid massive
1360  * uncontrolled wakeup storms. The common use case should be a single ep which
1361  * is connected to n file sources. In this case each file source has 1 path
1362  * of length 1. Thus, the numbers below should be more than sufficient. These
1363  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1364  * and delete can't add additional paths. Protected by the epmutex.
1365  */
1366 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1367 static int path_count[PATH_ARR_SIZE];
1368 
1369 static int path_count_inc(int nests)
1370 {
1371 	/* Allow an arbitrary number of depth 1 paths */
1372 	if (nests == 0)
1373 		return 0;
1374 
1375 	if (++path_count[nests] > path_limits[nests])
1376 		return -1;
1377 	return 0;
1378 }
1379 
1380 static void path_count_init(void)
1381 {
1382 	int i;
1383 
1384 	for (i = 0; i < PATH_ARR_SIZE; i++)
1385 		path_count[i] = 0;
1386 }
1387 
1388 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1389 {
1390 	int error = 0;
1391 	struct file *file = priv;
1392 	struct file *child_file;
1393 	struct epitem *epi;
1394 
1395 	/* CTL_DEL can remove links here, but that can't increase our count */
1396 	rcu_read_lock();
1397 	list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1398 		child_file = epi->ep->file;
1399 		if (is_file_epoll(child_file)) {
1400 			if (list_empty(&child_file->f_ep_links)) {
1401 				if (path_count_inc(call_nests)) {
1402 					error = -1;
1403 					break;
1404 				}
1405 			} else {
1406 				error = ep_call_nested(&poll_loop_ncalls,
1407 							reverse_path_check_proc,
1408 							child_file, child_file,
1409 							current);
1410 			}
1411 			if (error != 0)
1412 				break;
1413 		} else {
1414 			printk(KERN_ERR "reverse_path_check_proc: "
1415 				"file is not an ep!\n");
1416 		}
1417 	}
1418 	rcu_read_unlock();
1419 	return error;
1420 }
1421 
1422 /**
1423  * reverse_path_check - The tfile_check_list is list of file *, which have
1424  *                      links that are proposed to be newly added. We need to
1425  *                      make sure that those added links don't add too many
1426  *                      paths such that we will spend all our time waking up
1427  *                      eventpoll objects.
1428  *
1429  * Returns: Returns zero if the proposed links don't create too many paths,
1430  *	    -1 otherwise.
1431  */
1432 static int reverse_path_check(void)
1433 {
1434 	int error = 0;
1435 	struct file *current_file;
1436 
1437 	/* let's call this for all tfiles */
1438 	list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1439 		path_count_init();
1440 		error = ep_call_nested(&poll_loop_ncalls,
1441 					reverse_path_check_proc, current_file,
1442 					current_file, current);
1443 		if (error)
1444 			break;
1445 	}
1446 	return error;
1447 }
1448 
1449 static int ep_create_wakeup_source(struct epitem *epi)
1450 {
1451 	struct name_snapshot n;
1452 	struct wakeup_source *ws;
1453 
1454 	if (!epi->ep->ws) {
1455 		epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1456 		if (!epi->ep->ws)
1457 			return -ENOMEM;
1458 	}
1459 
1460 	take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1461 	ws = wakeup_source_register(NULL, n.name.name);
1462 	release_dentry_name_snapshot(&n);
1463 
1464 	if (!ws)
1465 		return -ENOMEM;
1466 	rcu_assign_pointer(epi->ws, ws);
1467 
1468 	return 0;
1469 }
1470 
1471 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1472 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1473 {
1474 	struct wakeup_source *ws = ep_wakeup_source(epi);
1475 
1476 	RCU_INIT_POINTER(epi->ws, NULL);
1477 
1478 	/*
1479 	 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1480 	 * used internally by wakeup_source_remove, too (called by
1481 	 * wakeup_source_unregister), so we cannot use call_rcu
1482 	 */
1483 	synchronize_rcu();
1484 	wakeup_source_unregister(ws);
1485 }
1486 
1487 /*
1488  * Must be called with "mtx" held.
1489  */
1490 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1491 		     struct file *tfile, int fd, int full_check)
1492 {
1493 	int error, pwake = 0;
1494 	__poll_t revents;
1495 	long user_watches;
1496 	struct epitem *epi;
1497 	struct ep_pqueue epq;
1498 
1499 	lockdep_assert_irqs_enabled();
1500 
1501 	user_watches = atomic_long_read(&ep->user->epoll_watches);
1502 	if (unlikely(user_watches >= max_user_watches))
1503 		return -ENOSPC;
1504 	if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1505 		return -ENOMEM;
1506 
1507 	/* Item initialization follow here ... */
1508 	INIT_LIST_HEAD(&epi->rdllink);
1509 	INIT_LIST_HEAD(&epi->fllink);
1510 	INIT_LIST_HEAD(&epi->pwqlist);
1511 	epi->ep = ep;
1512 	ep_set_ffd(&epi->ffd, tfile, fd);
1513 	epi->event = *event;
1514 	epi->nwait = 0;
1515 	epi->next = EP_UNACTIVE_PTR;
1516 	if (epi->event.events & EPOLLWAKEUP) {
1517 		error = ep_create_wakeup_source(epi);
1518 		if (error)
1519 			goto error_create_wakeup_source;
1520 	} else {
1521 		RCU_INIT_POINTER(epi->ws, NULL);
1522 	}
1523 
1524 	/* Add the current item to the list of active epoll hook for this file */
1525 	spin_lock(&tfile->f_lock);
1526 	list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1527 	spin_unlock(&tfile->f_lock);
1528 
1529 	/*
1530 	 * Add the current item to the RB tree. All RB tree operations are
1531 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1532 	 */
1533 	ep_rbtree_insert(ep, epi);
1534 
1535 	/* now check if we've created too many backpaths */
1536 	error = -EINVAL;
1537 	if (full_check && reverse_path_check())
1538 		goto error_remove_epi;
1539 
1540 	/* Initialize the poll table using the queue callback */
1541 	epq.epi = epi;
1542 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1543 
1544 	/*
1545 	 * Attach the item to the poll hooks and get current event bits.
1546 	 * We can safely use the file* here because its usage count has
1547 	 * been increased by the caller of this function. Note that after
1548 	 * this operation completes, the poll callback can start hitting
1549 	 * the new item.
1550 	 */
1551 	revents = ep_item_poll(epi, &epq.pt, 1);
1552 
1553 	/*
1554 	 * We have to check if something went wrong during the poll wait queue
1555 	 * install process. Namely an allocation for a wait queue failed due
1556 	 * high memory pressure.
1557 	 */
1558 	error = -ENOMEM;
1559 	if (epi->nwait < 0)
1560 		goto error_unregister;
1561 
1562 	/* We have to drop the new item inside our item list to keep track of it */
1563 	write_lock_irq(&ep->lock);
1564 
1565 	/* record NAPI ID of new item if present */
1566 	ep_set_busy_poll_napi_id(epi);
1567 
1568 	/* If the file is already "ready" we drop it inside the ready list */
1569 	if (revents && !ep_is_linked(epi)) {
1570 		list_add_tail(&epi->rdllink, &ep->rdllist);
1571 		ep_pm_stay_awake(epi);
1572 
1573 		/* Notify waiting tasks that events are available */
1574 		if (waitqueue_active(&ep->wq))
1575 			wake_up(&ep->wq);
1576 		if (waitqueue_active(&ep->poll_wait))
1577 			pwake++;
1578 	}
1579 
1580 	write_unlock_irq(&ep->lock);
1581 
1582 	atomic_long_inc(&ep->user->epoll_watches);
1583 
1584 	/* We have to call this outside the lock */
1585 	if (pwake)
1586 		ep_poll_safewake(ep, NULL);
1587 
1588 	return 0;
1589 
1590 error_unregister:
1591 	ep_unregister_pollwait(ep, epi);
1592 error_remove_epi:
1593 	spin_lock(&tfile->f_lock);
1594 	list_del_rcu(&epi->fllink);
1595 	spin_unlock(&tfile->f_lock);
1596 
1597 	rb_erase_cached(&epi->rbn, &ep->rbr);
1598 
1599 	/*
1600 	 * We need to do this because an event could have been arrived on some
1601 	 * allocated wait queue. Note that we don't care about the ep->ovflist
1602 	 * list, since that is used/cleaned only inside a section bound by "mtx".
1603 	 * And ep_insert() is called with "mtx" held.
1604 	 */
1605 	write_lock_irq(&ep->lock);
1606 	if (ep_is_linked(epi))
1607 		list_del_init(&epi->rdllink);
1608 	write_unlock_irq(&ep->lock);
1609 
1610 	wakeup_source_unregister(ep_wakeup_source(epi));
1611 
1612 error_create_wakeup_source:
1613 	kmem_cache_free(epi_cache, epi);
1614 
1615 	return error;
1616 }
1617 
1618 /*
1619  * Modify the interest event mask by dropping an event if the new mask
1620  * has a match in the current file status. Must be called with "mtx" held.
1621  */
1622 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1623 		     const struct epoll_event *event)
1624 {
1625 	int pwake = 0;
1626 	poll_table pt;
1627 
1628 	lockdep_assert_irqs_enabled();
1629 
1630 	init_poll_funcptr(&pt, NULL);
1631 
1632 	/*
1633 	 * Set the new event interest mask before calling f_op->poll();
1634 	 * otherwise we might miss an event that happens between the
1635 	 * f_op->poll() call and the new event set registering.
1636 	 */
1637 	epi->event.events = event->events; /* need barrier below */
1638 	epi->event.data = event->data; /* protected by mtx */
1639 	if (epi->event.events & EPOLLWAKEUP) {
1640 		if (!ep_has_wakeup_source(epi))
1641 			ep_create_wakeup_source(epi);
1642 	} else if (ep_has_wakeup_source(epi)) {
1643 		ep_destroy_wakeup_source(epi);
1644 	}
1645 
1646 	/*
1647 	 * The following barrier has two effects:
1648 	 *
1649 	 * 1) Flush epi changes above to other CPUs.  This ensures
1650 	 *    we do not miss events from ep_poll_callback if an
1651 	 *    event occurs immediately after we call f_op->poll().
1652 	 *    We need this because we did not take ep->lock while
1653 	 *    changing epi above (but ep_poll_callback does take
1654 	 *    ep->lock).
1655 	 *
1656 	 * 2) We also need to ensure we do not miss _past_ events
1657 	 *    when calling f_op->poll().  This barrier also
1658 	 *    pairs with the barrier in wq_has_sleeper (see
1659 	 *    comments for wq_has_sleeper).
1660 	 *
1661 	 * This barrier will now guarantee ep_poll_callback or f_op->poll
1662 	 * (or both) will notice the readiness of an item.
1663 	 */
1664 	smp_mb();
1665 
1666 	/*
1667 	 * Get current event bits. We can safely use the file* here because
1668 	 * its usage count has been increased by the caller of this function.
1669 	 * If the item is "hot" and it is not registered inside the ready
1670 	 * list, push it inside.
1671 	 */
1672 	if (ep_item_poll(epi, &pt, 1)) {
1673 		write_lock_irq(&ep->lock);
1674 		if (!ep_is_linked(epi)) {
1675 			list_add_tail(&epi->rdllink, &ep->rdllist);
1676 			ep_pm_stay_awake(epi);
1677 
1678 			/* Notify waiting tasks that events are available */
1679 			if (waitqueue_active(&ep->wq))
1680 				wake_up(&ep->wq);
1681 			if (waitqueue_active(&ep->poll_wait))
1682 				pwake++;
1683 		}
1684 		write_unlock_irq(&ep->lock);
1685 	}
1686 
1687 	/* We have to call this outside the lock */
1688 	if (pwake)
1689 		ep_poll_safewake(ep, NULL);
1690 
1691 	return 0;
1692 }
1693 
1694 static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1695 			       void *priv)
1696 {
1697 	struct ep_send_events_data *esed = priv;
1698 	__poll_t revents;
1699 	struct epitem *epi, *tmp;
1700 	struct epoll_event __user *uevent = esed->events;
1701 	struct wakeup_source *ws;
1702 	poll_table pt;
1703 
1704 	init_poll_funcptr(&pt, NULL);
1705 	esed->res = 0;
1706 
1707 	/*
1708 	 * We can loop without lock because we are passed a task private list.
1709 	 * Items cannot vanish during the loop because ep_scan_ready_list() is
1710 	 * holding "mtx" during this call.
1711 	 */
1712 	lockdep_assert_held(&ep->mtx);
1713 
1714 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
1715 		if (esed->res >= esed->maxevents)
1716 			break;
1717 
1718 		/*
1719 		 * Activate ep->ws before deactivating epi->ws to prevent
1720 		 * triggering auto-suspend here (in case we reactive epi->ws
1721 		 * below).
1722 		 *
1723 		 * This could be rearranged to delay the deactivation of epi->ws
1724 		 * instead, but then epi->ws would temporarily be out of sync
1725 		 * with ep_is_linked().
1726 		 */
1727 		ws = ep_wakeup_source(epi);
1728 		if (ws) {
1729 			if (ws->active)
1730 				__pm_stay_awake(ep->ws);
1731 			__pm_relax(ws);
1732 		}
1733 
1734 		list_del_init(&epi->rdllink);
1735 
1736 		/*
1737 		 * If the event mask intersect the caller-requested one,
1738 		 * deliver the event to userspace. Again, ep_scan_ready_list()
1739 		 * is holding ep->mtx, so no operations coming from userspace
1740 		 * can change the item.
1741 		 */
1742 		revents = ep_item_poll(epi, &pt, 1);
1743 		if (!revents)
1744 			continue;
1745 
1746 		if (__put_user(revents, &uevent->events) ||
1747 		    __put_user(epi->event.data, &uevent->data)) {
1748 			list_add(&epi->rdllink, head);
1749 			ep_pm_stay_awake(epi);
1750 			if (!esed->res)
1751 				esed->res = -EFAULT;
1752 			return 0;
1753 		}
1754 		esed->res++;
1755 		uevent++;
1756 		if (epi->event.events & EPOLLONESHOT)
1757 			epi->event.events &= EP_PRIVATE_BITS;
1758 		else if (!(epi->event.events & EPOLLET)) {
1759 			/*
1760 			 * If this file has been added with Level
1761 			 * Trigger mode, we need to insert back inside
1762 			 * the ready list, so that the next call to
1763 			 * epoll_wait() will check again the events
1764 			 * availability. At this point, no one can insert
1765 			 * into ep->rdllist besides us. The epoll_ctl()
1766 			 * callers are locked out by
1767 			 * ep_scan_ready_list() holding "mtx" and the
1768 			 * poll callback will queue them in ep->ovflist.
1769 			 */
1770 			list_add_tail(&epi->rdllink, &ep->rdllist);
1771 			ep_pm_stay_awake(epi);
1772 		}
1773 	}
1774 
1775 	return 0;
1776 }
1777 
1778 static int ep_send_events(struct eventpoll *ep,
1779 			  struct epoll_event __user *events, int maxevents)
1780 {
1781 	struct ep_send_events_data esed;
1782 
1783 	esed.maxevents = maxevents;
1784 	esed.events = events;
1785 
1786 	ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1787 	return esed.res;
1788 }
1789 
1790 static inline struct timespec64 ep_set_mstimeout(long ms)
1791 {
1792 	struct timespec64 now, ts = {
1793 		.tv_sec = ms / MSEC_PER_SEC,
1794 		.tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1795 	};
1796 
1797 	ktime_get_ts64(&now);
1798 	return timespec64_add_safe(now, ts);
1799 }
1800 
1801 /**
1802  * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1803  *           event buffer.
1804  *
1805  * @ep: Pointer to the eventpoll context.
1806  * @events: Pointer to the userspace buffer where the ready events should be
1807  *          stored.
1808  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1809  * @timeout: Maximum timeout for the ready events fetch operation, in
1810  *           milliseconds. If the @timeout is zero, the function will not block,
1811  *           while if the @timeout is less than zero, the function will block
1812  *           until at least one event has been retrieved (or an error
1813  *           occurred).
1814  *
1815  * Returns: Returns the number of ready events which have been fetched, or an
1816  *          error code, in case of error.
1817  */
1818 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1819 		   int maxevents, long timeout)
1820 {
1821 	int res = 0, eavail, timed_out = 0;
1822 	u64 slack = 0;
1823 	wait_queue_entry_t wait;
1824 	ktime_t expires, *to = NULL;
1825 
1826 	lockdep_assert_irqs_enabled();
1827 
1828 	if (timeout > 0) {
1829 		struct timespec64 end_time = ep_set_mstimeout(timeout);
1830 
1831 		slack = select_estimate_accuracy(&end_time);
1832 		to = &expires;
1833 		*to = timespec64_to_ktime(end_time);
1834 	} else if (timeout == 0) {
1835 		/*
1836 		 * Avoid the unnecessary trip to the wait queue loop, if the
1837 		 * caller specified a non blocking operation. We still need
1838 		 * lock because we could race and not see an epi being added
1839 		 * to the ready list while in irq callback. Thus incorrectly
1840 		 * returning 0 back to userspace.
1841 		 */
1842 		timed_out = 1;
1843 
1844 		write_lock_irq(&ep->lock);
1845 		eavail = ep_events_available(ep);
1846 		write_unlock_irq(&ep->lock);
1847 
1848 		goto send_events;
1849 	}
1850 
1851 fetch_events:
1852 
1853 	if (!ep_events_available(ep))
1854 		ep_busy_loop(ep, timed_out);
1855 
1856 	eavail = ep_events_available(ep);
1857 	if (eavail)
1858 		goto send_events;
1859 
1860 	/*
1861 	 * Busy poll timed out.  Drop NAPI ID for now, we can add
1862 	 * it back in when we have moved a socket with a valid NAPI
1863 	 * ID onto the ready list.
1864 	 */
1865 	ep_reset_busy_poll_napi_id(ep);
1866 
1867 	do {
1868 		/*
1869 		 * Internally init_wait() uses autoremove_wake_function(),
1870 		 * thus wait entry is removed from the wait queue on each
1871 		 * wakeup. Why it is important? In case of several waiters
1872 		 * each new wakeup will hit the next waiter, giving it the
1873 		 * chance to harvest new event. Otherwise wakeup can be
1874 		 * lost. This is also good performance-wise, because on
1875 		 * normal wakeup path no need to call __remove_wait_queue()
1876 		 * explicitly, thus ep->lock is not taken, which halts the
1877 		 * event delivery.
1878 		 */
1879 		init_wait(&wait);
1880 
1881 		write_lock_irq(&ep->lock);
1882 		/*
1883 		 * Barrierless variant, waitqueue_active() is called under
1884 		 * the same lock on wakeup ep_poll_callback() side, so it
1885 		 * is safe to avoid an explicit barrier.
1886 		 */
1887 		__set_current_state(TASK_INTERRUPTIBLE);
1888 
1889 		/*
1890 		 * Do the final check under the lock. ep_scan_ready_list()
1891 		 * plays with two lists (->rdllist and ->ovflist) and there
1892 		 * is always a race when both lists are empty for short
1893 		 * period of time although events are pending, so lock is
1894 		 * important.
1895 		 */
1896 		eavail = ep_events_available(ep);
1897 		if (!eavail) {
1898 			if (signal_pending(current))
1899 				res = -EINTR;
1900 			else
1901 				__add_wait_queue_exclusive(&ep->wq, &wait);
1902 		}
1903 		write_unlock_irq(&ep->lock);
1904 
1905 		if (eavail || res)
1906 			break;
1907 
1908 		if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) {
1909 			timed_out = 1;
1910 			break;
1911 		}
1912 
1913 		/* We were woken up, thus go and try to harvest some events */
1914 		eavail = 1;
1915 
1916 	} while (0);
1917 
1918 	__set_current_state(TASK_RUNNING);
1919 
1920 	if (!list_empty_careful(&wait.entry)) {
1921 		write_lock_irq(&ep->lock);
1922 		__remove_wait_queue(&ep->wq, &wait);
1923 		write_unlock_irq(&ep->lock);
1924 	}
1925 
1926 send_events:
1927 	if (fatal_signal_pending(current)) {
1928 		/*
1929 		 * Always short-circuit for fatal signals to allow
1930 		 * threads to make a timely exit without the chance of
1931 		 * finding more events available and fetching
1932 		 * repeatedly.
1933 		 */
1934 		res = -EINTR;
1935 	}
1936 	/*
1937 	 * Try to transfer events to user space. In case we get 0 events and
1938 	 * there's still timeout left over, we go trying again in search of
1939 	 * more luck.
1940 	 */
1941 	if (!res && eavail &&
1942 	    !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1943 		goto fetch_events;
1944 
1945 	return res;
1946 }
1947 
1948 /**
1949  * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1950  *                      API, to verify that adding an epoll file inside another
1951  *                      epoll structure, does not violate the constraints, in
1952  *                      terms of closed loops, or too deep chains (which can
1953  *                      result in excessive stack usage).
1954  *
1955  * @priv: Pointer to the epoll file to be currently checked.
1956  * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1957  *          data structure pointer.
1958  * @call_nests: Current dept of the @ep_call_nested() call stack.
1959  *
1960  * Returns: Returns zero if adding the epoll @file inside current epoll
1961  *          structure @ep does not violate the constraints, or -1 otherwise.
1962  */
1963 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1964 {
1965 	int error = 0;
1966 	struct file *file = priv;
1967 	struct eventpoll *ep = file->private_data;
1968 	struct eventpoll *ep_tovisit;
1969 	struct rb_node *rbp;
1970 	struct epitem *epi;
1971 
1972 	mutex_lock_nested(&ep->mtx, call_nests + 1);
1973 	ep->gen = loop_check_gen;
1974 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1975 		epi = rb_entry(rbp, struct epitem, rbn);
1976 		if (unlikely(is_file_epoll(epi->ffd.file))) {
1977 			ep_tovisit = epi->ffd.file->private_data;
1978 			if (ep_tovisit->gen == loop_check_gen)
1979 				continue;
1980 			error = ep_call_nested(&poll_loop_ncalls,
1981 					ep_loop_check_proc, epi->ffd.file,
1982 					ep_tovisit, current);
1983 			if (error != 0)
1984 				break;
1985 		} else {
1986 			/*
1987 			 * If we've reached a file that is not associated with
1988 			 * an ep, then we need to check if the newly added
1989 			 * links are going to add too many wakeup paths. We do
1990 			 * this by adding it to the tfile_check_list, if it's
1991 			 * not already there, and calling reverse_path_check()
1992 			 * during ep_insert().
1993 			 */
1994 			if (list_empty(&epi->ffd.file->f_tfile_llink)) {
1995 				if (get_file_rcu(epi->ffd.file))
1996 					list_add(&epi->ffd.file->f_tfile_llink,
1997 						 &tfile_check_list);
1998 			}
1999 		}
2000 	}
2001 	mutex_unlock(&ep->mtx);
2002 
2003 	return error;
2004 }
2005 
2006 /**
2007  * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
2008  *                 another epoll file (represented by @ep) does not create
2009  *                 closed loops or too deep chains.
2010  *
2011  * @ep: Pointer to the epoll private data structure.
2012  * @file: Pointer to the epoll file to be checked.
2013  *
2014  * Returns: Returns zero if adding the epoll @file inside current epoll
2015  *          structure @ep does not violate the constraints, or -1 otherwise.
2016  */
2017 static int ep_loop_check(struct eventpoll *ep, struct file *file)
2018 {
2019 	return ep_call_nested(&poll_loop_ncalls,
2020 			      ep_loop_check_proc, file, ep, current);
2021 }
2022 
2023 static void clear_tfile_check_list(void)
2024 {
2025 	struct file *file;
2026 
2027 	/* first clear the tfile_check_list */
2028 	while (!list_empty(&tfile_check_list)) {
2029 		file = list_first_entry(&tfile_check_list, struct file,
2030 					f_tfile_llink);
2031 		list_del_init(&file->f_tfile_llink);
2032 		fput(file);
2033 	}
2034 	INIT_LIST_HEAD(&tfile_check_list);
2035 }
2036 
2037 /*
2038  * Open an eventpoll file descriptor.
2039  */
2040 static int do_epoll_create(int flags)
2041 {
2042 	int error, fd;
2043 	struct eventpoll *ep = NULL;
2044 	struct file *file;
2045 
2046 	/* Check the EPOLL_* constant for consistency.  */
2047 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2048 
2049 	if (flags & ~EPOLL_CLOEXEC)
2050 		return -EINVAL;
2051 	/*
2052 	 * Create the internal data structure ("struct eventpoll").
2053 	 */
2054 	error = ep_alloc(&ep);
2055 	if (error < 0)
2056 		return error;
2057 	/*
2058 	 * Creates all the items needed to setup an eventpoll file. That is,
2059 	 * a file structure and a free file descriptor.
2060 	 */
2061 	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2062 	if (fd < 0) {
2063 		error = fd;
2064 		goto out_free_ep;
2065 	}
2066 	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2067 				 O_RDWR | (flags & O_CLOEXEC));
2068 	if (IS_ERR(file)) {
2069 		error = PTR_ERR(file);
2070 		goto out_free_fd;
2071 	}
2072 	ep->file = file;
2073 	fd_install(fd, file);
2074 	return fd;
2075 
2076 out_free_fd:
2077 	put_unused_fd(fd);
2078 out_free_ep:
2079 	ep_free(ep);
2080 	return error;
2081 }
2082 
2083 SYSCALL_DEFINE1(epoll_create1, int, flags)
2084 {
2085 	return do_epoll_create(flags);
2086 }
2087 
2088 SYSCALL_DEFINE1(epoll_create, int, size)
2089 {
2090 	if (size <= 0)
2091 		return -EINVAL;
2092 
2093 	return do_epoll_create(0);
2094 }
2095 
2096 static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2097 				   bool nonblock)
2098 {
2099 	if (!nonblock) {
2100 		mutex_lock_nested(mutex, depth);
2101 		return 0;
2102 	}
2103 	if (mutex_trylock(mutex))
2104 		return 0;
2105 	return -EAGAIN;
2106 }
2107 
2108 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2109 		 bool nonblock)
2110 {
2111 	int error;
2112 	int full_check = 0;
2113 	struct fd f, tf;
2114 	struct eventpoll *ep;
2115 	struct epitem *epi;
2116 	struct eventpoll *tep = NULL;
2117 
2118 	error = -EBADF;
2119 	f = fdget(epfd);
2120 	if (!f.file)
2121 		goto error_return;
2122 
2123 	/* Get the "struct file *" for the target file */
2124 	tf = fdget(fd);
2125 	if (!tf.file)
2126 		goto error_fput;
2127 
2128 	/* The target file descriptor must support poll */
2129 	error = -EPERM;
2130 	if (!file_can_poll(tf.file))
2131 		goto error_tgt_fput;
2132 
2133 	/* Check if EPOLLWAKEUP is allowed */
2134 	if (ep_op_has_event(op))
2135 		ep_take_care_of_epollwakeup(epds);
2136 
2137 	/*
2138 	 * We have to check that the file structure underneath the file descriptor
2139 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
2140 	 * adding an epoll file descriptor inside itself.
2141 	 */
2142 	error = -EINVAL;
2143 	if (f.file == tf.file || !is_file_epoll(f.file))
2144 		goto error_tgt_fput;
2145 
2146 	/*
2147 	 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2148 	 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2149 	 * Also, we do not currently supported nested exclusive wakeups.
2150 	 */
2151 	if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2152 		if (op == EPOLL_CTL_MOD)
2153 			goto error_tgt_fput;
2154 		if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2155 				(epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2156 			goto error_tgt_fput;
2157 	}
2158 
2159 	/*
2160 	 * At this point it is safe to assume that the "private_data" contains
2161 	 * our own data structure.
2162 	 */
2163 	ep = f.file->private_data;
2164 
2165 	/*
2166 	 * When we insert an epoll file descriptor, inside another epoll file
2167 	 * descriptor, there is the change of creating closed loops, which are
2168 	 * better be handled here, than in more critical paths. While we are
2169 	 * checking for loops we also determine the list of files reachable
2170 	 * and hang them on the tfile_check_list, so we can check that we
2171 	 * haven't created too many possible wakeup paths.
2172 	 *
2173 	 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2174 	 * the epoll file descriptor is attaching directly to a wakeup source,
2175 	 * unless the epoll file descriptor is nested. The purpose of taking the
2176 	 * 'epmutex' on add is to prevent complex toplogies such as loops and
2177 	 * deep wakeup paths from forming in parallel through multiple
2178 	 * EPOLL_CTL_ADD operations.
2179 	 */
2180 	error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2181 	if (error)
2182 		goto error_tgt_fput;
2183 	if (op == EPOLL_CTL_ADD) {
2184 		if (!list_empty(&f.file->f_ep_links) ||
2185 				ep->gen == loop_check_gen ||
2186 						is_file_epoll(tf.file)) {
2187 			mutex_unlock(&ep->mtx);
2188 			error = epoll_mutex_lock(&epmutex, 0, nonblock);
2189 			if (error)
2190 				goto error_tgt_fput;
2191 			loop_check_gen++;
2192 			full_check = 1;
2193 			if (is_file_epoll(tf.file)) {
2194 				error = -ELOOP;
2195 				if (ep_loop_check(ep, tf.file) != 0)
2196 					goto error_tgt_fput;
2197 			} else {
2198 				get_file(tf.file);
2199 				list_add(&tf.file->f_tfile_llink,
2200 							&tfile_check_list);
2201 			}
2202 			error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2203 			if (error)
2204 				goto error_tgt_fput;
2205 			if (is_file_epoll(tf.file)) {
2206 				tep = tf.file->private_data;
2207 				error = epoll_mutex_lock(&tep->mtx, 1, nonblock);
2208 				if (error) {
2209 					mutex_unlock(&ep->mtx);
2210 					goto error_tgt_fput;
2211 				}
2212 			}
2213 		}
2214 	}
2215 
2216 	/*
2217 	 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2218 	 * above, we can be sure to be able to use the item looked up by
2219 	 * ep_find() till we release the mutex.
2220 	 */
2221 	epi = ep_find(ep, tf.file, fd);
2222 
2223 	error = -EINVAL;
2224 	switch (op) {
2225 	case EPOLL_CTL_ADD:
2226 		if (!epi) {
2227 			epds->events |= EPOLLERR | EPOLLHUP;
2228 			error = ep_insert(ep, epds, tf.file, fd, full_check);
2229 		} else
2230 			error = -EEXIST;
2231 		break;
2232 	case EPOLL_CTL_DEL:
2233 		if (epi)
2234 			error = ep_remove(ep, epi);
2235 		else
2236 			error = -ENOENT;
2237 		break;
2238 	case EPOLL_CTL_MOD:
2239 		if (epi) {
2240 			if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2241 				epds->events |= EPOLLERR | EPOLLHUP;
2242 				error = ep_modify(ep, epi, epds);
2243 			}
2244 		} else
2245 			error = -ENOENT;
2246 		break;
2247 	}
2248 	if (tep != NULL)
2249 		mutex_unlock(&tep->mtx);
2250 	mutex_unlock(&ep->mtx);
2251 
2252 error_tgt_fput:
2253 	if (full_check) {
2254 		clear_tfile_check_list();
2255 		loop_check_gen++;
2256 		mutex_unlock(&epmutex);
2257 	}
2258 
2259 	fdput(tf);
2260 error_fput:
2261 	fdput(f);
2262 error_return:
2263 
2264 	return error;
2265 }
2266 
2267 /*
2268  * The following function implements the controller interface for
2269  * the eventpoll file that enables the insertion/removal/change of
2270  * file descriptors inside the interest set.
2271  */
2272 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2273 		struct epoll_event __user *, event)
2274 {
2275 	struct epoll_event epds;
2276 
2277 	if (ep_op_has_event(op) &&
2278 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
2279 		return -EFAULT;
2280 
2281 	return do_epoll_ctl(epfd, op, fd, &epds, false);
2282 }
2283 
2284 /*
2285  * Implement the event wait interface for the eventpoll file. It is the kernel
2286  * part of the user space epoll_wait(2).
2287  */
2288 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2289 			 int maxevents, int timeout)
2290 {
2291 	int error;
2292 	struct fd f;
2293 	struct eventpoll *ep;
2294 
2295 	/* The maximum number of event must be greater than zero */
2296 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2297 		return -EINVAL;
2298 
2299 	/* Verify that the area passed by the user is writeable */
2300 	if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2301 		return -EFAULT;
2302 
2303 	/* Get the "struct file *" for the eventpoll file */
2304 	f = fdget(epfd);
2305 	if (!f.file)
2306 		return -EBADF;
2307 
2308 	/*
2309 	 * We have to check that the file structure underneath the fd
2310 	 * the user passed to us _is_ an eventpoll file.
2311 	 */
2312 	error = -EINVAL;
2313 	if (!is_file_epoll(f.file))
2314 		goto error_fput;
2315 
2316 	/*
2317 	 * At this point it is safe to assume that the "private_data" contains
2318 	 * our own data structure.
2319 	 */
2320 	ep = f.file->private_data;
2321 
2322 	/* Time to fish for events ... */
2323 	error = ep_poll(ep, events, maxevents, timeout);
2324 
2325 error_fput:
2326 	fdput(f);
2327 	return error;
2328 }
2329 
2330 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2331 		int, maxevents, int, timeout)
2332 {
2333 	return do_epoll_wait(epfd, events, maxevents, timeout);
2334 }
2335 
2336 /*
2337  * Implement the event wait interface for the eventpoll file. It is the kernel
2338  * part of the user space epoll_pwait(2).
2339  */
2340 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2341 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2342 		size_t, sigsetsize)
2343 {
2344 	int error;
2345 
2346 	/*
2347 	 * If the caller wants a certain signal mask to be set during the wait,
2348 	 * we apply it here.
2349 	 */
2350 	error = set_user_sigmask(sigmask, sigsetsize);
2351 	if (error)
2352 		return error;
2353 
2354 	error = do_epoll_wait(epfd, events, maxevents, timeout);
2355 	restore_saved_sigmask_unless(error == -EINTR);
2356 
2357 	return error;
2358 }
2359 
2360 #ifdef CONFIG_COMPAT
2361 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2362 			struct epoll_event __user *, events,
2363 			int, maxevents, int, timeout,
2364 			const compat_sigset_t __user *, sigmask,
2365 			compat_size_t, sigsetsize)
2366 {
2367 	long err;
2368 
2369 	/*
2370 	 * If the caller wants a certain signal mask to be set during the wait,
2371 	 * we apply it here.
2372 	 */
2373 	err = set_compat_user_sigmask(sigmask, sigsetsize);
2374 	if (err)
2375 		return err;
2376 
2377 	err = do_epoll_wait(epfd, events, maxevents, timeout);
2378 	restore_saved_sigmask_unless(err == -EINTR);
2379 
2380 	return err;
2381 }
2382 #endif
2383 
2384 static int __init eventpoll_init(void)
2385 {
2386 	struct sysinfo si;
2387 
2388 	si_meminfo(&si);
2389 	/*
2390 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2391 	 */
2392 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2393 		EP_ITEM_COST;
2394 	BUG_ON(max_user_watches < 0);
2395 
2396 	/*
2397 	 * Initialize the structure used to perform epoll file descriptor
2398 	 * inclusion loops checks.
2399 	 */
2400 	ep_nested_calls_init(&poll_loop_ncalls);
2401 
2402 	/*
2403 	 * We can have many thousands of epitems, so prevent this from
2404 	 * using an extra cache line on 64-bit (and smaller) CPUs
2405 	 */
2406 	BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2407 
2408 	/* Allocates slab cache used to allocate "struct epitem" items */
2409 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2410 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2411 
2412 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
2413 	pwq_cache = kmem_cache_create("eventpoll_pwq",
2414 		sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2415 
2416 	return 0;
2417 }
2418 fs_initcall(eventpoll_init);
2419