1 /* 2 * fs/eventpoll.c (Efficient event retrieval implementation) 3 * Copyright (C) 2001,...,2009 Davide Libenzi 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * Davide Libenzi <davidel@xmailserver.org> 11 * 12 */ 13 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/sched/signal.h> 17 #include <linux/fs.h> 18 #include <linux/file.h> 19 #include <linux/signal.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/slab.h> 23 #include <linux/poll.h> 24 #include <linux/string.h> 25 #include <linux/list.h> 26 #include <linux/hash.h> 27 #include <linux/spinlock.h> 28 #include <linux/syscalls.h> 29 #include <linux/rbtree.h> 30 #include <linux/wait.h> 31 #include <linux/eventpoll.h> 32 #include <linux/mount.h> 33 #include <linux/bitops.h> 34 #include <linux/mutex.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/device.h> 37 #include <linux/uaccess.h> 38 #include <asm/io.h> 39 #include <asm/mman.h> 40 #include <linux/atomic.h> 41 #include <linux/proc_fs.h> 42 #include <linux/seq_file.h> 43 #include <linux/compat.h> 44 #include <linux/rculist.h> 45 #include <net/busy_poll.h> 46 47 /* 48 * LOCKING: 49 * There are three level of locking required by epoll : 50 * 51 * 1) epmutex (mutex) 52 * 2) ep->mtx (mutex) 53 * 3) ep->lock (spinlock) 54 * 55 * The acquire order is the one listed above, from 1 to 3. 56 * We need a spinlock (ep->lock) because we manipulate objects 57 * from inside the poll callback, that might be triggered from 58 * a wake_up() that in turn might be called from IRQ context. 59 * So we can't sleep inside the poll callback and hence we need 60 * a spinlock. During the event transfer loop (from kernel to 61 * user space) we could end up sleeping due a copy_to_user(), so 62 * we need a lock that will allow us to sleep. This lock is a 63 * mutex (ep->mtx). It is acquired during the event transfer loop, 64 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 65 * Then we also need a global mutex to serialize eventpoll_release_file() 66 * and ep_free(). 67 * This mutex is acquired by ep_free() during the epoll file 68 * cleanup path and it is also acquired by eventpoll_release_file() 69 * if a file has been pushed inside an epoll set and it is then 70 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL). 71 * It is also acquired when inserting an epoll fd onto another epoll 72 * fd. We do this so that we walk the epoll tree and ensure that this 73 * insertion does not create a cycle of epoll file descriptors, which 74 * could lead to deadlock. We need a global mutex to prevent two 75 * simultaneous inserts (A into B and B into A) from racing and 76 * constructing a cycle without either insert observing that it is 77 * going to. 78 * It is necessary to acquire multiple "ep->mtx"es at once in the 79 * case when one epoll fd is added to another. In this case, we 80 * always acquire the locks in the order of nesting (i.e. after 81 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 82 * before e2->mtx). Since we disallow cycles of epoll file 83 * descriptors, this ensures that the mutexes are well-ordered. In 84 * order to communicate this nesting to lockdep, when walking a tree 85 * of epoll file descriptors, we use the current recursion depth as 86 * the lockdep subkey. 87 * It is possible to drop the "ep->mtx" and to use the global 88 * mutex "epmutex" (together with "ep->lock") to have it working, 89 * but having "ep->mtx" will make the interface more scalable. 90 * Events that require holding "epmutex" are very rare, while for 91 * normal operations the epoll private "ep->mtx" will guarantee 92 * a better scalability. 93 */ 94 95 /* Epoll private bits inside the event mask */ 96 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE) 97 98 #define EPOLLINOUT_BITS (POLLIN | POLLOUT) 99 100 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | POLLERR | POLLHUP | \ 101 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE) 102 103 /* Maximum number of nesting allowed inside epoll sets */ 104 #define EP_MAX_NESTS 4 105 106 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 107 108 #define EP_UNACTIVE_PTR ((void *) -1L) 109 110 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 111 112 struct epoll_filefd { 113 struct file *file; 114 int fd; 115 } __packed; 116 117 /* 118 * Structure used to track possible nested calls, for too deep recursions 119 * and loop cycles. 120 */ 121 struct nested_call_node { 122 struct list_head llink; 123 void *cookie; 124 void *ctx; 125 }; 126 127 /* 128 * This structure is used as collector for nested calls, to check for 129 * maximum recursion dept and loop cycles. 130 */ 131 struct nested_calls { 132 struct list_head tasks_call_list; 133 spinlock_t lock; 134 }; 135 136 /* 137 * Each file descriptor added to the eventpoll interface will 138 * have an entry of this type linked to the "rbr" RB tree. 139 * Avoid increasing the size of this struct, there can be many thousands 140 * of these on a server and we do not want this to take another cache line. 141 */ 142 struct epitem { 143 union { 144 /* RB tree node links this structure to the eventpoll RB tree */ 145 struct rb_node rbn; 146 /* Used to free the struct epitem */ 147 struct rcu_head rcu; 148 }; 149 150 /* List header used to link this structure to the eventpoll ready list */ 151 struct list_head rdllink; 152 153 /* 154 * Works together "struct eventpoll"->ovflist in keeping the 155 * single linked chain of items. 156 */ 157 struct epitem *next; 158 159 /* The file descriptor information this item refers to */ 160 struct epoll_filefd ffd; 161 162 /* Number of active wait queue attached to poll operations */ 163 int nwait; 164 165 /* List containing poll wait queues */ 166 struct list_head pwqlist; 167 168 /* The "container" of this item */ 169 struct eventpoll *ep; 170 171 /* List header used to link this item to the "struct file" items list */ 172 struct list_head fllink; 173 174 /* wakeup_source used when EPOLLWAKEUP is set */ 175 struct wakeup_source __rcu *ws; 176 177 /* The structure that describe the interested events and the source fd */ 178 struct epoll_event event; 179 }; 180 181 /* 182 * This structure is stored inside the "private_data" member of the file 183 * structure and represents the main data structure for the eventpoll 184 * interface. 185 */ 186 struct eventpoll { 187 /* Protect the access to this structure */ 188 spinlock_t lock; 189 190 /* 191 * This mutex is used to ensure that files are not removed 192 * while epoll is using them. This is held during the event 193 * collection loop, the file cleanup path, the epoll file exit 194 * code and the ctl operations. 195 */ 196 struct mutex mtx; 197 198 /* Wait queue used by sys_epoll_wait() */ 199 wait_queue_head_t wq; 200 201 /* Wait queue used by file->poll() */ 202 wait_queue_head_t poll_wait; 203 204 /* List of ready file descriptors */ 205 struct list_head rdllist; 206 207 /* RB tree root used to store monitored fd structs */ 208 struct rb_root_cached rbr; 209 210 /* 211 * This is a single linked list that chains all the "struct epitem" that 212 * happened while transferring ready events to userspace w/out 213 * holding ->lock. 214 */ 215 struct epitem *ovflist; 216 217 /* wakeup_source used when ep_scan_ready_list is running */ 218 struct wakeup_source *ws; 219 220 /* The user that created the eventpoll descriptor */ 221 struct user_struct *user; 222 223 struct file *file; 224 225 /* used to optimize loop detection check */ 226 int visited; 227 struct list_head visited_list_link; 228 229 #ifdef CONFIG_NET_RX_BUSY_POLL 230 /* used to track busy poll napi_id */ 231 unsigned int napi_id; 232 #endif 233 }; 234 235 /* Wait structure used by the poll hooks */ 236 struct eppoll_entry { 237 /* List header used to link this structure to the "struct epitem" */ 238 struct list_head llink; 239 240 /* The "base" pointer is set to the container "struct epitem" */ 241 struct epitem *base; 242 243 /* 244 * Wait queue item that will be linked to the target file wait 245 * queue head. 246 */ 247 wait_queue_entry_t wait; 248 249 /* The wait queue head that linked the "wait" wait queue item */ 250 wait_queue_head_t *whead; 251 }; 252 253 /* Wrapper struct used by poll queueing */ 254 struct ep_pqueue { 255 poll_table pt; 256 struct epitem *epi; 257 }; 258 259 /* Used by the ep_send_events() function as callback private data */ 260 struct ep_send_events_data { 261 int maxevents; 262 struct epoll_event __user *events; 263 }; 264 265 /* 266 * Configuration options available inside /proc/sys/fs/epoll/ 267 */ 268 /* Maximum number of epoll watched descriptors, per user */ 269 static long max_user_watches __read_mostly; 270 271 /* 272 * This mutex is used to serialize ep_free() and eventpoll_release_file(). 273 */ 274 static DEFINE_MUTEX(epmutex); 275 276 /* Used to check for epoll file descriptor inclusion loops */ 277 static struct nested_calls poll_loop_ncalls; 278 279 /* Slab cache used to allocate "struct epitem" */ 280 static struct kmem_cache *epi_cache __read_mostly; 281 282 /* Slab cache used to allocate "struct eppoll_entry" */ 283 static struct kmem_cache *pwq_cache __read_mostly; 284 285 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */ 286 static LIST_HEAD(visited_list); 287 288 /* 289 * List of files with newly added links, where we may need to limit the number 290 * of emanating paths. Protected by the epmutex. 291 */ 292 static LIST_HEAD(tfile_check_list); 293 294 #ifdef CONFIG_SYSCTL 295 296 #include <linux/sysctl.h> 297 298 static long zero; 299 static long long_max = LONG_MAX; 300 301 struct ctl_table epoll_table[] = { 302 { 303 .procname = "max_user_watches", 304 .data = &max_user_watches, 305 .maxlen = sizeof(max_user_watches), 306 .mode = 0644, 307 .proc_handler = proc_doulongvec_minmax, 308 .extra1 = &zero, 309 .extra2 = &long_max, 310 }, 311 { } 312 }; 313 #endif /* CONFIG_SYSCTL */ 314 315 static const struct file_operations eventpoll_fops; 316 317 static inline int is_file_epoll(struct file *f) 318 { 319 return f->f_op == &eventpoll_fops; 320 } 321 322 /* Setup the structure that is used as key for the RB tree */ 323 static inline void ep_set_ffd(struct epoll_filefd *ffd, 324 struct file *file, int fd) 325 { 326 ffd->file = file; 327 ffd->fd = fd; 328 } 329 330 /* Compare RB tree keys */ 331 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 332 struct epoll_filefd *p2) 333 { 334 return (p1->file > p2->file ? +1: 335 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 336 } 337 338 /* Tells us if the item is currently linked */ 339 static inline int ep_is_linked(struct list_head *p) 340 { 341 return !list_empty(p); 342 } 343 344 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p) 345 { 346 return container_of(p, struct eppoll_entry, wait); 347 } 348 349 /* Get the "struct epitem" from a wait queue pointer */ 350 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p) 351 { 352 return container_of(p, struct eppoll_entry, wait)->base; 353 } 354 355 /* Get the "struct epitem" from an epoll queue wrapper */ 356 static inline struct epitem *ep_item_from_epqueue(poll_table *p) 357 { 358 return container_of(p, struct ep_pqueue, pt)->epi; 359 } 360 361 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ 362 static inline int ep_op_has_event(int op) 363 { 364 return op != EPOLL_CTL_DEL; 365 } 366 367 /* Initialize the poll safe wake up structure */ 368 static void ep_nested_calls_init(struct nested_calls *ncalls) 369 { 370 INIT_LIST_HEAD(&ncalls->tasks_call_list); 371 spin_lock_init(&ncalls->lock); 372 } 373 374 /** 375 * ep_events_available - Checks if ready events might be available. 376 * 377 * @ep: Pointer to the eventpoll context. 378 * 379 * Returns: Returns a value different than zero if ready events are available, 380 * or zero otherwise. 381 */ 382 static inline int ep_events_available(struct eventpoll *ep) 383 { 384 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR; 385 } 386 387 #ifdef CONFIG_NET_RX_BUSY_POLL 388 static bool ep_busy_loop_end(void *p, unsigned long start_time) 389 { 390 struct eventpoll *ep = p; 391 392 return ep_events_available(ep) || busy_loop_timeout(start_time); 393 } 394 #endif /* CONFIG_NET_RX_BUSY_POLL */ 395 396 /* 397 * Busy poll if globally on and supporting sockets found && no events, 398 * busy loop will return if need_resched or ep_events_available. 399 * 400 * we must do our busy polling with irqs enabled 401 */ 402 static void ep_busy_loop(struct eventpoll *ep, int nonblock) 403 { 404 #ifdef CONFIG_NET_RX_BUSY_POLL 405 unsigned int napi_id = READ_ONCE(ep->napi_id); 406 407 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) 408 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep); 409 #endif 410 } 411 412 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep) 413 { 414 #ifdef CONFIG_NET_RX_BUSY_POLL 415 if (ep->napi_id) 416 ep->napi_id = 0; 417 #endif 418 } 419 420 /* 421 * Set epoll busy poll NAPI ID from sk. 422 */ 423 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 424 { 425 #ifdef CONFIG_NET_RX_BUSY_POLL 426 struct eventpoll *ep; 427 unsigned int napi_id; 428 struct socket *sock; 429 struct sock *sk; 430 int err; 431 432 if (!net_busy_loop_on()) 433 return; 434 435 sock = sock_from_file(epi->ffd.file, &err); 436 if (!sock) 437 return; 438 439 sk = sock->sk; 440 if (!sk) 441 return; 442 443 napi_id = READ_ONCE(sk->sk_napi_id); 444 ep = epi->ep; 445 446 /* Non-NAPI IDs can be rejected 447 * or 448 * Nothing to do if we already have this ID 449 */ 450 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id) 451 return; 452 453 /* record NAPI ID for use in next busy poll */ 454 ep->napi_id = napi_id; 455 #endif 456 } 457 458 /** 459 * ep_call_nested - Perform a bound (possibly) nested call, by checking 460 * that the recursion limit is not exceeded, and that 461 * the same nested call (by the meaning of same cookie) is 462 * no re-entered. 463 * 464 * @ncalls: Pointer to the nested_calls structure to be used for this call. 465 * @max_nests: Maximum number of allowed nesting calls. 466 * @nproc: Nested call core function pointer. 467 * @priv: Opaque data to be passed to the @nproc callback. 468 * @cookie: Cookie to be used to identify this nested call. 469 * @ctx: This instance context. 470 * 471 * Returns: Returns the code returned by the @nproc callback, or -1 if 472 * the maximum recursion limit has been exceeded. 473 */ 474 static int ep_call_nested(struct nested_calls *ncalls, int max_nests, 475 int (*nproc)(void *, void *, int), void *priv, 476 void *cookie, void *ctx) 477 { 478 int error, call_nests = 0; 479 unsigned long flags; 480 struct list_head *lsthead = &ncalls->tasks_call_list; 481 struct nested_call_node *tncur; 482 struct nested_call_node tnode; 483 484 spin_lock_irqsave(&ncalls->lock, flags); 485 486 /* 487 * Try to see if the current task is already inside this wakeup call. 488 * We use a list here, since the population inside this set is always 489 * very much limited. 490 */ 491 list_for_each_entry(tncur, lsthead, llink) { 492 if (tncur->ctx == ctx && 493 (tncur->cookie == cookie || ++call_nests > max_nests)) { 494 /* 495 * Ops ... loop detected or maximum nest level reached. 496 * We abort this wake by breaking the cycle itself. 497 */ 498 error = -1; 499 goto out_unlock; 500 } 501 } 502 503 /* Add the current task and cookie to the list */ 504 tnode.ctx = ctx; 505 tnode.cookie = cookie; 506 list_add(&tnode.llink, lsthead); 507 508 spin_unlock_irqrestore(&ncalls->lock, flags); 509 510 /* Call the nested function */ 511 error = (*nproc)(priv, cookie, call_nests); 512 513 /* Remove the current task from the list */ 514 spin_lock_irqsave(&ncalls->lock, flags); 515 list_del(&tnode.llink); 516 out_unlock: 517 spin_unlock_irqrestore(&ncalls->lock, flags); 518 519 return error; 520 } 521 522 /* 523 * As described in commit 0ccf831cb lockdep: annotate epoll 524 * the use of wait queues used by epoll is done in a very controlled 525 * manner. Wake ups can nest inside each other, but are never done 526 * with the same locking. For example: 527 * 528 * dfd = socket(...); 529 * efd1 = epoll_create(); 530 * efd2 = epoll_create(); 531 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 532 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 533 * 534 * When a packet arrives to the device underneath "dfd", the net code will 535 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 536 * callback wakeup entry on that queue, and the wake_up() performed by the 537 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 538 * (efd1) notices that it may have some event ready, so it needs to wake up 539 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 540 * that ends up in another wake_up(), after having checked about the 541 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to 542 * avoid stack blasting. 543 * 544 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 545 * this special case of epoll. 546 */ 547 #ifdef CONFIG_DEBUG_LOCK_ALLOC 548 549 static struct nested_calls poll_safewake_ncalls; 550 551 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests) 552 { 553 unsigned long flags; 554 wait_queue_head_t *wqueue = (wait_queue_head_t *)cookie; 555 556 spin_lock_irqsave_nested(&wqueue->lock, flags, call_nests + 1); 557 wake_up_locked_poll(wqueue, POLLIN); 558 spin_unlock_irqrestore(&wqueue->lock, flags); 559 560 return 0; 561 } 562 563 static void ep_poll_safewake(wait_queue_head_t *wq) 564 { 565 int this_cpu = get_cpu(); 566 567 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS, 568 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu); 569 570 put_cpu(); 571 } 572 573 #else 574 575 static void ep_poll_safewake(wait_queue_head_t *wq) 576 { 577 wake_up_poll(wq, POLLIN); 578 } 579 580 #endif 581 582 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 583 { 584 wait_queue_head_t *whead; 585 586 rcu_read_lock(); 587 /* 588 * If it is cleared by POLLFREE, it should be rcu-safe. 589 * If we read NULL we need a barrier paired with 590 * smp_store_release() in ep_poll_callback(), otherwise 591 * we rely on whead->lock. 592 */ 593 whead = smp_load_acquire(&pwq->whead); 594 if (whead) 595 remove_wait_queue(whead, &pwq->wait); 596 rcu_read_unlock(); 597 } 598 599 /* 600 * This function unregisters poll callbacks from the associated file 601 * descriptor. Must be called with "mtx" held (or "epmutex" if called from 602 * ep_free). 603 */ 604 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 605 { 606 struct list_head *lsthead = &epi->pwqlist; 607 struct eppoll_entry *pwq; 608 609 while (!list_empty(lsthead)) { 610 pwq = list_first_entry(lsthead, struct eppoll_entry, llink); 611 612 list_del(&pwq->llink); 613 ep_remove_wait_queue(pwq); 614 kmem_cache_free(pwq_cache, pwq); 615 } 616 } 617 618 /* call only when ep->mtx is held */ 619 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) 620 { 621 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); 622 } 623 624 /* call only when ep->mtx is held */ 625 static inline void ep_pm_stay_awake(struct epitem *epi) 626 { 627 struct wakeup_source *ws = ep_wakeup_source(epi); 628 629 if (ws) 630 __pm_stay_awake(ws); 631 } 632 633 static inline bool ep_has_wakeup_source(struct epitem *epi) 634 { 635 return rcu_access_pointer(epi->ws) ? true : false; 636 } 637 638 /* call when ep->mtx cannot be held (ep_poll_callback) */ 639 static inline void ep_pm_stay_awake_rcu(struct epitem *epi) 640 { 641 struct wakeup_source *ws; 642 643 rcu_read_lock(); 644 ws = rcu_dereference(epi->ws); 645 if (ws) 646 __pm_stay_awake(ws); 647 rcu_read_unlock(); 648 } 649 650 /** 651 * ep_scan_ready_list - Scans the ready list in a way that makes possible for 652 * the scan code, to call f_op->poll(). Also allows for 653 * O(NumReady) performance. 654 * 655 * @ep: Pointer to the epoll private data structure. 656 * @sproc: Pointer to the scan callback. 657 * @priv: Private opaque data passed to the @sproc callback. 658 * @depth: The current depth of recursive f_op->poll calls. 659 * @ep_locked: caller already holds ep->mtx 660 * 661 * Returns: The same integer error code returned by the @sproc callback. 662 */ 663 static int ep_scan_ready_list(struct eventpoll *ep, 664 int (*sproc)(struct eventpoll *, 665 struct list_head *, void *), 666 void *priv, int depth, bool ep_locked) 667 { 668 int error, pwake = 0; 669 unsigned long flags; 670 struct epitem *epi, *nepi; 671 LIST_HEAD(txlist); 672 673 /* 674 * We need to lock this because we could be hit by 675 * eventpoll_release_file() and epoll_ctl(). 676 */ 677 678 if (!ep_locked) 679 mutex_lock_nested(&ep->mtx, depth); 680 681 /* 682 * Steal the ready list, and re-init the original one to the 683 * empty list. Also, set ep->ovflist to NULL so that events 684 * happening while looping w/out locks, are not lost. We cannot 685 * have the poll callback to queue directly on ep->rdllist, 686 * because we want the "sproc" callback to be able to do it 687 * in a lockless way. 688 */ 689 spin_lock_irqsave(&ep->lock, flags); 690 list_splice_init(&ep->rdllist, &txlist); 691 ep->ovflist = NULL; 692 spin_unlock_irqrestore(&ep->lock, flags); 693 694 /* 695 * Now call the callback function. 696 */ 697 error = (*sproc)(ep, &txlist, priv); 698 699 spin_lock_irqsave(&ep->lock, flags); 700 /* 701 * During the time we spent inside the "sproc" callback, some 702 * other events might have been queued by the poll callback. 703 * We re-insert them inside the main ready-list here. 704 */ 705 for (nepi = ep->ovflist; (epi = nepi) != NULL; 706 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 707 /* 708 * We need to check if the item is already in the list. 709 * During the "sproc" callback execution time, items are 710 * queued into ->ovflist but the "txlist" might already 711 * contain them, and the list_splice() below takes care of them. 712 */ 713 if (!ep_is_linked(&epi->rdllink)) { 714 list_add_tail(&epi->rdllink, &ep->rdllist); 715 ep_pm_stay_awake(epi); 716 } 717 } 718 /* 719 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 720 * releasing the lock, events will be queued in the normal way inside 721 * ep->rdllist. 722 */ 723 ep->ovflist = EP_UNACTIVE_PTR; 724 725 /* 726 * Quickly re-inject items left on "txlist". 727 */ 728 list_splice(&txlist, &ep->rdllist); 729 __pm_relax(ep->ws); 730 731 if (!list_empty(&ep->rdllist)) { 732 /* 733 * Wake up (if active) both the eventpoll wait list and 734 * the ->poll() wait list (delayed after we release the lock). 735 */ 736 if (waitqueue_active(&ep->wq)) 737 wake_up_locked(&ep->wq); 738 if (waitqueue_active(&ep->poll_wait)) 739 pwake++; 740 } 741 spin_unlock_irqrestore(&ep->lock, flags); 742 743 if (!ep_locked) 744 mutex_unlock(&ep->mtx); 745 746 /* We have to call this outside the lock */ 747 if (pwake) 748 ep_poll_safewake(&ep->poll_wait); 749 750 return error; 751 } 752 753 static void epi_rcu_free(struct rcu_head *head) 754 { 755 struct epitem *epi = container_of(head, struct epitem, rcu); 756 kmem_cache_free(epi_cache, epi); 757 } 758 759 /* 760 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 761 * all the associated resources. Must be called with "mtx" held. 762 */ 763 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 764 { 765 unsigned long flags; 766 struct file *file = epi->ffd.file; 767 768 /* 769 * Removes poll wait queue hooks. We _have_ to do this without holding 770 * the "ep->lock" otherwise a deadlock might occur. This because of the 771 * sequence of the lock acquisition. Here we do "ep->lock" then the wait 772 * queue head lock when unregistering the wait queue. The wakeup callback 773 * will run by holding the wait queue head lock and will call our callback 774 * that will try to get "ep->lock". 775 */ 776 ep_unregister_pollwait(ep, epi); 777 778 /* Remove the current item from the list of epoll hooks */ 779 spin_lock(&file->f_lock); 780 list_del_rcu(&epi->fllink); 781 spin_unlock(&file->f_lock); 782 783 rb_erase_cached(&epi->rbn, &ep->rbr); 784 785 spin_lock_irqsave(&ep->lock, flags); 786 if (ep_is_linked(&epi->rdllink)) 787 list_del_init(&epi->rdllink); 788 spin_unlock_irqrestore(&ep->lock, flags); 789 790 wakeup_source_unregister(ep_wakeup_source(epi)); 791 /* 792 * At this point it is safe to free the eventpoll item. Use the union 793 * field epi->rcu, since we are trying to minimize the size of 794 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by 795 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make 796 * use of the rbn field. 797 */ 798 call_rcu(&epi->rcu, epi_rcu_free); 799 800 atomic_long_dec(&ep->user->epoll_watches); 801 802 return 0; 803 } 804 805 static void ep_free(struct eventpoll *ep) 806 { 807 struct rb_node *rbp; 808 struct epitem *epi; 809 810 /* We need to release all tasks waiting for these file */ 811 if (waitqueue_active(&ep->poll_wait)) 812 ep_poll_safewake(&ep->poll_wait); 813 814 /* 815 * We need to lock this because we could be hit by 816 * eventpoll_release_file() while we're freeing the "struct eventpoll". 817 * We do not need to hold "ep->mtx" here because the epoll file 818 * is on the way to be removed and no one has references to it 819 * anymore. The only hit might come from eventpoll_release_file() but 820 * holding "epmutex" is sufficient here. 821 */ 822 mutex_lock(&epmutex); 823 824 /* 825 * Walks through the whole tree by unregistering poll callbacks. 826 */ 827 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 828 epi = rb_entry(rbp, struct epitem, rbn); 829 830 ep_unregister_pollwait(ep, epi); 831 cond_resched(); 832 } 833 834 /* 835 * Walks through the whole tree by freeing each "struct epitem". At this 836 * point we are sure no poll callbacks will be lingering around, and also by 837 * holding "epmutex" we can be sure that no file cleanup code will hit 838 * us during this operation. So we can avoid the lock on "ep->lock". 839 * We do not need to lock ep->mtx, either, we only do it to prevent 840 * a lockdep warning. 841 */ 842 mutex_lock(&ep->mtx); 843 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) { 844 epi = rb_entry(rbp, struct epitem, rbn); 845 ep_remove(ep, epi); 846 cond_resched(); 847 } 848 mutex_unlock(&ep->mtx); 849 850 mutex_unlock(&epmutex); 851 mutex_destroy(&ep->mtx); 852 free_uid(ep->user); 853 wakeup_source_unregister(ep->ws); 854 kfree(ep); 855 } 856 857 static int ep_eventpoll_release(struct inode *inode, struct file *file) 858 { 859 struct eventpoll *ep = file->private_data; 860 861 if (ep) 862 ep_free(ep); 863 864 return 0; 865 } 866 867 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head, 868 void *priv); 869 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 870 poll_table *pt); 871 872 /* 873 * Differs from ep_eventpoll_poll() in that internal callers already have 874 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested() 875 * is correctly annotated. 876 */ 877 static unsigned int ep_item_poll(struct epitem *epi, poll_table *pt, int depth) 878 { 879 struct eventpoll *ep; 880 bool locked; 881 882 pt->_key = epi->event.events; 883 if (!is_file_epoll(epi->ffd.file)) 884 return epi->ffd.file->f_op->poll(epi->ffd.file, pt) & 885 epi->event.events; 886 887 ep = epi->ffd.file->private_data; 888 poll_wait(epi->ffd.file, &ep->poll_wait, pt); 889 locked = pt && (pt->_qproc == ep_ptable_queue_proc); 890 891 return ep_scan_ready_list(epi->ffd.file->private_data, 892 ep_read_events_proc, &depth, depth, 893 locked) & epi->event.events; 894 } 895 896 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head, 897 void *priv) 898 { 899 struct epitem *epi, *tmp; 900 poll_table pt; 901 int depth = *(int *)priv; 902 903 init_poll_funcptr(&pt, NULL); 904 depth++; 905 906 list_for_each_entry_safe(epi, tmp, head, rdllink) { 907 if (ep_item_poll(epi, &pt, depth)) { 908 return POLLIN | POLLRDNORM; 909 } else { 910 /* 911 * Item has been dropped into the ready list by the poll 912 * callback, but it's not actually ready, as far as 913 * caller requested events goes. We can remove it here. 914 */ 915 __pm_relax(ep_wakeup_source(epi)); 916 list_del_init(&epi->rdllink); 917 } 918 } 919 920 return 0; 921 } 922 923 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait) 924 { 925 struct eventpoll *ep = file->private_data; 926 int depth = 0; 927 928 /* Insert inside our poll wait queue */ 929 poll_wait(file, &ep->poll_wait, wait); 930 931 /* 932 * Proceed to find out if wanted events are really available inside 933 * the ready list. 934 */ 935 return ep_scan_ready_list(ep, ep_read_events_proc, 936 &depth, depth, false); 937 } 938 939 #ifdef CONFIG_PROC_FS 940 static void ep_show_fdinfo(struct seq_file *m, struct file *f) 941 { 942 struct eventpoll *ep = f->private_data; 943 struct rb_node *rbp; 944 945 mutex_lock(&ep->mtx); 946 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 947 struct epitem *epi = rb_entry(rbp, struct epitem, rbn); 948 struct inode *inode = file_inode(epi->ffd.file); 949 950 seq_printf(m, "tfd: %8d events: %8x data: %16llx " 951 " pos:%lli ino:%lx sdev:%x\n", 952 epi->ffd.fd, epi->event.events, 953 (long long)epi->event.data, 954 (long long)epi->ffd.file->f_pos, 955 inode->i_ino, inode->i_sb->s_dev); 956 if (seq_has_overflowed(m)) 957 break; 958 } 959 mutex_unlock(&ep->mtx); 960 } 961 #endif 962 963 /* File callbacks that implement the eventpoll file behaviour */ 964 static const struct file_operations eventpoll_fops = { 965 #ifdef CONFIG_PROC_FS 966 .show_fdinfo = ep_show_fdinfo, 967 #endif 968 .release = ep_eventpoll_release, 969 .poll = ep_eventpoll_poll, 970 .llseek = noop_llseek, 971 }; 972 973 /* 974 * This is called from eventpoll_release() to unlink files from the eventpoll 975 * interface. We need to have this facility to cleanup correctly files that are 976 * closed without being removed from the eventpoll interface. 977 */ 978 void eventpoll_release_file(struct file *file) 979 { 980 struct eventpoll *ep; 981 struct epitem *epi, *next; 982 983 /* 984 * We don't want to get "file->f_lock" because it is not 985 * necessary. It is not necessary because we're in the "struct file" 986 * cleanup path, and this means that no one is using this file anymore. 987 * So, for example, epoll_ctl() cannot hit here since if we reach this 988 * point, the file counter already went to zero and fget() would fail. 989 * The only hit might come from ep_free() but by holding the mutex 990 * will correctly serialize the operation. We do need to acquire 991 * "ep->mtx" after "epmutex" because ep_remove() requires it when called 992 * from anywhere but ep_free(). 993 * 994 * Besides, ep_remove() acquires the lock, so we can't hold it here. 995 */ 996 mutex_lock(&epmutex); 997 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) { 998 ep = epi->ep; 999 mutex_lock_nested(&ep->mtx, 0); 1000 ep_remove(ep, epi); 1001 mutex_unlock(&ep->mtx); 1002 } 1003 mutex_unlock(&epmutex); 1004 } 1005 1006 static int ep_alloc(struct eventpoll **pep) 1007 { 1008 int error; 1009 struct user_struct *user; 1010 struct eventpoll *ep; 1011 1012 user = get_current_user(); 1013 error = -ENOMEM; 1014 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 1015 if (unlikely(!ep)) 1016 goto free_uid; 1017 1018 spin_lock_init(&ep->lock); 1019 mutex_init(&ep->mtx); 1020 init_waitqueue_head(&ep->wq); 1021 init_waitqueue_head(&ep->poll_wait); 1022 INIT_LIST_HEAD(&ep->rdllist); 1023 ep->rbr = RB_ROOT_CACHED; 1024 ep->ovflist = EP_UNACTIVE_PTR; 1025 ep->user = user; 1026 1027 *pep = ep; 1028 1029 return 0; 1030 1031 free_uid: 1032 free_uid(user); 1033 return error; 1034 } 1035 1036 /* 1037 * Search the file inside the eventpoll tree. The RB tree operations 1038 * are protected by the "mtx" mutex, and ep_find() must be called with 1039 * "mtx" held. 1040 */ 1041 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 1042 { 1043 int kcmp; 1044 struct rb_node *rbp; 1045 struct epitem *epi, *epir = NULL; 1046 struct epoll_filefd ffd; 1047 1048 ep_set_ffd(&ffd, file, fd); 1049 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) { 1050 epi = rb_entry(rbp, struct epitem, rbn); 1051 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 1052 if (kcmp > 0) 1053 rbp = rbp->rb_right; 1054 else if (kcmp < 0) 1055 rbp = rbp->rb_left; 1056 else { 1057 epir = epi; 1058 break; 1059 } 1060 } 1061 1062 return epir; 1063 } 1064 1065 #ifdef CONFIG_CHECKPOINT_RESTORE 1066 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff) 1067 { 1068 struct rb_node *rbp; 1069 struct epitem *epi; 1070 1071 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1072 epi = rb_entry(rbp, struct epitem, rbn); 1073 if (epi->ffd.fd == tfd) { 1074 if (toff == 0) 1075 return epi; 1076 else 1077 toff--; 1078 } 1079 cond_resched(); 1080 } 1081 1082 return NULL; 1083 } 1084 1085 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, 1086 unsigned long toff) 1087 { 1088 struct file *file_raw; 1089 struct eventpoll *ep; 1090 struct epitem *epi; 1091 1092 if (!is_file_epoll(file)) 1093 return ERR_PTR(-EINVAL); 1094 1095 ep = file->private_data; 1096 1097 mutex_lock(&ep->mtx); 1098 epi = ep_find_tfd(ep, tfd, toff); 1099 if (epi) 1100 file_raw = epi->ffd.file; 1101 else 1102 file_raw = ERR_PTR(-ENOENT); 1103 mutex_unlock(&ep->mtx); 1104 1105 return file_raw; 1106 } 1107 #endif /* CONFIG_CHECKPOINT_RESTORE */ 1108 1109 /* 1110 * This is the callback that is passed to the wait queue wakeup 1111 * mechanism. It is called by the stored file descriptors when they 1112 * have events to report. 1113 */ 1114 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1115 { 1116 int pwake = 0; 1117 unsigned long flags; 1118 struct epitem *epi = ep_item_from_wait(wait); 1119 struct eventpoll *ep = epi->ep; 1120 int ewake = 0; 1121 1122 spin_lock_irqsave(&ep->lock, flags); 1123 1124 ep_set_busy_poll_napi_id(epi); 1125 1126 /* 1127 * If the event mask does not contain any poll(2) event, we consider the 1128 * descriptor to be disabled. This condition is likely the effect of the 1129 * EPOLLONESHOT bit that disables the descriptor when an event is received, 1130 * until the next EPOLL_CTL_MOD will be issued. 1131 */ 1132 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 1133 goto out_unlock; 1134 1135 /* 1136 * Check the events coming with the callback. At this stage, not 1137 * every device reports the events in the "key" parameter of the 1138 * callback. We need to be able to handle both cases here, hence the 1139 * test for "key" != NULL before the event match test. 1140 */ 1141 if (key && !((unsigned long) key & epi->event.events)) 1142 goto out_unlock; 1143 1144 /* 1145 * If we are transferring events to userspace, we can hold no locks 1146 * (because we're accessing user memory, and because of linux f_op->poll() 1147 * semantics). All the events that happen during that period of time are 1148 * chained in ep->ovflist and requeued later on. 1149 */ 1150 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) { 1151 if (epi->next == EP_UNACTIVE_PTR) { 1152 epi->next = ep->ovflist; 1153 ep->ovflist = epi; 1154 if (epi->ws) { 1155 /* 1156 * Activate ep->ws since epi->ws may get 1157 * deactivated at any time. 1158 */ 1159 __pm_stay_awake(ep->ws); 1160 } 1161 1162 } 1163 goto out_unlock; 1164 } 1165 1166 /* If this file is already in the ready list we exit soon */ 1167 if (!ep_is_linked(&epi->rdllink)) { 1168 list_add_tail(&epi->rdllink, &ep->rdllist); 1169 ep_pm_stay_awake_rcu(epi); 1170 } 1171 1172 /* 1173 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1174 * wait list. 1175 */ 1176 if (waitqueue_active(&ep->wq)) { 1177 if ((epi->event.events & EPOLLEXCLUSIVE) && 1178 !((unsigned long)key & POLLFREE)) { 1179 switch ((unsigned long)key & EPOLLINOUT_BITS) { 1180 case POLLIN: 1181 if (epi->event.events & POLLIN) 1182 ewake = 1; 1183 break; 1184 case POLLOUT: 1185 if (epi->event.events & POLLOUT) 1186 ewake = 1; 1187 break; 1188 case 0: 1189 ewake = 1; 1190 break; 1191 } 1192 } 1193 wake_up_locked(&ep->wq); 1194 } 1195 if (waitqueue_active(&ep->poll_wait)) 1196 pwake++; 1197 1198 out_unlock: 1199 spin_unlock_irqrestore(&ep->lock, flags); 1200 1201 /* We have to call this outside the lock */ 1202 if (pwake) 1203 ep_poll_safewake(&ep->poll_wait); 1204 1205 if (!(epi->event.events & EPOLLEXCLUSIVE)) 1206 ewake = 1; 1207 1208 if ((unsigned long)key & POLLFREE) { 1209 /* 1210 * If we race with ep_remove_wait_queue() it can miss 1211 * ->whead = NULL and do another remove_wait_queue() after 1212 * us, so we can't use __remove_wait_queue(). 1213 */ 1214 list_del_init(&wait->entry); 1215 /* 1216 * ->whead != NULL protects us from the race with ep_free() 1217 * or ep_remove(), ep_remove_wait_queue() takes whead->lock 1218 * held by the caller. Once we nullify it, nothing protects 1219 * ep/epi or even wait. 1220 */ 1221 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL); 1222 } 1223 1224 return ewake; 1225 } 1226 1227 /* 1228 * This is the callback that is used to add our wait queue to the 1229 * target file wakeup lists. 1230 */ 1231 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 1232 poll_table *pt) 1233 { 1234 struct epitem *epi = ep_item_from_epqueue(pt); 1235 struct eppoll_entry *pwq; 1236 1237 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { 1238 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 1239 pwq->whead = whead; 1240 pwq->base = epi; 1241 if (epi->event.events & EPOLLEXCLUSIVE) 1242 add_wait_queue_exclusive(whead, &pwq->wait); 1243 else 1244 add_wait_queue(whead, &pwq->wait); 1245 list_add_tail(&pwq->llink, &epi->pwqlist); 1246 epi->nwait++; 1247 } else { 1248 /* We have to signal that an error occurred */ 1249 epi->nwait = -1; 1250 } 1251 } 1252 1253 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1254 { 1255 int kcmp; 1256 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL; 1257 struct epitem *epic; 1258 bool leftmost = true; 1259 1260 while (*p) { 1261 parent = *p; 1262 epic = rb_entry(parent, struct epitem, rbn); 1263 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1264 if (kcmp > 0) { 1265 p = &parent->rb_right; 1266 leftmost = false; 1267 } else 1268 p = &parent->rb_left; 1269 } 1270 rb_link_node(&epi->rbn, parent, p); 1271 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost); 1272 } 1273 1274 1275 1276 #define PATH_ARR_SIZE 5 1277 /* 1278 * These are the number paths of length 1 to 5, that we are allowing to emanate 1279 * from a single file of interest. For example, we allow 1000 paths of length 1280 * 1, to emanate from each file of interest. This essentially represents the 1281 * potential wakeup paths, which need to be limited in order to avoid massive 1282 * uncontrolled wakeup storms. The common use case should be a single ep which 1283 * is connected to n file sources. In this case each file source has 1 path 1284 * of length 1. Thus, the numbers below should be more than sufficient. These 1285 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1286 * and delete can't add additional paths. Protected by the epmutex. 1287 */ 1288 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1289 static int path_count[PATH_ARR_SIZE]; 1290 1291 static int path_count_inc(int nests) 1292 { 1293 /* Allow an arbitrary number of depth 1 paths */ 1294 if (nests == 0) 1295 return 0; 1296 1297 if (++path_count[nests] > path_limits[nests]) 1298 return -1; 1299 return 0; 1300 } 1301 1302 static void path_count_init(void) 1303 { 1304 int i; 1305 1306 for (i = 0; i < PATH_ARR_SIZE; i++) 1307 path_count[i] = 0; 1308 } 1309 1310 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests) 1311 { 1312 int error = 0; 1313 struct file *file = priv; 1314 struct file *child_file; 1315 struct epitem *epi; 1316 1317 /* CTL_DEL can remove links here, but that can't increase our count */ 1318 rcu_read_lock(); 1319 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) { 1320 child_file = epi->ep->file; 1321 if (is_file_epoll(child_file)) { 1322 if (list_empty(&child_file->f_ep_links)) { 1323 if (path_count_inc(call_nests)) { 1324 error = -1; 1325 break; 1326 } 1327 } else { 1328 error = ep_call_nested(&poll_loop_ncalls, 1329 EP_MAX_NESTS, 1330 reverse_path_check_proc, 1331 child_file, child_file, 1332 current); 1333 } 1334 if (error != 0) 1335 break; 1336 } else { 1337 printk(KERN_ERR "reverse_path_check_proc: " 1338 "file is not an ep!\n"); 1339 } 1340 } 1341 rcu_read_unlock(); 1342 return error; 1343 } 1344 1345 /** 1346 * reverse_path_check - The tfile_check_list is list of file *, which have 1347 * links that are proposed to be newly added. We need to 1348 * make sure that those added links don't add too many 1349 * paths such that we will spend all our time waking up 1350 * eventpoll objects. 1351 * 1352 * Returns: Returns zero if the proposed links don't create too many paths, 1353 * -1 otherwise. 1354 */ 1355 static int reverse_path_check(void) 1356 { 1357 int error = 0; 1358 struct file *current_file; 1359 1360 /* let's call this for all tfiles */ 1361 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) { 1362 path_count_init(); 1363 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1364 reverse_path_check_proc, current_file, 1365 current_file, current); 1366 if (error) 1367 break; 1368 } 1369 return error; 1370 } 1371 1372 static int ep_create_wakeup_source(struct epitem *epi) 1373 { 1374 const char *name; 1375 struct wakeup_source *ws; 1376 1377 if (!epi->ep->ws) { 1378 epi->ep->ws = wakeup_source_register("eventpoll"); 1379 if (!epi->ep->ws) 1380 return -ENOMEM; 1381 } 1382 1383 name = epi->ffd.file->f_path.dentry->d_name.name; 1384 ws = wakeup_source_register(name); 1385 1386 if (!ws) 1387 return -ENOMEM; 1388 rcu_assign_pointer(epi->ws, ws); 1389 1390 return 0; 1391 } 1392 1393 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ 1394 static noinline void ep_destroy_wakeup_source(struct epitem *epi) 1395 { 1396 struct wakeup_source *ws = ep_wakeup_source(epi); 1397 1398 RCU_INIT_POINTER(epi->ws, NULL); 1399 1400 /* 1401 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is 1402 * used internally by wakeup_source_remove, too (called by 1403 * wakeup_source_unregister), so we cannot use call_rcu 1404 */ 1405 synchronize_rcu(); 1406 wakeup_source_unregister(ws); 1407 } 1408 1409 /* 1410 * Must be called with "mtx" held. 1411 */ 1412 static int ep_insert(struct eventpoll *ep, struct epoll_event *event, 1413 struct file *tfile, int fd, int full_check) 1414 { 1415 int error, revents, pwake = 0; 1416 unsigned long flags; 1417 long user_watches; 1418 struct epitem *epi; 1419 struct ep_pqueue epq; 1420 1421 user_watches = atomic_long_read(&ep->user->epoll_watches); 1422 if (unlikely(user_watches >= max_user_watches)) 1423 return -ENOSPC; 1424 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) 1425 return -ENOMEM; 1426 1427 /* Item initialization follow here ... */ 1428 INIT_LIST_HEAD(&epi->rdllink); 1429 INIT_LIST_HEAD(&epi->fllink); 1430 INIT_LIST_HEAD(&epi->pwqlist); 1431 epi->ep = ep; 1432 ep_set_ffd(&epi->ffd, tfile, fd); 1433 epi->event = *event; 1434 epi->nwait = 0; 1435 epi->next = EP_UNACTIVE_PTR; 1436 if (epi->event.events & EPOLLWAKEUP) { 1437 error = ep_create_wakeup_source(epi); 1438 if (error) 1439 goto error_create_wakeup_source; 1440 } else { 1441 RCU_INIT_POINTER(epi->ws, NULL); 1442 } 1443 1444 /* Initialize the poll table using the queue callback */ 1445 epq.epi = epi; 1446 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1447 1448 /* 1449 * Attach the item to the poll hooks and get current event bits. 1450 * We can safely use the file* here because its usage count has 1451 * been increased by the caller of this function. Note that after 1452 * this operation completes, the poll callback can start hitting 1453 * the new item. 1454 */ 1455 revents = ep_item_poll(epi, &epq.pt, 1); 1456 1457 /* 1458 * We have to check if something went wrong during the poll wait queue 1459 * install process. Namely an allocation for a wait queue failed due 1460 * high memory pressure. 1461 */ 1462 error = -ENOMEM; 1463 if (epi->nwait < 0) 1464 goto error_unregister; 1465 1466 /* Add the current item to the list of active epoll hook for this file */ 1467 spin_lock(&tfile->f_lock); 1468 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links); 1469 spin_unlock(&tfile->f_lock); 1470 1471 /* 1472 * Add the current item to the RB tree. All RB tree operations are 1473 * protected by "mtx", and ep_insert() is called with "mtx" held. 1474 */ 1475 ep_rbtree_insert(ep, epi); 1476 1477 /* now check if we've created too many backpaths */ 1478 error = -EINVAL; 1479 if (full_check && reverse_path_check()) 1480 goto error_remove_epi; 1481 1482 /* We have to drop the new item inside our item list to keep track of it */ 1483 spin_lock_irqsave(&ep->lock, flags); 1484 1485 /* record NAPI ID of new item if present */ 1486 ep_set_busy_poll_napi_id(epi); 1487 1488 /* If the file is already "ready" we drop it inside the ready list */ 1489 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) { 1490 list_add_tail(&epi->rdllink, &ep->rdllist); 1491 ep_pm_stay_awake(epi); 1492 1493 /* Notify waiting tasks that events are available */ 1494 if (waitqueue_active(&ep->wq)) 1495 wake_up_locked(&ep->wq); 1496 if (waitqueue_active(&ep->poll_wait)) 1497 pwake++; 1498 } 1499 1500 spin_unlock_irqrestore(&ep->lock, flags); 1501 1502 atomic_long_inc(&ep->user->epoll_watches); 1503 1504 /* We have to call this outside the lock */ 1505 if (pwake) 1506 ep_poll_safewake(&ep->poll_wait); 1507 1508 return 0; 1509 1510 error_remove_epi: 1511 spin_lock(&tfile->f_lock); 1512 list_del_rcu(&epi->fllink); 1513 spin_unlock(&tfile->f_lock); 1514 1515 rb_erase_cached(&epi->rbn, &ep->rbr); 1516 1517 error_unregister: 1518 ep_unregister_pollwait(ep, epi); 1519 1520 /* 1521 * We need to do this because an event could have been arrived on some 1522 * allocated wait queue. Note that we don't care about the ep->ovflist 1523 * list, since that is used/cleaned only inside a section bound by "mtx". 1524 * And ep_insert() is called with "mtx" held. 1525 */ 1526 spin_lock_irqsave(&ep->lock, flags); 1527 if (ep_is_linked(&epi->rdllink)) 1528 list_del_init(&epi->rdllink); 1529 spin_unlock_irqrestore(&ep->lock, flags); 1530 1531 wakeup_source_unregister(ep_wakeup_source(epi)); 1532 1533 error_create_wakeup_source: 1534 kmem_cache_free(epi_cache, epi); 1535 1536 return error; 1537 } 1538 1539 /* 1540 * Modify the interest event mask by dropping an event if the new mask 1541 * has a match in the current file status. Must be called with "mtx" held. 1542 */ 1543 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event) 1544 { 1545 int pwake = 0; 1546 unsigned int revents; 1547 poll_table pt; 1548 1549 init_poll_funcptr(&pt, NULL); 1550 1551 /* 1552 * Set the new event interest mask before calling f_op->poll(); 1553 * otherwise we might miss an event that happens between the 1554 * f_op->poll() call and the new event set registering. 1555 */ 1556 epi->event.events = event->events; /* need barrier below */ 1557 epi->event.data = event->data; /* protected by mtx */ 1558 if (epi->event.events & EPOLLWAKEUP) { 1559 if (!ep_has_wakeup_source(epi)) 1560 ep_create_wakeup_source(epi); 1561 } else if (ep_has_wakeup_source(epi)) { 1562 ep_destroy_wakeup_source(epi); 1563 } 1564 1565 /* 1566 * The following barrier has two effects: 1567 * 1568 * 1) Flush epi changes above to other CPUs. This ensures 1569 * we do not miss events from ep_poll_callback if an 1570 * event occurs immediately after we call f_op->poll(). 1571 * We need this because we did not take ep->lock while 1572 * changing epi above (but ep_poll_callback does take 1573 * ep->lock). 1574 * 1575 * 2) We also need to ensure we do not miss _past_ events 1576 * when calling f_op->poll(). This barrier also 1577 * pairs with the barrier in wq_has_sleeper (see 1578 * comments for wq_has_sleeper). 1579 * 1580 * This barrier will now guarantee ep_poll_callback or f_op->poll 1581 * (or both) will notice the readiness of an item. 1582 */ 1583 smp_mb(); 1584 1585 /* 1586 * Get current event bits. We can safely use the file* here because 1587 * its usage count has been increased by the caller of this function. 1588 */ 1589 revents = ep_item_poll(epi, &pt, 1); 1590 1591 /* 1592 * If the item is "hot" and it is not registered inside the ready 1593 * list, push it inside. 1594 */ 1595 if (revents & event->events) { 1596 spin_lock_irq(&ep->lock); 1597 if (!ep_is_linked(&epi->rdllink)) { 1598 list_add_tail(&epi->rdllink, &ep->rdllist); 1599 ep_pm_stay_awake(epi); 1600 1601 /* Notify waiting tasks that events are available */ 1602 if (waitqueue_active(&ep->wq)) 1603 wake_up_locked(&ep->wq); 1604 if (waitqueue_active(&ep->poll_wait)) 1605 pwake++; 1606 } 1607 spin_unlock_irq(&ep->lock); 1608 } 1609 1610 /* We have to call this outside the lock */ 1611 if (pwake) 1612 ep_poll_safewake(&ep->poll_wait); 1613 1614 return 0; 1615 } 1616 1617 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head, 1618 void *priv) 1619 { 1620 struct ep_send_events_data *esed = priv; 1621 int eventcnt; 1622 unsigned int revents; 1623 struct epitem *epi; 1624 struct epoll_event __user *uevent; 1625 struct wakeup_source *ws; 1626 poll_table pt; 1627 1628 init_poll_funcptr(&pt, NULL); 1629 1630 /* 1631 * We can loop without lock because we are passed a task private list. 1632 * Items cannot vanish during the loop because ep_scan_ready_list() is 1633 * holding "mtx" during this call. 1634 */ 1635 for (eventcnt = 0, uevent = esed->events; 1636 !list_empty(head) && eventcnt < esed->maxevents;) { 1637 epi = list_first_entry(head, struct epitem, rdllink); 1638 1639 /* 1640 * Activate ep->ws before deactivating epi->ws to prevent 1641 * triggering auto-suspend here (in case we reactive epi->ws 1642 * below). 1643 * 1644 * This could be rearranged to delay the deactivation of epi->ws 1645 * instead, but then epi->ws would temporarily be out of sync 1646 * with ep_is_linked(). 1647 */ 1648 ws = ep_wakeup_source(epi); 1649 if (ws) { 1650 if (ws->active) 1651 __pm_stay_awake(ep->ws); 1652 __pm_relax(ws); 1653 } 1654 1655 list_del_init(&epi->rdllink); 1656 1657 revents = ep_item_poll(epi, &pt, 1); 1658 1659 /* 1660 * If the event mask intersect the caller-requested one, 1661 * deliver the event to userspace. Again, ep_scan_ready_list() 1662 * is holding "mtx", so no operations coming from userspace 1663 * can change the item. 1664 */ 1665 if (revents) { 1666 if (__put_user(revents, &uevent->events) || 1667 __put_user(epi->event.data, &uevent->data)) { 1668 list_add(&epi->rdllink, head); 1669 ep_pm_stay_awake(epi); 1670 return eventcnt ? eventcnt : -EFAULT; 1671 } 1672 eventcnt++; 1673 uevent++; 1674 if (epi->event.events & EPOLLONESHOT) 1675 epi->event.events &= EP_PRIVATE_BITS; 1676 else if (!(epi->event.events & EPOLLET)) { 1677 /* 1678 * If this file has been added with Level 1679 * Trigger mode, we need to insert back inside 1680 * the ready list, so that the next call to 1681 * epoll_wait() will check again the events 1682 * availability. At this point, no one can insert 1683 * into ep->rdllist besides us. The epoll_ctl() 1684 * callers are locked out by 1685 * ep_scan_ready_list() holding "mtx" and the 1686 * poll callback will queue them in ep->ovflist. 1687 */ 1688 list_add_tail(&epi->rdllink, &ep->rdllist); 1689 ep_pm_stay_awake(epi); 1690 } 1691 } 1692 } 1693 1694 return eventcnt; 1695 } 1696 1697 static int ep_send_events(struct eventpoll *ep, 1698 struct epoll_event __user *events, int maxevents) 1699 { 1700 struct ep_send_events_data esed; 1701 1702 esed.maxevents = maxevents; 1703 esed.events = events; 1704 1705 return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false); 1706 } 1707 1708 static inline struct timespec64 ep_set_mstimeout(long ms) 1709 { 1710 struct timespec64 now, ts = { 1711 .tv_sec = ms / MSEC_PER_SEC, 1712 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC), 1713 }; 1714 1715 ktime_get_ts64(&now); 1716 return timespec64_add_safe(now, ts); 1717 } 1718 1719 /** 1720 * ep_poll - Retrieves ready events, and delivers them to the caller supplied 1721 * event buffer. 1722 * 1723 * @ep: Pointer to the eventpoll context. 1724 * @events: Pointer to the userspace buffer where the ready events should be 1725 * stored. 1726 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1727 * @timeout: Maximum timeout for the ready events fetch operation, in 1728 * milliseconds. If the @timeout is zero, the function will not block, 1729 * while if the @timeout is less than zero, the function will block 1730 * until at least one event has been retrieved (or an error 1731 * occurred). 1732 * 1733 * Returns: Returns the number of ready events which have been fetched, or an 1734 * error code, in case of error. 1735 */ 1736 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1737 int maxevents, long timeout) 1738 { 1739 int res = 0, eavail, timed_out = 0; 1740 unsigned long flags; 1741 u64 slack = 0; 1742 wait_queue_entry_t wait; 1743 ktime_t expires, *to = NULL; 1744 1745 if (timeout > 0) { 1746 struct timespec64 end_time = ep_set_mstimeout(timeout); 1747 1748 slack = select_estimate_accuracy(&end_time); 1749 to = &expires; 1750 *to = timespec64_to_ktime(end_time); 1751 } else if (timeout == 0) { 1752 /* 1753 * Avoid the unnecessary trip to the wait queue loop, if the 1754 * caller specified a non blocking operation. 1755 */ 1756 timed_out = 1; 1757 spin_lock_irqsave(&ep->lock, flags); 1758 goto check_events; 1759 } 1760 1761 fetch_events: 1762 1763 if (!ep_events_available(ep)) 1764 ep_busy_loop(ep, timed_out); 1765 1766 spin_lock_irqsave(&ep->lock, flags); 1767 1768 if (!ep_events_available(ep)) { 1769 /* 1770 * Busy poll timed out. Drop NAPI ID for now, we can add 1771 * it back in when we have moved a socket with a valid NAPI 1772 * ID onto the ready list. 1773 */ 1774 ep_reset_busy_poll_napi_id(ep); 1775 1776 /* 1777 * We don't have any available event to return to the caller. 1778 * We need to sleep here, and we will be wake up by 1779 * ep_poll_callback() when events will become available. 1780 */ 1781 init_waitqueue_entry(&wait, current); 1782 __add_wait_queue_exclusive(&ep->wq, &wait); 1783 1784 for (;;) { 1785 /* 1786 * We don't want to sleep if the ep_poll_callback() sends us 1787 * a wakeup in between. That's why we set the task state 1788 * to TASK_INTERRUPTIBLE before doing the checks. 1789 */ 1790 set_current_state(TASK_INTERRUPTIBLE); 1791 /* 1792 * Always short-circuit for fatal signals to allow 1793 * threads to make a timely exit without the chance of 1794 * finding more events available and fetching 1795 * repeatedly. 1796 */ 1797 if (fatal_signal_pending(current)) { 1798 res = -EINTR; 1799 break; 1800 } 1801 if (ep_events_available(ep) || timed_out) 1802 break; 1803 if (signal_pending(current)) { 1804 res = -EINTR; 1805 break; 1806 } 1807 1808 spin_unlock_irqrestore(&ep->lock, flags); 1809 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) 1810 timed_out = 1; 1811 1812 spin_lock_irqsave(&ep->lock, flags); 1813 } 1814 1815 __remove_wait_queue(&ep->wq, &wait); 1816 __set_current_state(TASK_RUNNING); 1817 } 1818 check_events: 1819 /* Is it worth to try to dig for events ? */ 1820 eavail = ep_events_available(ep); 1821 1822 spin_unlock_irqrestore(&ep->lock, flags); 1823 1824 /* 1825 * Try to transfer events to user space. In case we get 0 events and 1826 * there's still timeout left over, we go trying again in search of 1827 * more luck. 1828 */ 1829 if (!res && eavail && 1830 !(res = ep_send_events(ep, events, maxevents)) && !timed_out) 1831 goto fetch_events; 1832 1833 return res; 1834 } 1835 1836 /** 1837 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested() 1838 * API, to verify that adding an epoll file inside another 1839 * epoll structure, does not violate the constraints, in 1840 * terms of closed loops, or too deep chains (which can 1841 * result in excessive stack usage). 1842 * 1843 * @priv: Pointer to the epoll file to be currently checked. 1844 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll 1845 * data structure pointer. 1846 * @call_nests: Current dept of the @ep_call_nested() call stack. 1847 * 1848 * Returns: Returns zero if adding the epoll @file inside current epoll 1849 * structure @ep does not violate the constraints, or -1 otherwise. 1850 */ 1851 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests) 1852 { 1853 int error = 0; 1854 struct file *file = priv; 1855 struct eventpoll *ep = file->private_data; 1856 struct eventpoll *ep_tovisit; 1857 struct rb_node *rbp; 1858 struct epitem *epi; 1859 1860 mutex_lock_nested(&ep->mtx, call_nests + 1); 1861 ep->visited = 1; 1862 list_add(&ep->visited_list_link, &visited_list); 1863 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1864 epi = rb_entry(rbp, struct epitem, rbn); 1865 if (unlikely(is_file_epoll(epi->ffd.file))) { 1866 ep_tovisit = epi->ffd.file->private_data; 1867 if (ep_tovisit->visited) 1868 continue; 1869 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1870 ep_loop_check_proc, epi->ffd.file, 1871 ep_tovisit, current); 1872 if (error != 0) 1873 break; 1874 } else { 1875 /* 1876 * If we've reached a file that is not associated with 1877 * an ep, then we need to check if the newly added 1878 * links are going to add too many wakeup paths. We do 1879 * this by adding it to the tfile_check_list, if it's 1880 * not already there, and calling reverse_path_check() 1881 * during ep_insert(). 1882 */ 1883 if (list_empty(&epi->ffd.file->f_tfile_llink)) 1884 list_add(&epi->ffd.file->f_tfile_llink, 1885 &tfile_check_list); 1886 } 1887 } 1888 mutex_unlock(&ep->mtx); 1889 1890 return error; 1891 } 1892 1893 /** 1894 * ep_loop_check - Performs a check to verify that adding an epoll file (@file) 1895 * another epoll file (represented by @ep) does not create 1896 * closed loops or too deep chains. 1897 * 1898 * @ep: Pointer to the epoll private data structure. 1899 * @file: Pointer to the epoll file to be checked. 1900 * 1901 * Returns: Returns zero if adding the epoll @file inside current epoll 1902 * structure @ep does not violate the constraints, or -1 otherwise. 1903 */ 1904 static int ep_loop_check(struct eventpoll *ep, struct file *file) 1905 { 1906 int ret; 1907 struct eventpoll *ep_cur, *ep_next; 1908 1909 ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1910 ep_loop_check_proc, file, ep, current); 1911 /* clear visited list */ 1912 list_for_each_entry_safe(ep_cur, ep_next, &visited_list, 1913 visited_list_link) { 1914 ep_cur->visited = 0; 1915 list_del(&ep_cur->visited_list_link); 1916 } 1917 return ret; 1918 } 1919 1920 static void clear_tfile_check_list(void) 1921 { 1922 struct file *file; 1923 1924 /* first clear the tfile_check_list */ 1925 while (!list_empty(&tfile_check_list)) { 1926 file = list_first_entry(&tfile_check_list, struct file, 1927 f_tfile_llink); 1928 list_del_init(&file->f_tfile_llink); 1929 } 1930 INIT_LIST_HEAD(&tfile_check_list); 1931 } 1932 1933 /* 1934 * Open an eventpoll file descriptor. 1935 */ 1936 SYSCALL_DEFINE1(epoll_create1, int, flags) 1937 { 1938 int error, fd; 1939 struct eventpoll *ep = NULL; 1940 struct file *file; 1941 1942 /* Check the EPOLL_* constant for consistency. */ 1943 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 1944 1945 if (flags & ~EPOLL_CLOEXEC) 1946 return -EINVAL; 1947 /* 1948 * Create the internal data structure ("struct eventpoll"). 1949 */ 1950 error = ep_alloc(&ep); 1951 if (error < 0) 1952 return error; 1953 /* 1954 * Creates all the items needed to setup an eventpoll file. That is, 1955 * a file structure and a free file descriptor. 1956 */ 1957 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 1958 if (fd < 0) { 1959 error = fd; 1960 goto out_free_ep; 1961 } 1962 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 1963 O_RDWR | (flags & O_CLOEXEC)); 1964 if (IS_ERR(file)) { 1965 error = PTR_ERR(file); 1966 goto out_free_fd; 1967 } 1968 ep->file = file; 1969 fd_install(fd, file); 1970 return fd; 1971 1972 out_free_fd: 1973 put_unused_fd(fd); 1974 out_free_ep: 1975 ep_free(ep); 1976 return error; 1977 } 1978 1979 SYSCALL_DEFINE1(epoll_create, int, size) 1980 { 1981 if (size <= 0) 1982 return -EINVAL; 1983 1984 return sys_epoll_create1(0); 1985 } 1986 1987 /* 1988 * The following function implements the controller interface for 1989 * the eventpoll file that enables the insertion/removal/change of 1990 * file descriptors inside the interest set. 1991 */ 1992 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 1993 struct epoll_event __user *, event) 1994 { 1995 int error; 1996 int full_check = 0; 1997 struct fd f, tf; 1998 struct eventpoll *ep; 1999 struct epitem *epi; 2000 struct epoll_event epds; 2001 struct eventpoll *tep = NULL; 2002 2003 error = -EFAULT; 2004 if (ep_op_has_event(op) && 2005 copy_from_user(&epds, event, sizeof(struct epoll_event))) 2006 goto error_return; 2007 2008 error = -EBADF; 2009 f = fdget(epfd); 2010 if (!f.file) 2011 goto error_return; 2012 2013 /* Get the "struct file *" for the target file */ 2014 tf = fdget(fd); 2015 if (!tf.file) 2016 goto error_fput; 2017 2018 /* The target file descriptor must support poll */ 2019 error = -EPERM; 2020 if (!tf.file->f_op->poll) 2021 goto error_tgt_fput; 2022 2023 /* Check if EPOLLWAKEUP is allowed */ 2024 if (ep_op_has_event(op)) 2025 ep_take_care_of_epollwakeup(&epds); 2026 2027 /* 2028 * We have to check that the file structure underneath the file descriptor 2029 * the user passed to us _is_ an eventpoll file. And also we do not permit 2030 * adding an epoll file descriptor inside itself. 2031 */ 2032 error = -EINVAL; 2033 if (f.file == tf.file || !is_file_epoll(f.file)) 2034 goto error_tgt_fput; 2035 2036 /* 2037 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only, 2038 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation. 2039 * Also, we do not currently supported nested exclusive wakeups. 2040 */ 2041 if (ep_op_has_event(op) && (epds.events & EPOLLEXCLUSIVE)) { 2042 if (op == EPOLL_CTL_MOD) 2043 goto error_tgt_fput; 2044 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) || 2045 (epds.events & ~EPOLLEXCLUSIVE_OK_BITS))) 2046 goto error_tgt_fput; 2047 } 2048 2049 /* 2050 * At this point it is safe to assume that the "private_data" contains 2051 * our own data structure. 2052 */ 2053 ep = f.file->private_data; 2054 2055 /* 2056 * When we insert an epoll file descriptor, inside another epoll file 2057 * descriptor, there is the change of creating closed loops, which are 2058 * better be handled here, than in more critical paths. While we are 2059 * checking for loops we also determine the list of files reachable 2060 * and hang them on the tfile_check_list, so we can check that we 2061 * haven't created too many possible wakeup paths. 2062 * 2063 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when 2064 * the epoll file descriptor is attaching directly to a wakeup source, 2065 * unless the epoll file descriptor is nested. The purpose of taking the 2066 * 'epmutex' on add is to prevent complex toplogies such as loops and 2067 * deep wakeup paths from forming in parallel through multiple 2068 * EPOLL_CTL_ADD operations. 2069 */ 2070 mutex_lock_nested(&ep->mtx, 0); 2071 if (op == EPOLL_CTL_ADD) { 2072 if (!list_empty(&f.file->f_ep_links) || 2073 is_file_epoll(tf.file)) { 2074 full_check = 1; 2075 mutex_unlock(&ep->mtx); 2076 mutex_lock(&epmutex); 2077 if (is_file_epoll(tf.file)) { 2078 error = -ELOOP; 2079 if (ep_loop_check(ep, tf.file) != 0) { 2080 clear_tfile_check_list(); 2081 goto error_tgt_fput; 2082 } 2083 } else 2084 list_add(&tf.file->f_tfile_llink, 2085 &tfile_check_list); 2086 mutex_lock_nested(&ep->mtx, 0); 2087 if (is_file_epoll(tf.file)) { 2088 tep = tf.file->private_data; 2089 mutex_lock_nested(&tep->mtx, 1); 2090 } 2091 } 2092 } 2093 2094 /* 2095 * Try to lookup the file inside our RB tree, Since we grabbed "mtx" 2096 * above, we can be sure to be able to use the item looked up by 2097 * ep_find() till we release the mutex. 2098 */ 2099 epi = ep_find(ep, tf.file, fd); 2100 2101 error = -EINVAL; 2102 switch (op) { 2103 case EPOLL_CTL_ADD: 2104 if (!epi) { 2105 epds.events |= POLLERR | POLLHUP; 2106 error = ep_insert(ep, &epds, tf.file, fd, full_check); 2107 } else 2108 error = -EEXIST; 2109 if (full_check) 2110 clear_tfile_check_list(); 2111 break; 2112 case EPOLL_CTL_DEL: 2113 if (epi) 2114 error = ep_remove(ep, epi); 2115 else 2116 error = -ENOENT; 2117 break; 2118 case EPOLL_CTL_MOD: 2119 if (epi) { 2120 if (!(epi->event.events & EPOLLEXCLUSIVE)) { 2121 epds.events |= POLLERR | POLLHUP; 2122 error = ep_modify(ep, epi, &epds); 2123 } 2124 } else 2125 error = -ENOENT; 2126 break; 2127 } 2128 if (tep != NULL) 2129 mutex_unlock(&tep->mtx); 2130 mutex_unlock(&ep->mtx); 2131 2132 error_tgt_fput: 2133 if (full_check) 2134 mutex_unlock(&epmutex); 2135 2136 fdput(tf); 2137 error_fput: 2138 fdput(f); 2139 error_return: 2140 2141 return error; 2142 } 2143 2144 /* 2145 * Implement the event wait interface for the eventpoll file. It is the kernel 2146 * part of the user space epoll_wait(2). 2147 */ 2148 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 2149 int, maxevents, int, timeout) 2150 { 2151 int error; 2152 struct fd f; 2153 struct eventpoll *ep; 2154 2155 /* The maximum number of event must be greater than zero */ 2156 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 2157 return -EINVAL; 2158 2159 /* Verify that the area passed by the user is writeable */ 2160 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) 2161 return -EFAULT; 2162 2163 /* Get the "struct file *" for the eventpoll file */ 2164 f = fdget(epfd); 2165 if (!f.file) 2166 return -EBADF; 2167 2168 /* 2169 * We have to check that the file structure underneath the fd 2170 * the user passed to us _is_ an eventpoll file. 2171 */ 2172 error = -EINVAL; 2173 if (!is_file_epoll(f.file)) 2174 goto error_fput; 2175 2176 /* 2177 * At this point it is safe to assume that the "private_data" contains 2178 * our own data structure. 2179 */ 2180 ep = f.file->private_data; 2181 2182 /* Time to fish for events ... */ 2183 error = ep_poll(ep, events, maxevents, timeout); 2184 2185 error_fput: 2186 fdput(f); 2187 return error; 2188 } 2189 2190 /* 2191 * Implement the event wait interface for the eventpoll file. It is the kernel 2192 * part of the user space epoll_pwait(2). 2193 */ 2194 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 2195 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 2196 size_t, sigsetsize) 2197 { 2198 int error; 2199 sigset_t ksigmask, sigsaved; 2200 2201 /* 2202 * If the caller wants a certain signal mask to be set during the wait, 2203 * we apply it here. 2204 */ 2205 if (sigmask) { 2206 if (sigsetsize != sizeof(sigset_t)) 2207 return -EINVAL; 2208 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask))) 2209 return -EFAULT; 2210 sigsaved = current->blocked; 2211 set_current_blocked(&ksigmask); 2212 } 2213 2214 error = sys_epoll_wait(epfd, events, maxevents, timeout); 2215 2216 /* 2217 * If we changed the signal mask, we need to restore the original one. 2218 * In case we've got a signal while waiting, we do not restore the 2219 * signal mask yet, and we allow do_signal() to deliver the signal on 2220 * the way back to userspace, before the signal mask is restored. 2221 */ 2222 if (sigmask) { 2223 if (error == -EINTR) { 2224 memcpy(¤t->saved_sigmask, &sigsaved, 2225 sizeof(sigsaved)); 2226 set_restore_sigmask(); 2227 } else 2228 set_current_blocked(&sigsaved); 2229 } 2230 2231 return error; 2232 } 2233 2234 #ifdef CONFIG_COMPAT 2235 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, 2236 struct epoll_event __user *, events, 2237 int, maxevents, int, timeout, 2238 const compat_sigset_t __user *, sigmask, 2239 compat_size_t, sigsetsize) 2240 { 2241 long err; 2242 sigset_t ksigmask, sigsaved; 2243 2244 /* 2245 * If the caller wants a certain signal mask to be set during the wait, 2246 * we apply it here. 2247 */ 2248 if (sigmask) { 2249 if (sigsetsize != sizeof(compat_sigset_t)) 2250 return -EINVAL; 2251 if (get_compat_sigset(&ksigmask, sigmask)) 2252 return -EFAULT; 2253 sigsaved = current->blocked; 2254 set_current_blocked(&ksigmask); 2255 } 2256 2257 err = sys_epoll_wait(epfd, events, maxevents, timeout); 2258 2259 /* 2260 * If we changed the signal mask, we need to restore the original one. 2261 * In case we've got a signal while waiting, we do not restore the 2262 * signal mask yet, and we allow do_signal() to deliver the signal on 2263 * the way back to userspace, before the signal mask is restored. 2264 */ 2265 if (sigmask) { 2266 if (err == -EINTR) { 2267 memcpy(¤t->saved_sigmask, &sigsaved, 2268 sizeof(sigsaved)); 2269 set_restore_sigmask(); 2270 } else 2271 set_current_blocked(&sigsaved); 2272 } 2273 2274 return err; 2275 } 2276 #endif 2277 2278 static int __init eventpoll_init(void) 2279 { 2280 struct sysinfo si; 2281 2282 si_meminfo(&si); 2283 /* 2284 * Allows top 4% of lomem to be allocated for epoll watches (per user). 2285 */ 2286 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 2287 EP_ITEM_COST; 2288 BUG_ON(max_user_watches < 0); 2289 2290 /* 2291 * Initialize the structure used to perform epoll file descriptor 2292 * inclusion loops checks. 2293 */ 2294 ep_nested_calls_init(&poll_loop_ncalls); 2295 2296 #ifdef CONFIG_DEBUG_LOCK_ALLOC 2297 /* Initialize the structure used to perform safe poll wait head wake ups */ 2298 ep_nested_calls_init(&poll_safewake_ncalls); 2299 #endif 2300 2301 /* 2302 * We can have many thousands of epitems, so prevent this from 2303 * using an extra cache line on 64-bit (and smaller) CPUs 2304 */ 2305 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); 2306 2307 /* Allocates slab cache used to allocate "struct epitem" items */ 2308 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 2309 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 2310 2311 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 2312 pwq_cache = kmem_cache_create("eventpoll_pwq", 2313 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2314 2315 return 0; 2316 } 2317 fs_initcall(eventpoll_init); 2318