xref: /openbmc/linux/fs/eventpoll.c (revision a8fe58ce)
1 /*
2  *  fs/eventpoll.c (Efficient event retrieval implementation)
3  *  Copyright (C) 2001,...,2009	 Davide Libenzi
4  *
5  *  This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation; either version 2 of the License, or
8  *  (at your option) any later version.
9  *
10  *  Davide Libenzi <davidel@xmailserver.org>
11  *
12  */
13 
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/device.h>
37 #include <asm/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <linux/atomic.h>
41 #include <linux/proc_fs.h>
42 #include <linux/seq_file.h>
43 #include <linux/compat.h>
44 #include <linux/rculist.h>
45 
46 /*
47  * LOCKING:
48  * There are three level of locking required by epoll :
49  *
50  * 1) epmutex (mutex)
51  * 2) ep->mtx (mutex)
52  * 3) ep->lock (spinlock)
53  *
54  * The acquire order is the one listed above, from 1 to 3.
55  * We need a spinlock (ep->lock) because we manipulate objects
56  * from inside the poll callback, that might be triggered from
57  * a wake_up() that in turn might be called from IRQ context.
58  * So we can't sleep inside the poll callback and hence we need
59  * a spinlock. During the event transfer loop (from kernel to
60  * user space) we could end up sleeping due a copy_to_user(), so
61  * we need a lock that will allow us to sleep. This lock is a
62  * mutex (ep->mtx). It is acquired during the event transfer loop,
63  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
64  * Then we also need a global mutex to serialize eventpoll_release_file()
65  * and ep_free().
66  * This mutex is acquired by ep_free() during the epoll file
67  * cleanup path and it is also acquired by eventpoll_release_file()
68  * if a file has been pushed inside an epoll set and it is then
69  * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
70  * It is also acquired when inserting an epoll fd onto another epoll
71  * fd. We do this so that we walk the epoll tree and ensure that this
72  * insertion does not create a cycle of epoll file descriptors, which
73  * could lead to deadlock. We need a global mutex to prevent two
74  * simultaneous inserts (A into B and B into A) from racing and
75  * constructing a cycle without either insert observing that it is
76  * going to.
77  * It is necessary to acquire multiple "ep->mtx"es at once in the
78  * case when one epoll fd is added to another. In this case, we
79  * always acquire the locks in the order of nesting (i.e. after
80  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
81  * before e2->mtx). Since we disallow cycles of epoll file
82  * descriptors, this ensures that the mutexes are well-ordered. In
83  * order to communicate this nesting to lockdep, when walking a tree
84  * of epoll file descriptors, we use the current recursion depth as
85  * the lockdep subkey.
86  * It is possible to drop the "ep->mtx" and to use the global
87  * mutex "epmutex" (together with "ep->lock") to have it working,
88  * but having "ep->mtx" will make the interface more scalable.
89  * Events that require holding "epmutex" are very rare, while for
90  * normal operations the epoll private "ep->mtx" will guarantee
91  * a better scalability.
92  */
93 
94 /* Epoll private bits inside the event mask */
95 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
96 
97 #define EPOLLINOUT_BITS (POLLIN | POLLOUT)
98 
99 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | POLLERR | POLLHUP | \
100 				EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
101 
102 /* Maximum number of nesting allowed inside epoll sets */
103 #define EP_MAX_NESTS 4
104 
105 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
106 
107 #define EP_UNACTIVE_PTR ((void *) -1L)
108 
109 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
110 
111 struct epoll_filefd {
112 	struct file *file;
113 	int fd;
114 } __packed;
115 
116 /*
117  * Structure used to track possible nested calls, for too deep recursions
118  * and loop cycles.
119  */
120 struct nested_call_node {
121 	struct list_head llink;
122 	void *cookie;
123 	void *ctx;
124 };
125 
126 /*
127  * This structure is used as collector for nested calls, to check for
128  * maximum recursion dept and loop cycles.
129  */
130 struct nested_calls {
131 	struct list_head tasks_call_list;
132 	spinlock_t lock;
133 };
134 
135 /*
136  * Each file descriptor added to the eventpoll interface will
137  * have an entry of this type linked to the "rbr" RB tree.
138  * Avoid increasing the size of this struct, there can be many thousands
139  * of these on a server and we do not want this to take another cache line.
140  */
141 struct epitem {
142 	union {
143 		/* RB tree node links this structure to the eventpoll RB tree */
144 		struct rb_node rbn;
145 		/* Used to free the struct epitem */
146 		struct rcu_head rcu;
147 	};
148 
149 	/* List header used to link this structure to the eventpoll ready list */
150 	struct list_head rdllink;
151 
152 	/*
153 	 * Works together "struct eventpoll"->ovflist in keeping the
154 	 * single linked chain of items.
155 	 */
156 	struct epitem *next;
157 
158 	/* The file descriptor information this item refers to */
159 	struct epoll_filefd ffd;
160 
161 	/* Number of active wait queue attached to poll operations */
162 	int nwait;
163 
164 	/* List containing poll wait queues */
165 	struct list_head pwqlist;
166 
167 	/* The "container" of this item */
168 	struct eventpoll *ep;
169 
170 	/* List header used to link this item to the "struct file" items list */
171 	struct list_head fllink;
172 
173 	/* wakeup_source used when EPOLLWAKEUP is set */
174 	struct wakeup_source __rcu *ws;
175 
176 	/* The structure that describe the interested events and the source fd */
177 	struct epoll_event event;
178 };
179 
180 /*
181  * This structure is stored inside the "private_data" member of the file
182  * structure and represents the main data structure for the eventpoll
183  * interface.
184  */
185 struct eventpoll {
186 	/* Protect the access to this structure */
187 	spinlock_t lock;
188 
189 	/*
190 	 * This mutex is used to ensure that files are not removed
191 	 * while epoll is using them. This is held during the event
192 	 * collection loop, the file cleanup path, the epoll file exit
193 	 * code and the ctl operations.
194 	 */
195 	struct mutex mtx;
196 
197 	/* Wait queue used by sys_epoll_wait() */
198 	wait_queue_head_t wq;
199 
200 	/* Wait queue used by file->poll() */
201 	wait_queue_head_t poll_wait;
202 
203 	/* List of ready file descriptors */
204 	struct list_head rdllist;
205 
206 	/* RB tree root used to store monitored fd structs */
207 	struct rb_root rbr;
208 
209 	/*
210 	 * This is a single linked list that chains all the "struct epitem" that
211 	 * happened while transferring ready events to userspace w/out
212 	 * holding ->lock.
213 	 */
214 	struct epitem *ovflist;
215 
216 	/* wakeup_source used when ep_scan_ready_list is running */
217 	struct wakeup_source *ws;
218 
219 	/* The user that created the eventpoll descriptor */
220 	struct user_struct *user;
221 
222 	struct file *file;
223 
224 	/* used to optimize loop detection check */
225 	int visited;
226 	struct list_head visited_list_link;
227 };
228 
229 /* Wait structure used by the poll hooks */
230 struct eppoll_entry {
231 	/* List header used to link this structure to the "struct epitem" */
232 	struct list_head llink;
233 
234 	/* The "base" pointer is set to the container "struct epitem" */
235 	struct epitem *base;
236 
237 	/*
238 	 * Wait queue item that will be linked to the target file wait
239 	 * queue head.
240 	 */
241 	wait_queue_t wait;
242 
243 	/* The wait queue head that linked the "wait" wait queue item */
244 	wait_queue_head_t *whead;
245 };
246 
247 /* Wrapper struct used by poll queueing */
248 struct ep_pqueue {
249 	poll_table pt;
250 	struct epitem *epi;
251 };
252 
253 /* Used by the ep_send_events() function as callback private data */
254 struct ep_send_events_data {
255 	int maxevents;
256 	struct epoll_event __user *events;
257 };
258 
259 /*
260  * Configuration options available inside /proc/sys/fs/epoll/
261  */
262 /* Maximum number of epoll watched descriptors, per user */
263 static long max_user_watches __read_mostly;
264 
265 /*
266  * This mutex is used to serialize ep_free() and eventpoll_release_file().
267  */
268 static DEFINE_MUTEX(epmutex);
269 
270 /* Used to check for epoll file descriptor inclusion loops */
271 static struct nested_calls poll_loop_ncalls;
272 
273 /* Used for safe wake up implementation */
274 static struct nested_calls poll_safewake_ncalls;
275 
276 /* Used to call file's f_op->poll() under the nested calls boundaries */
277 static struct nested_calls poll_readywalk_ncalls;
278 
279 /* Slab cache used to allocate "struct epitem" */
280 static struct kmem_cache *epi_cache __read_mostly;
281 
282 /* Slab cache used to allocate "struct eppoll_entry" */
283 static struct kmem_cache *pwq_cache __read_mostly;
284 
285 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
286 static LIST_HEAD(visited_list);
287 
288 /*
289  * List of files with newly added links, where we may need to limit the number
290  * of emanating paths. Protected by the epmutex.
291  */
292 static LIST_HEAD(tfile_check_list);
293 
294 #ifdef CONFIG_SYSCTL
295 
296 #include <linux/sysctl.h>
297 
298 static long zero;
299 static long long_max = LONG_MAX;
300 
301 struct ctl_table epoll_table[] = {
302 	{
303 		.procname	= "max_user_watches",
304 		.data		= &max_user_watches,
305 		.maxlen		= sizeof(max_user_watches),
306 		.mode		= 0644,
307 		.proc_handler	= proc_doulongvec_minmax,
308 		.extra1		= &zero,
309 		.extra2		= &long_max,
310 	},
311 	{ }
312 };
313 #endif /* CONFIG_SYSCTL */
314 
315 static const struct file_operations eventpoll_fops;
316 
317 static inline int is_file_epoll(struct file *f)
318 {
319 	return f->f_op == &eventpoll_fops;
320 }
321 
322 /* Setup the structure that is used as key for the RB tree */
323 static inline void ep_set_ffd(struct epoll_filefd *ffd,
324 			      struct file *file, int fd)
325 {
326 	ffd->file = file;
327 	ffd->fd = fd;
328 }
329 
330 /* Compare RB tree keys */
331 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
332 			     struct epoll_filefd *p2)
333 {
334 	return (p1->file > p2->file ? +1:
335 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
336 }
337 
338 /* Tells us if the item is currently linked */
339 static inline int ep_is_linked(struct list_head *p)
340 {
341 	return !list_empty(p);
342 }
343 
344 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_t *p)
345 {
346 	return container_of(p, struct eppoll_entry, wait);
347 }
348 
349 /* Get the "struct epitem" from a wait queue pointer */
350 static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
351 {
352 	return container_of(p, struct eppoll_entry, wait)->base;
353 }
354 
355 /* Get the "struct epitem" from an epoll queue wrapper */
356 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
357 {
358 	return container_of(p, struct ep_pqueue, pt)->epi;
359 }
360 
361 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
362 static inline int ep_op_has_event(int op)
363 {
364 	return op != EPOLL_CTL_DEL;
365 }
366 
367 /* Initialize the poll safe wake up structure */
368 static void ep_nested_calls_init(struct nested_calls *ncalls)
369 {
370 	INIT_LIST_HEAD(&ncalls->tasks_call_list);
371 	spin_lock_init(&ncalls->lock);
372 }
373 
374 /**
375  * ep_events_available - Checks if ready events might be available.
376  *
377  * @ep: Pointer to the eventpoll context.
378  *
379  * Returns: Returns a value different than zero if ready events are available,
380  *          or zero otherwise.
381  */
382 static inline int ep_events_available(struct eventpoll *ep)
383 {
384 	return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
385 }
386 
387 /**
388  * ep_call_nested - Perform a bound (possibly) nested call, by checking
389  *                  that the recursion limit is not exceeded, and that
390  *                  the same nested call (by the meaning of same cookie) is
391  *                  no re-entered.
392  *
393  * @ncalls: Pointer to the nested_calls structure to be used for this call.
394  * @max_nests: Maximum number of allowed nesting calls.
395  * @nproc: Nested call core function pointer.
396  * @priv: Opaque data to be passed to the @nproc callback.
397  * @cookie: Cookie to be used to identify this nested call.
398  * @ctx: This instance context.
399  *
400  * Returns: Returns the code returned by the @nproc callback, or -1 if
401  *          the maximum recursion limit has been exceeded.
402  */
403 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
404 			  int (*nproc)(void *, void *, int), void *priv,
405 			  void *cookie, void *ctx)
406 {
407 	int error, call_nests = 0;
408 	unsigned long flags;
409 	struct list_head *lsthead = &ncalls->tasks_call_list;
410 	struct nested_call_node *tncur;
411 	struct nested_call_node tnode;
412 
413 	spin_lock_irqsave(&ncalls->lock, flags);
414 
415 	/*
416 	 * Try to see if the current task is already inside this wakeup call.
417 	 * We use a list here, since the population inside this set is always
418 	 * very much limited.
419 	 */
420 	list_for_each_entry(tncur, lsthead, llink) {
421 		if (tncur->ctx == ctx &&
422 		    (tncur->cookie == cookie || ++call_nests > max_nests)) {
423 			/*
424 			 * Ops ... loop detected or maximum nest level reached.
425 			 * We abort this wake by breaking the cycle itself.
426 			 */
427 			error = -1;
428 			goto out_unlock;
429 		}
430 	}
431 
432 	/* Add the current task and cookie to the list */
433 	tnode.ctx = ctx;
434 	tnode.cookie = cookie;
435 	list_add(&tnode.llink, lsthead);
436 
437 	spin_unlock_irqrestore(&ncalls->lock, flags);
438 
439 	/* Call the nested function */
440 	error = (*nproc)(priv, cookie, call_nests);
441 
442 	/* Remove the current task from the list */
443 	spin_lock_irqsave(&ncalls->lock, flags);
444 	list_del(&tnode.llink);
445 out_unlock:
446 	spin_unlock_irqrestore(&ncalls->lock, flags);
447 
448 	return error;
449 }
450 
451 /*
452  * As described in commit 0ccf831cb lockdep: annotate epoll
453  * the use of wait queues used by epoll is done in a very controlled
454  * manner. Wake ups can nest inside each other, but are never done
455  * with the same locking. For example:
456  *
457  *   dfd = socket(...);
458  *   efd1 = epoll_create();
459  *   efd2 = epoll_create();
460  *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
461  *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
462  *
463  * When a packet arrives to the device underneath "dfd", the net code will
464  * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
465  * callback wakeup entry on that queue, and the wake_up() performed by the
466  * "dfd" net code will end up in ep_poll_callback(). At this point epoll
467  * (efd1) notices that it may have some event ready, so it needs to wake up
468  * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
469  * that ends up in another wake_up(), after having checked about the
470  * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
471  * avoid stack blasting.
472  *
473  * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
474  * this special case of epoll.
475  */
476 #ifdef CONFIG_DEBUG_LOCK_ALLOC
477 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
478 				     unsigned long events, int subclass)
479 {
480 	unsigned long flags;
481 
482 	spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
483 	wake_up_locked_poll(wqueue, events);
484 	spin_unlock_irqrestore(&wqueue->lock, flags);
485 }
486 #else
487 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
488 				     unsigned long events, int subclass)
489 {
490 	wake_up_poll(wqueue, events);
491 }
492 #endif
493 
494 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
495 {
496 	ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
497 			  1 + call_nests);
498 	return 0;
499 }
500 
501 /*
502  * Perform a safe wake up of the poll wait list. The problem is that
503  * with the new callback'd wake up system, it is possible that the
504  * poll callback is reentered from inside the call to wake_up() done
505  * on the poll wait queue head. The rule is that we cannot reenter the
506  * wake up code from the same task more than EP_MAX_NESTS times,
507  * and we cannot reenter the same wait queue head at all. This will
508  * enable to have a hierarchy of epoll file descriptor of no more than
509  * EP_MAX_NESTS deep.
510  */
511 static void ep_poll_safewake(wait_queue_head_t *wq)
512 {
513 	int this_cpu = get_cpu();
514 
515 	ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
516 		       ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
517 
518 	put_cpu();
519 }
520 
521 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
522 {
523 	wait_queue_head_t *whead;
524 
525 	rcu_read_lock();
526 	/* If it is cleared by POLLFREE, it should be rcu-safe */
527 	whead = rcu_dereference(pwq->whead);
528 	if (whead)
529 		remove_wait_queue(whead, &pwq->wait);
530 	rcu_read_unlock();
531 }
532 
533 /*
534  * This function unregisters poll callbacks from the associated file
535  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
536  * ep_free).
537  */
538 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
539 {
540 	struct list_head *lsthead = &epi->pwqlist;
541 	struct eppoll_entry *pwq;
542 
543 	while (!list_empty(lsthead)) {
544 		pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
545 
546 		list_del(&pwq->llink);
547 		ep_remove_wait_queue(pwq);
548 		kmem_cache_free(pwq_cache, pwq);
549 	}
550 }
551 
552 /* call only when ep->mtx is held */
553 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
554 {
555 	return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
556 }
557 
558 /* call only when ep->mtx is held */
559 static inline void ep_pm_stay_awake(struct epitem *epi)
560 {
561 	struct wakeup_source *ws = ep_wakeup_source(epi);
562 
563 	if (ws)
564 		__pm_stay_awake(ws);
565 }
566 
567 static inline bool ep_has_wakeup_source(struct epitem *epi)
568 {
569 	return rcu_access_pointer(epi->ws) ? true : false;
570 }
571 
572 /* call when ep->mtx cannot be held (ep_poll_callback) */
573 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
574 {
575 	struct wakeup_source *ws;
576 
577 	rcu_read_lock();
578 	ws = rcu_dereference(epi->ws);
579 	if (ws)
580 		__pm_stay_awake(ws);
581 	rcu_read_unlock();
582 }
583 
584 /**
585  * ep_scan_ready_list - Scans the ready list in a way that makes possible for
586  *                      the scan code, to call f_op->poll(). Also allows for
587  *                      O(NumReady) performance.
588  *
589  * @ep: Pointer to the epoll private data structure.
590  * @sproc: Pointer to the scan callback.
591  * @priv: Private opaque data passed to the @sproc callback.
592  * @depth: The current depth of recursive f_op->poll calls.
593  * @ep_locked: caller already holds ep->mtx
594  *
595  * Returns: The same integer error code returned by the @sproc callback.
596  */
597 static int ep_scan_ready_list(struct eventpoll *ep,
598 			      int (*sproc)(struct eventpoll *,
599 					   struct list_head *, void *),
600 			      void *priv, int depth, bool ep_locked)
601 {
602 	int error, pwake = 0;
603 	unsigned long flags;
604 	struct epitem *epi, *nepi;
605 	LIST_HEAD(txlist);
606 
607 	/*
608 	 * We need to lock this because we could be hit by
609 	 * eventpoll_release_file() and epoll_ctl().
610 	 */
611 
612 	if (!ep_locked)
613 		mutex_lock_nested(&ep->mtx, depth);
614 
615 	/*
616 	 * Steal the ready list, and re-init the original one to the
617 	 * empty list. Also, set ep->ovflist to NULL so that events
618 	 * happening while looping w/out locks, are not lost. We cannot
619 	 * have the poll callback to queue directly on ep->rdllist,
620 	 * because we want the "sproc" callback to be able to do it
621 	 * in a lockless way.
622 	 */
623 	spin_lock_irqsave(&ep->lock, flags);
624 	list_splice_init(&ep->rdllist, &txlist);
625 	ep->ovflist = NULL;
626 	spin_unlock_irqrestore(&ep->lock, flags);
627 
628 	/*
629 	 * Now call the callback function.
630 	 */
631 	error = (*sproc)(ep, &txlist, priv);
632 
633 	spin_lock_irqsave(&ep->lock, flags);
634 	/*
635 	 * During the time we spent inside the "sproc" callback, some
636 	 * other events might have been queued by the poll callback.
637 	 * We re-insert them inside the main ready-list here.
638 	 */
639 	for (nepi = ep->ovflist; (epi = nepi) != NULL;
640 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
641 		/*
642 		 * We need to check if the item is already in the list.
643 		 * During the "sproc" callback execution time, items are
644 		 * queued into ->ovflist but the "txlist" might already
645 		 * contain them, and the list_splice() below takes care of them.
646 		 */
647 		if (!ep_is_linked(&epi->rdllink)) {
648 			list_add_tail(&epi->rdllink, &ep->rdllist);
649 			ep_pm_stay_awake(epi);
650 		}
651 	}
652 	/*
653 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
654 	 * releasing the lock, events will be queued in the normal way inside
655 	 * ep->rdllist.
656 	 */
657 	ep->ovflist = EP_UNACTIVE_PTR;
658 
659 	/*
660 	 * Quickly re-inject items left on "txlist".
661 	 */
662 	list_splice(&txlist, &ep->rdllist);
663 	__pm_relax(ep->ws);
664 
665 	if (!list_empty(&ep->rdllist)) {
666 		/*
667 		 * Wake up (if active) both the eventpoll wait list and
668 		 * the ->poll() wait list (delayed after we release the lock).
669 		 */
670 		if (waitqueue_active(&ep->wq))
671 			wake_up_locked(&ep->wq);
672 		if (waitqueue_active(&ep->poll_wait))
673 			pwake++;
674 	}
675 	spin_unlock_irqrestore(&ep->lock, flags);
676 
677 	if (!ep_locked)
678 		mutex_unlock(&ep->mtx);
679 
680 	/* We have to call this outside the lock */
681 	if (pwake)
682 		ep_poll_safewake(&ep->poll_wait);
683 
684 	return error;
685 }
686 
687 static void epi_rcu_free(struct rcu_head *head)
688 {
689 	struct epitem *epi = container_of(head, struct epitem, rcu);
690 	kmem_cache_free(epi_cache, epi);
691 }
692 
693 /*
694  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
695  * all the associated resources. Must be called with "mtx" held.
696  */
697 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
698 {
699 	unsigned long flags;
700 	struct file *file = epi->ffd.file;
701 
702 	/*
703 	 * Removes poll wait queue hooks. We _have_ to do this without holding
704 	 * the "ep->lock" otherwise a deadlock might occur. This because of the
705 	 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
706 	 * queue head lock when unregistering the wait queue. The wakeup callback
707 	 * will run by holding the wait queue head lock and will call our callback
708 	 * that will try to get "ep->lock".
709 	 */
710 	ep_unregister_pollwait(ep, epi);
711 
712 	/* Remove the current item from the list of epoll hooks */
713 	spin_lock(&file->f_lock);
714 	list_del_rcu(&epi->fllink);
715 	spin_unlock(&file->f_lock);
716 
717 	rb_erase(&epi->rbn, &ep->rbr);
718 
719 	spin_lock_irqsave(&ep->lock, flags);
720 	if (ep_is_linked(&epi->rdllink))
721 		list_del_init(&epi->rdllink);
722 	spin_unlock_irqrestore(&ep->lock, flags);
723 
724 	wakeup_source_unregister(ep_wakeup_source(epi));
725 	/*
726 	 * At this point it is safe to free the eventpoll item. Use the union
727 	 * field epi->rcu, since we are trying to minimize the size of
728 	 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
729 	 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
730 	 * use of the rbn field.
731 	 */
732 	call_rcu(&epi->rcu, epi_rcu_free);
733 
734 	atomic_long_dec(&ep->user->epoll_watches);
735 
736 	return 0;
737 }
738 
739 static void ep_free(struct eventpoll *ep)
740 {
741 	struct rb_node *rbp;
742 	struct epitem *epi;
743 
744 	/* We need to release all tasks waiting for these file */
745 	if (waitqueue_active(&ep->poll_wait))
746 		ep_poll_safewake(&ep->poll_wait);
747 
748 	/*
749 	 * We need to lock this because we could be hit by
750 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
751 	 * We do not need to hold "ep->mtx" here because the epoll file
752 	 * is on the way to be removed and no one has references to it
753 	 * anymore. The only hit might come from eventpoll_release_file() but
754 	 * holding "epmutex" is sufficient here.
755 	 */
756 	mutex_lock(&epmutex);
757 
758 	/*
759 	 * Walks through the whole tree by unregistering poll callbacks.
760 	 */
761 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
762 		epi = rb_entry(rbp, struct epitem, rbn);
763 
764 		ep_unregister_pollwait(ep, epi);
765 		cond_resched();
766 	}
767 
768 	/*
769 	 * Walks through the whole tree by freeing each "struct epitem". At this
770 	 * point we are sure no poll callbacks will be lingering around, and also by
771 	 * holding "epmutex" we can be sure that no file cleanup code will hit
772 	 * us during this operation. So we can avoid the lock on "ep->lock".
773 	 * We do not need to lock ep->mtx, either, we only do it to prevent
774 	 * a lockdep warning.
775 	 */
776 	mutex_lock(&ep->mtx);
777 	while ((rbp = rb_first(&ep->rbr)) != NULL) {
778 		epi = rb_entry(rbp, struct epitem, rbn);
779 		ep_remove(ep, epi);
780 		cond_resched();
781 	}
782 	mutex_unlock(&ep->mtx);
783 
784 	mutex_unlock(&epmutex);
785 	mutex_destroy(&ep->mtx);
786 	free_uid(ep->user);
787 	wakeup_source_unregister(ep->ws);
788 	kfree(ep);
789 }
790 
791 static int ep_eventpoll_release(struct inode *inode, struct file *file)
792 {
793 	struct eventpoll *ep = file->private_data;
794 
795 	if (ep)
796 		ep_free(ep);
797 
798 	return 0;
799 }
800 
801 static inline unsigned int ep_item_poll(struct epitem *epi, poll_table *pt)
802 {
803 	pt->_key = epi->event.events;
804 
805 	return epi->ffd.file->f_op->poll(epi->ffd.file, pt) & epi->event.events;
806 }
807 
808 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
809 			       void *priv)
810 {
811 	struct epitem *epi, *tmp;
812 	poll_table pt;
813 
814 	init_poll_funcptr(&pt, NULL);
815 
816 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
817 		if (ep_item_poll(epi, &pt))
818 			return POLLIN | POLLRDNORM;
819 		else {
820 			/*
821 			 * Item has been dropped into the ready list by the poll
822 			 * callback, but it's not actually ready, as far as
823 			 * caller requested events goes. We can remove it here.
824 			 */
825 			__pm_relax(ep_wakeup_source(epi));
826 			list_del_init(&epi->rdllink);
827 		}
828 	}
829 
830 	return 0;
831 }
832 
833 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
834 				 poll_table *pt);
835 
836 struct readyevents_arg {
837 	struct eventpoll *ep;
838 	bool locked;
839 };
840 
841 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
842 {
843 	struct readyevents_arg *arg = priv;
844 
845 	return ep_scan_ready_list(arg->ep, ep_read_events_proc, NULL,
846 				  call_nests + 1, arg->locked);
847 }
848 
849 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
850 {
851 	int pollflags;
852 	struct eventpoll *ep = file->private_data;
853 	struct readyevents_arg arg;
854 
855 	/*
856 	 * During ep_insert() we already hold the ep->mtx for the tfile.
857 	 * Prevent re-aquisition.
858 	 */
859 	arg.locked = wait && (wait->_qproc == ep_ptable_queue_proc);
860 	arg.ep = ep;
861 
862 	/* Insert inside our poll wait queue */
863 	poll_wait(file, &ep->poll_wait, wait);
864 
865 	/*
866 	 * Proceed to find out if wanted events are really available inside
867 	 * the ready list. This need to be done under ep_call_nested()
868 	 * supervision, since the call to f_op->poll() done on listed files
869 	 * could re-enter here.
870 	 */
871 	pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
872 				   ep_poll_readyevents_proc, &arg, ep, current);
873 
874 	return pollflags != -1 ? pollflags : 0;
875 }
876 
877 #ifdef CONFIG_PROC_FS
878 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
879 {
880 	struct eventpoll *ep = f->private_data;
881 	struct rb_node *rbp;
882 
883 	mutex_lock(&ep->mtx);
884 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
885 		struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
886 
887 		seq_printf(m, "tfd: %8d events: %8x data: %16llx\n",
888 			   epi->ffd.fd, epi->event.events,
889 			   (long long)epi->event.data);
890 		if (seq_has_overflowed(m))
891 			break;
892 	}
893 	mutex_unlock(&ep->mtx);
894 }
895 #endif
896 
897 /* File callbacks that implement the eventpoll file behaviour */
898 static const struct file_operations eventpoll_fops = {
899 #ifdef CONFIG_PROC_FS
900 	.show_fdinfo	= ep_show_fdinfo,
901 #endif
902 	.release	= ep_eventpoll_release,
903 	.poll		= ep_eventpoll_poll,
904 	.llseek		= noop_llseek,
905 };
906 
907 /*
908  * This is called from eventpoll_release() to unlink files from the eventpoll
909  * interface. We need to have this facility to cleanup correctly files that are
910  * closed without being removed from the eventpoll interface.
911  */
912 void eventpoll_release_file(struct file *file)
913 {
914 	struct eventpoll *ep;
915 	struct epitem *epi, *next;
916 
917 	/*
918 	 * We don't want to get "file->f_lock" because it is not
919 	 * necessary. It is not necessary because we're in the "struct file"
920 	 * cleanup path, and this means that no one is using this file anymore.
921 	 * So, for example, epoll_ctl() cannot hit here since if we reach this
922 	 * point, the file counter already went to zero and fget() would fail.
923 	 * The only hit might come from ep_free() but by holding the mutex
924 	 * will correctly serialize the operation. We do need to acquire
925 	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
926 	 * from anywhere but ep_free().
927 	 *
928 	 * Besides, ep_remove() acquires the lock, so we can't hold it here.
929 	 */
930 	mutex_lock(&epmutex);
931 	list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
932 		ep = epi->ep;
933 		mutex_lock_nested(&ep->mtx, 0);
934 		ep_remove(ep, epi);
935 		mutex_unlock(&ep->mtx);
936 	}
937 	mutex_unlock(&epmutex);
938 }
939 
940 static int ep_alloc(struct eventpoll **pep)
941 {
942 	int error;
943 	struct user_struct *user;
944 	struct eventpoll *ep;
945 
946 	user = get_current_user();
947 	error = -ENOMEM;
948 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
949 	if (unlikely(!ep))
950 		goto free_uid;
951 
952 	spin_lock_init(&ep->lock);
953 	mutex_init(&ep->mtx);
954 	init_waitqueue_head(&ep->wq);
955 	init_waitqueue_head(&ep->poll_wait);
956 	INIT_LIST_HEAD(&ep->rdllist);
957 	ep->rbr = RB_ROOT;
958 	ep->ovflist = EP_UNACTIVE_PTR;
959 	ep->user = user;
960 
961 	*pep = ep;
962 
963 	return 0;
964 
965 free_uid:
966 	free_uid(user);
967 	return error;
968 }
969 
970 /*
971  * Search the file inside the eventpoll tree. The RB tree operations
972  * are protected by the "mtx" mutex, and ep_find() must be called with
973  * "mtx" held.
974  */
975 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
976 {
977 	int kcmp;
978 	struct rb_node *rbp;
979 	struct epitem *epi, *epir = NULL;
980 	struct epoll_filefd ffd;
981 
982 	ep_set_ffd(&ffd, file, fd);
983 	for (rbp = ep->rbr.rb_node; rbp; ) {
984 		epi = rb_entry(rbp, struct epitem, rbn);
985 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
986 		if (kcmp > 0)
987 			rbp = rbp->rb_right;
988 		else if (kcmp < 0)
989 			rbp = rbp->rb_left;
990 		else {
991 			epir = epi;
992 			break;
993 		}
994 	}
995 
996 	return epir;
997 }
998 
999 /*
1000  * This is the callback that is passed to the wait queue wakeup
1001  * mechanism. It is called by the stored file descriptors when they
1002  * have events to report.
1003  */
1004 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
1005 {
1006 	int pwake = 0;
1007 	unsigned long flags;
1008 	struct epitem *epi = ep_item_from_wait(wait);
1009 	struct eventpoll *ep = epi->ep;
1010 	int ewake = 0;
1011 
1012 	if ((unsigned long)key & POLLFREE) {
1013 		ep_pwq_from_wait(wait)->whead = NULL;
1014 		/*
1015 		 * whead = NULL above can race with ep_remove_wait_queue()
1016 		 * which can do another remove_wait_queue() after us, so we
1017 		 * can't use __remove_wait_queue(). whead->lock is held by
1018 		 * the caller.
1019 		 */
1020 		list_del_init(&wait->task_list);
1021 	}
1022 
1023 	spin_lock_irqsave(&ep->lock, flags);
1024 
1025 	/*
1026 	 * If the event mask does not contain any poll(2) event, we consider the
1027 	 * descriptor to be disabled. This condition is likely the effect of the
1028 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1029 	 * until the next EPOLL_CTL_MOD will be issued.
1030 	 */
1031 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
1032 		goto out_unlock;
1033 
1034 	/*
1035 	 * Check the events coming with the callback. At this stage, not
1036 	 * every device reports the events in the "key" parameter of the
1037 	 * callback. We need to be able to handle both cases here, hence the
1038 	 * test for "key" != NULL before the event match test.
1039 	 */
1040 	if (key && !((unsigned long) key & epi->event.events))
1041 		goto out_unlock;
1042 
1043 	/*
1044 	 * If we are transferring events to userspace, we can hold no locks
1045 	 * (because we're accessing user memory, and because of linux f_op->poll()
1046 	 * semantics). All the events that happen during that period of time are
1047 	 * chained in ep->ovflist and requeued later on.
1048 	 */
1049 	if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
1050 		if (epi->next == EP_UNACTIVE_PTR) {
1051 			epi->next = ep->ovflist;
1052 			ep->ovflist = epi;
1053 			if (epi->ws) {
1054 				/*
1055 				 * Activate ep->ws since epi->ws may get
1056 				 * deactivated at any time.
1057 				 */
1058 				__pm_stay_awake(ep->ws);
1059 			}
1060 
1061 		}
1062 		goto out_unlock;
1063 	}
1064 
1065 	/* If this file is already in the ready list we exit soon */
1066 	if (!ep_is_linked(&epi->rdllink)) {
1067 		list_add_tail(&epi->rdllink, &ep->rdllist);
1068 		ep_pm_stay_awake_rcu(epi);
1069 	}
1070 
1071 	/*
1072 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1073 	 * wait list.
1074 	 */
1075 	if (waitqueue_active(&ep->wq)) {
1076 		if ((epi->event.events & EPOLLEXCLUSIVE) &&
1077 					!((unsigned long)key & POLLFREE)) {
1078 			switch ((unsigned long)key & EPOLLINOUT_BITS) {
1079 			case POLLIN:
1080 				if (epi->event.events & POLLIN)
1081 					ewake = 1;
1082 				break;
1083 			case POLLOUT:
1084 				if (epi->event.events & POLLOUT)
1085 					ewake = 1;
1086 				break;
1087 			case 0:
1088 				ewake = 1;
1089 				break;
1090 			}
1091 		}
1092 		wake_up_locked(&ep->wq);
1093 	}
1094 	if (waitqueue_active(&ep->poll_wait))
1095 		pwake++;
1096 
1097 out_unlock:
1098 	spin_unlock_irqrestore(&ep->lock, flags);
1099 
1100 	/* We have to call this outside the lock */
1101 	if (pwake)
1102 		ep_poll_safewake(&ep->poll_wait);
1103 
1104 	if (epi->event.events & EPOLLEXCLUSIVE)
1105 		return ewake;
1106 
1107 	return 1;
1108 }
1109 
1110 /*
1111  * This is the callback that is used to add our wait queue to the
1112  * target file wakeup lists.
1113  */
1114 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1115 				 poll_table *pt)
1116 {
1117 	struct epitem *epi = ep_item_from_epqueue(pt);
1118 	struct eppoll_entry *pwq;
1119 
1120 	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1121 		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1122 		pwq->whead = whead;
1123 		pwq->base = epi;
1124 		if (epi->event.events & EPOLLEXCLUSIVE)
1125 			add_wait_queue_exclusive(whead, &pwq->wait);
1126 		else
1127 			add_wait_queue(whead, &pwq->wait);
1128 		list_add_tail(&pwq->llink, &epi->pwqlist);
1129 		epi->nwait++;
1130 	} else {
1131 		/* We have to signal that an error occurred */
1132 		epi->nwait = -1;
1133 	}
1134 }
1135 
1136 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1137 {
1138 	int kcmp;
1139 	struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
1140 	struct epitem *epic;
1141 
1142 	while (*p) {
1143 		parent = *p;
1144 		epic = rb_entry(parent, struct epitem, rbn);
1145 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1146 		if (kcmp > 0)
1147 			p = &parent->rb_right;
1148 		else
1149 			p = &parent->rb_left;
1150 	}
1151 	rb_link_node(&epi->rbn, parent, p);
1152 	rb_insert_color(&epi->rbn, &ep->rbr);
1153 }
1154 
1155 
1156 
1157 #define PATH_ARR_SIZE 5
1158 /*
1159  * These are the number paths of length 1 to 5, that we are allowing to emanate
1160  * from a single file of interest. For example, we allow 1000 paths of length
1161  * 1, to emanate from each file of interest. This essentially represents the
1162  * potential wakeup paths, which need to be limited in order to avoid massive
1163  * uncontrolled wakeup storms. The common use case should be a single ep which
1164  * is connected to n file sources. In this case each file source has 1 path
1165  * of length 1. Thus, the numbers below should be more than sufficient. These
1166  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1167  * and delete can't add additional paths. Protected by the epmutex.
1168  */
1169 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1170 static int path_count[PATH_ARR_SIZE];
1171 
1172 static int path_count_inc(int nests)
1173 {
1174 	/* Allow an arbitrary number of depth 1 paths */
1175 	if (nests == 0)
1176 		return 0;
1177 
1178 	if (++path_count[nests] > path_limits[nests])
1179 		return -1;
1180 	return 0;
1181 }
1182 
1183 static void path_count_init(void)
1184 {
1185 	int i;
1186 
1187 	for (i = 0; i < PATH_ARR_SIZE; i++)
1188 		path_count[i] = 0;
1189 }
1190 
1191 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1192 {
1193 	int error = 0;
1194 	struct file *file = priv;
1195 	struct file *child_file;
1196 	struct epitem *epi;
1197 
1198 	/* CTL_DEL can remove links here, but that can't increase our count */
1199 	rcu_read_lock();
1200 	list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1201 		child_file = epi->ep->file;
1202 		if (is_file_epoll(child_file)) {
1203 			if (list_empty(&child_file->f_ep_links)) {
1204 				if (path_count_inc(call_nests)) {
1205 					error = -1;
1206 					break;
1207 				}
1208 			} else {
1209 				error = ep_call_nested(&poll_loop_ncalls,
1210 							EP_MAX_NESTS,
1211 							reverse_path_check_proc,
1212 							child_file, child_file,
1213 							current);
1214 			}
1215 			if (error != 0)
1216 				break;
1217 		} else {
1218 			printk(KERN_ERR "reverse_path_check_proc: "
1219 				"file is not an ep!\n");
1220 		}
1221 	}
1222 	rcu_read_unlock();
1223 	return error;
1224 }
1225 
1226 /**
1227  * reverse_path_check - The tfile_check_list is list of file *, which have
1228  *                      links that are proposed to be newly added. We need to
1229  *                      make sure that those added links don't add too many
1230  *                      paths such that we will spend all our time waking up
1231  *                      eventpoll objects.
1232  *
1233  * Returns: Returns zero if the proposed links don't create too many paths,
1234  *	    -1 otherwise.
1235  */
1236 static int reverse_path_check(void)
1237 {
1238 	int error = 0;
1239 	struct file *current_file;
1240 
1241 	/* let's call this for all tfiles */
1242 	list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1243 		path_count_init();
1244 		error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1245 					reverse_path_check_proc, current_file,
1246 					current_file, current);
1247 		if (error)
1248 			break;
1249 	}
1250 	return error;
1251 }
1252 
1253 static int ep_create_wakeup_source(struct epitem *epi)
1254 {
1255 	const char *name;
1256 	struct wakeup_source *ws;
1257 
1258 	if (!epi->ep->ws) {
1259 		epi->ep->ws = wakeup_source_register("eventpoll");
1260 		if (!epi->ep->ws)
1261 			return -ENOMEM;
1262 	}
1263 
1264 	name = epi->ffd.file->f_path.dentry->d_name.name;
1265 	ws = wakeup_source_register(name);
1266 
1267 	if (!ws)
1268 		return -ENOMEM;
1269 	rcu_assign_pointer(epi->ws, ws);
1270 
1271 	return 0;
1272 }
1273 
1274 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1275 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1276 {
1277 	struct wakeup_source *ws = ep_wakeup_source(epi);
1278 
1279 	RCU_INIT_POINTER(epi->ws, NULL);
1280 
1281 	/*
1282 	 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1283 	 * used internally by wakeup_source_remove, too (called by
1284 	 * wakeup_source_unregister), so we cannot use call_rcu
1285 	 */
1286 	synchronize_rcu();
1287 	wakeup_source_unregister(ws);
1288 }
1289 
1290 /*
1291  * Must be called with "mtx" held.
1292  */
1293 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
1294 		     struct file *tfile, int fd, int full_check)
1295 {
1296 	int error, revents, pwake = 0;
1297 	unsigned long flags;
1298 	long user_watches;
1299 	struct epitem *epi;
1300 	struct ep_pqueue epq;
1301 
1302 	user_watches = atomic_long_read(&ep->user->epoll_watches);
1303 	if (unlikely(user_watches >= max_user_watches))
1304 		return -ENOSPC;
1305 	if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1306 		return -ENOMEM;
1307 
1308 	/* Item initialization follow here ... */
1309 	INIT_LIST_HEAD(&epi->rdllink);
1310 	INIT_LIST_HEAD(&epi->fllink);
1311 	INIT_LIST_HEAD(&epi->pwqlist);
1312 	epi->ep = ep;
1313 	ep_set_ffd(&epi->ffd, tfile, fd);
1314 	epi->event = *event;
1315 	epi->nwait = 0;
1316 	epi->next = EP_UNACTIVE_PTR;
1317 	if (epi->event.events & EPOLLWAKEUP) {
1318 		error = ep_create_wakeup_source(epi);
1319 		if (error)
1320 			goto error_create_wakeup_source;
1321 	} else {
1322 		RCU_INIT_POINTER(epi->ws, NULL);
1323 	}
1324 
1325 	/* Initialize the poll table using the queue callback */
1326 	epq.epi = epi;
1327 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1328 
1329 	/*
1330 	 * Attach the item to the poll hooks and get current event bits.
1331 	 * We can safely use the file* here because its usage count has
1332 	 * been increased by the caller of this function. Note that after
1333 	 * this operation completes, the poll callback can start hitting
1334 	 * the new item.
1335 	 */
1336 	revents = ep_item_poll(epi, &epq.pt);
1337 
1338 	/*
1339 	 * We have to check if something went wrong during the poll wait queue
1340 	 * install process. Namely an allocation for a wait queue failed due
1341 	 * high memory pressure.
1342 	 */
1343 	error = -ENOMEM;
1344 	if (epi->nwait < 0)
1345 		goto error_unregister;
1346 
1347 	/* Add the current item to the list of active epoll hook for this file */
1348 	spin_lock(&tfile->f_lock);
1349 	list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1350 	spin_unlock(&tfile->f_lock);
1351 
1352 	/*
1353 	 * Add the current item to the RB tree. All RB tree operations are
1354 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1355 	 */
1356 	ep_rbtree_insert(ep, epi);
1357 
1358 	/* now check if we've created too many backpaths */
1359 	error = -EINVAL;
1360 	if (full_check && reverse_path_check())
1361 		goto error_remove_epi;
1362 
1363 	/* We have to drop the new item inside our item list to keep track of it */
1364 	spin_lock_irqsave(&ep->lock, flags);
1365 
1366 	/* If the file is already "ready" we drop it inside the ready list */
1367 	if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
1368 		list_add_tail(&epi->rdllink, &ep->rdllist);
1369 		ep_pm_stay_awake(epi);
1370 
1371 		/* Notify waiting tasks that events are available */
1372 		if (waitqueue_active(&ep->wq))
1373 			wake_up_locked(&ep->wq);
1374 		if (waitqueue_active(&ep->poll_wait))
1375 			pwake++;
1376 	}
1377 
1378 	spin_unlock_irqrestore(&ep->lock, flags);
1379 
1380 	atomic_long_inc(&ep->user->epoll_watches);
1381 
1382 	/* We have to call this outside the lock */
1383 	if (pwake)
1384 		ep_poll_safewake(&ep->poll_wait);
1385 
1386 	return 0;
1387 
1388 error_remove_epi:
1389 	spin_lock(&tfile->f_lock);
1390 	list_del_rcu(&epi->fllink);
1391 	spin_unlock(&tfile->f_lock);
1392 
1393 	rb_erase(&epi->rbn, &ep->rbr);
1394 
1395 error_unregister:
1396 	ep_unregister_pollwait(ep, epi);
1397 
1398 	/*
1399 	 * We need to do this because an event could have been arrived on some
1400 	 * allocated wait queue. Note that we don't care about the ep->ovflist
1401 	 * list, since that is used/cleaned only inside a section bound by "mtx".
1402 	 * And ep_insert() is called with "mtx" held.
1403 	 */
1404 	spin_lock_irqsave(&ep->lock, flags);
1405 	if (ep_is_linked(&epi->rdllink))
1406 		list_del_init(&epi->rdllink);
1407 	spin_unlock_irqrestore(&ep->lock, flags);
1408 
1409 	wakeup_source_unregister(ep_wakeup_source(epi));
1410 
1411 error_create_wakeup_source:
1412 	kmem_cache_free(epi_cache, epi);
1413 
1414 	return error;
1415 }
1416 
1417 /*
1418  * Modify the interest event mask by dropping an event if the new mask
1419  * has a match in the current file status. Must be called with "mtx" held.
1420  */
1421 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1422 {
1423 	int pwake = 0;
1424 	unsigned int revents;
1425 	poll_table pt;
1426 
1427 	init_poll_funcptr(&pt, NULL);
1428 
1429 	/*
1430 	 * Set the new event interest mask before calling f_op->poll();
1431 	 * otherwise we might miss an event that happens between the
1432 	 * f_op->poll() call and the new event set registering.
1433 	 */
1434 	epi->event.events = event->events; /* need barrier below */
1435 	epi->event.data = event->data; /* protected by mtx */
1436 	if (epi->event.events & EPOLLWAKEUP) {
1437 		if (!ep_has_wakeup_source(epi))
1438 			ep_create_wakeup_source(epi);
1439 	} else if (ep_has_wakeup_source(epi)) {
1440 		ep_destroy_wakeup_source(epi);
1441 	}
1442 
1443 	/*
1444 	 * The following barrier has two effects:
1445 	 *
1446 	 * 1) Flush epi changes above to other CPUs.  This ensures
1447 	 *    we do not miss events from ep_poll_callback if an
1448 	 *    event occurs immediately after we call f_op->poll().
1449 	 *    We need this because we did not take ep->lock while
1450 	 *    changing epi above (but ep_poll_callback does take
1451 	 *    ep->lock).
1452 	 *
1453 	 * 2) We also need to ensure we do not miss _past_ events
1454 	 *    when calling f_op->poll().  This barrier also
1455 	 *    pairs with the barrier in wq_has_sleeper (see
1456 	 *    comments for wq_has_sleeper).
1457 	 *
1458 	 * This barrier will now guarantee ep_poll_callback or f_op->poll
1459 	 * (or both) will notice the readiness of an item.
1460 	 */
1461 	smp_mb();
1462 
1463 	/*
1464 	 * Get current event bits. We can safely use the file* here because
1465 	 * its usage count has been increased by the caller of this function.
1466 	 */
1467 	revents = ep_item_poll(epi, &pt);
1468 
1469 	/*
1470 	 * If the item is "hot" and it is not registered inside the ready
1471 	 * list, push it inside.
1472 	 */
1473 	if (revents & event->events) {
1474 		spin_lock_irq(&ep->lock);
1475 		if (!ep_is_linked(&epi->rdllink)) {
1476 			list_add_tail(&epi->rdllink, &ep->rdllist);
1477 			ep_pm_stay_awake(epi);
1478 
1479 			/* Notify waiting tasks that events are available */
1480 			if (waitqueue_active(&ep->wq))
1481 				wake_up_locked(&ep->wq);
1482 			if (waitqueue_active(&ep->poll_wait))
1483 				pwake++;
1484 		}
1485 		spin_unlock_irq(&ep->lock);
1486 	}
1487 
1488 	/* We have to call this outside the lock */
1489 	if (pwake)
1490 		ep_poll_safewake(&ep->poll_wait);
1491 
1492 	return 0;
1493 }
1494 
1495 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1496 			       void *priv)
1497 {
1498 	struct ep_send_events_data *esed = priv;
1499 	int eventcnt;
1500 	unsigned int revents;
1501 	struct epitem *epi;
1502 	struct epoll_event __user *uevent;
1503 	struct wakeup_source *ws;
1504 	poll_table pt;
1505 
1506 	init_poll_funcptr(&pt, NULL);
1507 
1508 	/*
1509 	 * We can loop without lock because we are passed a task private list.
1510 	 * Items cannot vanish during the loop because ep_scan_ready_list() is
1511 	 * holding "mtx" during this call.
1512 	 */
1513 	for (eventcnt = 0, uevent = esed->events;
1514 	     !list_empty(head) && eventcnt < esed->maxevents;) {
1515 		epi = list_first_entry(head, struct epitem, rdllink);
1516 
1517 		/*
1518 		 * Activate ep->ws before deactivating epi->ws to prevent
1519 		 * triggering auto-suspend here (in case we reactive epi->ws
1520 		 * below).
1521 		 *
1522 		 * This could be rearranged to delay the deactivation of epi->ws
1523 		 * instead, but then epi->ws would temporarily be out of sync
1524 		 * with ep_is_linked().
1525 		 */
1526 		ws = ep_wakeup_source(epi);
1527 		if (ws) {
1528 			if (ws->active)
1529 				__pm_stay_awake(ep->ws);
1530 			__pm_relax(ws);
1531 		}
1532 
1533 		list_del_init(&epi->rdllink);
1534 
1535 		revents = ep_item_poll(epi, &pt);
1536 
1537 		/*
1538 		 * If the event mask intersect the caller-requested one,
1539 		 * deliver the event to userspace. Again, ep_scan_ready_list()
1540 		 * is holding "mtx", so no operations coming from userspace
1541 		 * can change the item.
1542 		 */
1543 		if (revents) {
1544 			if (__put_user(revents, &uevent->events) ||
1545 			    __put_user(epi->event.data, &uevent->data)) {
1546 				list_add(&epi->rdllink, head);
1547 				ep_pm_stay_awake(epi);
1548 				return eventcnt ? eventcnt : -EFAULT;
1549 			}
1550 			eventcnt++;
1551 			uevent++;
1552 			if (epi->event.events & EPOLLONESHOT)
1553 				epi->event.events &= EP_PRIVATE_BITS;
1554 			else if (!(epi->event.events & EPOLLET)) {
1555 				/*
1556 				 * If this file has been added with Level
1557 				 * Trigger mode, we need to insert back inside
1558 				 * the ready list, so that the next call to
1559 				 * epoll_wait() will check again the events
1560 				 * availability. At this point, no one can insert
1561 				 * into ep->rdllist besides us. The epoll_ctl()
1562 				 * callers are locked out by
1563 				 * ep_scan_ready_list() holding "mtx" and the
1564 				 * poll callback will queue them in ep->ovflist.
1565 				 */
1566 				list_add_tail(&epi->rdllink, &ep->rdllist);
1567 				ep_pm_stay_awake(epi);
1568 			}
1569 		}
1570 	}
1571 
1572 	return eventcnt;
1573 }
1574 
1575 static int ep_send_events(struct eventpoll *ep,
1576 			  struct epoll_event __user *events, int maxevents)
1577 {
1578 	struct ep_send_events_data esed;
1579 
1580 	esed.maxevents = maxevents;
1581 	esed.events = events;
1582 
1583 	return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1584 }
1585 
1586 static inline struct timespec ep_set_mstimeout(long ms)
1587 {
1588 	struct timespec now, ts = {
1589 		.tv_sec = ms / MSEC_PER_SEC,
1590 		.tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1591 	};
1592 
1593 	ktime_get_ts(&now);
1594 	return timespec_add_safe(now, ts);
1595 }
1596 
1597 /**
1598  * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1599  *           event buffer.
1600  *
1601  * @ep: Pointer to the eventpoll context.
1602  * @events: Pointer to the userspace buffer where the ready events should be
1603  *          stored.
1604  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1605  * @timeout: Maximum timeout for the ready events fetch operation, in
1606  *           milliseconds. If the @timeout is zero, the function will not block,
1607  *           while if the @timeout is less than zero, the function will block
1608  *           until at least one event has been retrieved (or an error
1609  *           occurred).
1610  *
1611  * Returns: Returns the number of ready events which have been fetched, or an
1612  *          error code, in case of error.
1613  */
1614 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1615 		   int maxevents, long timeout)
1616 {
1617 	int res = 0, eavail, timed_out = 0;
1618 	unsigned long flags;
1619 	long slack = 0;
1620 	wait_queue_t wait;
1621 	ktime_t expires, *to = NULL;
1622 
1623 	if (timeout > 0) {
1624 		struct timespec end_time = ep_set_mstimeout(timeout);
1625 
1626 		slack = select_estimate_accuracy(&end_time);
1627 		to = &expires;
1628 		*to = timespec_to_ktime(end_time);
1629 	} else if (timeout == 0) {
1630 		/*
1631 		 * Avoid the unnecessary trip to the wait queue loop, if the
1632 		 * caller specified a non blocking operation.
1633 		 */
1634 		timed_out = 1;
1635 		spin_lock_irqsave(&ep->lock, flags);
1636 		goto check_events;
1637 	}
1638 
1639 fetch_events:
1640 	spin_lock_irqsave(&ep->lock, flags);
1641 
1642 	if (!ep_events_available(ep)) {
1643 		/*
1644 		 * We don't have any available event to return to the caller.
1645 		 * We need to sleep here, and we will be wake up by
1646 		 * ep_poll_callback() when events will become available.
1647 		 */
1648 		init_waitqueue_entry(&wait, current);
1649 		__add_wait_queue_exclusive(&ep->wq, &wait);
1650 
1651 		for (;;) {
1652 			/*
1653 			 * We don't want to sleep if the ep_poll_callback() sends us
1654 			 * a wakeup in between. That's why we set the task state
1655 			 * to TASK_INTERRUPTIBLE before doing the checks.
1656 			 */
1657 			set_current_state(TASK_INTERRUPTIBLE);
1658 			if (ep_events_available(ep) || timed_out)
1659 				break;
1660 			if (signal_pending(current)) {
1661 				res = -EINTR;
1662 				break;
1663 			}
1664 
1665 			spin_unlock_irqrestore(&ep->lock, flags);
1666 			if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1667 				timed_out = 1;
1668 
1669 			spin_lock_irqsave(&ep->lock, flags);
1670 		}
1671 
1672 		__remove_wait_queue(&ep->wq, &wait);
1673 		__set_current_state(TASK_RUNNING);
1674 	}
1675 check_events:
1676 	/* Is it worth to try to dig for events ? */
1677 	eavail = ep_events_available(ep);
1678 
1679 	spin_unlock_irqrestore(&ep->lock, flags);
1680 
1681 	/*
1682 	 * Try to transfer events to user space. In case we get 0 events and
1683 	 * there's still timeout left over, we go trying again in search of
1684 	 * more luck.
1685 	 */
1686 	if (!res && eavail &&
1687 	    !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1688 		goto fetch_events;
1689 
1690 	return res;
1691 }
1692 
1693 /**
1694  * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1695  *                      API, to verify that adding an epoll file inside another
1696  *                      epoll structure, does not violate the constraints, in
1697  *                      terms of closed loops, or too deep chains (which can
1698  *                      result in excessive stack usage).
1699  *
1700  * @priv: Pointer to the epoll file to be currently checked.
1701  * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1702  *          data structure pointer.
1703  * @call_nests: Current dept of the @ep_call_nested() call stack.
1704  *
1705  * Returns: Returns zero if adding the epoll @file inside current epoll
1706  *          structure @ep does not violate the constraints, or -1 otherwise.
1707  */
1708 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1709 {
1710 	int error = 0;
1711 	struct file *file = priv;
1712 	struct eventpoll *ep = file->private_data;
1713 	struct eventpoll *ep_tovisit;
1714 	struct rb_node *rbp;
1715 	struct epitem *epi;
1716 
1717 	mutex_lock_nested(&ep->mtx, call_nests + 1);
1718 	ep->visited = 1;
1719 	list_add(&ep->visited_list_link, &visited_list);
1720 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1721 		epi = rb_entry(rbp, struct epitem, rbn);
1722 		if (unlikely(is_file_epoll(epi->ffd.file))) {
1723 			ep_tovisit = epi->ffd.file->private_data;
1724 			if (ep_tovisit->visited)
1725 				continue;
1726 			error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1727 					ep_loop_check_proc, epi->ffd.file,
1728 					ep_tovisit, current);
1729 			if (error != 0)
1730 				break;
1731 		} else {
1732 			/*
1733 			 * If we've reached a file that is not associated with
1734 			 * an ep, then we need to check if the newly added
1735 			 * links are going to add too many wakeup paths. We do
1736 			 * this by adding it to the tfile_check_list, if it's
1737 			 * not already there, and calling reverse_path_check()
1738 			 * during ep_insert().
1739 			 */
1740 			if (list_empty(&epi->ffd.file->f_tfile_llink))
1741 				list_add(&epi->ffd.file->f_tfile_llink,
1742 					 &tfile_check_list);
1743 		}
1744 	}
1745 	mutex_unlock(&ep->mtx);
1746 
1747 	return error;
1748 }
1749 
1750 /**
1751  * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1752  *                 another epoll file (represented by @ep) does not create
1753  *                 closed loops or too deep chains.
1754  *
1755  * @ep: Pointer to the epoll private data structure.
1756  * @file: Pointer to the epoll file to be checked.
1757  *
1758  * Returns: Returns zero if adding the epoll @file inside current epoll
1759  *          structure @ep does not violate the constraints, or -1 otherwise.
1760  */
1761 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1762 {
1763 	int ret;
1764 	struct eventpoll *ep_cur, *ep_next;
1765 
1766 	ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1767 			      ep_loop_check_proc, file, ep, current);
1768 	/* clear visited list */
1769 	list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
1770 							visited_list_link) {
1771 		ep_cur->visited = 0;
1772 		list_del(&ep_cur->visited_list_link);
1773 	}
1774 	return ret;
1775 }
1776 
1777 static void clear_tfile_check_list(void)
1778 {
1779 	struct file *file;
1780 
1781 	/* first clear the tfile_check_list */
1782 	while (!list_empty(&tfile_check_list)) {
1783 		file = list_first_entry(&tfile_check_list, struct file,
1784 					f_tfile_llink);
1785 		list_del_init(&file->f_tfile_llink);
1786 	}
1787 	INIT_LIST_HEAD(&tfile_check_list);
1788 }
1789 
1790 /*
1791  * Open an eventpoll file descriptor.
1792  */
1793 SYSCALL_DEFINE1(epoll_create1, int, flags)
1794 {
1795 	int error, fd;
1796 	struct eventpoll *ep = NULL;
1797 	struct file *file;
1798 
1799 	/* Check the EPOLL_* constant for consistency.  */
1800 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1801 
1802 	if (flags & ~EPOLL_CLOEXEC)
1803 		return -EINVAL;
1804 	/*
1805 	 * Create the internal data structure ("struct eventpoll").
1806 	 */
1807 	error = ep_alloc(&ep);
1808 	if (error < 0)
1809 		return error;
1810 	/*
1811 	 * Creates all the items needed to setup an eventpoll file. That is,
1812 	 * a file structure and a free file descriptor.
1813 	 */
1814 	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1815 	if (fd < 0) {
1816 		error = fd;
1817 		goto out_free_ep;
1818 	}
1819 	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1820 				 O_RDWR | (flags & O_CLOEXEC));
1821 	if (IS_ERR(file)) {
1822 		error = PTR_ERR(file);
1823 		goto out_free_fd;
1824 	}
1825 	ep->file = file;
1826 	fd_install(fd, file);
1827 	return fd;
1828 
1829 out_free_fd:
1830 	put_unused_fd(fd);
1831 out_free_ep:
1832 	ep_free(ep);
1833 	return error;
1834 }
1835 
1836 SYSCALL_DEFINE1(epoll_create, int, size)
1837 {
1838 	if (size <= 0)
1839 		return -EINVAL;
1840 
1841 	return sys_epoll_create1(0);
1842 }
1843 
1844 /*
1845  * The following function implements the controller interface for
1846  * the eventpoll file that enables the insertion/removal/change of
1847  * file descriptors inside the interest set.
1848  */
1849 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1850 		struct epoll_event __user *, event)
1851 {
1852 	int error;
1853 	int full_check = 0;
1854 	struct fd f, tf;
1855 	struct eventpoll *ep;
1856 	struct epitem *epi;
1857 	struct epoll_event epds;
1858 	struct eventpoll *tep = NULL;
1859 
1860 	error = -EFAULT;
1861 	if (ep_op_has_event(op) &&
1862 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
1863 		goto error_return;
1864 
1865 	error = -EBADF;
1866 	f = fdget(epfd);
1867 	if (!f.file)
1868 		goto error_return;
1869 
1870 	/* Get the "struct file *" for the target file */
1871 	tf = fdget(fd);
1872 	if (!tf.file)
1873 		goto error_fput;
1874 
1875 	/* The target file descriptor must support poll */
1876 	error = -EPERM;
1877 	if (!tf.file->f_op->poll)
1878 		goto error_tgt_fput;
1879 
1880 	/* Check if EPOLLWAKEUP is allowed */
1881 	if (ep_op_has_event(op))
1882 		ep_take_care_of_epollwakeup(&epds);
1883 
1884 	/*
1885 	 * We have to check that the file structure underneath the file descriptor
1886 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
1887 	 * adding an epoll file descriptor inside itself.
1888 	 */
1889 	error = -EINVAL;
1890 	if (f.file == tf.file || !is_file_epoll(f.file))
1891 		goto error_tgt_fput;
1892 
1893 	/*
1894 	 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
1895 	 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
1896 	 * Also, we do not currently supported nested exclusive wakeups.
1897 	 */
1898 	if (epds.events & EPOLLEXCLUSIVE) {
1899 		if (op == EPOLL_CTL_MOD)
1900 			goto error_tgt_fput;
1901 		if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
1902 				(epds.events & ~EPOLLEXCLUSIVE_OK_BITS)))
1903 			goto error_tgt_fput;
1904 	}
1905 
1906 	/*
1907 	 * At this point it is safe to assume that the "private_data" contains
1908 	 * our own data structure.
1909 	 */
1910 	ep = f.file->private_data;
1911 
1912 	/*
1913 	 * When we insert an epoll file descriptor, inside another epoll file
1914 	 * descriptor, there is the change of creating closed loops, which are
1915 	 * better be handled here, than in more critical paths. While we are
1916 	 * checking for loops we also determine the list of files reachable
1917 	 * and hang them on the tfile_check_list, so we can check that we
1918 	 * haven't created too many possible wakeup paths.
1919 	 *
1920 	 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
1921 	 * the epoll file descriptor is attaching directly to a wakeup source,
1922 	 * unless the epoll file descriptor is nested. The purpose of taking the
1923 	 * 'epmutex' on add is to prevent complex toplogies such as loops and
1924 	 * deep wakeup paths from forming in parallel through multiple
1925 	 * EPOLL_CTL_ADD operations.
1926 	 */
1927 	mutex_lock_nested(&ep->mtx, 0);
1928 	if (op == EPOLL_CTL_ADD) {
1929 		if (!list_empty(&f.file->f_ep_links) ||
1930 						is_file_epoll(tf.file)) {
1931 			full_check = 1;
1932 			mutex_unlock(&ep->mtx);
1933 			mutex_lock(&epmutex);
1934 			if (is_file_epoll(tf.file)) {
1935 				error = -ELOOP;
1936 				if (ep_loop_check(ep, tf.file) != 0) {
1937 					clear_tfile_check_list();
1938 					goto error_tgt_fput;
1939 				}
1940 			} else
1941 				list_add(&tf.file->f_tfile_llink,
1942 							&tfile_check_list);
1943 			mutex_lock_nested(&ep->mtx, 0);
1944 			if (is_file_epoll(tf.file)) {
1945 				tep = tf.file->private_data;
1946 				mutex_lock_nested(&tep->mtx, 1);
1947 			}
1948 		}
1949 	}
1950 
1951 	/*
1952 	 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1953 	 * above, we can be sure to be able to use the item looked up by
1954 	 * ep_find() till we release the mutex.
1955 	 */
1956 	epi = ep_find(ep, tf.file, fd);
1957 
1958 	error = -EINVAL;
1959 	switch (op) {
1960 	case EPOLL_CTL_ADD:
1961 		if (!epi) {
1962 			epds.events |= POLLERR | POLLHUP;
1963 			error = ep_insert(ep, &epds, tf.file, fd, full_check);
1964 		} else
1965 			error = -EEXIST;
1966 		if (full_check)
1967 			clear_tfile_check_list();
1968 		break;
1969 	case EPOLL_CTL_DEL:
1970 		if (epi)
1971 			error = ep_remove(ep, epi);
1972 		else
1973 			error = -ENOENT;
1974 		break;
1975 	case EPOLL_CTL_MOD:
1976 		if (epi) {
1977 			if (!(epi->event.events & EPOLLEXCLUSIVE)) {
1978 				epds.events |= POLLERR | POLLHUP;
1979 				error = ep_modify(ep, epi, &epds);
1980 			}
1981 		} else
1982 			error = -ENOENT;
1983 		break;
1984 	}
1985 	if (tep != NULL)
1986 		mutex_unlock(&tep->mtx);
1987 	mutex_unlock(&ep->mtx);
1988 
1989 error_tgt_fput:
1990 	if (full_check)
1991 		mutex_unlock(&epmutex);
1992 
1993 	fdput(tf);
1994 error_fput:
1995 	fdput(f);
1996 error_return:
1997 
1998 	return error;
1999 }
2000 
2001 /*
2002  * Implement the event wait interface for the eventpoll file. It is the kernel
2003  * part of the user space epoll_wait(2).
2004  */
2005 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2006 		int, maxevents, int, timeout)
2007 {
2008 	int error;
2009 	struct fd f;
2010 	struct eventpoll *ep;
2011 
2012 	/* The maximum number of event must be greater than zero */
2013 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2014 		return -EINVAL;
2015 
2016 	/* Verify that the area passed by the user is writeable */
2017 	if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event)))
2018 		return -EFAULT;
2019 
2020 	/* Get the "struct file *" for the eventpoll file */
2021 	f = fdget(epfd);
2022 	if (!f.file)
2023 		return -EBADF;
2024 
2025 	/*
2026 	 * We have to check that the file structure underneath the fd
2027 	 * the user passed to us _is_ an eventpoll file.
2028 	 */
2029 	error = -EINVAL;
2030 	if (!is_file_epoll(f.file))
2031 		goto error_fput;
2032 
2033 	/*
2034 	 * At this point it is safe to assume that the "private_data" contains
2035 	 * our own data structure.
2036 	 */
2037 	ep = f.file->private_data;
2038 
2039 	/* Time to fish for events ... */
2040 	error = ep_poll(ep, events, maxevents, timeout);
2041 
2042 error_fput:
2043 	fdput(f);
2044 	return error;
2045 }
2046 
2047 /*
2048  * Implement the event wait interface for the eventpoll file. It is the kernel
2049  * part of the user space epoll_pwait(2).
2050  */
2051 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2052 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2053 		size_t, sigsetsize)
2054 {
2055 	int error;
2056 	sigset_t ksigmask, sigsaved;
2057 
2058 	/*
2059 	 * If the caller wants a certain signal mask to be set during the wait,
2060 	 * we apply it here.
2061 	 */
2062 	if (sigmask) {
2063 		if (sigsetsize != sizeof(sigset_t))
2064 			return -EINVAL;
2065 		if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
2066 			return -EFAULT;
2067 		sigsaved = current->blocked;
2068 		set_current_blocked(&ksigmask);
2069 	}
2070 
2071 	error = sys_epoll_wait(epfd, events, maxevents, timeout);
2072 
2073 	/*
2074 	 * If we changed the signal mask, we need to restore the original one.
2075 	 * In case we've got a signal while waiting, we do not restore the
2076 	 * signal mask yet, and we allow do_signal() to deliver the signal on
2077 	 * the way back to userspace, before the signal mask is restored.
2078 	 */
2079 	if (sigmask) {
2080 		if (error == -EINTR) {
2081 			memcpy(&current->saved_sigmask, &sigsaved,
2082 			       sizeof(sigsaved));
2083 			set_restore_sigmask();
2084 		} else
2085 			set_current_blocked(&sigsaved);
2086 	}
2087 
2088 	return error;
2089 }
2090 
2091 #ifdef CONFIG_COMPAT
2092 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2093 			struct epoll_event __user *, events,
2094 			int, maxevents, int, timeout,
2095 			const compat_sigset_t __user *, sigmask,
2096 			compat_size_t, sigsetsize)
2097 {
2098 	long err;
2099 	compat_sigset_t csigmask;
2100 	sigset_t ksigmask, sigsaved;
2101 
2102 	/*
2103 	 * If the caller wants a certain signal mask to be set during the wait,
2104 	 * we apply it here.
2105 	 */
2106 	if (sigmask) {
2107 		if (sigsetsize != sizeof(compat_sigset_t))
2108 			return -EINVAL;
2109 		if (copy_from_user(&csigmask, sigmask, sizeof(csigmask)))
2110 			return -EFAULT;
2111 		sigset_from_compat(&ksigmask, &csigmask);
2112 		sigsaved = current->blocked;
2113 		set_current_blocked(&ksigmask);
2114 	}
2115 
2116 	err = sys_epoll_wait(epfd, events, maxevents, timeout);
2117 
2118 	/*
2119 	 * If we changed the signal mask, we need to restore the original one.
2120 	 * In case we've got a signal while waiting, we do not restore the
2121 	 * signal mask yet, and we allow do_signal() to deliver the signal on
2122 	 * the way back to userspace, before the signal mask is restored.
2123 	 */
2124 	if (sigmask) {
2125 		if (err == -EINTR) {
2126 			memcpy(&current->saved_sigmask, &sigsaved,
2127 			       sizeof(sigsaved));
2128 			set_restore_sigmask();
2129 		} else
2130 			set_current_blocked(&sigsaved);
2131 	}
2132 
2133 	return err;
2134 }
2135 #endif
2136 
2137 static int __init eventpoll_init(void)
2138 {
2139 	struct sysinfo si;
2140 
2141 	si_meminfo(&si);
2142 	/*
2143 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2144 	 */
2145 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2146 		EP_ITEM_COST;
2147 	BUG_ON(max_user_watches < 0);
2148 
2149 	/*
2150 	 * Initialize the structure used to perform epoll file descriptor
2151 	 * inclusion loops checks.
2152 	 */
2153 	ep_nested_calls_init(&poll_loop_ncalls);
2154 
2155 	/* Initialize the structure used to perform safe poll wait head wake ups */
2156 	ep_nested_calls_init(&poll_safewake_ncalls);
2157 
2158 	/* Initialize the structure used to perform file's f_op->poll() calls */
2159 	ep_nested_calls_init(&poll_readywalk_ncalls);
2160 
2161 	/*
2162 	 * We can have many thousands of epitems, so prevent this from
2163 	 * using an extra cache line on 64-bit (and smaller) CPUs
2164 	 */
2165 	BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2166 
2167 	/* Allocates slab cache used to allocate "struct epitem" items */
2168 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2169 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2170 
2171 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
2172 	pwq_cache = kmem_cache_create("eventpoll_pwq",
2173 			sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
2174 
2175 	return 0;
2176 }
2177 fs_initcall(eventpoll_init);
2178