xref: /openbmc/linux/fs/eventpoll.c (revision 9c1f8594)
1 /*
2  *  fs/eventpoll.c (Efficient event retrieval implementation)
3  *  Copyright (C) 2001,...,2009	 Davide Libenzi
4  *
5  *  This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation; either version 2 of the License, or
8  *  (at your option) any later version.
9  *
10  *  Davide Libenzi <davidel@xmailserver.org>
11  *
12  */
13 
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <asm/uaccess.h>
37 #include <asm/system.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <linux/atomic.h>
41 
42 /*
43  * LOCKING:
44  * There are three level of locking required by epoll :
45  *
46  * 1) epmutex (mutex)
47  * 2) ep->mtx (mutex)
48  * 3) ep->lock (spinlock)
49  *
50  * The acquire order is the one listed above, from 1 to 3.
51  * We need a spinlock (ep->lock) because we manipulate objects
52  * from inside the poll callback, that might be triggered from
53  * a wake_up() that in turn might be called from IRQ context.
54  * So we can't sleep inside the poll callback and hence we need
55  * a spinlock. During the event transfer loop (from kernel to
56  * user space) we could end up sleeping due a copy_to_user(), so
57  * we need a lock that will allow us to sleep. This lock is a
58  * mutex (ep->mtx). It is acquired during the event transfer loop,
59  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60  * Then we also need a global mutex to serialize eventpoll_release_file()
61  * and ep_free().
62  * This mutex is acquired by ep_free() during the epoll file
63  * cleanup path and it is also acquired by eventpoll_release_file()
64  * if a file has been pushed inside an epoll set and it is then
65  * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
66  * It is also acquired when inserting an epoll fd onto another epoll
67  * fd. We do this so that we walk the epoll tree and ensure that this
68  * insertion does not create a cycle of epoll file descriptors, which
69  * could lead to deadlock. We need a global mutex to prevent two
70  * simultaneous inserts (A into B and B into A) from racing and
71  * constructing a cycle without either insert observing that it is
72  * going to.
73  * It is possible to drop the "ep->mtx" and to use the global
74  * mutex "epmutex" (together with "ep->lock") to have it working,
75  * but having "ep->mtx" will make the interface more scalable.
76  * Events that require holding "epmutex" are very rare, while for
77  * normal operations the epoll private "ep->mtx" will guarantee
78  * a better scalability.
79  */
80 
81 /* Epoll private bits inside the event mask */
82 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET)
83 
84 /* Maximum number of nesting allowed inside epoll sets */
85 #define EP_MAX_NESTS 4
86 
87 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
88 
89 #define EP_UNACTIVE_PTR ((void *) -1L)
90 
91 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
92 
93 struct epoll_filefd {
94 	struct file *file;
95 	int fd;
96 };
97 
98 /*
99  * Structure used to track possible nested calls, for too deep recursions
100  * and loop cycles.
101  */
102 struct nested_call_node {
103 	struct list_head llink;
104 	void *cookie;
105 	void *ctx;
106 };
107 
108 /*
109  * This structure is used as collector for nested calls, to check for
110  * maximum recursion dept and loop cycles.
111  */
112 struct nested_calls {
113 	struct list_head tasks_call_list;
114 	spinlock_t lock;
115 };
116 
117 /*
118  * Each file descriptor added to the eventpoll interface will
119  * have an entry of this type linked to the "rbr" RB tree.
120  */
121 struct epitem {
122 	/* RB tree node used to link this structure to the eventpoll RB tree */
123 	struct rb_node rbn;
124 
125 	/* List header used to link this structure to the eventpoll ready list */
126 	struct list_head rdllink;
127 
128 	/*
129 	 * Works together "struct eventpoll"->ovflist in keeping the
130 	 * single linked chain of items.
131 	 */
132 	struct epitem *next;
133 
134 	/* The file descriptor information this item refers to */
135 	struct epoll_filefd ffd;
136 
137 	/* Number of active wait queue attached to poll operations */
138 	int nwait;
139 
140 	/* List containing poll wait queues */
141 	struct list_head pwqlist;
142 
143 	/* The "container" of this item */
144 	struct eventpoll *ep;
145 
146 	/* List header used to link this item to the "struct file" items list */
147 	struct list_head fllink;
148 
149 	/* The structure that describe the interested events and the source fd */
150 	struct epoll_event event;
151 };
152 
153 /*
154  * This structure is stored inside the "private_data" member of the file
155  * structure and represents the main data structure for the eventpoll
156  * interface.
157  */
158 struct eventpoll {
159 	/* Protect the access to this structure */
160 	spinlock_t lock;
161 
162 	/*
163 	 * This mutex is used to ensure that files are not removed
164 	 * while epoll is using them. This is held during the event
165 	 * collection loop, the file cleanup path, the epoll file exit
166 	 * code and the ctl operations.
167 	 */
168 	struct mutex mtx;
169 
170 	/* Wait queue used by sys_epoll_wait() */
171 	wait_queue_head_t wq;
172 
173 	/* Wait queue used by file->poll() */
174 	wait_queue_head_t poll_wait;
175 
176 	/* List of ready file descriptors */
177 	struct list_head rdllist;
178 
179 	/* RB tree root used to store monitored fd structs */
180 	struct rb_root rbr;
181 
182 	/*
183 	 * This is a single linked list that chains all the "struct epitem" that
184 	 * happened while transferring ready events to userspace w/out
185 	 * holding ->lock.
186 	 */
187 	struct epitem *ovflist;
188 
189 	/* The user that created the eventpoll descriptor */
190 	struct user_struct *user;
191 };
192 
193 /* Wait structure used by the poll hooks */
194 struct eppoll_entry {
195 	/* List header used to link this structure to the "struct epitem" */
196 	struct list_head llink;
197 
198 	/* The "base" pointer is set to the container "struct epitem" */
199 	struct epitem *base;
200 
201 	/*
202 	 * Wait queue item that will be linked to the target file wait
203 	 * queue head.
204 	 */
205 	wait_queue_t wait;
206 
207 	/* The wait queue head that linked the "wait" wait queue item */
208 	wait_queue_head_t *whead;
209 };
210 
211 /* Wrapper struct used by poll queueing */
212 struct ep_pqueue {
213 	poll_table pt;
214 	struct epitem *epi;
215 };
216 
217 /* Used by the ep_send_events() function as callback private data */
218 struct ep_send_events_data {
219 	int maxevents;
220 	struct epoll_event __user *events;
221 };
222 
223 /*
224  * Configuration options available inside /proc/sys/fs/epoll/
225  */
226 /* Maximum number of epoll watched descriptors, per user */
227 static long max_user_watches __read_mostly;
228 
229 /*
230  * This mutex is used to serialize ep_free() and eventpoll_release_file().
231  */
232 static DEFINE_MUTEX(epmutex);
233 
234 /* Used to check for epoll file descriptor inclusion loops */
235 static struct nested_calls poll_loop_ncalls;
236 
237 /* Used for safe wake up implementation */
238 static struct nested_calls poll_safewake_ncalls;
239 
240 /* Used to call file's f_op->poll() under the nested calls boundaries */
241 static struct nested_calls poll_readywalk_ncalls;
242 
243 /* Slab cache used to allocate "struct epitem" */
244 static struct kmem_cache *epi_cache __read_mostly;
245 
246 /* Slab cache used to allocate "struct eppoll_entry" */
247 static struct kmem_cache *pwq_cache __read_mostly;
248 
249 #ifdef CONFIG_SYSCTL
250 
251 #include <linux/sysctl.h>
252 
253 static long zero;
254 static long long_max = LONG_MAX;
255 
256 ctl_table epoll_table[] = {
257 	{
258 		.procname	= "max_user_watches",
259 		.data		= &max_user_watches,
260 		.maxlen		= sizeof(max_user_watches),
261 		.mode		= 0644,
262 		.proc_handler	= proc_doulongvec_minmax,
263 		.extra1		= &zero,
264 		.extra2		= &long_max,
265 	},
266 	{ }
267 };
268 #endif /* CONFIG_SYSCTL */
269 
270 
271 /* Setup the structure that is used as key for the RB tree */
272 static inline void ep_set_ffd(struct epoll_filefd *ffd,
273 			      struct file *file, int fd)
274 {
275 	ffd->file = file;
276 	ffd->fd = fd;
277 }
278 
279 /* Compare RB tree keys */
280 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
281 			     struct epoll_filefd *p2)
282 {
283 	return (p1->file > p2->file ? +1:
284 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
285 }
286 
287 /* Tells us if the item is currently linked */
288 static inline int ep_is_linked(struct list_head *p)
289 {
290 	return !list_empty(p);
291 }
292 
293 /* Get the "struct epitem" from a wait queue pointer */
294 static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
295 {
296 	return container_of(p, struct eppoll_entry, wait)->base;
297 }
298 
299 /* Get the "struct epitem" from an epoll queue wrapper */
300 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
301 {
302 	return container_of(p, struct ep_pqueue, pt)->epi;
303 }
304 
305 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
306 static inline int ep_op_has_event(int op)
307 {
308 	return op != EPOLL_CTL_DEL;
309 }
310 
311 /* Initialize the poll safe wake up structure */
312 static void ep_nested_calls_init(struct nested_calls *ncalls)
313 {
314 	INIT_LIST_HEAD(&ncalls->tasks_call_list);
315 	spin_lock_init(&ncalls->lock);
316 }
317 
318 /**
319  * ep_events_available - Checks if ready events might be available.
320  *
321  * @ep: Pointer to the eventpoll context.
322  *
323  * Returns: Returns a value different than zero if ready events are available,
324  *          or zero otherwise.
325  */
326 static inline int ep_events_available(struct eventpoll *ep)
327 {
328 	return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
329 }
330 
331 /**
332  * ep_call_nested - Perform a bound (possibly) nested call, by checking
333  *                  that the recursion limit is not exceeded, and that
334  *                  the same nested call (by the meaning of same cookie) is
335  *                  no re-entered.
336  *
337  * @ncalls: Pointer to the nested_calls structure to be used for this call.
338  * @max_nests: Maximum number of allowed nesting calls.
339  * @nproc: Nested call core function pointer.
340  * @priv: Opaque data to be passed to the @nproc callback.
341  * @cookie: Cookie to be used to identify this nested call.
342  * @ctx: This instance context.
343  *
344  * Returns: Returns the code returned by the @nproc callback, or -1 if
345  *          the maximum recursion limit has been exceeded.
346  */
347 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
348 			  int (*nproc)(void *, void *, int), void *priv,
349 			  void *cookie, void *ctx)
350 {
351 	int error, call_nests = 0;
352 	unsigned long flags;
353 	struct list_head *lsthead = &ncalls->tasks_call_list;
354 	struct nested_call_node *tncur;
355 	struct nested_call_node tnode;
356 
357 	spin_lock_irqsave(&ncalls->lock, flags);
358 
359 	/*
360 	 * Try to see if the current task is already inside this wakeup call.
361 	 * We use a list here, since the population inside this set is always
362 	 * very much limited.
363 	 */
364 	list_for_each_entry(tncur, lsthead, llink) {
365 		if (tncur->ctx == ctx &&
366 		    (tncur->cookie == cookie || ++call_nests > max_nests)) {
367 			/*
368 			 * Ops ... loop detected or maximum nest level reached.
369 			 * We abort this wake by breaking the cycle itself.
370 			 */
371 			error = -1;
372 			goto out_unlock;
373 		}
374 	}
375 
376 	/* Add the current task and cookie to the list */
377 	tnode.ctx = ctx;
378 	tnode.cookie = cookie;
379 	list_add(&tnode.llink, lsthead);
380 
381 	spin_unlock_irqrestore(&ncalls->lock, flags);
382 
383 	/* Call the nested function */
384 	error = (*nproc)(priv, cookie, call_nests);
385 
386 	/* Remove the current task from the list */
387 	spin_lock_irqsave(&ncalls->lock, flags);
388 	list_del(&tnode.llink);
389 out_unlock:
390 	spin_unlock_irqrestore(&ncalls->lock, flags);
391 
392 	return error;
393 }
394 
395 #ifdef CONFIG_DEBUG_LOCK_ALLOC
396 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
397 				     unsigned long events, int subclass)
398 {
399 	unsigned long flags;
400 
401 	spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
402 	wake_up_locked_poll(wqueue, events);
403 	spin_unlock_irqrestore(&wqueue->lock, flags);
404 }
405 #else
406 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
407 				     unsigned long events, int subclass)
408 {
409 	wake_up_poll(wqueue, events);
410 }
411 #endif
412 
413 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
414 {
415 	ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
416 			  1 + call_nests);
417 	return 0;
418 }
419 
420 /*
421  * Perform a safe wake up of the poll wait list. The problem is that
422  * with the new callback'd wake up system, it is possible that the
423  * poll callback is reentered from inside the call to wake_up() done
424  * on the poll wait queue head. The rule is that we cannot reenter the
425  * wake up code from the same task more than EP_MAX_NESTS times,
426  * and we cannot reenter the same wait queue head at all. This will
427  * enable to have a hierarchy of epoll file descriptor of no more than
428  * EP_MAX_NESTS deep.
429  */
430 static void ep_poll_safewake(wait_queue_head_t *wq)
431 {
432 	int this_cpu = get_cpu();
433 
434 	ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
435 		       ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
436 
437 	put_cpu();
438 }
439 
440 /*
441  * This function unregisters poll callbacks from the associated file
442  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
443  * ep_free).
444  */
445 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
446 {
447 	struct list_head *lsthead = &epi->pwqlist;
448 	struct eppoll_entry *pwq;
449 
450 	while (!list_empty(lsthead)) {
451 		pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
452 
453 		list_del(&pwq->llink);
454 		remove_wait_queue(pwq->whead, &pwq->wait);
455 		kmem_cache_free(pwq_cache, pwq);
456 	}
457 }
458 
459 /**
460  * ep_scan_ready_list - Scans the ready list in a way that makes possible for
461  *                      the scan code, to call f_op->poll(). Also allows for
462  *                      O(NumReady) performance.
463  *
464  * @ep: Pointer to the epoll private data structure.
465  * @sproc: Pointer to the scan callback.
466  * @priv: Private opaque data passed to the @sproc callback.
467  *
468  * Returns: The same integer error code returned by the @sproc callback.
469  */
470 static int ep_scan_ready_list(struct eventpoll *ep,
471 			      int (*sproc)(struct eventpoll *,
472 					   struct list_head *, void *),
473 			      void *priv)
474 {
475 	int error, pwake = 0;
476 	unsigned long flags;
477 	struct epitem *epi, *nepi;
478 	LIST_HEAD(txlist);
479 
480 	/*
481 	 * We need to lock this because we could be hit by
482 	 * eventpoll_release_file() and epoll_ctl().
483 	 */
484 	mutex_lock(&ep->mtx);
485 
486 	/*
487 	 * Steal the ready list, and re-init the original one to the
488 	 * empty list. Also, set ep->ovflist to NULL so that events
489 	 * happening while looping w/out locks, are not lost. We cannot
490 	 * have the poll callback to queue directly on ep->rdllist,
491 	 * because we want the "sproc" callback to be able to do it
492 	 * in a lockless way.
493 	 */
494 	spin_lock_irqsave(&ep->lock, flags);
495 	list_splice_init(&ep->rdllist, &txlist);
496 	ep->ovflist = NULL;
497 	spin_unlock_irqrestore(&ep->lock, flags);
498 
499 	/*
500 	 * Now call the callback function.
501 	 */
502 	error = (*sproc)(ep, &txlist, priv);
503 
504 	spin_lock_irqsave(&ep->lock, flags);
505 	/*
506 	 * During the time we spent inside the "sproc" callback, some
507 	 * other events might have been queued by the poll callback.
508 	 * We re-insert them inside the main ready-list here.
509 	 */
510 	for (nepi = ep->ovflist; (epi = nepi) != NULL;
511 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
512 		/*
513 		 * We need to check if the item is already in the list.
514 		 * During the "sproc" callback execution time, items are
515 		 * queued into ->ovflist but the "txlist" might already
516 		 * contain them, and the list_splice() below takes care of them.
517 		 */
518 		if (!ep_is_linked(&epi->rdllink))
519 			list_add_tail(&epi->rdllink, &ep->rdllist);
520 	}
521 	/*
522 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
523 	 * releasing the lock, events will be queued in the normal way inside
524 	 * ep->rdllist.
525 	 */
526 	ep->ovflist = EP_UNACTIVE_PTR;
527 
528 	/*
529 	 * Quickly re-inject items left on "txlist".
530 	 */
531 	list_splice(&txlist, &ep->rdllist);
532 
533 	if (!list_empty(&ep->rdllist)) {
534 		/*
535 		 * Wake up (if active) both the eventpoll wait list and
536 		 * the ->poll() wait list (delayed after we release the lock).
537 		 */
538 		if (waitqueue_active(&ep->wq))
539 			wake_up_locked(&ep->wq);
540 		if (waitqueue_active(&ep->poll_wait))
541 			pwake++;
542 	}
543 	spin_unlock_irqrestore(&ep->lock, flags);
544 
545 	mutex_unlock(&ep->mtx);
546 
547 	/* We have to call this outside the lock */
548 	if (pwake)
549 		ep_poll_safewake(&ep->poll_wait);
550 
551 	return error;
552 }
553 
554 /*
555  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
556  * all the associated resources. Must be called with "mtx" held.
557  */
558 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
559 {
560 	unsigned long flags;
561 	struct file *file = epi->ffd.file;
562 
563 	/*
564 	 * Removes poll wait queue hooks. We _have_ to do this without holding
565 	 * the "ep->lock" otherwise a deadlock might occur. This because of the
566 	 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
567 	 * queue head lock when unregistering the wait queue. The wakeup callback
568 	 * will run by holding the wait queue head lock and will call our callback
569 	 * that will try to get "ep->lock".
570 	 */
571 	ep_unregister_pollwait(ep, epi);
572 
573 	/* Remove the current item from the list of epoll hooks */
574 	spin_lock(&file->f_lock);
575 	if (ep_is_linked(&epi->fllink))
576 		list_del_init(&epi->fllink);
577 	spin_unlock(&file->f_lock);
578 
579 	rb_erase(&epi->rbn, &ep->rbr);
580 
581 	spin_lock_irqsave(&ep->lock, flags);
582 	if (ep_is_linked(&epi->rdllink))
583 		list_del_init(&epi->rdllink);
584 	spin_unlock_irqrestore(&ep->lock, flags);
585 
586 	/* At this point it is safe to free the eventpoll item */
587 	kmem_cache_free(epi_cache, epi);
588 
589 	atomic_long_dec(&ep->user->epoll_watches);
590 
591 	return 0;
592 }
593 
594 static void ep_free(struct eventpoll *ep)
595 {
596 	struct rb_node *rbp;
597 	struct epitem *epi;
598 
599 	/* We need to release all tasks waiting for these file */
600 	if (waitqueue_active(&ep->poll_wait))
601 		ep_poll_safewake(&ep->poll_wait);
602 
603 	/*
604 	 * We need to lock this because we could be hit by
605 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
606 	 * We do not need to hold "ep->mtx" here because the epoll file
607 	 * is on the way to be removed and no one has references to it
608 	 * anymore. The only hit might come from eventpoll_release_file() but
609 	 * holding "epmutex" is sufficient here.
610 	 */
611 	mutex_lock(&epmutex);
612 
613 	/*
614 	 * Walks through the whole tree by unregistering poll callbacks.
615 	 */
616 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
617 		epi = rb_entry(rbp, struct epitem, rbn);
618 
619 		ep_unregister_pollwait(ep, epi);
620 	}
621 
622 	/*
623 	 * Walks through the whole tree by freeing each "struct epitem". At this
624 	 * point we are sure no poll callbacks will be lingering around, and also by
625 	 * holding "epmutex" we can be sure that no file cleanup code will hit
626 	 * us during this operation. So we can avoid the lock on "ep->lock".
627 	 */
628 	while ((rbp = rb_first(&ep->rbr)) != NULL) {
629 		epi = rb_entry(rbp, struct epitem, rbn);
630 		ep_remove(ep, epi);
631 	}
632 
633 	mutex_unlock(&epmutex);
634 	mutex_destroy(&ep->mtx);
635 	free_uid(ep->user);
636 	kfree(ep);
637 }
638 
639 static int ep_eventpoll_release(struct inode *inode, struct file *file)
640 {
641 	struct eventpoll *ep = file->private_data;
642 
643 	if (ep)
644 		ep_free(ep);
645 
646 	return 0;
647 }
648 
649 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
650 			       void *priv)
651 {
652 	struct epitem *epi, *tmp;
653 
654 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
655 		if (epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
656 		    epi->event.events)
657 			return POLLIN | POLLRDNORM;
658 		else {
659 			/*
660 			 * Item has been dropped into the ready list by the poll
661 			 * callback, but it's not actually ready, as far as
662 			 * caller requested events goes. We can remove it here.
663 			 */
664 			list_del_init(&epi->rdllink);
665 		}
666 	}
667 
668 	return 0;
669 }
670 
671 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
672 {
673 	return ep_scan_ready_list(priv, ep_read_events_proc, NULL);
674 }
675 
676 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
677 {
678 	int pollflags;
679 	struct eventpoll *ep = file->private_data;
680 
681 	/* Insert inside our poll wait queue */
682 	poll_wait(file, &ep->poll_wait, wait);
683 
684 	/*
685 	 * Proceed to find out if wanted events are really available inside
686 	 * the ready list. This need to be done under ep_call_nested()
687 	 * supervision, since the call to f_op->poll() done on listed files
688 	 * could re-enter here.
689 	 */
690 	pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
691 				   ep_poll_readyevents_proc, ep, ep, current);
692 
693 	return pollflags != -1 ? pollflags : 0;
694 }
695 
696 /* File callbacks that implement the eventpoll file behaviour */
697 static const struct file_operations eventpoll_fops = {
698 	.release	= ep_eventpoll_release,
699 	.poll		= ep_eventpoll_poll,
700 	.llseek		= noop_llseek,
701 };
702 
703 /* Fast test to see if the file is an evenpoll file */
704 static inline int is_file_epoll(struct file *f)
705 {
706 	return f->f_op == &eventpoll_fops;
707 }
708 
709 /*
710  * This is called from eventpoll_release() to unlink files from the eventpoll
711  * interface. We need to have this facility to cleanup correctly files that are
712  * closed without being removed from the eventpoll interface.
713  */
714 void eventpoll_release_file(struct file *file)
715 {
716 	struct list_head *lsthead = &file->f_ep_links;
717 	struct eventpoll *ep;
718 	struct epitem *epi;
719 
720 	/*
721 	 * We don't want to get "file->f_lock" because it is not
722 	 * necessary. It is not necessary because we're in the "struct file"
723 	 * cleanup path, and this means that no one is using this file anymore.
724 	 * So, for example, epoll_ctl() cannot hit here since if we reach this
725 	 * point, the file counter already went to zero and fget() would fail.
726 	 * The only hit might come from ep_free() but by holding the mutex
727 	 * will correctly serialize the operation. We do need to acquire
728 	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
729 	 * from anywhere but ep_free().
730 	 *
731 	 * Besides, ep_remove() acquires the lock, so we can't hold it here.
732 	 */
733 	mutex_lock(&epmutex);
734 
735 	while (!list_empty(lsthead)) {
736 		epi = list_first_entry(lsthead, struct epitem, fllink);
737 
738 		ep = epi->ep;
739 		list_del_init(&epi->fllink);
740 		mutex_lock(&ep->mtx);
741 		ep_remove(ep, epi);
742 		mutex_unlock(&ep->mtx);
743 	}
744 
745 	mutex_unlock(&epmutex);
746 }
747 
748 static int ep_alloc(struct eventpoll **pep)
749 {
750 	int error;
751 	struct user_struct *user;
752 	struct eventpoll *ep;
753 
754 	user = get_current_user();
755 	error = -ENOMEM;
756 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
757 	if (unlikely(!ep))
758 		goto free_uid;
759 
760 	spin_lock_init(&ep->lock);
761 	mutex_init(&ep->mtx);
762 	init_waitqueue_head(&ep->wq);
763 	init_waitqueue_head(&ep->poll_wait);
764 	INIT_LIST_HEAD(&ep->rdllist);
765 	ep->rbr = RB_ROOT;
766 	ep->ovflist = EP_UNACTIVE_PTR;
767 	ep->user = user;
768 
769 	*pep = ep;
770 
771 	return 0;
772 
773 free_uid:
774 	free_uid(user);
775 	return error;
776 }
777 
778 /*
779  * Search the file inside the eventpoll tree. The RB tree operations
780  * are protected by the "mtx" mutex, and ep_find() must be called with
781  * "mtx" held.
782  */
783 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
784 {
785 	int kcmp;
786 	struct rb_node *rbp;
787 	struct epitem *epi, *epir = NULL;
788 	struct epoll_filefd ffd;
789 
790 	ep_set_ffd(&ffd, file, fd);
791 	for (rbp = ep->rbr.rb_node; rbp; ) {
792 		epi = rb_entry(rbp, struct epitem, rbn);
793 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
794 		if (kcmp > 0)
795 			rbp = rbp->rb_right;
796 		else if (kcmp < 0)
797 			rbp = rbp->rb_left;
798 		else {
799 			epir = epi;
800 			break;
801 		}
802 	}
803 
804 	return epir;
805 }
806 
807 /*
808  * This is the callback that is passed to the wait queue wakeup
809  * mechanism. It is called by the stored file descriptors when they
810  * have events to report.
811  */
812 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
813 {
814 	int pwake = 0;
815 	unsigned long flags;
816 	struct epitem *epi = ep_item_from_wait(wait);
817 	struct eventpoll *ep = epi->ep;
818 
819 	spin_lock_irqsave(&ep->lock, flags);
820 
821 	/*
822 	 * If the event mask does not contain any poll(2) event, we consider the
823 	 * descriptor to be disabled. This condition is likely the effect of the
824 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
825 	 * until the next EPOLL_CTL_MOD will be issued.
826 	 */
827 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
828 		goto out_unlock;
829 
830 	/*
831 	 * Check the events coming with the callback. At this stage, not
832 	 * every device reports the events in the "key" parameter of the
833 	 * callback. We need to be able to handle both cases here, hence the
834 	 * test for "key" != NULL before the event match test.
835 	 */
836 	if (key && !((unsigned long) key & epi->event.events))
837 		goto out_unlock;
838 
839 	/*
840 	 * If we are transferring events to userspace, we can hold no locks
841 	 * (because we're accessing user memory, and because of linux f_op->poll()
842 	 * semantics). All the events that happen during that period of time are
843 	 * chained in ep->ovflist and requeued later on.
844 	 */
845 	if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
846 		if (epi->next == EP_UNACTIVE_PTR) {
847 			epi->next = ep->ovflist;
848 			ep->ovflist = epi;
849 		}
850 		goto out_unlock;
851 	}
852 
853 	/* If this file is already in the ready list we exit soon */
854 	if (!ep_is_linked(&epi->rdllink))
855 		list_add_tail(&epi->rdllink, &ep->rdllist);
856 
857 	/*
858 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
859 	 * wait list.
860 	 */
861 	if (waitqueue_active(&ep->wq))
862 		wake_up_locked(&ep->wq);
863 	if (waitqueue_active(&ep->poll_wait))
864 		pwake++;
865 
866 out_unlock:
867 	spin_unlock_irqrestore(&ep->lock, flags);
868 
869 	/* We have to call this outside the lock */
870 	if (pwake)
871 		ep_poll_safewake(&ep->poll_wait);
872 
873 	return 1;
874 }
875 
876 /*
877  * This is the callback that is used to add our wait queue to the
878  * target file wakeup lists.
879  */
880 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
881 				 poll_table *pt)
882 {
883 	struct epitem *epi = ep_item_from_epqueue(pt);
884 	struct eppoll_entry *pwq;
885 
886 	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
887 		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
888 		pwq->whead = whead;
889 		pwq->base = epi;
890 		add_wait_queue(whead, &pwq->wait);
891 		list_add_tail(&pwq->llink, &epi->pwqlist);
892 		epi->nwait++;
893 	} else {
894 		/* We have to signal that an error occurred */
895 		epi->nwait = -1;
896 	}
897 }
898 
899 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
900 {
901 	int kcmp;
902 	struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
903 	struct epitem *epic;
904 
905 	while (*p) {
906 		parent = *p;
907 		epic = rb_entry(parent, struct epitem, rbn);
908 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
909 		if (kcmp > 0)
910 			p = &parent->rb_right;
911 		else
912 			p = &parent->rb_left;
913 	}
914 	rb_link_node(&epi->rbn, parent, p);
915 	rb_insert_color(&epi->rbn, &ep->rbr);
916 }
917 
918 /*
919  * Must be called with "mtx" held.
920  */
921 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
922 		     struct file *tfile, int fd)
923 {
924 	int error, revents, pwake = 0;
925 	unsigned long flags;
926 	long user_watches;
927 	struct epitem *epi;
928 	struct ep_pqueue epq;
929 
930 	user_watches = atomic_long_read(&ep->user->epoll_watches);
931 	if (unlikely(user_watches >= max_user_watches))
932 		return -ENOSPC;
933 	if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
934 		return -ENOMEM;
935 
936 	/* Item initialization follow here ... */
937 	INIT_LIST_HEAD(&epi->rdllink);
938 	INIT_LIST_HEAD(&epi->fllink);
939 	INIT_LIST_HEAD(&epi->pwqlist);
940 	epi->ep = ep;
941 	ep_set_ffd(&epi->ffd, tfile, fd);
942 	epi->event = *event;
943 	epi->nwait = 0;
944 	epi->next = EP_UNACTIVE_PTR;
945 
946 	/* Initialize the poll table using the queue callback */
947 	epq.epi = epi;
948 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
949 
950 	/*
951 	 * Attach the item to the poll hooks and get current event bits.
952 	 * We can safely use the file* here because its usage count has
953 	 * been increased by the caller of this function. Note that after
954 	 * this operation completes, the poll callback can start hitting
955 	 * the new item.
956 	 */
957 	revents = tfile->f_op->poll(tfile, &epq.pt);
958 
959 	/*
960 	 * We have to check if something went wrong during the poll wait queue
961 	 * install process. Namely an allocation for a wait queue failed due
962 	 * high memory pressure.
963 	 */
964 	error = -ENOMEM;
965 	if (epi->nwait < 0)
966 		goto error_unregister;
967 
968 	/* Add the current item to the list of active epoll hook for this file */
969 	spin_lock(&tfile->f_lock);
970 	list_add_tail(&epi->fllink, &tfile->f_ep_links);
971 	spin_unlock(&tfile->f_lock);
972 
973 	/*
974 	 * Add the current item to the RB tree. All RB tree operations are
975 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
976 	 */
977 	ep_rbtree_insert(ep, epi);
978 
979 	/* We have to drop the new item inside our item list to keep track of it */
980 	spin_lock_irqsave(&ep->lock, flags);
981 
982 	/* If the file is already "ready" we drop it inside the ready list */
983 	if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
984 		list_add_tail(&epi->rdllink, &ep->rdllist);
985 
986 		/* Notify waiting tasks that events are available */
987 		if (waitqueue_active(&ep->wq))
988 			wake_up_locked(&ep->wq);
989 		if (waitqueue_active(&ep->poll_wait))
990 			pwake++;
991 	}
992 
993 	spin_unlock_irqrestore(&ep->lock, flags);
994 
995 	atomic_long_inc(&ep->user->epoll_watches);
996 
997 	/* We have to call this outside the lock */
998 	if (pwake)
999 		ep_poll_safewake(&ep->poll_wait);
1000 
1001 	return 0;
1002 
1003 error_unregister:
1004 	ep_unregister_pollwait(ep, epi);
1005 
1006 	/*
1007 	 * We need to do this because an event could have been arrived on some
1008 	 * allocated wait queue. Note that we don't care about the ep->ovflist
1009 	 * list, since that is used/cleaned only inside a section bound by "mtx".
1010 	 * And ep_insert() is called with "mtx" held.
1011 	 */
1012 	spin_lock_irqsave(&ep->lock, flags);
1013 	if (ep_is_linked(&epi->rdllink))
1014 		list_del_init(&epi->rdllink);
1015 	spin_unlock_irqrestore(&ep->lock, flags);
1016 
1017 	kmem_cache_free(epi_cache, epi);
1018 
1019 	return error;
1020 }
1021 
1022 /*
1023  * Modify the interest event mask by dropping an event if the new mask
1024  * has a match in the current file status. Must be called with "mtx" held.
1025  */
1026 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1027 {
1028 	int pwake = 0;
1029 	unsigned int revents;
1030 
1031 	/*
1032 	 * Set the new event interest mask before calling f_op->poll();
1033 	 * otherwise we might miss an event that happens between the
1034 	 * f_op->poll() call and the new event set registering.
1035 	 */
1036 	epi->event.events = event->events;
1037 	epi->event.data = event->data; /* protected by mtx */
1038 
1039 	/*
1040 	 * Get current event bits. We can safely use the file* here because
1041 	 * its usage count has been increased by the caller of this function.
1042 	 */
1043 	revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);
1044 
1045 	/*
1046 	 * If the item is "hot" and it is not registered inside the ready
1047 	 * list, push it inside.
1048 	 */
1049 	if (revents & event->events) {
1050 		spin_lock_irq(&ep->lock);
1051 		if (!ep_is_linked(&epi->rdllink)) {
1052 			list_add_tail(&epi->rdllink, &ep->rdllist);
1053 
1054 			/* Notify waiting tasks that events are available */
1055 			if (waitqueue_active(&ep->wq))
1056 				wake_up_locked(&ep->wq);
1057 			if (waitqueue_active(&ep->poll_wait))
1058 				pwake++;
1059 		}
1060 		spin_unlock_irq(&ep->lock);
1061 	}
1062 
1063 	/* We have to call this outside the lock */
1064 	if (pwake)
1065 		ep_poll_safewake(&ep->poll_wait);
1066 
1067 	return 0;
1068 }
1069 
1070 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1071 			       void *priv)
1072 {
1073 	struct ep_send_events_data *esed = priv;
1074 	int eventcnt;
1075 	unsigned int revents;
1076 	struct epitem *epi;
1077 	struct epoll_event __user *uevent;
1078 
1079 	/*
1080 	 * We can loop without lock because we are passed a task private list.
1081 	 * Items cannot vanish during the loop because ep_scan_ready_list() is
1082 	 * holding "mtx" during this call.
1083 	 */
1084 	for (eventcnt = 0, uevent = esed->events;
1085 	     !list_empty(head) && eventcnt < esed->maxevents;) {
1086 		epi = list_first_entry(head, struct epitem, rdllink);
1087 
1088 		list_del_init(&epi->rdllink);
1089 
1090 		revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
1091 			epi->event.events;
1092 
1093 		/*
1094 		 * If the event mask intersect the caller-requested one,
1095 		 * deliver the event to userspace. Again, ep_scan_ready_list()
1096 		 * is holding "mtx", so no operations coming from userspace
1097 		 * can change the item.
1098 		 */
1099 		if (revents) {
1100 			if (__put_user(revents, &uevent->events) ||
1101 			    __put_user(epi->event.data, &uevent->data)) {
1102 				list_add(&epi->rdllink, head);
1103 				return eventcnt ? eventcnt : -EFAULT;
1104 			}
1105 			eventcnt++;
1106 			uevent++;
1107 			if (epi->event.events & EPOLLONESHOT)
1108 				epi->event.events &= EP_PRIVATE_BITS;
1109 			else if (!(epi->event.events & EPOLLET)) {
1110 				/*
1111 				 * If this file has been added with Level
1112 				 * Trigger mode, we need to insert back inside
1113 				 * the ready list, so that the next call to
1114 				 * epoll_wait() will check again the events
1115 				 * availability. At this point, no one can insert
1116 				 * into ep->rdllist besides us. The epoll_ctl()
1117 				 * callers are locked out by
1118 				 * ep_scan_ready_list() holding "mtx" and the
1119 				 * poll callback will queue them in ep->ovflist.
1120 				 */
1121 				list_add_tail(&epi->rdllink, &ep->rdllist);
1122 			}
1123 		}
1124 	}
1125 
1126 	return eventcnt;
1127 }
1128 
1129 static int ep_send_events(struct eventpoll *ep,
1130 			  struct epoll_event __user *events, int maxevents)
1131 {
1132 	struct ep_send_events_data esed;
1133 
1134 	esed.maxevents = maxevents;
1135 	esed.events = events;
1136 
1137 	return ep_scan_ready_list(ep, ep_send_events_proc, &esed);
1138 }
1139 
1140 static inline struct timespec ep_set_mstimeout(long ms)
1141 {
1142 	struct timespec now, ts = {
1143 		.tv_sec = ms / MSEC_PER_SEC,
1144 		.tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1145 	};
1146 
1147 	ktime_get_ts(&now);
1148 	return timespec_add_safe(now, ts);
1149 }
1150 
1151 /**
1152  * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1153  *           event buffer.
1154  *
1155  * @ep: Pointer to the eventpoll context.
1156  * @events: Pointer to the userspace buffer where the ready events should be
1157  *          stored.
1158  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1159  * @timeout: Maximum timeout for the ready events fetch operation, in
1160  *           milliseconds. If the @timeout is zero, the function will not block,
1161  *           while if the @timeout is less than zero, the function will block
1162  *           until at least one event has been retrieved (or an error
1163  *           occurred).
1164  *
1165  * Returns: Returns the number of ready events which have been fetched, or an
1166  *          error code, in case of error.
1167  */
1168 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1169 		   int maxevents, long timeout)
1170 {
1171 	int res = 0, eavail, timed_out = 0;
1172 	unsigned long flags;
1173 	long slack = 0;
1174 	wait_queue_t wait;
1175 	ktime_t expires, *to = NULL;
1176 
1177 	if (timeout > 0) {
1178 		struct timespec end_time = ep_set_mstimeout(timeout);
1179 
1180 		slack = select_estimate_accuracy(&end_time);
1181 		to = &expires;
1182 		*to = timespec_to_ktime(end_time);
1183 	} else if (timeout == 0) {
1184 		/*
1185 		 * Avoid the unnecessary trip to the wait queue loop, if the
1186 		 * caller specified a non blocking operation.
1187 		 */
1188 		timed_out = 1;
1189 		spin_lock_irqsave(&ep->lock, flags);
1190 		goto check_events;
1191 	}
1192 
1193 fetch_events:
1194 	spin_lock_irqsave(&ep->lock, flags);
1195 
1196 	if (!ep_events_available(ep)) {
1197 		/*
1198 		 * We don't have any available event to return to the caller.
1199 		 * We need to sleep here, and we will be wake up by
1200 		 * ep_poll_callback() when events will become available.
1201 		 */
1202 		init_waitqueue_entry(&wait, current);
1203 		__add_wait_queue_exclusive(&ep->wq, &wait);
1204 
1205 		for (;;) {
1206 			/*
1207 			 * We don't want to sleep if the ep_poll_callback() sends us
1208 			 * a wakeup in between. That's why we set the task state
1209 			 * to TASK_INTERRUPTIBLE before doing the checks.
1210 			 */
1211 			set_current_state(TASK_INTERRUPTIBLE);
1212 			if (ep_events_available(ep) || timed_out)
1213 				break;
1214 			if (signal_pending(current)) {
1215 				res = -EINTR;
1216 				break;
1217 			}
1218 
1219 			spin_unlock_irqrestore(&ep->lock, flags);
1220 			if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1221 				timed_out = 1;
1222 
1223 			spin_lock_irqsave(&ep->lock, flags);
1224 		}
1225 		__remove_wait_queue(&ep->wq, &wait);
1226 
1227 		set_current_state(TASK_RUNNING);
1228 	}
1229 check_events:
1230 	/* Is it worth to try to dig for events ? */
1231 	eavail = ep_events_available(ep);
1232 
1233 	spin_unlock_irqrestore(&ep->lock, flags);
1234 
1235 	/*
1236 	 * Try to transfer events to user space. In case we get 0 events and
1237 	 * there's still timeout left over, we go trying again in search of
1238 	 * more luck.
1239 	 */
1240 	if (!res && eavail &&
1241 	    !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1242 		goto fetch_events;
1243 
1244 	return res;
1245 }
1246 
1247 /**
1248  * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1249  *                      API, to verify that adding an epoll file inside another
1250  *                      epoll structure, does not violate the constraints, in
1251  *                      terms of closed loops, or too deep chains (which can
1252  *                      result in excessive stack usage).
1253  *
1254  * @priv: Pointer to the epoll file to be currently checked.
1255  * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1256  *          data structure pointer.
1257  * @call_nests: Current dept of the @ep_call_nested() call stack.
1258  *
1259  * Returns: Returns zero if adding the epoll @file inside current epoll
1260  *          structure @ep does not violate the constraints, or -1 otherwise.
1261  */
1262 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1263 {
1264 	int error = 0;
1265 	struct file *file = priv;
1266 	struct eventpoll *ep = file->private_data;
1267 	struct rb_node *rbp;
1268 	struct epitem *epi;
1269 
1270 	mutex_lock(&ep->mtx);
1271 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1272 		epi = rb_entry(rbp, struct epitem, rbn);
1273 		if (unlikely(is_file_epoll(epi->ffd.file))) {
1274 			error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1275 					       ep_loop_check_proc, epi->ffd.file,
1276 					       epi->ffd.file->private_data, current);
1277 			if (error != 0)
1278 				break;
1279 		}
1280 	}
1281 	mutex_unlock(&ep->mtx);
1282 
1283 	return error;
1284 }
1285 
1286 /**
1287  * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1288  *                 another epoll file (represented by @ep) does not create
1289  *                 closed loops or too deep chains.
1290  *
1291  * @ep: Pointer to the epoll private data structure.
1292  * @file: Pointer to the epoll file to be checked.
1293  *
1294  * Returns: Returns zero if adding the epoll @file inside current epoll
1295  *          structure @ep does not violate the constraints, or -1 otherwise.
1296  */
1297 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1298 {
1299 	return ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1300 			      ep_loop_check_proc, file, ep, current);
1301 }
1302 
1303 /*
1304  * Open an eventpoll file descriptor.
1305  */
1306 SYSCALL_DEFINE1(epoll_create1, int, flags)
1307 {
1308 	int error;
1309 	struct eventpoll *ep = NULL;
1310 
1311 	/* Check the EPOLL_* constant for consistency.  */
1312 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1313 
1314 	if (flags & ~EPOLL_CLOEXEC)
1315 		return -EINVAL;
1316 	/*
1317 	 * Create the internal data structure ("struct eventpoll").
1318 	 */
1319 	error = ep_alloc(&ep);
1320 	if (error < 0)
1321 		return error;
1322 	/*
1323 	 * Creates all the items needed to setup an eventpoll file. That is,
1324 	 * a file structure and a free file descriptor.
1325 	 */
1326 	error = anon_inode_getfd("[eventpoll]", &eventpoll_fops, ep,
1327 				 O_RDWR | (flags & O_CLOEXEC));
1328 	if (error < 0)
1329 		ep_free(ep);
1330 
1331 	return error;
1332 }
1333 
1334 SYSCALL_DEFINE1(epoll_create, int, size)
1335 {
1336 	if (size <= 0)
1337 		return -EINVAL;
1338 
1339 	return sys_epoll_create1(0);
1340 }
1341 
1342 /*
1343  * The following function implements the controller interface for
1344  * the eventpoll file that enables the insertion/removal/change of
1345  * file descriptors inside the interest set.
1346  */
1347 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1348 		struct epoll_event __user *, event)
1349 {
1350 	int error;
1351 	int did_lock_epmutex = 0;
1352 	struct file *file, *tfile;
1353 	struct eventpoll *ep;
1354 	struct epitem *epi;
1355 	struct epoll_event epds;
1356 
1357 	error = -EFAULT;
1358 	if (ep_op_has_event(op) &&
1359 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
1360 		goto error_return;
1361 
1362 	/* Get the "struct file *" for the eventpoll file */
1363 	error = -EBADF;
1364 	file = fget(epfd);
1365 	if (!file)
1366 		goto error_return;
1367 
1368 	/* Get the "struct file *" for the target file */
1369 	tfile = fget(fd);
1370 	if (!tfile)
1371 		goto error_fput;
1372 
1373 	/* The target file descriptor must support poll */
1374 	error = -EPERM;
1375 	if (!tfile->f_op || !tfile->f_op->poll)
1376 		goto error_tgt_fput;
1377 
1378 	/*
1379 	 * We have to check that the file structure underneath the file descriptor
1380 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
1381 	 * adding an epoll file descriptor inside itself.
1382 	 */
1383 	error = -EINVAL;
1384 	if (file == tfile || !is_file_epoll(file))
1385 		goto error_tgt_fput;
1386 
1387 	/*
1388 	 * At this point it is safe to assume that the "private_data" contains
1389 	 * our own data structure.
1390 	 */
1391 	ep = file->private_data;
1392 
1393 	/*
1394 	 * When we insert an epoll file descriptor, inside another epoll file
1395 	 * descriptor, there is the change of creating closed loops, which are
1396 	 * better be handled here, than in more critical paths.
1397 	 *
1398 	 * We hold epmutex across the loop check and the insert in this case, in
1399 	 * order to prevent two separate inserts from racing and each doing the
1400 	 * insert "at the same time" such that ep_loop_check passes on both
1401 	 * before either one does the insert, thereby creating a cycle.
1402 	 */
1403 	if (unlikely(is_file_epoll(tfile) && op == EPOLL_CTL_ADD)) {
1404 		mutex_lock(&epmutex);
1405 		did_lock_epmutex = 1;
1406 		error = -ELOOP;
1407 		if (ep_loop_check(ep, tfile) != 0)
1408 			goto error_tgt_fput;
1409 	}
1410 
1411 
1412 	mutex_lock(&ep->mtx);
1413 
1414 	/*
1415 	 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1416 	 * above, we can be sure to be able to use the item looked up by
1417 	 * ep_find() till we release the mutex.
1418 	 */
1419 	epi = ep_find(ep, tfile, fd);
1420 
1421 	error = -EINVAL;
1422 	switch (op) {
1423 	case EPOLL_CTL_ADD:
1424 		if (!epi) {
1425 			epds.events |= POLLERR | POLLHUP;
1426 			error = ep_insert(ep, &epds, tfile, fd);
1427 		} else
1428 			error = -EEXIST;
1429 		break;
1430 	case EPOLL_CTL_DEL:
1431 		if (epi)
1432 			error = ep_remove(ep, epi);
1433 		else
1434 			error = -ENOENT;
1435 		break;
1436 	case EPOLL_CTL_MOD:
1437 		if (epi) {
1438 			epds.events |= POLLERR | POLLHUP;
1439 			error = ep_modify(ep, epi, &epds);
1440 		} else
1441 			error = -ENOENT;
1442 		break;
1443 	}
1444 	mutex_unlock(&ep->mtx);
1445 
1446 error_tgt_fput:
1447 	if (unlikely(did_lock_epmutex))
1448 		mutex_unlock(&epmutex);
1449 
1450 	fput(tfile);
1451 error_fput:
1452 	fput(file);
1453 error_return:
1454 
1455 	return error;
1456 }
1457 
1458 /*
1459  * Implement the event wait interface for the eventpoll file. It is the kernel
1460  * part of the user space epoll_wait(2).
1461  */
1462 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
1463 		int, maxevents, int, timeout)
1464 {
1465 	int error;
1466 	struct file *file;
1467 	struct eventpoll *ep;
1468 
1469 	/* The maximum number of event must be greater than zero */
1470 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1471 		return -EINVAL;
1472 
1473 	/* Verify that the area passed by the user is writeable */
1474 	if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) {
1475 		error = -EFAULT;
1476 		goto error_return;
1477 	}
1478 
1479 	/* Get the "struct file *" for the eventpoll file */
1480 	error = -EBADF;
1481 	file = fget(epfd);
1482 	if (!file)
1483 		goto error_return;
1484 
1485 	/*
1486 	 * We have to check that the file structure underneath the fd
1487 	 * the user passed to us _is_ an eventpoll file.
1488 	 */
1489 	error = -EINVAL;
1490 	if (!is_file_epoll(file))
1491 		goto error_fput;
1492 
1493 	/*
1494 	 * At this point it is safe to assume that the "private_data" contains
1495 	 * our own data structure.
1496 	 */
1497 	ep = file->private_data;
1498 
1499 	/* Time to fish for events ... */
1500 	error = ep_poll(ep, events, maxevents, timeout);
1501 
1502 error_fput:
1503 	fput(file);
1504 error_return:
1505 
1506 	return error;
1507 }
1508 
1509 #ifdef HAVE_SET_RESTORE_SIGMASK
1510 
1511 /*
1512  * Implement the event wait interface for the eventpoll file. It is the kernel
1513  * part of the user space epoll_pwait(2).
1514  */
1515 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
1516 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
1517 		size_t, sigsetsize)
1518 {
1519 	int error;
1520 	sigset_t ksigmask, sigsaved;
1521 
1522 	/*
1523 	 * If the caller wants a certain signal mask to be set during the wait,
1524 	 * we apply it here.
1525 	 */
1526 	if (sigmask) {
1527 		if (sigsetsize != sizeof(sigset_t))
1528 			return -EINVAL;
1529 		if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
1530 			return -EFAULT;
1531 		sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
1532 		sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1533 	}
1534 
1535 	error = sys_epoll_wait(epfd, events, maxevents, timeout);
1536 
1537 	/*
1538 	 * If we changed the signal mask, we need to restore the original one.
1539 	 * In case we've got a signal while waiting, we do not restore the
1540 	 * signal mask yet, and we allow do_signal() to deliver the signal on
1541 	 * the way back to userspace, before the signal mask is restored.
1542 	 */
1543 	if (sigmask) {
1544 		if (error == -EINTR) {
1545 			memcpy(&current->saved_sigmask, &sigsaved,
1546 			       sizeof(sigsaved));
1547 			set_restore_sigmask();
1548 		} else
1549 			sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1550 	}
1551 
1552 	return error;
1553 }
1554 
1555 #endif /* HAVE_SET_RESTORE_SIGMASK */
1556 
1557 static int __init eventpoll_init(void)
1558 {
1559 	struct sysinfo si;
1560 
1561 	si_meminfo(&si);
1562 	/*
1563 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
1564 	 */
1565 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
1566 		EP_ITEM_COST;
1567 	BUG_ON(max_user_watches < 0);
1568 
1569 	/*
1570 	 * Initialize the structure used to perform epoll file descriptor
1571 	 * inclusion loops checks.
1572 	 */
1573 	ep_nested_calls_init(&poll_loop_ncalls);
1574 
1575 	/* Initialize the structure used to perform safe poll wait head wake ups */
1576 	ep_nested_calls_init(&poll_safewake_ncalls);
1577 
1578 	/* Initialize the structure used to perform file's f_op->poll() calls */
1579 	ep_nested_calls_init(&poll_readywalk_ncalls);
1580 
1581 	/* Allocates slab cache used to allocate "struct epitem" items */
1582 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
1583 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1584 
1585 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
1586 	pwq_cache = kmem_cache_create("eventpoll_pwq",
1587 			sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
1588 
1589 	return 0;
1590 }
1591 fs_initcall(eventpoll_init);
1592