1 /* 2 * fs/eventpoll.c (Efficient event retrieval implementation) 3 * Copyright (C) 2001,...,2009 Davide Libenzi 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * Davide Libenzi <davidel@xmailserver.org> 11 * 12 */ 13 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/file.h> 19 #include <linux/signal.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/slab.h> 23 #include <linux/poll.h> 24 #include <linux/string.h> 25 #include <linux/list.h> 26 #include <linux/hash.h> 27 #include <linux/spinlock.h> 28 #include <linux/syscalls.h> 29 #include <linux/rbtree.h> 30 #include <linux/wait.h> 31 #include <linux/eventpoll.h> 32 #include <linux/mount.h> 33 #include <linux/bitops.h> 34 #include <linux/mutex.h> 35 #include <linux/anon_inodes.h> 36 #include <asm/uaccess.h> 37 #include <asm/system.h> 38 #include <asm/io.h> 39 #include <asm/mman.h> 40 #include <linux/atomic.h> 41 42 /* 43 * LOCKING: 44 * There are three level of locking required by epoll : 45 * 46 * 1) epmutex (mutex) 47 * 2) ep->mtx (mutex) 48 * 3) ep->lock (spinlock) 49 * 50 * The acquire order is the one listed above, from 1 to 3. 51 * We need a spinlock (ep->lock) because we manipulate objects 52 * from inside the poll callback, that might be triggered from 53 * a wake_up() that in turn might be called from IRQ context. 54 * So we can't sleep inside the poll callback and hence we need 55 * a spinlock. During the event transfer loop (from kernel to 56 * user space) we could end up sleeping due a copy_to_user(), so 57 * we need a lock that will allow us to sleep. This lock is a 58 * mutex (ep->mtx). It is acquired during the event transfer loop, 59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 60 * Then we also need a global mutex to serialize eventpoll_release_file() 61 * and ep_free(). 62 * This mutex is acquired by ep_free() during the epoll file 63 * cleanup path and it is also acquired by eventpoll_release_file() 64 * if a file has been pushed inside an epoll set and it is then 65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL). 66 * It is also acquired when inserting an epoll fd onto another epoll 67 * fd. We do this so that we walk the epoll tree and ensure that this 68 * insertion does not create a cycle of epoll file descriptors, which 69 * could lead to deadlock. We need a global mutex to prevent two 70 * simultaneous inserts (A into B and B into A) from racing and 71 * constructing a cycle without either insert observing that it is 72 * going to. 73 * It is possible to drop the "ep->mtx" and to use the global 74 * mutex "epmutex" (together with "ep->lock") to have it working, 75 * but having "ep->mtx" will make the interface more scalable. 76 * Events that require holding "epmutex" are very rare, while for 77 * normal operations the epoll private "ep->mtx" will guarantee 78 * a better scalability. 79 */ 80 81 /* Epoll private bits inside the event mask */ 82 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET) 83 84 /* Maximum number of nesting allowed inside epoll sets */ 85 #define EP_MAX_NESTS 4 86 87 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 88 89 #define EP_UNACTIVE_PTR ((void *) -1L) 90 91 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 92 93 struct epoll_filefd { 94 struct file *file; 95 int fd; 96 }; 97 98 /* 99 * Structure used to track possible nested calls, for too deep recursions 100 * and loop cycles. 101 */ 102 struct nested_call_node { 103 struct list_head llink; 104 void *cookie; 105 void *ctx; 106 }; 107 108 /* 109 * This structure is used as collector for nested calls, to check for 110 * maximum recursion dept and loop cycles. 111 */ 112 struct nested_calls { 113 struct list_head tasks_call_list; 114 spinlock_t lock; 115 }; 116 117 /* 118 * Each file descriptor added to the eventpoll interface will 119 * have an entry of this type linked to the "rbr" RB tree. 120 */ 121 struct epitem { 122 /* RB tree node used to link this structure to the eventpoll RB tree */ 123 struct rb_node rbn; 124 125 /* List header used to link this structure to the eventpoll ready list */ 126 struct list_head rdllink; 127 128 /* 129 * Works together "struct eventpoll"->ovflist in keeping the 130 * single linked chain of items. 131 */ 132 struct epitem *next; 133 134 /* The file descriptor information this item refers to */ 135 struct epoll_filefd ffd; 136 137 /* Number of active wait queue attached to poll operations */ 138 int nwait; 139 140 /* List containing poll wait queues */ 141 struct list_head pwqlist; 142 143 /* The "container" of this item */ 144 struct eventpoll *ep; 145 146 /* List header used to link this item to the "struct file" items list */ 147 struct list_head fllink; 148 149 /* The structure that describe the interested events and the source fd */ 150 struct epoll_event event; 151 }; 152 153 /* 154 * This structure is stored inside the "private_data" member of the file 155 * structure and represents the main data structure for the eventpoll 156 * interface. 157 */ 158 struct eventpoll { 159 /* Protect the access to this structure */ 160 spinlock_t lock; 161 162 /* 163 * This mutex is used to ensure that files are not removed 164 * while epoll is using them. This is held during the event 165 * collection loop, the file cleanup path, the epoll file exit 166 * code and the ctl operations. 167 */ 168 struct mutex mtx; 169 170 /* Wait queue used by sys_epoll_wait() */ 171 wait_queue_head_t wq; 172 173 /* Wait queue used by file->poll() */ 174 wait_queue_head_t poll_wait; 175 176 /* List of ready file descriptors */ 177 struct list_head rdllist; 178 179 /* RB tree root used to store monitored fd structs */ 180 struct rb_root rbr; 181 182 /* 183 * This is a single linked list that chains all the "struct epitem" that 184 * happened while transferring ready events to userspace w/out 185 * holding ->lock. 186 */ 187 struct epitem *ovflist; 188 189 /* The user that created the eventpoll descriptor */ 190 struct user_struct *user; 191 }; 192 193 /* Wait structure used by the poll hooks */ 194 struct eppoll_entry { 195 /* List header used to link this structure to the "struct epitem" */ 196 struct list_head llink; 197 198 /* The "base" pointer is set to the container "struct epitem" */ 199 struct epitem *base; 200 201 /* 202 * Wait queue item that will be linked to the target file wait 203 * queue head. 204 */ 205 wait_queue_t wait; 206 207 /* The wait queue head that linked the "wait" wait queue item */ 208 wait_queue_head_t *whead; 209 }; 210 211 /* Wrapper struct used by poll queueing */ 212 struct ep_pqueue { 213 poll_table pt; 214 struct epitem *epi; 215 }; 216 217 /* Used by the ep_send_events() function as callback private data */ 218 struct ep_send_events_data { 219 int maxevents; 220 struct epoll_event __user *events; 221 }; 222 223 /* 224 * Configuration options available inside /proc/sys/fs/epoll/ 225 */ 226 /* Maximum number of epoll watched descriptors, per user */ 227 static long max_user_watches __read_mostly; 228 229 /* 230 * This mutex is used to serialize ep_free() and eventpoll_release_file(). 231 */ 232 static DEFINE_MUTEX(epmutex); 233 234 /* Used to check for epoll file descriptor inclusion loops */ 235 static struct nested_calls poll_loop_ncalls; 236 237 /* Used for safe wake up implementation */ 238 static struct nested_calls poll_safewake_ncalls; 239 240 /* Used to call file's f_op->poll() under the nested calls boundaries */ 241 static struct nested_calls poll_readywalk_ncalls; 242 243 /* Slab cache used to allocate "struct epitem" */ 244 static struct kmem_cache *epi_cache __read_mostly; 245 246 /* Slab cache used to allocate "struct eppoll_entry" */ 247 static struct kmem_cache *pwq_cache __read_mostly; 248 249 #ifdef CONFIG_SYSCTL 250 251 #include <linux/sysctl.h> 252 253 static long zero; 254 static long long_max = LONG_MAX; 255 256 ctl_table epoll_table[] = { 257 { 258 .procname = "max_user_watches", 259 .data = &max_user_watches, 260 .maxlen = sizeof(max_user_watches), 261 .mode = 0644, 262 .proc_handler = proc_doulongvec_minmax, 263 .extra1 = &zero, 264 .extra2 = &long_max, 265 }, 266 { } 267 }; 268 #endif /* CONFIG_SYSCTL */ 269 270 271 /* Setup the structure that is used as key for the RB tree */ 272 static inline void ep_set_ffd(struct epoll_filefd *ffd, 273 struct file *file, int fd) 274 { 275 ffd->file = file; 276 ffd->fd = fd; 277 } 278 279 /* Compare RB tree keys */ 280 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 281 struct epoll_filefd *p2) 282 { 283 return (p1->file > p2->file ? +1: 284 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 285 } 286 287 /* Tells us if the item is currently linked */ 288 static inline int ep_is_linked(struct list_head *p) 289 { 290 return !list_empty(p); 291 } 292 293 /* Get the "struct epitem" from a wait queue pointer */ 294 static inline struct epitem *ep_item_from_wait(wait_queue_t *p) 295 { 296 return container_of(p, struct eppoll_entry, wait)->base; 297 } 298 299 /* Get the "struct epitem" from an epoll queue wrapper */ 300 static inline struct epitem *ep_item_from_epqueue(poll_table *p) 301 { 302 return container_of(p, struct ep_pqueue, pt)->epi; 303 } 304 305 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ 306 static inline int ep_op_has_event(int op) 307 { 308 return op != EPOLL_CTL_DEL; 309 } 310 311 /* Initialize the poll safe wake up structure */ 312 static void ep_nested_calls_init(struct nested_calls *ncalls) 313 { 314 INIT_LIST_HEAD(&ncalls->tasks_call_list); 315 spin_lock_init(&ncalls->lock); 316 } 317 318 /** 319 * ep_events_available - Checks if ready events might be available. 320 * 321 * @ep: Pointer to the eventpoll context. 322 * 323 * Returns: Returns a value different than zero if ready events are available, 324 * or zero otherwise. 325 */ 326 static inline int ep_events_available(struct eventpoll *ep) 327 { 328 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR; 329 } 330 331 /** 332 * ep_call_nested - Perform a bound (possibly) nested call, by checking 333 * that the recursion limit is not exceeded, and that 334 * the same nested call (by the meaning of same cookie) is 335 * no re-entered. 336 * 337 * @ncalls: Pointer to the nested_calls structure to be used for this call. 338 * @max_nests: Maximum number of allowed nesting calls. 339 * @nproc: Nested call core function pointer. 340 * @priv: Opaque data to be passed to the @nproc callback. 341 * @cookie: Cookie to be used to identify this nested call. 342 * @ctx: This instance context. 343 * 344 * Returns: Returns the code returned by the @nproc callback, or -1 if 345 * the maximum recursion limit has been exceeded. 346 */ 347 static int ep_call_nested(struct nested_calls *ncalls, int max_nests, 348 int (*nproc)(void *, void *, int), void *priv, 349 void *cookie, void *ctx) 350 { 351 int error, call_nests = 0; 352 unsigned long flags; 353 struct list_head *lsthead = &ncalls->tasks_call_list; 354 struct nested_call_node *tncur; 355 struct nested_call_node tnode; 356 357 spin_lock_irqsave(&ncalls->lock, flags); 358 359 /* 360 * Try to see if the current task is already inside this wakeup call. 361 * We use a list here, since the population inside this set is always 362 * very much limited. 363 */ 364 list_for_each_entry(tncur, lsthead, llink) { 365 if (tncur->ctx == ctx && 366 (tncur->cookie == cookie || ++call_nests > max_nests)) { 367 /* 368 * Ops ... loop detected or maximum nest level reached. 369 * We abort this wake by breaking the cycle itself. 370 */ 371 error = -1; 372 goto out_unlock; 373 } 374 } 375 376 /* Add the current task and cookie to the list */ 377 tnode.ctx = ctx; 378 tnode.cookie = cookie; 379 list_add(&tnode.llink, lsthead); 380 381 spin_unlock_irqrestore(&ncalls->lock, flags); 382 383 /* Call the nested function */ 384 error = (*nproc)(priv, cookie, call_nests); 385 386 /* Remove the current task from the list */ 387 spin_lock_irqsave(&ncalls->lock, flags); 388 list_del(&tnode.llink); 389 out_unlock: 390 spin_unlock_irqrestore(&ncalls->lock, flags); 391 392 return error; 393 } 394 395 #ifdef CONFIG_DEBUG_LOCK_ALLOC 396 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, 397 unsigned long events, int subclass) 398 { 399 unsigned long flags; 400 401 spin_lock_irqsave_nested(&wqueue->lock, flags, subclass); 402 wake_up_locked_poll(wqueue, events); 403 spin_unlock_irqrestore(&wqueue->lock, flags); 404 } 405 #else 406 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, 407 unsigned long events, int subclass) 408 { 409 wake_up_poll(wqueue, events); 410 } 411 #endif 412 413 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests) 414 { 415 ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN, 416 1 + call_nests); 417 return 0; 418 } 419 420 /* 421 * Perform a safe wake up of the poll wait list. The problem is that 422 * with the new callback'd wake up system, it is possible that the 423 * poll callback is reentered from inside the call to wake_up() done 424 * on the poll wait queue head. The rule is that we cannot reenter the 425 * wake up code from the same task more than EP_MAX_NESTS times, 426 * and we cannot reenter the same wait queue head at all. This will 427 * enable to have a hierarchy of epoll file descriptor of no more than 428 * EP_MAX_NESTS deep. 429 */ 430 static void ep_poll_safewake(wait_queue_head_t *wq) 431 { 432 int this_cpu = get_cpu(); 433 434 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS, 435 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu); 436 437 put_cpu(); 438 } 439 440 /* 441 * This function unregisters poll callbacks from the associated file 442 * descriptor. Must be called with "mtx" held (or "epmutex" if called from 443 * ep_free). 444 */ 445 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 446 { 447 struct list_head *lsthead = &epi->pwqlist; 448 struct eppoll_entry *pwq; 449 450 while (!list_empty(lsthead)) { 451 pwq = list_first_entry(lsthead, struct eppoll_entry, llink); 452 453 list_del(&pwq->llink); 454 remove_wait_queue(pwq->whead, &pwq->wait); 455 kmem_cache_free(pwq_cache, pwq); 456 } 457 } 458 459 /** 460 * ep_scan_ready_list - Scans the ready list in a way that makes possible for 461 * the scan code, to call f_op->poll(). Also allows for 462 * O(NumReady) performance. 463 * 464 * @ep: Pointer to the epoll private data structure. 465 * @sproc: Pointer to the scan callback. 466 * @priv: Private opaque data passed to the @sproc callback. 467 * 468 * Returns: The same integer error code returned by the @sproc callback. 469 */ 470 static int ep_scan_ready_list(struct eventpoll *ep, 471 int (*sproc)(struct eventpoll *, 472 struct list_head *, void *), 473 void *priv) 474 { 475 int error, pwake = 0; 476 unsigned long flags; 477 struct epitem *epi, *nepi; 478 LIST_HEAD(txlist); 479 480 /* 481 * We need to lock this because we could be hit by 482 * eventpoll_release_file() and epoll_ctl(). 483 */ 484 mutex_lock(&ep->mtx); 485 486 /* 487 * Steal the ready list, and re-init the original one to the 488 * empty list. Also, set ep->ovflist to NULL so that events 489 * happening while looping w/out locks, are not lost. We cannot 490 * have the poll callback to queue directly on ep->rdllist, 491 * because we want the "sproc" callback to be able to do it 492 * in a lockless way. 493 */ 494 spin_lock_irqsave(&ep->lock, flags); 495 list_splice_init(&ep->rdllist, &txlist); 496 ep->ovflist = NULL; 497 spin_unlock_irqrestore(&ep->lock, flags); 498 499 /* 500 * Now call the callback function. 501 */ 502 error = (*sproc)(ep, &txlist, priv); 503 504 spin_lock_irqsave(&ep->lock, flags); 505 /* 506 * During the time we spent inside the "sproc" callback, some 507 * other events might have been queued by the poll callback. 508 * We re-insert them inside the main ready-list here. 509 */ 510 for (nepi = ep->ovflist; (epi = nepi) != NULL; 511 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 512 /* 513 * We need to check if the item is already in the list. 514 * During the "sproc" callback execution time, items are 515 * queued into ->ovflist but the "txlist" might already 516 * contain them, and the list_splice() below takes care of them. 517 */ 518 if (!ep_is_linked(&epi->rdllink)) 519 list_add_tail(&epi->rdllink, &ep->rdllist); 520 } 521 /* 522 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 523 * releasing the lock, events will be queued in the normal way inside 524 * ep->rdllist. 525 */ 526 ep->ovflist = EP_UNACTIVE_PTR; 527 528 /* 529 * Quickly re-inject items left on "txlist". 530 */ 531 list_splice(&txlist, &ep->rdllist); 532 533 if (!list_empty(&ep->rdllist)) { 534 /* 535 * Wake up (if active) both the eventpoll wait list and 536 * the ->poll() wait list (delayed after we release the lock). 537 */ 538 if (waitqueue_active(&ep->wq)) 539 wake_up_locked(&ep->wq); 540 if (waitqueue_active(&ep->poll_wait)) 541 pwake++; 542 } 543 spin_unlock_irqrestore(&ep->lock, flags); 544 545 mutex_unlock(&ep->mtx); 546 547 /* We have to call this outside the lock */ 548 if (pwake) 549 ep_poll_safewake(&ep->poll_wait); 550 551 return error; 552 } 553 554 /* 555 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 556 * all the associated resources. Must be called with "mtx" held. 557 */ 558 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 559 { 560 unsigned long flags; 561 struct file *file = epi->ffd.file; 562 563 /* 564 * Removes poll wait queue hooks. We _have_ to do this without holding 565 * the "ep->lock" otherwise a deadlock might occur. This because of the 566 * sequence of the lock acquisition. Here we do "ep->lock" then the wait 567 * queue head lock when unregistering the wait queue. The wakeup callback 568 * will run by holding the wait queue head lock and will call our callback 569 * that will try to get "ep->lock". 570 */ 571 ep_unregister_pollwait(ep, epi); 572 573 /* Remove the current item from the list of epoll hooks */ 574 spin_lock(&file->f_lock); 575 if (ep_is_linked(&epi->fllink)) 576 list_del_init(&epi->fllink); 577 spin_unlock(&file->f_lock); 578 579 rb_erase(&epi->rbn, &ep->rbr); 580 581 spin_lock_irqsave(&ep->lock, flags); 582 if (ep_is_linked(&epi->rdllink)) 583 list_del_init(&epi->rdllink); 584 spin_unlock_irqrestore(&ep->lock, flags); 585 586 /* At this point it is safe to free the eventpoll item */ 587 kmem_cache_free(epi_cache, epi); 588 589 atomic_long_dec(&ep->user->epoll_watches); 590 591 return 0; 592 } 593 594 static void ep_free(struct eventpoll *ep) 595 { 596 struct rb_node *rbp; 597 struct epitem *epi; 598 599 /* We need to release all tasks waiting for these file */ 600 if (waitqueue_active(&ep->poll_wait)) 601 ep_poll_safewake(&ep->poll_wait); 602 603 /* 604 * We need to lock this because we could be hit by 605 * eventpoll_release_file() while we're freeing the "struct eventpoll". 606 * We do not need to hold "ep->mtx" here because the epoll file 607 * is on the way to be removed and no one has references to it 608 * anymore. The only hit might come from eventpoll_release_file() but 609 * holding "epmutex" is sufficient here. 610 */ 611 mutex_lock(&epmutex); 612 613 /* 614 * Walks through the whole tree by unregistering poll callbacks. 615 */ 616 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 617 epi = rb_entry(rbp, struct epitem, rbn); 618 619 ep_unregister_pollwait(ep, epi); 620 } 621 622 /* 623 * Walks through the whole tree by freeing each "struct epitem". At this 624 * point we are sure no poll callbacks will be lingering around, and also by 625 * holding "epmutex" we can be sure that no file cleanup code will hit 626 * us during this operation. So we can avoid the lock on "ep->lock". 627 */ 628 while ((rbp = rb_first(&ep->rbr)) != NULL) { 629 epi = rb_entry(rbp, struct epitem, rbn); 630 ep_remove(ep, epi); 631 } 632 633 mutex_unlock(&epmutex); 634 mutex_destroy(&ep->mtx); 635 free_uid(ep->user); 636 kfree(ep); 637 } 638 639 static int ep_eventpoll_release(struct inode *inode, struct file *file) 640 { 641 struct eventpoll *ep = file->private_data; 642 643 if (ep) 644 ep_free(ep); 645 646 return 0; 647 } 648 649 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head, 650 void *priv) 651 { 652 struct epitem *epi, *tmp; 653 654 list_for_each_entry_safe(epi, tmp, head, rdllink) { 655 if (epi->ffd.file->f_op->poll(epi->ffd.file, NULL) & 656 epi->event.events) 657 return POLLIN | POLLRDNORM; 658 else { 659 /* 660 * Item has been dropped into the ready list by the poll 661 * callback, but it's not actually ready, as far as 662 * caller requested events goes. We can remove it here. 663 */ 664 list_del_init(&epi->rdllink); 665 } 666 } 667 668 return 0; 669 } 670 671 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests) 672 { 673 return ep_scan_ready_list(priv, ep_read_events_proc, NULL); 674 } 675 676 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait) 677 { 678 int pollflags; 679 struct eventpoll *ep = file->private_data; 680 681 /* Insert inside our poll wait queue */ 682 poll_wait(file, &ep->poll_wait, wait); 683 684 /* 685 * Proceed to find out if wanted events are really available inside 686 * the ready list. This need to be done under ep_call_nested() 687 * supervision, since the call to f_op->poll() done on listed files 688 * could re-enter here. 689 */ 690 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS, 691 ep_poll_readyevents_proc, ep, ep, current); 692 693 return pollflags != -1 ? pollflags : 0; 694 } 695 696 /* File callbacks that implement the eventpoll file behaviour */ 697 static const struct file_operations eventpoll_fops = { 698 .release = ep_eventpoll_release, 699 .poll = ep_eventpoll_poll, 700 .llseek = noop_llseek, 701 }; 702 703 /* Fast test to see if the file is an evenpoll file */ 704 static inline int is_file_epoll(struct file *f) 705 { 706 return f->f_op == &eventpoll_fops; 707 } 708 709 /* 710 * This is called from eventpoll_release() to unlink files from the eventpoll 711 * interface. We need to have this facility to cleanup correctly files that are 712 * closed without being removed from the eventpoll interface. 713 */ 714 void eventpoll_release_file(struct file *file) 715 { 716 struct list_head *lsthead = &file->f_ep_links; 717 struct eventpoll *ep; 718 struct epitem *epi; 719 720 /* 721 * We don't want to get "file->f_lock" because it is not 722 * necessary. It is not necessary because we're in the "struct file" 723 * cleanup path, and this means that no one is using this file anymore. 724 * So, for example, epoll_ctl() cannot hit here since if we reach this 725 * point, the file counter already went to zero and fget() would fail. 726 * The only hit might come from ep_free() but by holding the mutex 727 * will correctly serialize the operation. We do need to acquire 728 * "ep->mtx" after "epmutex" because ep_remove() requires it when called 729 * from anywhere but ep_free(). 730 * 731 * Besides, ep_remove() acquires the lock, so we can't hold it here. 732 */ 733 mutex_lock(&epmutex); 734 735 while (!list_empty(lsthead)) { 736 epi = list_first_entry(lsthead, struct epitem, fllink); 737 738 ep = epi->ep; 739 list_del_init(&epi->fllink); 740 mutex_lock(&ep->mtx); 741 ep_remove(ep, epi); 742 mutex_unlock(&ep->mtx); 743 } 744 745 mutex_unlock(&epmutex); 746 } 747 748 static int ep_alloc(struct eventpoll **pep) 749 { 750 int error; 751 struct user_struct *user; 752 struct eventpoll *ep; 753 754 user = get_current_user(); 755 error = -ENOMEM; 756 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 757 if (unlikely(!ep)) 758 goto free_uid; 759 760 spin_lock_init(&ep->lock); 761 mutex_init(&ep->mtx); 762 init_waitqueue_head(&ep->wq); 763 init_waitqueue_head(&ep->poll_wait); 764 INIT_LIST_HEAD(&ep->rdllist); 765 ep->rbr = RB_ROOT; 766 ep->ovflist = EP_UNACTIVE_PTR; 767 ep->user = user; 768 769 *pep = ep; 770 771 return 0; 772 773 free_uid: 774 free_uid(user); 775 return error; 776 } 777 778 /* 779 * Search the file inside the eventpoll tree. The RB tree operations 780 * are protected by the "mtx" mutex, and ep_find() must be called with 781 * "mtx" held. 782 */ 783 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 784 { 785 int kcmp; 786 struct rb_node *rbp; 787 struct epitem *epi, *epir = NULL; 788 struct epoll_filefd ffd; 789 790 ep_set_ffd(&ffd, file, fd); 791 for (rbp = ep->rbr.rb_node; rbp; ) { 792 epi = rb_entry(rbp, struct epitem, rbn); 793 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 794 if (kcmp > 0) 795 rbp = rbp->rb_right; 796 else if (kcmp < 0) 797 rbp = rbp->rb_left; 798 else { 799 epir = epi; 800 break; 801 } 802 } 803 804 return epir; 805 } 806 807 /* 808 * This is the callback that is passed to the wait queue wakeup 809 * mechanism. It is called by the stored file descriptors when they 810 * have events to report. 811 */ 812 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key) 813 { 814 int pwake = 0; 815 unsigned long flags; 816 struct epitem *epi = ep_item_from_wait(wait); 817 struct eventpoll *ep = epi->ep; 818 819 spin_lock_irqsave(&ep->lock, flags); 820 821 /* 822 * If the event mask does not contain any poll(2) event, we consider the 823 * descriptor to be disabled. This condition is likely the effect of the 824 * EPOLLONESHOT bit that disables the descriptor when an event is received, 825 * until the next EPOLL_CTL_MOD will be issued. 826 */ 827 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 828 goto out_unlock; 829 830 /* 831 * Check the events coming with the callback. At this stage, not 832 * every device reports the events in the "key" parameter of the 833 * callback. We need to be able to handle both cases here, hence the 834 * test for "key" != NULL before the event match test. 835 */ 836 if (key && !((unsigned long) key & epi->event.events)) 837 goto out_unlock; 838 839 /* 840 * If we are transferring events to userspace, we can hold no locks 841 * (because we're accessing user memory, and because of linux f_op->poll() 842 * semantics). All the events that happen during that period of time are 843 * chained in ep->ovflist and requeued later on. 844 */ 845 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) { 846 if (epi->next == EP_UNACTIVE_PTR) { 847 epi->next = ep->ovflist; 848 ep->ovflist = epi; 849 } 850 goto out_unlock; 851 } 852 853 /* If this file is already in the ready list we exit soon */ 854 if (!ep_is_linked(&epi->rdllink)) 855 list_add_tail(&epi->rdllink, &ep->rdllist); 856 857 /* 858 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 859 * wait list. 860 */ 861 if (waitqueue_active(&ep->wq)) 862 wake_up_locked(&ep->wq); 863 if (waitqueue_active(&ep->poll_wait)) 864 pwake++; 865 866 out_unlock: 867 spin_unlock_irqrestore(&ep->lock, flags); 868 869 /* We have to call this outside the lock */ 870 if (pwake) 871 ep_poll_safewake(&ep->poll_wait); 872 873 return 1; 874 } 875 876 /* 877 * This is the callback that is used to add our wait queue to the 878 * target file wakeup lists. 879 */ 880 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 881 poll_table *pt) 882 { 883 struct epitem *epi = ep_item_from_epqueue(pt); 884 struct eppoll_entry *pwq; 885 886 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { 887 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 888 pwq->whead = whead; 889 pwq->base = epi; 890 add_wait_queue(whead, &pwq->wait); 891 list_add_tail(&pwq->llink, &epi->pwqlist); 892 epi->nwait++; 893 } else { 894 /* We have to signal that an error occurred */ 895 epi->nwait = -1; 896 } 897 } 898 899 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 900 { 901 int kcmp; 902 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL; 903 struct epitem *epic; 904 905 while (*p) { 906 parent = *p; 907 epic = rb_entry(parent, struct epitem, rbn); 908 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 909 if (kcmp > 0) 910 p = &parent->rb_right; 911 else 912 p = &parent->rb_left; 913 } 914 rb_link_node(&epi->rbn, parent, p); 915 rb_insert_color(&epi->rbn, &ep->rbr); 916 } 917 918 /* 919 * Must be called with "mtx" held. 920 */ 921 static int ep_insert(struct eventpoll *ep, struct epoll_event *event, 922 struct file *tfile, int fd) 923 { 924 int error, revents, pwake = 0; 925 unsigned long flags; 926 long user_watches; 927 struct epitem *epi; 928 struct ep_pqueue epq; 929 930 user_watches = atomic_long_read(&ep->user->epoll_watches); 931 if (unlikely(user_watches >= max_user_watches)) 932 return -ENOSPC; 933 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) 934 return -ENOMEM; 935 936 /* Item initialization follow here ... */ 937 INIT_LIST_HEAD(&epi->rdllink); 938 INIT_LIST_HEAD(&epi->fllink); 939 INIT_LIST_HEAD(&epi->pwqlist); 940 epi->ep = ep; 941 ep_set_ffd(&epi->ffd, tfile, fd); 942 epi->event = *event; 943 epi->nwait = 0; 944 epi->next = EP_UNACTIVE_PTR; 945 946 /* Initialize the poll table using the queue callback */ 947 epq.epi = epi; 948 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 949 950 /* 951 * Attach the item to the poll hooks and get current event bits. 952 * We can safely use the file* here because its usage count has 953 * been increased by the caller of this function. Note that after 954 * this operation completes, the poll callback can start hitting 955 * the new item. 956 */ 957 revents = tfile->f_op->poll(tfile, &epq.pt); 958 959 /* 960 * We have to check if something went wrong during the poll wait queue 961 * install process. Namely an allocation for a wait queue failed due 962 * high memory pressure. 963 */ 964 error = -ENOMEM; 965 if (epi->nwait < 0) 966 goto error_unregister; 967 968 /* Add the current item to the list of active epoll hook for this file */ 969 spin_lock(&tfile->f_lock); 970 list_add_tail(&epi->fllink, &tfile->f_ep_links); 971 spin_unlock(&tfile->f_lock); 972 973 /* 974 * Add the current item to the RB tree. All RB tree operations are 975 * protected by "mtx", and ep_insert() is called with "mtx" held. 976 */ 977 ep_rbtree_insert(ep, epi); 978 979 /* We have to drop the new item inside our item list to keep track of it */ 980 spin_lock_irqsave(&ep->lock, flags); 981 982 /* If the file is already "ready" we drop it inside the ready list */ 983 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) { 984 list_add_tail(&epi->rdllink, &ep->rdllist); 985 986 /* Notify waiting tasks that events are available */ 987 if (waitqueue_active(&ep->wq)) 988 wake_up_locked(&ep->wq); 989 if (waitqueue_active(&ep->poll_wait)) 990 pwake++; 991 } 992 993 spin_unlock_irqrestore(&ep->lock, flags); 994 995 atomic_long_inc(&ep->user->epoll_watches); 996 997 /* We have to call this outside the lock */ 998 if (pwake) 999 ep_poll_safewake(&ep->poll_wait); 1000 1001 return 0; 1002 1003 error_unregister: 1004 ep_unregister_pollwait(ep, epi); 1005 1006 /* 1007 * We need to do this because an event could have been arrived on some 1008 * allocated wait queue. Note that we don't care about the ep->ovflist 1009 * list, since that is used/cleaned only inside a section bound by "mtx". 1010 * And ep_insert() is called with "mtx" held. 1011 */ 1012 spin_lock_irqsave(&ep->lock, flags); 1013 if (ep_is_linked(&epi->rdllink)) 1014 list_del_init(&epi->rdllink); 1015 spin_unlock_irqrestore(&ep->lock, flags); 1016 1017 kmem_cache_free(epi_cache, epi); 1018 1019 return error; 1020 } 1021 1022 /* 1023 * Modify the interest event mask by dropping an event if the new mask 1024 * has a match in the current file status. Must be called with "mtx" held. 1025 */ 1026 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event) 1027 { 1028 int pwake = 0; 1029 unsigned int revents; 1030 1031 /* 1032 * Set the new event interest mask before calling f_op->poll(); 1033 * otherwise we might miss an event that happens between the 1034 * f_op->poll() call and the new event set registering. 1035 */ 1036 epi->event.events = event->events; 1037 epi->event.data = event->data; /* protected by mtx */ 1038 1039 /* 1040 * Get current event bits. We can safely use the file* here because 1041 * its usage count has been increased by the caller of this function. 1042 */ 1043 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL); 1044 1045 /* 1046 * If the item is "hot" and it is not registered inside the ready 1047 * list, push it inside. 1048 */ 1049 if (revents & event->events) { 1050 spin_lock_irq(&ep->lock); 1051 if (!ep_is_linked(&epi->rdllink)) { 1052 list_add_tail(&epi->rdllink, &ep->rdllist); 1053 1054 /* Notify waiting tasks that events are available */ 1055 if (waitqueue_active(&ep->wq)) 1056 wake_up_locked(&ep->wq); 1057 if (waitqueue_active(&ep->poll_wait)) 1058 pwake++; 1059 } 1060 spin_unlock_irq(&ep->lock); 1061 } 1062 1063 /* We have to call this outside the lock */ 1064 if (pwake) 1065 ep_poll_safewake(&ep->poll_wait); 1066 1067 return 0; 1068 } 1069 1070 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head, 1071 void *priv) 1072 { 1073 struct ep_send_events_data *esed = priv; 1074 int eventcnt; 1075 unsigned int revents; 1076 struct epitem *epi; 1077 struct epoll_event __user *uevent; 1078 1079 /* 1080 * We can loop without lock because we are passed a task private list. 1081 * Items cannot vanish during the loop because ep_scan_ready_list() is 1082 * holding "mtx" during this call. 1083 */ 1084 for (eventcnt = 0, uevent = esed->events; 1085 !list_empty(head) && eventcnt < esed->maxevents;) { 1086 epi = list_first_entry(head, struct epitem, rdllink); 1087 1088 list_del_init(&epi->rdllink); 1089 1090 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL) & 1091 epi->event.events; 1092 1093 /* 1094 * If the event mask intersect the caller-requested one, 1095 * deliver the event to userspace. Again, ep_scan_ready_list() 1096 * is holding "mtx", so no operations coming from userspace 1097 * can change the item. 1098 */ 1099 if (revents) { 1100 if (__put_user(revents, &uevent->events) || 1101 __put_user(epi->event.data, &uevent->data)) { 1102 list_add(&epi->rdllink, head); 1103 return eventcnt ? eventcnt : -EFAULT; 1104 } 1105 eventcnt++; 1106 uevent++; 1107 if (epi->event.events & EPOLLONESHOT) 1108 epi->event.events &= EP_PRIVATE_BITS; 1109 else if (!(epi->event.events & EPOLLET)) { 1110 /* 1111 * If this file has been added with Level 1112 * Trigger mode, we need to insert back inside 1113 * the ready list, so that the next call to 1114 * epoll_wait() will check again the events 1115 * availability. At this point, no one can insert 1116 * into ep->rdllist besides us. The epoll_ctl() 1117 * callers are locked out by 1118 * ep_scan_ready_list() holding "mtx" and the 1119 * poll callback will queue them in ep->ovflist. 1120 */ 1121 list_add_tail(&epi->rdllink, &ep->rdllist); 1122 } 1123 } 1124 } 1125 1126 return eventcnt; 1127 } 1128 1129 static int ep_send_events(struct eventpoll *ep, 1130 struct epoll_event __user *events, int maxevents) 1131 { 1132 struct ep_send_events_data esed; 1133 1134 esed.maxevents = maxevents; 1135 esed.events = events; 1136 1137 return ep_scan_ready_list(ep, ep_send_events_proc, &esed); 1138 } 1139 1140 static inline struct timespec ep_set_mstimeout(long ms) 1141 { 1142 struct timespec now, ts = { 1143 .tv_sec = ms / MSEC_PER_SEC, 1144 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC), 1145 }; 1146 1147 ktime_get_ts(&now); 1148 return timespec_add_safe(now, ts); 1149 } 1150 1151 /** 1152 * ep_poll - Retrieves ready events, and delivers them to the caller supplied 1153 * event buffer. 1154 * 1155 * @ep: Pointer to the eventpoll context. 1156 * @events: Pointer to the userspace buffer where the ready events should be 1157 * stored. 1158 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1159 * @timeout: Maximum timeout for the ready events fetch operation, in 1160 * milliseconds. If the @timeout is zero, the function will not block, 1161 * while if the @timeout is less than zero, the function will block 1162 * until at least one event has been retrieved (or an error 1163 * occurred). 1164 * 1165 * Returns: Returns the number of ready events which have been fetched, or an 1166 * error code, in case of error. 1167 */ 1168 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1169 int maxevents, long timeout) 1170 { 1171 int res = 0, eavail, timed_out = 0; 1172 unsigned long flags; 1173 long slack = 0; 1174 wait_queue_t wait; 1175 ktime_t expires, *to = NULL; 1176 1177 if (timeout > 0) { 1178 struct timespec end_time = ep_set_mstimeout(timeout); 1179 1180 slack = select_estimate_accuracy(&end_time); 1181 to = &expires; 1182 *to = timespec_to_ktime(end_time); 1183 } else if (timeout == 0) { 1184 /* 1185 * Avoid the unnecessary trip to the wait queue loop, if the 1186 * caller specified a non blocking operation. 1187 */ 1188 timed_out = 1; 1189 spin_lock_irqsave(&ep->lock, flags); 1190 goto check_events; 1191 } 1192 1193 fetch_events: 1194 spin_lock_irqsave(&ep->lock, flags); 1195 1196 if (!ep_events_available(ep)) { 1197 /* 1198 * We don't have any available event to return to the caller. 1199 * We need to sleep here, and we will be wake up by 1200 * ep_poll_callback() when events will become available. 1201 */ 1202 init_waitqueue_entry(&wait, current); 1203 __add_wait_queue_exclusive(&ep->wq, &wait); 1204 1205 for (;;) { 1206 /* 1207 * We don't want to sleep if the ep_poll_callback() sends us 1208 * a wakeup in between. That's why we set the task state 1209 * to TASK_INTERRUPTIBLE before doing the checks. 1210 */ 1211 set_current_state(TASK_INTERRUPTIBLE); 1212 if (ep_events_available(ep) || timed_out) 1213 break; 1214 if (signal_pending(current)) { 1215 res = -EINTR; 1216 break; 1217 } 1218 1219 spin_unlock_irqrestore(&ep->lock, flags); 1220 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) 1221 timed_out = 1; 1222 1223 spin_lock_irqsave(&ep->lock, flags); 1224 } 1225 __remove_wait_queue(&ep->wq, &wait); 1226 1227 set_current_state(TASK_RUNNING); 1228 } 1229 check_events: 1230 /* Is it worth to try to dig for events ? */ 1231 eavail = ep_events_available(ep); 1232 1233 spin_unlock_irqrestore(&ep->lock, flags); 1234 1235 /* 1236 * Try to transfer events to user space. In case we get 0 events and 1237 * there's still timeout left over, we go trying again in search of 1238 * more luck. 1239 */ 1240 if (!res && eavail && 1241 !(res = ep_send_events(ep, events, maxevents)) && !timed_out) 1242 goto fetch_events; 1243 1244 return res; 1245 } 1246 1247 /** 1248 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested() 1249 * API, to verify that adding an epoll file inside another 1250 * epoll structure, does not violate the constraints, in 1251 * terms of closed loops, or too deep chains (which can 1252 * result in excessive stack usage). 1253 * 1254 * @priv: Pointer to the epoll file to be currently checked. 1255 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll 1256 * data structure pointer. 1257 * @call_nests: Current dept of the @ep_call_nested() call stack. 1258 * 1259 * Returns: Returns zero if adding the epoll @file inside current epoll 1260 * structure @ep does not violate the constraints, or -1 otherwise. 1261 */ 1262 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests) 1263 { 1264 int error = 0; 1265 struct file *file = priv; 1266 struct eventpoll *ep = file->private_data; 1267 struct rb_node *rbp; 1268 struct epitem *epi; 1269 1270 mutex_lock(&ep->mtx); 1271 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1272 epi = rb_entry(rbp, struct epitem, rbn); 1273 if (unlikely(is_file_epoll(epi->ffd.file))) { 1274 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1275 ep_loop_check_proc, epi->ffd.file, 1276 epi->ffd.file->private_data, current); 1277 if (error != 0) 1278 break; 1279 } 1280 } 1281 mutex_unlock(&ep->mtx); 1282 1283 return error; 1284 } 1285 1286 /** 1287 * ep_loop_check - Performs a check to verify that adding an epoll file (@file) 1288 * another epoll file (represented by @ep) does not create 1289 * closed loops or too deep chains. 1290 * 1291 * @ep: Pointer to the epoll private data structure. 1292 * @file: Pointer to the epoll file to be checked. 1293 * 1294 * Returns: Returns zero if adding the epoll @file inside current epoll 1295 * structure @ep does not violate the constraints, or -1 otherwise. 1296 */ 1297 static int ep_loop_check(struct eventpoll *ep, struct file *file) 1298 { 1299 return ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1300 ep_loop_check_proc, file, ep, current); 1301 } 1302 1303 /* 1304 * Open an eventpoll file descriptor. 1305 */ 1306 SYSCALL_DEFINE1(epoll_create1, int, flags) 1307 { 1308 int error; 1309 struct eventpoll *ep = NULL; 1310 1311 /* Check the EPOLL_* constant for consistency. */ 1312 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 1313 1314 if (flags & ~EPOLL_CLOEXEC) 1315 return -EINVAL; 1316 /* 1317 * Create the internal data structure ("struct eventpoll"). 1318 */ 1319 error = ep_alloc(&ep); 1320 if (error < 0) 1321 return error; 1322 /* 1323 * Creates all the items needed to setup an eventpoll file. That is, 1324 * a file structure and a free file descriptor. 1325 */ 1326 error = anon_inode_getfd("[eventpoll]", &eventpoll_fops, ep, 1327 O_RDWR | (flags & O_CLOEXEC)); 1328 if (error < 0) 1329 ep_free(ep); 1330 1331 return error; 1332 } 1333 1334 SYSCALL_DEFINE1(epoll_create, int, size) 1335 { 1336 if (size <= 0) 1337 return -EINVAL; 1338 1339 return sys_epoll_create1(0); 1340 } 1341 1342 /* 1343 * The following function implements the controller interface for 1344 * the eventpoll file that enables the insertion/removal/change of 1345 * file descriptors inside the interest set. 1346 */ 1347 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 1348 struct epoll_event __user *, event) 1349 { 1350 int error; 1351 int did_lock_epmutex = 0; 1352 struct file *file, *tfile; 1353 struct eventpoll *ep; 1354 struct epitem *epi; 1355 struct epoll_event epds; 1356 1357 error = -EFAULT; 1358 if (ep_op_has_event(op) && 1359 copy_from_user(&epds, event, sizeof(struct epoll_event))) 1360 goto error_return; 1361 1362 /* Get the "struct file *" for the eventpoll file */ 1363 error = -EBADF; 1364 file = fget(epfd); 1365 if (!file) 1366 goto error_return; 1367 1368 /* Get the "struct file *" for the target file */ 1369 tfile = fget(fd); 1370 if (!tfile) 1371 goto error_fput; 1372 1373 /* The target file descriptor must support poll */ 1374 error = -EPERM; 1375 if (!tfile->f_op || !tfile->f_op->poll) 1376 goto error_tgt_fput; 1377 1378 /* 1379 * We have to check that the file structure underneath the file descriptor 1380 * the user passed to us _is_ an eventpoll file. And also we do not permit 1381 * adding an epoll file descriptor inside itself. 1382 */ 1383 error = -EINVAL; 1384 if (file == tfile || !is_file_epoll(file)) 1385 goto error_tgt_fput; 1386 1387 /* 1388 * At this point it is safe to assume that the "private_data" contains 1389 * our own data structure. 1390 */ 1391 ep = file->private_data; 1392 1393 /* 1394 * When we insert an epoll file descriptor, inside another epoll file 1395 * descriptor, there is the change of creating closed loops, which are 1396 * better be handled here, than in more critical paths. 1397 * 1398 * We hold epmutex across the loop check and the insert in this case, in 1399 * order to prevent two separate inserts from racing and each doing the 1400 * insert "at the same time" such that ep_loop_check passes on both 1401 * before either one does the insert, thereby creating a cycle. 1402 */ 1403 if (unlikely(is_file_epoll(tfile) && op == EPOLL_CTL_ADD)) { 1404 mutex_lock(&epmutex); 1405 did_lock_epmutex = 1; 1406 error = -ELOOP; 1407 if (ep_loop_check(ep, tfile) != 0) 1408 goto error_tgt_fput; 1409 } 1410 1411 1412 mutex_lock(&ep->mtx); 1413 1414 /* 1415 * Try to lookup the file inside our RB tree, Since we grabbed "mtx" 1416 * above, we can be sure to be able to use the item looked up by 1417 * ep_find() till we release the mutex. 1418 */ 1419 epi = ep_find(ep, tfile, fd); 1420 1421 error = -EINVAL; 1422 switch (op) { 1423 case EPOLL_CTL_ADD: 1424 if (!epi) { 1425 epds.events |= POLLERR | POLLHUP; 1426 error = ep_insert(ep, &epds, tfile, fd); 1427 } else 1428 error = -EEXIST; 1429 break; 1430 case EPOLL_CTL_DEL: 1431 if (epi) 1432 error = ep_remove(ep, epi); 1433 else 1434 error = -ENOENT; 1435 break; 1436 case EPOLL_CTL_MOD: 1437 if (epi) { 1438 epds.events |= POLLERR | POLLHUP; 1439 error = ep_modify(ep, epi, &epds); 1440 } else 1441 error = -ENOENT; 1442 break; 1443 } 1444 mutex_unlock(&ep->mtx); 1445 1446 error_tgt_fput: 1447 if (unlikely(did_lock_epmutex)) 1448 mutex_unlock(&epmutex); 1449 1450 fput(tfile); 1451 error_fput: 1452 fput(file); 1453 error_return: 1454 1455 return error; 1456 } 1457 1458 /* 1459 * Implement the event wait interface for the eventpoll file. It is the kernel 1460 * part of the user space epoll_wait(2). 1461 */ 1462 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 1463 int, maxevents, int, timeout) 1464 { 1465 int error; 1466 struct file *file; 1467 struct eventpoll *ep; 1468 1469 /* The maximum number of event must be greater than zero */ 1470 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 1471 return -EINVAL; 1472 1473 /* Verify that the area passed by the user is writeable */ 1474 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) { 1475 error = -EFAULT; 1476 goto error_return; 1477 } 1478 1479 /* Get the "struct file *" for the eventpoll file */ 1480 error = -EBADF; 1481 file = fget(epfd); 1482 if (!file) 1483 goto error_return; 1484 1485 /* 1486 * We have to check that the file structure underneath the fd 1487 * the user passed to us _is_ an eventpoll file. 1488 */ 1489 error = -EINVAL; 1490 if (!is_file_epoll(file)) 1491 goto error_fput; 1492 1493 /* 1494 * At this point it is safe to assume that the "private_data" contains 1495 * our own data structure. 1496 */ 1497 ep = file->private_data; 1498 1499 /* Time to fish for events ... */ 1500 error = ep_poll(ep, events, maxevents, timeout); 1501 1502 error_fput: 1503 fput(file); 1504 error_return: 1505 1506 return error; 1507 } 1508 1509 #ifdef HAVE_SET_RESTORE_SIGMASK 1510 1511 /* 1512 * Implement the event wait interface for the eventpoll file. It is the kernel 1513 * part of the user space epoll_pwait(2). 1514 */ 1515 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 1516 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 1517 size_t, sigsetsize) 1518 { 1519 int error; 1520 sigset_t ksigmask, sigsaved; 1521 1522 /* 1523 * If the caller wants a certain signal mask to be set during the wait, 1524 * we apply it here. 1525 */ 1526 if (sigmask) { 1527 if (sigsetsize != sizeof(sigset_t)) 1528 return -EINVAL; 1529 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask))) 1530 return -EFAULT; 1531 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 1532 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved); 1533 } 1534 1535 error = sys_epoll_wait(epfd, events, maxevents, timeout); 1536 1537 /* 1538 * If we changed the signal mask, we need to restore the original one. 1539 * In case we've got a signal while waiting, we do not restore the 1540 * signal mask yet, and we allow do_signal() to deliver the signal on 1541 * the way back to userspace, before the signal mask is restored. 1542 */ 1543 if (sigmask) { 1544 if (error == -EINTR) { 1545 memcpy(¤t->saved_sigmask, &sigsaved, 1546 sizeof(sigsaved)); 1547 set_restore_sigmask(); 1548 } else 1549 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 1550 } 1551 1552 return error; 1553 } 1554 1555 #endif /* HAVE_SET_RESTORE_SIGMASK */ 1556 1557 static int __init eventpoll_init(void) 1558 { 1559 struct sysinfo si; 1560 1561 si_meminfo(&si); 1562 /* 1563 * Allows top 4% of lomem to be allocated for epoll watches (per user). 1564 */ 1565 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 1566 EP_ITEM_COST; 1567 BUG_ON(max_user_watches < 0); 1568 1569 /* 1570 * Initialize the structure used to perform epoll file descriptor 1571 * inclusion loops checks. 1572 */ 1573 ep_nested_calls_init(&poll_loop_ncalls); 1574 1575 /* Initialize the structure used to perform safe poll wait head wake ups */ 1576 ep_nested_calls_init(&poll_safewake_ncalls); 1577 1578 /* Initialize the structure used to perform file's f_op->poll() calls */ 1579 ep_nested_calls_init(&poll_readywalk_ncalls); 1580 1581 /* Allocates slab cache used to allocate "struct epitem" items */ 1582 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 1583 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 1584 1585 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 1586 pwq_cache = kmem_cache_create("eventpoll_pwq", 1587 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL); 1588 1589 return 0; 1590 } 1591 fs_initcall(eventpoll_init); 1592