1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * fs/eventpoll.c (Efficient event retrieval implementation) 4 * Copyright (C) 2001,...,2009 Davide Libenzi 5 * 6 * Davide Libenzi <davidel@xmailserver.org> 7 */ 8 9 #include <linux/init.h> 10 #include <linux/kernel.h> 11 #include <linux/sched/signal.h> 12 #include <linux/fs.h> 13 #include <linux/file.h> 14 #include <linux/signal.h> 15 #include <linux/errno.h> 16 #include <linux/mm.h> 17 #include <linux/slab.h> 18 #include <linux/poll.h> 19 #include <linux/string.h> 20 #include <linux/list.h> 21 #include <linux/hash.h> 22 #include <linux/spinlock.h> 23 #include <linux/syscalls.h> 24 #include <linux/rbtree.h> 25 #include <linux/wait.h> 26 #include <linux/eventpoll.h> 27 #include <linux/mount.h> 28 #include <linux/bitops.h> 29 #include <linux/mutex.h> 30 #include <linux/anon_inodes.h> 31 #include <linux/device.h> 32 #include <linux/uaccess.h> 33 #include <asm/io.h> 34 #include <asm/mman.h> 35 #include <linux/atomic.h> 36 #include <linux/proc_fs.h> 37 #include <linux/seq_file.h> 38 #include <linux/compat.h> 39 #include <linux/rculist.h> 40 #include <net/busy_poll.h> 41 42 /* 43 * LOCKING: 44 * There are three level of locking required by epoll : 45 * 46 * 1) epnested_mutex (mutex) 47 * 2) ep->mtx (mutex) 48 * 3) ep->lock (rwlock) 49 * 50 * The acquire order is the one listed above, from 1 to 3. 51 * We need a rwlock (ep->lock) because we manipulate objects 52 * from inside the poll callback, that might be triggered from 53 * a wake_up() that in turn might be called from IRQ context. 54 * So we can't sleep inside the poll callback and hence we need 55 * a spinlock. During the event transfer loop (from kernel to 56 * user space) we could end up sleeping due a copy_to_user(), so 57 * we need a lock that will allow us to sleep. This lock is a 58 * mutex (ep->mtx). It is acquired during the event transfer loop, 59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 60 * The epnested_mutex is acquired when inserting an epoll fd onto another 61 * epoll fd. We do this so that we walk the epoll tree and ensure that this 62 * insertion does not create a cycle of epoll file descriptors, which 63 * could lead to deadlock. We need a global mutex to prevent two 64 * simultaneous inserts (A into B and B into A) from racing and 65 * constructing a cycle without either insert observing that it is 66 * going to. 67 * It is necessary to acquire multiple "ep->mtx"es at once in the 68 * case when one epoll fd is added to another. In this case, we 69 * always acquire the locks in the order of nesting (i.e. after 70 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 71 * before e2->mtx). Since we disallow cycles of epoll file 72 * descriptors, this ensures that the mutexes are well-ordered. In 73 * order to communicate this nesting to lockdep, when walking a tree 74 * of epoll file descriptors, we use the current recursion depth as 75 * the lockdep subkey. 76 * It is possible to drop the "ep->mtx" and to use the global 77 * mutex "epnested_mutex" (together with "ep->lock") to have it working, 78 * but having "ep->mtx" will make the interface more scalable. 79 * Events that require holding "epnested_mutex" are very rare, while for 80 * normal operations the epoll private "ep->mtx" will guarantee 81 * a better scalability. 82 */ 83 84 /* Epoll private bits inside the event mask */ 85 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE) 86 87 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT) 88 89 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \ 90 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE) 91 92 /* Maximum number of nesting allowed inside epoll sets */ 93 #define EP_MAX_NESTS 4 94 95 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 96 97 #define EP_UNACTIVE_PTR ((void *) -1L) 98 99 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 100 101 struct epoll_filefd { 102 struct file *file; 103 int fd; 104 } __packed; 105 106 /* Wait structure used by the poll hooks */ 107 struct eppoll_entry { 108 /* List header used to link this structure to the "struct epitem" */ 109 struct eppoll_entry *next; 110 111 /* The "base" pointer is set to the container "struct epitem" */ 112 struct epitem *base; 113 114 /* 115 * Wait queue item that will be linked to the target file wait 116 * queue head. 117 */ 118 wait_queue_entry_t wait; 119 120 /* The wait queue head that linked the "wait" wait queue item */ 121 wait_queue_head_t *whead; 122 }; 123 124 /* 125 * Each file descriptor added to the eventpoll interface will 126 * have an entry of this type linked to the "rbr" RB tree. 127 * Avoid increasing the size of this struct, there can be many thousands 128 * of these on a server and we do not want this to take another cache line. 129 */ 130 struct epitem { 131 union { 132 /* RB tree node links this structure to the eventpoll RB tree */ 133 struct rb_node rbn; 134 /* Used to free the struct epitem */ 135 struct rcu_head rcu; 136 }; 137 138 /* List header used to link this structure to the eventpoll ready list */ 139 struct list_head rdllink; 140 141 /* 142 * Works together "struct eventpoll"->ovflist in keeping the 143 * single linked chain of items. 144 */ 145 struct epitem *next; 146 147 /* The file descriptor information this item refers to */ 148 struct epoll_filefd ffd; 149 150 /* 151 * Protected by file->f_lock, true for to-be-released epitem already 152 * removed from the "struct file" items list; together with 153 * eventpoll->refcount orchestrates "struct eventpoll" disposal 154 */ 155 bool dying; 156 157 /* List containing poll wait queues */ 158 struct eppoll_entry *pwqlist; 159 160 /* The "container" of this item */ 161 struct eventpoll *ep; 162 163 /* List header used to link this item to the "struct file" items list */ 164 struct hlist_node fllink; 165 166 /* wakeup_source used when EPOLLWAKEUP is set */ 167 struct wakeup_source __rcu *ws; 168 169 /* The structure that describe the interested events and the source fd */ 170 struct epoll_event event; 171 }; 172 173 /* 174 * This structure is stored inside the "private_data" member of the file 175 * structure and represents the main data structure for the eventpoll 176 * interface. 177 */ 178 struct eventpoll { 179 /* 180 * This mutex is used to ensure that files are not removed 181 * while epoll is using them. This is held during the event 182 * collection loop, the file cleanup path, the epoll file exit 183 * code and the ctl operations. 184 */ 185 struct mutex mtx; 186 187 /* Wait queue used by sys_epoll_wait() */ 188 wait_queue_head_t wq; 189 190 /* Wait queue used by file->poll() */ 191 wait_queue_head_t poll_wait; 192 193 /* List of ready file descriptors */ 194 struct list_head rdllist; 195 196 /* Lock which protects rdllist and ovflist */ 197 rwlock_t lock; 198 199 /* RB tree root used to store monitored fd structs */ 200 struct rb_root_cached rbr; 201 202 /* 203 * This is a single linked list that chains all the "struct epitem" that 204 * happened while transferring ready events to userspace w/out 205 * holding ->lock. 206 */ 207 struct epitem *ovflist; 208 209 /* wakeup_source used when ep_scan_ready_list is running */ 210 struct wakeup_source *ws; 211 212 /* The user that created the eventpoll descriptor */ 213 struct user_struct *user; 214 215 struct file *file; 216 217 /* used to optimize loop detection check */ 218 u64 gen; 219 struct hlist_head refs; 220 221 /* 222 * usage count, used together with epitem->dying to 223 * orchestrate the disposal of this struct 224 */ 225 refcount_t refcount; 226 227 #ifdef CONFIG_NET_RX_BUSY_POLL 228 /* used to track busy poll napi_id */ 229 unsigned int napi_id; 230 #endif 231 232 #ifdef CONFIG_DEBUG_LOCK_ALLOC 233 /* tracks wakeup nests for lockdep validation */ 234 u8 nests; 235 #endif 236 }; 237 238 /* Wrapper struct used by poll queueing */ 239 struct ep_pqueue { 240 poll_table pt; 241 struct epitem *epi; 242 }; 243 244 /* 245 * Configuration options available inside /proc/sys/fs/epoll/ 246 */ 247 /* Maximum number of epoll watched descriptors, per user */ 248 static long max_user_watches __read_mostly; 249 250 /* Used for cycles detection */ 251 static DEFINE_MUTEX(epnested_mutex); 252 253 static u64 loop_check_gen = 0; 254 255 /* Used to check for epoll file descriptor inclusion loops */ 256 static struct eventpoll *inserting_into; 257 258 /* Slab cache used to allocate "struct epitem" */ 259 static struct kmem_cache *epi_cache __read_mostly; 260 261 /* Slab cache used to allocate "struct eppoll_entry" */ 262 static struct kmem_cache *pwq_cache __read_mostly; 263 264 /* 265 * List of files with newly added links, where we may need to limit the number 266 * of emanating paths. Protected by the epnested_mutex. 267 */ 268 struct epitems_head { 269 struct hlist_head epitems; 270 struct epitems_head *next; 271 }; 272 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR; 273 274 static struct kmem_cache *ephead_cache __read_mostly; 275 276 static inline void free_ephead(struct epitems_head *head) 277 { 278 if (head) 279 kmem_cache_free(ephead_cache, head); 280 } 281 282 static void list_file(struct file *file) 283 { 284 struct epitems_head *head; 285 286 head = container_of(file->f_ep, struct epitems_head, epitems); 287 if (!head->next) { 288 head->next = tfile_check_list; 289 tfile_check_list = head; 290 } 291 } 292 293 static void unlist_file(struct epitems_head *head) 294 { 295 struct epitems_head *to_free = head; 296 struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems)); 297 if (p) { 298 struct epitem *epi= container_of(p, struct epitem, fllink); 299 spin_lock(&epi->ffd.file->f_lock); 300 if (!hlist_empty(&head->epitems)) 301 to_free = NULL; 302 head->next = NULL; 303 spin_unlock(&epi->ffd.file->f_lock); 304 } 305 free_ephead(to_free); 306 } 307 308 #ifdef CONFIG_SYSCTL 309 310 #include <linux/sysctl.h> 311 312 static long long_zero; 313 static long long_max = LONG_MAX; 314 315 static struct ctl_table epoll_table[] = { 316 { 317 .procname = "max_user_watches", 318 .data = &max_user_watches, 319 .maxlen = sizeof(max_user_watches), 320 .mode = 0644, 321 .proc_handler = proc_doulongvec_minmax, 322 .extra1 = &long_zero, 323 .extra2 = &long_max, 324 }, 325 { } 326 }; 327 328 static void __init epoll_sysctls_init(void) 329 { 330 register_sysctl("fs/epoll", epoll_table); 331 } 332 #else 333 #define epoll_sysctls_init() do { } while (0) 334 #endif /* CONFIG_SYSCTL */ 335 336 static const struct file_operations eventpoll_fops; 337 338 static inline int is_file_epoll(struct file *f) 339 { 340 return f->f_op == &eventpoll_fops; 341 } 342 343 /* Setup the structure that is used as key for the RB tree */ 344 static inline void ep_set_ffd(struct epoll_filefd *ffd, 345 struct file *file, int fd) 346 { 347 ffd->file = file; 348 ffd->fd = fd; 349 } 350 351 /* Compare RB tree keys */ 352 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 353 struct epoll_filefd *p2) 354 { 355 return (p1->file > p2->file ? +1: 356 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 357 } 358 359 /* Tells us if the item is currently linked */ 360 static inline int ep_is_linked(struct epitem *epi) 361 { 362 return !list_empty(&epi->rdllink); 363 } 364 365 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p) 366 { 367 return container_of(p, struct eppoll_entry, wait); 368 } 369 370 /* Get the "struct epitem" from a wait queue pointer */ 371 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p) 372 { 373 return container_of(p, struct eppoll_entry, wait)->base; 374 } 375 376 /** 377 * ep_events_available - Checks if ready events might be available. 378 * 379 * @ep: Pointer to the eventpoll context. 380 * 381 * Return: a value different than %zero if ready events are available, 382 * or %zero otherwise. 383 */ 384 static inline int ep_events_available(struct eventpoll *ep) 385 { 386 return !list_empty_careful(&ep->rdllist) || 387 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR; 388 } 389 390 #ifdef CONFIG_NET_RX_BUSY_POLL 391 static bool ep_busy_loop_end(void *p, unsigned long start_time) 392 { 393 struct eventpoll *ep = p; 394 395 return ep_events_available(ep) || busy_loop_timeout(start_time); 396 } 397 398 /* 399 * Busy poll if globally on and supporting sockets found && no events, 400 * busy loop will return if need_resched or ep_events_available. 401 * 402 * we must do our busy polling with irqs enabled 403 */ 404 static bool ep_busy_loop(struct eventpoll *ep, int nonblock) 405 { 406 unsigned int napi_id = READ_ONCE(ep->napi_id); 407 408 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) { 409 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, false, 410 BUSY_POLL_BUDGET); 411 if (ep_events_available(ep)) 412 return true; 413 /* 414 * Busy poll timed out. Drop NAPI ID for now, we can add 415 * it back in when we have moved a socket with a valid NAPI 416 * ID onto the ready list. 417 */ 418 ep->napi_id = 0; 419 return false; 420 } 421 return false; 422 } 423 424 /* 425 * Set epoll busy poll NAPI ID from sk. 426 */ 427 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 428 { 429 struct eventpoll *ep; 430 unsigned int napi_id; 431 struct socket *sock; 432 struct sock *sk; 433 434 if (!net_busy_loop_on()) 435 return; 436 437 sock = sock_from_file(epi->ffd.file); 438 if (!sock) 439 return; 440 441 sk = sock->sk; 442 if (!sk) 443 return; 444 445 napi_id = READ_ONCE(sk->sk_napi_id); 446 ep = epi->ep; 447 448 /* Non-NAPI IDs can be rejected 449 * or 450 * Nothing to do if we already have this ID 451 */ 452 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id) 453 return; 454 455 /* record NAPI ID for use in next busy poll */ 456 ep->napi_id = napi_id; 457 } 458 459 #else 460 461 static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock) 462 { 463 return false; 464 } 465 466 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 467 { 468 } 469 470 #endif /* CONFIG_NET_RX_BUSY_POLL */ 471 472 /* 473 * As described in commit 0ccf831cb lockdep: annotate epoll 474 * the use of wait queues used by epoll is done in a very controlled 475 * manner. Wake ups can nest inside each other, but are never done 476 * with the same locking. For example: 477 * 478 * dfd = socket(...); 479 * efd1 = epoll_create(); 480 * efd2 = epoll_create(); 481 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 482 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 483 * 484 * When a packet arrives to the device underneath "dfd", the net code will 485 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 486 * callback wakeup entry on that queue, and the wake_up() performed by the 487 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 488 * (efd1) notices that it may have some event ready, so it needs to wake up 489 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 490 * that ends up in another wake_up(), after having checked about the 491 * recursion constraints. That are, no more than EP_MAX_NESTS, to avoid 492 * stack blasting. 493 * 494 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 495 * this special case of epoll. 496 */ 497 #ifdef CONFIG_DEBUG_LOCK_ALLOC 498 499 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi, 500 unsigned pollflags) 501 { 502 struct eventpoll *ep_src; 503 unsigned long flags; 504 u8 nests = 0; 505 506 /* 507 * To set the subclass or nesting level for spin_lock_irqsave_nested() 508 * it might be natural to create a per-cpu nest count. However, since 509 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can 510 * schedule() in the -rt kernel, the per-cpu variable are no longer 511 * protected. Thus, we are introducing a per eventpoll nest field. 512 * If we are not being call from ep_poll_callback(), epi is NULL and 513 * we are at the first level of nesting, 0. Otherwise, we are being 514 * called from ep_poll_callback() and if a previous wakeup source is 515 * not an epoll file itself, we are at depth 1 since the wakeup source 516 * is depth 0. If the wakeup source is a previous epoll file in the 517 * wakeup chain then we use its nests value and record ours as 518 * nests + 1. The previous epoll file nests value is stable since its 519 * already holding its own poll_wait.lock. 520 */ 521 if (epi) { 522 if ((is_file_epoll(epi->ffd.file))) { 523 ep_src = epi->ffd.file->private_data; 524 nests = ep_src->nests; 525 } else { 526 nests = 1; 527 } 528 } 529 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests); 530 ep->nests = nests + 1; 531 wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags); 532 ep->nests = 0; 533 spin_unlock_irqrestore(&ep->poll_wait.lock, flags); 534 } 535 536 #else 537 538 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi, 539 __poll_t pollflags) 540 { 541 wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags); 542 } 543 544 #endif 545 546 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 547 { 548 wait_queue_head_t *whead; 549 550 rcu_read_lock(); 551 /* 552 * If it is cleared by POLLFREE, it should be rcu-safe. 553 * If we read NULL we need a barrier paired with 554 * smp_store_release() in ep_poll_callback(), otherwise 555 * we rely on whead->lock. 556 */ 557 whead = smp_load_acquire(&pwq->whead); 558 if (whead) 559 remove_wait_queue(whead, &pwq->wait); 560 rcu_read_unlock(); 561 } 562 563 /* 564 * This function unregisters poll callbacks from the associated file 565 * descriptor. Must be called with "mtx" held. 566 */ 567 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 568 { 569 struct eppoll_entry **p = &epi->pwqlist; 570 struct eppoll_entry *pwq; 571 572 while ((pwq = *p) != NULL) { 573 *p = pwq->next; 574 ep_remove_wait_queue(pwq); 575 kmem_cache_free(pwq_cache, pwq); 576 } 577 } 578 579 /* call only when ep->mtx is held */ 580 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) 581 { 582 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); 583 } 584 585 /* call only when ep->mtx is held */ 586 static inline void ep_pm_stay_awake(struct epitem *epi) 587 { 588 struct wakeup_source *ws = ep_wakeup_source(epi); 589 590 if (ws) 591 __pm_stay_awake(ws); 592 } 593 594 static inline bool ep_has_wakeup_source(struct epitem *epi) 595 { 596 return rcu_access_pointer(epi->ws) ? true : false; 597 } 598 599 /* call when ep->mtx cannot be held (ep_poll_callback) */ 600 static inline void ep_pm_stay_awake_rcu(struct epitem *epi) 601 { 602 struct wakeup_source *ws; 603 604 rcu_read_lock(); 605 ws = rcu_dereference(epi->ws); 606 if (ws) 607 __pm_stay_awake(ws); 608 rcu_read_unlock(); 609 } 610 611 612 /* 613 * ep->mutex needs to be held because we could be hit by 614 * eventpoll_release_file() and epoll_ctl(). 615 */ 616 static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist) 617 { 618 /* 619 * Steal the ready list, and re-init the original one to the 620 * empty list. Also, set ep->ovflist to NULL so that events 621 * happening while looping w/out locks, are not lost. We cannot 622 * have the poll callback to queue directly on ep->rdllist, 623 * because we want the "sproc" callback to be able to do it 624 * in a lockless way. 625 */ 626 lockdep_assert_irqs_enabled(); 627 write_lock_irq(&ep->lock); 628 list_splice_init(&ep->rdllist, txlist); 629 WRITE_ONCE(ep->ovflist, NULL); 630 write_unlock_irq(&ep->lock); 631 } 632 633 static void ep_done_scan(struct eventpoll *ep, 634 struct list_head *txlist) 635 { 636 struct epitem *epi, *nepi; 637 638 write_lock_irq(&ep->lock); 639 /* 640 * During the time we spent inside the "sproc" callback, some 641 * other events might have been queued by the poll callback. 642 * We re-insert them inside the main ready-list here. 643 */ 644 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL; 645 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 646 /* 647 * We need to check if the item is already in the list. 648 * During the "sproc" callback execution time, items are 649 * queued into ->ovflist but the "txlist" might already 650 * contain them, and the list_splice() below takes care of them. 651 */ 652 if (!ep_is_linked(epi)) { 653 /* 654 * ->ovflist is LIFO, so we have to reverse it in order 655 * to keep in FIFO. 656 */ 657 list_add(&epi->rdllink, &ep->rdllist); 658 ep_pm_stay_awake(epi); 659 } 660 } 661 /* 662 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 663 * releasing the lock, events will be queued in the normal way inside 664 * ep->rdllist. 665 */ 666 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR); 667 668 /* 669 * Quickly re-inject items left on "txlist". 670 */ 671 list_splice(txlist, &ep->rdllist); 672 __pm_relax(ep->ws); 673 674 if (!list_empty(&ep->rdllist)) { 675 if (waitqueue_active(&ep->wq)) 676 wake_up(&ep->wq); 677 } 678 679 write_unlock_irq(&ep->lock); 680 } 681 682 static void epi_rcu_free(struct rcu_head *head) 683 { 684 struct epitem *epi = container_of(head, struct epitem, rcu); 685 kmem_cache_free(epi_cache, epi); 686 } 687 688 static void ep_get(struct eventpoll *ep) 689 { 690 refcount_inc(&ep->refcount); 691 } 692 693 /* 694 * Returns true if the event poll can be disposed 695 */ 696 static bool ep_refcount_dec_and_test(struct eventpoll *ep) 697 { 698 if (!refcount_dec_and_test(&ep->refcount)) 699 return false; 700 701 WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.rb_root)); 702 return true; 703 } 704 705 static void ep_free(struct eventpoll *ep) 706 { 707 mutex_destroy(&ep->mtx); 708 free_uid(ep->user); 709 wakeup_source_unregister(ep->ws); 710 kfree(ep); 711 } 712 713 /* 714 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 715 * all the associated resources. Must be called with "mtx" held. 716 * If the dying flag is set, do the removal only if force is true. 717 * This prevents ep_clear_and_put() from dropping all the ep references 718 * while running concurrently with eventpoll_release_file(). 719 * Returns true if the eventpoll can be disposed. 720 */ 721 static bool __ep_remove(struct eventpoll *ep, struct epitem *epi, bool force) 722 { 723 struct file *file = epi->ffd.file; 724 struct epitems_head *to_free; 725 struct hlist_head *head; 726 727 lockdep_assert_irqs_enabled(); 728 729 /* 730 * Removes poll wait queue hooks. 731 */ 732 ep_unregister_pollwait(ep, epi); 733 734 /* Remove the current item from the list of epoll hooks */ 735 spin_lock(&file->f_lock); 736 if (epi->dying && !force) { 737 spin_unlock(&file->f_lock); 738 return false; 739 } 740 741 to_free = NULL; 742 head = file->f_ep; 743 if (head->first == &epi->fllink && !epi->fllink.next) { 744 file->f_ep = NULL; 745 if (!is_file_epoll(file)) { 746 struct epitems_head *v; 747 v = container_of(head, struct epitems_head, epitems); 748 if (!smp_load_acquire(&v->next)) 749 to_free = v; 750 } 751 } 752 hlist_del_rcu(&epi->fllink); 753 spin_unlock(&file->f_lock); 754 free_ephead(to_free); 755 756 rb_erase_cached(&epi->rbn, &ep->rbr); 757 758 write_lock_irq(&ep->lock); 759 if (ep_is_linked(epi)) 760 list_del_init(&epi->rdllink); 761 write_unlock_irq(&ep->lock); 762 763 wakeup_source_unregister(ep_wakeup_source(epi)); 764 /* 765 * At this point it is safe to free the eventpoll item. Use the union 766 * field epi->rcu, since we are trying to minimize the size of 767 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by 768 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make 769 * use of the rbn field. 770 */ 771 call_rcu(&epi->rcu, epi_rcu_free); 772 773 percpu_counter_dec(&ep->user->epoll_watches); 774 return ep_refcount_dec_and_test(ep); 775 } 776 777 /* 778 * ep_remove variant for callers owing an additional reference to the ep 779 */ 780 static void ep_remove_safe(struct eventpoll *ep, struct epitem *epi) 781 { 782 WARN_ON_ONCE(__ep_remove(ep, epi, false)); 783 } 784 785 static void ep_clear_and_put(struct eventpoll *ep) 786 { 787 struct rb_node *rbp, *next; 788 struct epitem *epi; 789 bool dispose; 790 791 /* We need to release all tasks waiting for these file */ 792 if (waitqueue_active(&ep->poll_wait)) 793 ep_poll_safewake(ep, NULL, 0); 794 795 mutex_lock(&ep->mtx); 796 797 /* 798 * Walks through the whole tree by unregistering poll callbacks. 799 */ 800 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 801 epi = rb_entry(rbp, struct epitem, rbn); 802 803 ep_unregister_pollwait(ep, epi); 804 cond_resched(); 805 } 806 807 /* 808 * Walks through the whole tree and try to free each "struct epitem". 809 * Note that ep_remove_safe() will not remove the epitem in case of a 810 * racing eventpoll_release_file(); the latter will do the removal. 811 * At this point we are sure no poll callbacks will be lingering around. 812 * Since we still own a reference to the eventpoll struct, the loop can't 813 * dispose it. 814 */ 815 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = next) { 816 next = rb_next(rbp); 817 epi = rb_entry(rbp, struct epitem, rbn); 818 ep_remove_safe(ep, epi); 819 cond_resched(); 820 } 821 822 dispose = ep_refcount_dec_and_test(ep); 823 mutex_unlock(&ep->mtx); 824 825 if (dispose) 826 ep_free(ep); 827 } 828 829 static int ep_eventpoll_release(struct inode *inode, struct file *file) 830 { 831 struct eventpoll *ep = file->private_data; 832 833 if (ep) 834 ep_clear_and_put(ep); 835 836 return 0; 837 } 838 839 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth); 840 841 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth) 842 { 843 struct eventpoll *ep = file->private_data; 844 LIST_HEAD(txlist); 845 struct epitem *epi, *tmp; 846 poll_table pt; 847 __poll_t res = 0; 848 849 init_poll_funcptr(&pt, NULL); 850 851 /* Insert inside our poll wait queue */ 852 poll_wait(file, &ep->poll_wait, wait); 853 854 /* 855 * Proceed to find out if wanted events are really available inside 856 * the ready list. 857 */ 858 mutex_lock_nested(&ep->mtx, depth); 859 ep_start_scan(ep, &txlist); 860 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { 861 if (ep_item_poll(epi, &pt, depth + 1)) { 862 res = EPOLLIN | EPOLLRDNORM; 863 break; 864 } else { 865 /* 866 * Item has been dropped into the ready list by the poll 867 * callback, but it's not actually ready, as far as 868 * caller requested events goes. We can remove it here. 869 */ 870 __pm_relax(ep_wakeup_source(epi)); 871 list_del_init(&epi->rdllink); 872 } 873 } 874 ep_done_scan(ep, &txlist); 875 mutex_unlock(&ep->mtx); 876 return res; 877 } 878 879 /* 880 * The ffd.file pointer may be in the process of being torn down due to 881 * being closed, but we may not have finished eventpoll_release() yet. 882 * 883 * Normally, even with the atomic_long_inc_not_zero, the file may have 884 * been free'd and then gotten re-allocated to something else (since 885 * files are not RCU-delayed, they are SLAB_TYPESAFE_BY_RCU). 886 * 887 * But for epoll, users hold the ep->mtx mutex, and as such any file in 888 * the process of being free'd will block in eventpoll_release_file() 889 * and thus the underlying file allocation will not be free'd, and the 890 * file re-use cannot happen. 891 * 892 * For the same reason we can avoid a rcu_read_lock() around the 893 * operation - 'ffd.file' cannot go away even if the refcount has 894 * reached zero (but we must still not call out to ->poll() functions 895 * etc). 896 */ 897 static struct file *epi_fget(const struct epitem *epi) 898 { 899 struct file *file; 900 901 file = epi->ffd.file; 902 if (!atomic_long_inc_not_zero(&file->f_count)) 903 file = NULL; 904 return file; 905 } 906 907 /* 908 * Differs from ep_eventpoll_poll() in that internal callers already have 909 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested() 910 * is correctly annotated. 911 */ 912 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, 913 int depth) 914 { 915 struct file *file = epi_fget(epi); 916 __poll_t res; 917 918 /* 919 * We could return EPOLLERR | EPOLLHUP or something, but let's 920 * treat this more as "file doesn't exist, poll didn't happen". 921 */ 922 if (!file) 923 return 0; 924 925 pt->_key = epi->event.events; 926 if (!is_file_epoll(file)) 927 res = vfs_poll(file, pt); 928 else 929 res = __ep_eventpoll_poll(file, pt, depth); 930 fput(file); 931 return res & epi->event.events; 932 } 933 934 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait) 935 { 936 return __ep_eventpoll_poll(file, wait, 0); 937 } 938 939 #ifdef CONFIG_PROC_FS 940 static void ep_show_fdinfo(struct seq_file *m, struct file *f) 941 { 942 struct eventpoll *ep = f->private_data; 943 struct rb_node *rbp; 944 945 mutex_lock(&ep->mtx); 946 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 947 struct epitem *epi = rb_entry(rbp, struct epitem, rbn); 948 struct inode *inode = file_inode(epi->ffd.file); 949 950 seq_printf(m, "tfd: %8d events: %8x data: %16llx " 951 " pos:%lli ino:%lx sdev:%x\n", 952 epi->ffd.fd, epi->event.events, 953 (long long)epi->event.data, 954 (long long)epi->ffd.file->f_pos, 955 inode->i_ino, inode->i_sb->s_dev); 956 if (seq_has_overflowed(m)) 957 break; 958 } 959 mutex_unlock(&ep->mtx); 960 } 961 #endif 962 963 /* File callbacks that implement the eventpoll file behaviour */ 964 static const struct file_operations eventpoll_fops = { 965 #ifdef CONFIG_PROC_FS 966 .show_fdinfo = ep_show_fdinfo, 967 #endif 968 .release = ep_eventpoll_release, 969 .poll = ep_eventpoll_poll, 970 .llseek = noop_llseek, 971 }; 972 973 /* 974 * This is called from eventpoll_release() to unlink files from the eventpoll 975 * interface. We need to have this facility to cleanup correctly files that are 976 * closed without being removed from the eventpoll interface. 977 */ 978 void eventpoll_release_file(struct file *file) 979 { 980 struct eventpoll *ep; 981 struct epitem *epi; 982 bool dispose; 983 984 /* 985 * Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from 986 * touching the epitems list before eventpoll_release_file() can access 987 * the ep->mtx. 988 */ 989 again: 990 spin_lock(&file->f_lock); 991 if (file->f_ep && file->f_ep->first) { 992 epi = hlist_entry(file->f_ep->first, struct epitem, fllink); 993 epi->dying = true; 994 spin_unlock(&file->f_lock); 995 996 /* 997 * ep access is safe as we still own a reference to the ep 998 * struct 999 */ 1000 ep = epi->ep; 1001 mutex_lock(&ep->mtx); 1002 dispose = __ep_remove(ep, epi, true); 1003 mutex_unlock(&ep->mtx); 1004 1005 if (dispose) 1006 ep_free(ep); 1007 goto again; 1008 } 1009 spin_unlock(&file->f_lock); 1010 } 1011 1012 static int ep_alloc(struct eventpoll **pep) 1013 { 1014 struct eventpoll *ep; 1015 1016 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 1017 if (unlikely(!ep)) 1018 return -ENOMEM; 1019 1020 mutex_init(&ep->mtx); 1021 rwlock_init(&ep->lock); 1022 init_waitqueue_head(&ep->wq); 1023 init_waitqueue_head(&ep->poll_wait); 1024 INIT_LIST_HEAD(&ep->rdllist); 1025 ep->rbr = RB_ROOT_CACHED; 1026 ep->ovflist = EP_UNACTIVE_PTR; 1027 ep->user = get_current_user(); 1028 refcount_set(&ep->refcount, 1); 1029 1030 *pep = ep; 1031 1032 return 0; 1033 } 1034 1035 /* 1036 * Search the file inside the eventpoll tree. The RB tree operations 1037 * are protected by the "mtx" mutex, and ep_find() must be called with 1038 * "mtx" held. 1039 */ 1040 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 1041 { 1042 int kcmp; 1043 struct rb_node *rbp; 1044 struct epitem *epi, *epir = NULL; 1045 struct epoll_filefd ffd; 1046 1047 ep_set_ffd(&ffd, file, fd); 1048 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) { 1049 epi = rb_entry(rbp, struct epitem, rbn); 1050 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 1051 if (kcmp > 0) 1052 rbp = rbp->rb_right; 1053 else if (kcmp < 0) 1054 rbp = rbp->rb_left; 1055 else { 1056 epir = epi; 1057 break; 1058 } 1059 } 1060 1061 return epir; 1062 } 1063 1064 #ifdef CONFIG_KCMP 1065 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff) 1066 { 1067 struct rb_node *rbp; 1068 struct epitem *epi; 1069 1070 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1071 epi = rb_entry(rbp, struct epitem, rbn); 1072 if (epi->ffd.fd == tfd) { 1073 if (toff == 0) 1074 return epi; 1075 else 1076 toff--; 1077 } 1078 cond_resched(); 1079 } 1080 1081 return NULL; 1082 } 1083 1084 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, 1085 unsigned long toff) 1086 { 1087 struct file *file_raw; 1088 struct eventpoll *ep; 1089 struct epitem *epi; 1090 1091 if (!is_file_epoll(file)) 1092 return ERR_PTR(-EINVAL); 1093 1094 ep = file->private_data; 1095 1096 mutex_lock(&ep->mtx); 1097 epi = ep_find_tfd(ep, tfd, toff); 1098 if (epi) 1099 file_raw = epi->ffd.file; 1100 else 1101 file_raw = ERR_PTR(-ENOENT); 1102 mutex_unlock(&ep->mtx); 1103 1104 return file_raw; 1105 } 1106 #endif /* CONFIG_KCMP */ 1107 1108 /* 1109 * Adds a new entry to the tail of the list in a lockless way, i.e. 1110 * multiple CPUs are allowed to call this function concurrently. 1111 * 1112 * Beware: it is necessary to prevent any other modifications of the 1113 * existing list until all changes are completed, in other words 1114 * concurrent list_add_tail_lockless() calls should be protected 1115 * with a read lock, where write lock acts as a barrier which 1116 * makes sure all list_add_tail_lockless() calls are fully 1117 * completed. 1118 * 1119 * Also an element can be locklessly added to the list only in one 1120 * direction i.e. either to the tail or to the head, otherwise 1121 * concurrent access will corrupt the list. 1122 * 1123 * Return: %false if element has been already added to the list, %true 1124 * otherwise. 1125 */ 1126 static inline bool list_add_tail_lockless(struct list_head *new, 1127 struct list_head *head) 1128 { 1129 struct list_head *prev; 1130 1131 /* 1132 * This is simple 'new->next = head' operation, but cmpxchg() 1133 * is used in order to detect that same element has been just 1134 * added to the list from another CPU: the winner observes 1135 * new->next == new. 1136 */ 1137 if (!try_cmpxchg(&new->next, &new, head)) 1138 return false; 1139 1140 /* 1141 * Initially ->next of a new element must be updated with the head 1142 * (we are inserting to the tail) and only then pointers are atomically 1143 * exchanged. XCHG guarantees memory ordering, thus ->next should be 1144 * updated before pointers are actually swapped and pointers are 1145 * swapped before prev->next is updated. 1146 */ 1147 1148 prev = xchg(&head->prev, new); 1149 1150 /* 1151 * It is safe to modify prev->next and new->prev, because a new element 1152 * is added only to the tail and new->next is updated before XCHG. 1153 */ 1154 1155 prev->next = new; 1156 new->prev = prev; 1157 1158 return true; 1159 } 1160 1161 /* 1162 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way, 1163 * i.e. multiple CPUs are allowed to call this function concurrently. 1164 * 1165 * Return: %false if epi element has been already chained, %true otherwise. 1166 */ 1167 static inline bool chain_epi_lockless(struct epitem *epi) 1168 { 1169 struct eventpoll *ep = epi->ep; 1170 1171 /* Fast preliminary check */ 1172 if (epi->next != EP_UNACTIVE_PTR) 1173 return false; 1174 1175 /* Check that the same epi has not been just chained from another CPU */ 1176 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR) 1177 return false; 1178 1179 /* Atomically exchange tail */ 1180 epi->next = xchg(&ep->ovflist, epi); 1181 1182 return true; 1183 } 1184 1185 /* 1186 * This is the callback that is passed to the wait queue wakeup 1187 * mechanism. It is called by the stored file descriptors when they 1188 * have events to report. 1189 * 1190 * This callback takes a read lock in order not to contend with concurrent 1191 * events from another file descriptor, thus all modifications to ->rdllist 1192 * or ->ovflist are lockless. Read lock is paired with the write lock from 1193 * ep_scan_ready_list(), which stops all list modifications and guarantees 1194 * that lists state is seen correctly. 1195 * 1196 * Another thing worth to mention is that ep_poll_callback() can be called 1197 * concurrently for the same @epi from different CPUs if poll table was inited 1198 * with several wait queues entries. Plural wakeup from different CPUs of a 1199 * single wait queue is serialized by wq.lock, but the case when multiple wait 1200 * queues are used should be detected accordingly. This is detected using 1201 * cmpxchg() operation. 1202 */ 1203 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1204 { 1205 int pwake = 0; 1206 struct epitem *epi = ep_item_from_wait(wait); 1207 struct eventpoll *ep = epi->ep; 1208 __poll_t pollflags = key_to_poll(key); 1209 unsigned long flags; 1210 int ewake = 0; 1211 1212 read_lock_irqsave(&ep->lock, flags); 1213 1214 ep_set_busy_poll_napi_id(epi); 1215 1216 /* 1217 * If the event mask does not contain any poll(2) event, we consider the 1218 * descriptor to be disabled. This condition is likely the effect of the 1219 * EPOLLONESHOT bit that disables the descriptor when an event is received, 1220 * until the next EPOLL_CTL_MOD will be issued. 1221 */ 1222 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 1223 goto out_unlock; 1224 1225 /* 1226 * Check the events coming with the callback. At this stage, not 1227 * every device reports the events in the "key" parameter of the 1228 * callback. We need to be able to handle both cases here, hence the 1229 * test for "key" != NULL before the event match test. 1230 */ 1231 if (pollflags && !(pollflags & epi->event.events)) 1232 goto out_unlock; 1233 1234 /* 1235 * If we are transferring events to userspace, we can hold no locks 1236 * (because we're accessing user memory, and because of linux f_op->poll() 1237 * semantics). All the events that happen during that period of time are 1238 * chained in ep->ovflist and requeued later on. 1239 */ 1240 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) { 1241 if (chain_epi_lockless(epi)) 1242 ep_pm_stay_awake_rcu(epi); 1243 } else if (!ep_is_linked(epi)) { 1244 /* In the usual case, add event to ready list. */ 1245 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist)) 1246 ep_pm_stay_awake_rcu(epi); 1247 } 1248 1249 /* 1250 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1251 * wait list. 1252 */ 1253 if (waitqueue_active(&ep->wq)) { 1254 if ((epi->event.events & EPOLLEXCLUSIVE) && 1255 !(pollflags & POLLFREE)) { 1256 switch (pollflags & EPOLLINOUT_BITS) { 1257 case EPOLLIN: 1258 if (epi->event.events & EPOLLIN) 1259 ewake = 1; 1260 break; 1261 case EPOLLOUT: 1262 if (epi->event.events & EPOLLOUT) 1263 ewake = 1; 1264 break; 1265 case 0: 1266 ewake = 1; 1267 break; 1268 } 1269 } 1270 wake_up(&ep->wq); 1271 } 1272 if (waitqueue_active(&ep->poll_wait)) 1273 pwake++; 1274 1275 out_unlock: 1276 read_unlock_irqrestore(&ep->lock, flags); 1277 1278 /* We have to call this outside the lock */ 1279 if (pwake) 1280 ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE); 1281 1282 if (!(epi->event.events & EPOLLEXCLUSIVE)) 1283 ewake = 1; 1284 1285 if (pollflags & POLLFREE) { 1286 /* 1287 * If we race with ep_remove_wait_queue() it can miss 1288 * ->whead = NULL and do another remove_wait_queue() after 1289 * us, so we can't use __remove_wait_queue(). 1290 */ 1291 list_del_init(&wait->entry); 1292 /* 1293 * ->whead != NULL protects us from the race with 1294 * ep_clear_and_put() or ep_remove(), ep_remove_wait_queue() 1295 * takes whead->lock held by the caller. Once we nullify it, 1296 * nothing protects ep/epi or even wait. 1297 */ 1298 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL); 1299 } 1300 1301 return ewake; 1302 } 1303 1304 /* 1305 * This is the callback that is used to add our wait queue to the 1306 * target file wakeup lists. 1307 */ 1308 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 1309 poll_table *pt) 1310 { 1311 struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt); 1312 struct epitem *epi = epq->epi; 1313 struct eppoll_entry *pwq; 1314 1315 if (unlikely(!epi)) // an earlier allocation has failed 1316 return; 1317 1318 pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL); 1319 if (unlikely(!pwq)) { 1320 epq->epi = NULL; 1321 return; 1322 } 1323 1324 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 1325 pwq->whead = whead; 1326 pwq->base = epi; 1327 if (epi->event.events & EPOLLEXCLUSIVE) 1328 add_wait_queue_exclusive(whead, &pwq->wait); 1329 else 1330 add_wait_queue(whead, &pwq->wait); 1331 pwq->next = epi->pwqlist; 1332 epi->pwqlist = pwq; 1333 } 1334 1335 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1336 { 1337 int kcmp; 1338 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL; 1339 struct epitem *epic; 1340 bool leftmost = true; 1341 1342 while (*p) { 1343 parent = *p; 1344 epic = rb_entry(parent, struct epitem, rbn); 1345 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1346 if (kcmp > 0) { 1347 p = &parent->rb_right; 1348 leftmost = false; 1349 } else 1350 p = &parent->rb_left; 1351 } 1352 rb_link_node(&epi->rbn, parent, p); 1353 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost); 1354 } 1355 1356 1357 1358 #define PATH_ARR_SIZE 5 1359 /* 1360 * These are the number paths of length 1 to 5, that we are allowing to emanate 1361 * from a single file of interest. For example, we allow 1000 paths of length 1362 * 1, to emanate from each file of interest. This essentially represents the 1363 * potential wakeup paths, which need to be limited in order to avoid massive 1364 * uncontrolled wakeup storms. The common use case should be a single ep which 1365 * is connected to n file sources. In this case each file source has 1 path 1366 * of length 1. Thus, the numbers below should be more than sufficient. These 1367 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1368 * and delete can't add additional paths. Protected by the epnested_mutex. 1369 */ 1370 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1371 static int path_count[PATH_ARR_SIZE]; 1372 1373 static int path_count_inc(int nests) 1374 { 1375 /* Allow an arbitrary number of depth 1 paths */ 1376 if (nests == 0) 1377 return 0; 1378 1379 if (++path_count[nests] > path_limits[nests]) 1380 return -1; 1381 return 0; 1382 } 1383 1384 static void path_count_init(void) 1385 { 1386 int i; 1387 1388 for (i = 0; i < PATH_ARR_SIZE; i++) 1389 path_count[i] = 0; 1390 } 1391 1392 static int reverse_path_check_proc(struct hlist_head *refs, int depth) 1393 { 1394 int error = 0; 1395 struct epitem *epi; 1396 1397 if (depth > EP_MAX_NESTS) /* too deep nesting */ 1398 return -1; 1399 1400 /* CTL_DEL can remove links here, but that can't increase our count */ 1401 hlist_for_each_entry_rcu(epi, refs, fllink) { 1402 struct hlist_head *refs = &epi->ep->refs; 1403 if (hlist_empty(refs)) 1404 error = path_count_inc(depth); 1405 else 1406 error = reverse_path_check_proc(refs, depth + 1); 1407 if (error != 0) 1408 break; 1409 } 1410 return error; 1411 } 1412 1413 /** 1414 * reverse_path_check - The tfile_check_list is list of epitem_head, which have 1415 * links that are proposed to be newly added. We need to 1416 * make sure that those added links don't add too many 1417 * paths such that we will spend all our time waking up 1418 * eventpoll objects. 1419 * 1420 * Return: %zero if the proposed links don't create too many paths, 1421 * %-1 otherwise. 1422 */ 1423 static int reverse_path_check(void) 1424 { 1425 struct epitems_head *p; 1426 1427 for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) { 1428 int error; 1429 path_count_init(); 1430 rcu_read_lock(); 1431 error = reverse_path_check_proc(&p->epitems, 0); 1432 rcu_read_unlock(); 1433 if (error) 1434 return error; 1435 } 1436 return 0; 1437 } 1438 1439 static int ep_create_wakeup_source(struct epitem *epi) 1440 { 1441 struct name_snapshot n; 1442 struct wakeup_source *ws; 1443 1444 if (!epi->ep->ws) { 1445 epi->ep->ws = wakeup_source_register(NULL, "eventpoll"); 1446 if (!epi->ep->ws) 1447 return -ENOMEM; 1448 } 1449 1450 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry); 1451 ws = wakeup_source_register(NULL, n.name.name); 1452 release_dentry_name_snapshot(&n); 1453 1454 if (!ws) 1455 return -ENOMEM; 1456 rcu_assign_pointer(epi->ws, ws); 1457 1458 return 0; 1459 } 1460 1461 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ 1462 static noinline void ep_destroy_wakeup_source(struct epitem *epi) 1463 { 1464 struct wakeup_source *ws = ep_wakeup_source(epi); 1465 1466 RCU_INIT_POINTER(epi->ws, NULL); 1467 1468 /* 1469 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is 1470 * used internally by wakeup_source_remove, too (called by 1471 * wakeup_source_unregister), so we cannot use call_rcu 1472 */ 1473 synchronize_rcu(); 1474 wakeup_source_unregister(ws); 1475 } 1476 1477 static int attach_epitem(struct file *file, struct epitem *epi) 1478 { 1479 struct epitems_head *to_free = NULL; 1480 struct hlist_head *head = NULL; 1481 struct eventpoll *ep = NULL; 1482 1483 if (is_file_epoll(file)) 1484 ep = file->private_data; 1485 1486 if (ep) { 1487 head = &ep->refs; 1488 } else if (!READ_ONCE(file->f_ep)) { 1489 allocate: 1490 to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL); 1491 if (!to_free) 1492 return -ENOMEM; 1493 head = &to_free->epitems; 1494 } 1495 spin_lock(&file->f_lock); 1496 if (!file->f_ep) { 1497 if (unlikely(!head)) { 1498 spin_unlock(&file->f_lock); 1499 goto allocate; 1500 } 1501 file->f_ep = head; 1502 to_free = NULL; 1503 } 1504 hlist_add_head_rcu(&epi->fllink, file->f_ep); 1505 spin_unlock(&file->f_lock); 1506 free_ephead(to_free); 1507 return 0; 1508 } 1509 1510 /* 1511 * Must be called with "mtx" held. 1512 */ 1513 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event, 1514 struct file *tfile, int fd, int full_check) 1515 { 1516 int error, pwake = 0; 1517 __poll_t revents; 1518 struct epitem *epi; 1519 struct ep_pqueue epq; 1520 struct eventpoll *tep = NULL; 1521 1522 if (is_file_epoll(tfile)) 1523 tep = tfile->private_data; 1524 1525 lockdep_assert_irqs_enabled(); 1526 1527 if (unlikely(percpu_counter_compare(&ep->user->epoll_watches, 1528 max_user_watches) >= 0)) 1529 return -ENOSPC; 1530 percpu_counter_inc(&ep->user->epoll_watches); 1531 1532 if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) { 1533 percpu_counter_dec(&ep->user->epoll_watches); 1534 return -ENOMEM; 1535 } 1536 1537 /* Item initialization follow here ... */ 1538 INIT_LIST_HEAD(&epi->rdllink); 1539 epi->ep = ep; 1540 ep_set_ffd(&epi->ffd, tfile, fd); 1541 epi->event = *event; 1542 epi->next = EP_UNACTIVE_PTR; 1543 1544 if (tep) 1545 mutex_lock_nested(&tep->mtx, 1); 1546 /* Add the current item to the list of active epoll hook for this file */ 1547 if (unlikely(attach_epitem(tfile, epi) < 0)) { 1548 if (tep) 1549 mutex_unlock(&tep->mtx); 1550 kmem_cache_free(epi_cache, epi); 1551 percpu_counter_dec(&ep->user->epoll_watches); 1552 return -ENOMEM; 1553 } 1554 1555 if (full_check && !tep) 1556 list_file(tfile); 1557 1558 /* 1559 * Add the current item to the RB tree. All RB tree operations are 1560 * protected by "mtx", and ep_insert() is called with "mtx" held. 1561 */ 1562 ep_rbtree_insert(ep, epi); 1563 if (tep) 1564 mutex_unlock(&tep->mtx); 1565 1566 /* 1567 * ep_remove_safe() calls in the later error paths can't lead to 1568 * ep_free() as the ep file itself still holds an ep reference. 1569 */ 1570 ep_get(ep); 1571 1572 /* now check if we've created too many backpaths */ 1573 if (unlikely(full_check && reverse_path_check())) { 1574 ep_remove_safe(ep, epi); 1575 return -EINVAL; 1576 } 1577 1578 if (epi->event.events & EPOLLWAKEUP) { 1579 error = ep_create_wakeup_source(epi); 1580 if (error) { 1581 ep_remove_safe(ep, epi); 1582 return error; 1583 } 1584 } 1585 1586 /* Initialize the poll table using the queue callback */ 1587 epq.epi = epi; 1588 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1589 1590 /* 1591 * Attach the item to the poll hooks and get current event bits. 1592 * We can safely use the file* here because its usage count has 1593 * been increased by the caller of this function. Note that after 1594 * this operation completes, the poll callback can start hitting 1595 * the new item. 1596 */ 1597 revents = ep_item_poll(epi, &epq.pt, 1); 1598 1599 /* 1600 * We have to check if something went wrong during the poll wait queue 1601 * install process. Namely an allocation for a wait queue failed due 1602 * high memory pressure. 1603 */ 1604 if (unlikely(!epq.epi)) { 1605 ep_remove_safe(ep, epi); 1606 return -ENOMEM; 1607 } 1608 1609 /* We have to drop the new item inside our item list to keep track of it */ 1610 write_lock_irq(&ep->lock); 1611 1612 /* record NAPI ID of new item if present */ 1613 ep_set_busy_poll_napi_id(epi); 1614 1615 /* If the file is already "ready" we drop it inside the ready list */ 1616 if (revents && !ep_is_linked(epi)) { 1617 list_add_tail(&epi->rdllink, &ep->rdllist); 1618 ep_pm_stay_awake(epi); 1619 1620 /* Notify waiting tasks that events are available */ 1621 if (waitqueue_active(&ep->wq)) 1622 wake_up(&ep->wq); 1623 if (waitqueue_active(&ep->poll_wait)) 1624 pwake++; 1625 } 1626 1627 write_unlock_irq(&ep->lock); 1628 1629 /* We have to call this outside the lock */ 1630 if (pwake) 1631 ep_poll_safewake(ep, NULL, 0); 1632 1633 return 0; 1634 } 1635 1636 /* 1637 * Modify the interest event mask by dropping an event if the new mask 1638 * has a match in the current file status. Must be called with "mtx" held. 1639 */ 1640 static int ep_modify(struct eventpoll *ep, struct epitem *epi, 1641 const struct epoll_event *event) 1642 { 1643 int pwake = 0; 1644 poll_table pt; 1645 1646 lockdep_assert_irqs_enabled(); 1647 1648 init_poll_funcptr(&pt, NULL); 1649 1650 /* 1651 * Set the new event interest mask before calling f_op->poll(); 1652 * otherwise we might miss an event that happens between the 1653 * f_op->poll() call and the new event set registering. 1654 */ 1655 epi->event.events = event->events; /* need barrier below */ 1656 epi->event.data = event->data; /* protected by mtx */ 1657 if (epi->event.events & EPOLLWAKEUP) { 1658 if (!ep_has_wakeup_source(epi)) 1659 ep_create_wakeup_source(epi); 1660 } else if (ep_has_wakeup_source(epi)) { 1661 ep_destroy_wakeup_source(epi); 1662 } 1663 1664 /* 1665 * The following barrier has two effects: 1666 * 1667 * 1) Flush epi changes above to other CPUs. This ensures 1668 * we do not miss events from ep_poll_callback if an 1669 * event occurs immediately after we call f_op->poll(). 1670 * We need this because we did not take ep->lock while 1671 * changing epi above (but ep_poll_callback does take 1672 * ep->lock). 1673 * 1674 * 2) We also need to ensure we do not miss _past_ events 1675 * when calling f_op->poll(). This barrier also 1676 * pairs with the barrier in wq_has_sleeper (see 1677 * comments for wq_has_sleeper). 1678 * 1679 * This barrier will now guarantee ep_poll_callback or f_op->poll 1680 * (or both) will notice the readiness of an item. 1681 */ 1682 smp_mb(); 1683 1684 /* 1685 * Get current event bits. We can safely use the file* here because 1686 * its usage count has been increased by the caller of this function. 1687 * If the item is "hot" and it is not registered inside the ready 1688 * list, push it inside. 1689 */ 1690 if (ep_item_poll(epi, &pt, 1)) { 1691 write_lock_irq(&ep->lock); 1692 if (!ep_is_linked(epi)) { 1693 list_add_tail(&epi->rdllink, &ep->rdllist); 1694 ep_pm_stay_awake(epi); 1695 1696 /* Notify waiting tasks that events are available */ 1697 if (waitqueue_active(&ep->wq)) 1698 wake_up(&ep->wq); 1699 if (waitqueue_active(&ep->poll_wait)) 1700 pwake++; 1701 } 1702 write_unlock_irq(&ep->lock); 1703 } 1704 1705 /* We have to call this outside the lock */ 1706 if (pwake) 1707 ep_poll_safewake(ep, NULL, 0); 1708 1709 return 0; 1710 } 1711 1712 static int ep_send_events(struct eventpoll *ep, 1713 struct epoll_event __user *events, int maxevents) 1714 { 1715 struct epitem *epi, *tmp; 1716 LIST_HEAD(txlist); 1717 poll_table pt; 1718 int res = 0; 1719 1720 /* 1721 * Always short-circuit for fatal signals to allow threads to make a 1722 * timely exit without the chance of finding more events available and 1723 * fetching repeatedly. 1724 */ 1725 if (fatal_signal_pending(current)) 1726 return -EINTR; 1727 1728 init_poll_funcptr(&pt, NULL); 1729 1730 mutex_lock(&ep->mtx); 1731 ep_start_scan(ep, &txlist); 1732 1733 /* 1734 * We can loop without lock because we are passed a task private list. 1735 * Items cannot vanish during the loop we are holding ep->mtx. 1736 */ 1737 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { 1738 struct wakeup_source *ws; 1739 __poll_t revents; 1740 1741 if (res >= maxevents) 1742 break; 1743 1744 /* 1745 * Activate ep->ws before deactivating epi->ws to prevent 1746 * triggering auto-suspend here (in case we reactive epi->ws 1747 * below). 1748 * 1749 * This could be rearranged to delay the deactivation of epi->ws 1750 * instead, but then epi->ws would temporarily be out of sync 1751 * with ep_is_linked(). 1752 */ 1753 ws = ep_wakeup_source(epi); 1754 if (ws) { 1755 if (ws->active) 1756 __pm_stay_awake(ep->ws); 1757 __pm_relax(ws); 1758 } 1759 1760 list_del_init(&epi->rdllink); 1761 1762 /* 1763 * If the event mask intersect the caller-requested one, 1764 * deliver the event to userspace. Again, we are holding ep->mtx, 1765 * so no operations coming from userspace can change the item. 1766 */ 1767 revents = ep_item_poll(epi, &pt, 1); 1768 if (!revents) 1769 continue; 1770 1771 events = epoll_put_uevent(revents, epi->event.data, events); 1772 if (!events) { 1773 list_add(&epi->rdllink, &txlist); 1774 ep_pm_stay_awake(epi); 1775 if (!res) 1776 res = -EFAULT; 1777 break; 1778 } 1779 res++; 1780 if (epi->event.events & EPOLLONESHOT) 1781 epi->event.events &= EP_PRIVATE_BITS; 1782 else if (!(epi->event.events & EPOLLET)) { 1783 /* 1784 * If this file has been added with Level 1785 * Trigger mode, we need to insert back inside 1786 * the ready list, so that the next call to 1787 * epoll_wait() will check again the events 1788 * availability. At this point, no one can insert 1789 * into ep->rdllist besides us. The epoll_ctl() 1790 * callers are locked out by 1791 * ep_scan_ready_list() holding "mtx" and the 1792 * poll callback will queue them in ep->ovflist. 1793 */ 1794 list_add_tail(&epi->rdllink, &ep->rdllist); 1795 ep_pm_stay_awake(epi); 1796 } 1797 } 1798 ep_done_scan(ep, &txlist); 1799 mutex_unlock(&ep->mtx); 1800 1801 return res; 1802 } 1803 1804 static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms) 1805 { 1806 struct timespec64 now; 1807 1808 if (ms < 0) 1809 return NULL; 1810 1811 if (!ms) { 1812 to->tv_sec = 0; 1813 to->tv_nsec = 0; 1814 return to; 1815 } 1816 1817 to->tv_sec = ms / MSEC_PER_SEC; 1818 to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC); 1819 1820 ktime_get_ts64(&now); 1821 *to = timespec64_add_safe(now, *to); 1822 return to; 1823 } 1824 1825 /* 1826 * autoremove_wake_function, but remove even on failure to wake up, because we 1827 * know that default_wake_function/ttwu will only fail if the thread is already 1828 * woken, and in that case the ep_poll loop will remove the entry anyways, not 1829 * try to reuse it. 1830 */ 1831 static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry, 1832 unsigned int mode, int sync, void *key) 1833 { 1834 int ret = default_wake_function(wq_entry, mode, sync, key); 1835 1836 /* 1837 * Pairs with list_empty_careful in ep_poll, and ensures future loop 1838 * iterations see the cause of this wakeup. 1839 */ 1840 list_del_init_careful(&wq_entry->entry); 1841 return ret; 1842 } 1843 1844 /** 1845 * ep_poll - Retrieves ready events, and delivers them to the caller-supplied 1846 * event buffer. 1847 * 1848 * @ep: Pointer to the eventpoll context. 1849 * @events: Pointer to the userspace buffer where the ready events should be 1850 * stored. 1851 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1852 * @timeout: Maximum timeout for the ready events fetch operation, in 1853 * timespec. If the timeout is zero, the function will not block, 1854 * while if the @timeout ptr is NULL, the function will block 1855 * until at least one event has been retrieved (or an error 1856 * occurred). 1857 * 1858 * Return: the number of ready events which have been fetched, or an 1859 * error code, in case of error. 1860 */ 1861 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1862 int maxevents, struct timespec64 *timeout) 1863 { 1864 int res, eavail, timed_out = 0; 1865 u64 slack = 0; 1866 wait_queue_entry_t wait; 1867 ktime_t expires, *to = NULL; 1868 1869 lockdep_assert_irqs_enabled(); 1870 1871 if (timeout && (timeout->tv_sec | timeout->tv_nsec)) { 1872 slack = select_estimate_accuracy(timeout); 1873 to = &expires; 1874 *to = timespec64_to_ktime(*timeout); 1875 } else if (timeout) { 1876 /* 1877 * Avoid the unnecessary trip to the wait queue loop, if the 1878 * caller specified a non blocking operation. 1879 */ 1880 timed_out = 1; 1881 } 1882 1883 /* 1884 * This call is racy: We may or may not see events that are being added 1885 * to the ready list under the lock (e.g., in IRQ callbacks). For cases 1886 * with a non-zero timeout, this thread will check the ready list under 1887 * lock and will add to the wait queue. For cases with a zero 1888 * timeout, the user by definition should not care and will have to 1889 * recheck again. 1890 */ 1891 eavail = ep_events_available(ep); 1892 1893 while (1) { 1894 if (eavail) { 1895 /* 1896 * Try to transfer events to user space. In case we get 1897 * 0 events and there's still timeout left over, we go 1898 * trying again in search of more luck. 1899 */ 1900 res = ep_send_events(ep, events, maxevents); 1901 if (res) 1902 return res; 1903 } 1904 1905 if (timed_out) 1906 return 0; 1907 1908 eavail = ep_busy_loop(ep, timed_out); 1909 if (eavail) 1910 continue; 1911 1912 if (signal_pending(current)) 1913 return -EINTR; 1914 1915 /* 1916 * Internally init_wait() uses autoremove_wake_function(), 1917 * thus wait entry is removed from the wait queue on each 1918 * wakeup. Why it is important? In case of several waiters 1919 * each new wakeup will hit the next waiter, giving it the 1920 * chance to harvest new event. Otherwise wakeup can be 1921 * lost. This is also good performance-wise, because on 1922 * normal wakeup path no need to call __remove_wait_queue() 1923 * explicitly, thus ep->lock is not taken, which halts the 1924 * event delivery. 1925 * 1926 * In fact, we now use an even more aggressive function that 1927 * unconditionally removes, because we don't reuse the wait 1928 * entry between loop iterations. This lets us also avoid the 1929 * performance issue if a process is killed, causing all of its 1930 * threads to wake up without being removed normally. 1931 */ 1932 init_wait(&wait); 1933 wait.func = ep_autoremove_wake_function; 1934 1935 write_lock_irq(&ep->lock); 1936 /* 1937 * Barrierless variant, waitqueue_active() is called under 1938 * the same lock on wakeup ep_poll_callback() side, so it 1939 * is safe to avoid an explicit barrier. 1940 */ 1941 __set_current_state(TASK_INTERRUPTIBLE); 1942 1943 /* 1944 * Do the final check under the lock. ep_scan_ready_list() 1945 * plays with two lists (->rdllist and ->ovflist) and there 1946 * is always a race when both lists are empty for short 1947 * period of time although events are pending, so lock is 1948 * important. 1949 */ 1950 eavail = ep_events_available(ep); 1951 if (!eavail) 1952 __add_wait_queue_exclusive(&ep->wq, &wait); 1953 1954 write_unlock_irq(&ep->lock); 1955 1956 if (!eavail) 1957 timed_out = !schedule_hrtimeout_range(to, slack, 1958 HRTIMER_MODE_ABS); 1959 __set_current_state(TASK_RUNNING); 1960 1961 /* 1962 * We were woken up, thus go and try to harvest some events. 1963 * If timed out and still on the wait queue, recheck eavail 1964 * carefully under lock, below. 1965 */ 1966 eavail = 1; 1967 1968 if (!list_empty_careful(&wait.entry)) { 1969 write_lock_irq(&ep->lock); 1970 /* 1971 * If the thread timed out and is not on the wait queue, 1972 * it means that the thread was woken up after its 1973 * timeout expired before it could reacquire the lock. 1974 * Thus, when wait.entry is empty, it needs to harvest 1975 * events. 1976 */ 1977 if (timed_out) 1978 eavail = list_empty(&wait.entry); 1979 __remove_wait_queue(&ep->wq, &wait); 1980 write_unlock_irq(&ep->lock); 1981 } 1982 } 1983 } 1984 1985 /** 1986 * ep_loop_check_proc - verify that adding an epoll file inside another 1987 * epoll structure does not violate the constraints, in 1988 * terms of closed loops, or too deep chains (which can 1989 * result in excessive stack usage). 1990 * 1991 * @ep: the &struct eventpoll to be currently checked. 1992 * @depth: Current depth of the path being checked. 1993 * 1994 * Return: %zero if adding the epoll @file inside current epoll 1995 * structure @ep does not violate the constraints, or %-1 otherwise. 1996 */ 1997 static int ep_loop_check_proc(struct eventpoll *ep, int depth) 1998 { 1999 int error = 0; 2000 struct rb_node *rbp; 2001 struct epitem *epi; 2002 2003 mutex_lock_nested(&ep->mtx, depth + 1); 2004 ep->gen = loop_check_gen; 2005 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 2006 epi = rb_entry(rbp, struct epitem, rbn); 2007 if (unlikely(is_file_epoll(epi->ffd.file))) { 2008 struct eventpoll *ep_tovisit; 2009 ep_tovisit = epi->ffd.file->private_data; 2010 if (ep_tovisit->gen == loop_check_gen) 2011 continue; 2012 if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS) 2013 error = -1; 2014 else 2015 error = ep_loop_check_proc(ep_tovisit, depth + 1); 2016 if (error != 0) 2017 break; 2018 } else { 2019 /* 2020 * If we've reached a file that is not associated with 2021 * an ep, then we need to check if the newly added 2022 * links are going to add too many wakeup paths. We do 2023 * this by adding it to the tfile_check_list, if it's 2024 * not already there, and calling reverse_path_check() 2025 * during ep_insert(). 2026 */ 2027 list_file(epi->ffd.file); 2028 } 2029 } 2030 mutex_unlock(&ep->mtx); 2031 2032 return error; 2033 } 2034 2035 /** 2036 * ep_loop_check - Performs a check to verify that adding an epoll file (@to) 2037 * into another epoll file (represented by @ep) does not create 2038 * closed loops or too deep chains. 2039 * 2040 * @ep: Pointer to the epoll we are inserting into. 2041 * @to: Pointer to the epoll to be inserted. 2042 * 2043 * Return: %zero if adding the epoll @to inside the epoll @from 2044 * does not violate the constraints, or %-1 otherwise. 2045 */ 2046 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to) 2047 { 2048 inserting_into = ep; 2049 return ep_loop_check_proc(to, 0); 2050 } 2051 2052 static void clear_tfile_check_list(void) 2053 { 2054 rcu_read_lock(); 2055 while (tfile_check_list != EP_UNACTIVE_PTR) { 2056 struct epitems_head *head = tfile_check_list; 2057 tfile_check_list = head->next; 2058 unlist_file(head); 2059 } 2060 rcu_read_unlock(); 2061 } 2062 2063 /* 2064 * Open an eventpoll file descriptor. 2065 */ 2066 static int do_epoll_create(int flags) 2067 { 2068 int error, fd; 2069 struct eventpoll *ep = NULL; 2070 struct file *file; 2071 2072 /* Check the EPOLL_* constant for consistency. */ 2073 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 2074 2075 if (flags & ~EPOLL_CLOEXEC) 2076 return -EINVAL; 2077 /* 2078 * Create the internal data structure ("struct eventpoll"). 2079 */ 2080 error = ep_alloc(&ep); 2081 if (error < 0) 2082 return error; 2083 /* 2084 * Creates all the items needed to setup an eventpoll file. That is, 2085 * a file structure and a free file descriptor. 2086 */ 2087 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 2088 if (fd < 0) { 2089 error = fd; 2090 goto out_free_ep; 2091 } 2092 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 2093 O_RDWR | (flags & O_CLOEXEC)); 2094 if (IS_ERR(file)) { 2095 error = PTR_ERR(file); 2096 goto out_free_fd; 2097 } 2098 ep->file = file; 2099 fd_install(fd, file); 2100 return fd; 2101 2102 out_free_fd: 2103 put_unused_fd(fd); 2104 out_free_ep: 2105 ep_clear_and_put(ep); 2106 return error; 2107 } 2108 2109 SYSCALL_DEFINE1(epoll_create1, int, flags) 2110 { 2111 return do_epoll_create(flags); 2112 } 2113 2114 SYSCALL_DEFINE1(epoll_create, int, size) 2115 { 2116 if (size <= 0) 2117 return -EINVAL; 2118 2119 return do_epoll_create(0); 2120 } 2121 2122 #ifdef CONFIG_PM_SLEEP 2123 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev) 2124 { 2125 if ((epev->events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND)) 2126 epev->events &= ~EPOLLWAKEUP; 2127 } 2128 #else 2129 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev) 2130 { 2131 epev->events &= ~EPOLLWAKEUP; 2132 } 2133 #endif 2134 2135 static inline int epoll_mutex_lock(struct mutex *mutex, int depth, 2136 bool nonblock) 2137 { 2138 if (!nonblock) { 2139 mutex_lock_nested(mutex, depth); 2140 return 0; 2141 } 2142 if (mutex_trylock(mutex)) 2143 return 0; 2144 return -EAGAIN; 2145 } 2146 2147 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds, 2148 bool nonblock) 2149 { 2150 int error; 2151 int full_check = 0; 2152 struct fd f, tf; 2153 struct eventpoll *ep; 2154 struct epitem *epi; 2155 struct eventpoll *tep = NULL; 2156 2157 error = -EBADF; 2158 f = fdget(epfd); 2159 if (!f.file) 2160 goto error_return; 2161 2162 /* Get the "struct file *" for the target file */ 2163 tf = fdget(fd); 2164 if (!tf.file) 2165 goto error_fput; 2166 2167 /* The target file descriptor must support poll */ 2168 error = -EPERM; 2169 if (!file_can_poll(tf.file)) 2170 goto error_tgt_fput; 2171 2172 /* Check if EPOLLWAKEUP is allowed */ 2173 if (ep_op_has_event(op)) 2174 ep_take_care_of_epollwakeup(epds); 2175 2176 /* 2177 * We have to check that the file structure underneath the file descriptor 2178 * the user passed to us _is_ an eventpoll file. And also we do not permit 2179 * adding an epoll file descriptor inside itself. 2180 */ 2181 error = -EINVAL; 2182 if (f.file == tf.file || !is_file_epoll(f.file)) 2183 goto error_tgt_fput; 2184 2185 /* 2186 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only, 2187 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation. 2188 * Also, we do not currently supported nested exclusive wakeups. 2189 */ 2190 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) { 2191 if (op == EPOLL_CTL_MOD) 2192 goto error_tgt_fput; 2193 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) || 2194 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS))) 2195 goto error_tgt_fput; 2196 } 2197 2198 /* 2199 * At this point it is safe to assume that the "private_data" contains 2200 * our own data structure. 2201 */ 2202 ep = f.file->private_data; 2203 2204 /* 2205 * When we insert an epoll file descriptor inside another epoll file 2206 * descriptor, there is the chance of creating closed loops, which are 2207 * better be handled here, than in more critical paths. While we are 2208 * checking for loops we also determine the list of files reachable 2209 * and hang them on the tfile_check_list, so we can check that we 2210 * haven't created too many possible wakeup paths. 2211 * 2212 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when 2213 * the epoll file descriptor is attaching directly to a wakeup source, 2214 * unless the epoll file descriptor is nested. The purpose of taking the 2215 * 'epnested_mutex' on add is to prevent complex toplogies such as loops and 2216 * deep wakeup paths from forming in parallel through multiple 2217 * EPOLL_CTL_ADD operations. 2218 */ 2219 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2220 if (error) 2221 goto error_tgt_fput; 2222 if (op == EPOLL_CTL_ADD) { 2223 if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen || 2224 is_file_epoll(tf.file)) { 2225 mutex_unlock(&ep->mtx); 2226 error = epoll_mutex_lock(&epnested_mutex, 0, nonblock); 2227 if (error) 2228 goto error_tgt_fput; 2229 loop_check_gen++; 2230 full_check = 1; 2231 if (is_file_epoll(tf.file)) { 2232 tep = tf.file->private_data; 2233 error = -ELOOP; 2234 if (ep_loop_check(ep, tep) != 0) 2235 goto error_tgt_fput; 2236 } 2237 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2238 if (error) 2239 goto error_tgt_fput; 2240 } 2241 } 2242 2243 /* 2244 * Try to lookup the file inside our RB tree. Since we grabbed "mtx" 2245 * above, we can be sure to be able to use the item looked up by 2246 * ep_find() till we release the mutex. 2247 */ 2248 epi = ep_find(ep, tf.file, fd); 2249 2250 error = -EINVAL; 2251 switch (op) { 2252 case EPOLL_CTL_ADD: 2253 if (!epi) { 2254 epds->events |= EPOLLERR | EPOLLHUP; 2255 error = ep_insert(ep, epds, tf.file, fd, full_check); 2256 } else 2257 error = -EEXIST; 2258 break; 2259 case EPOLL_CTL_DEL: 2260 if (epi) { 2261 /* 2262 * The eventpoll itself is still alive: the refcount 2263 * can't go to zero here. 2264 */ 2265 ep_remove_safe(ep, epi); 2266 error = 0; 2267 } else { 2268 error = -ENOENT; 2269 } 2270 break; 2271 case EPOLL_CTL_MOD: 2272 if (epi) { 2273 if (!(epi->event.events & EPOLLEXCLUSIVE)) { 2274 epds->events |= EPOLLERR | EPOLLHUP; 2275 error = ep_modify(ep, epi, epds); 2276 } 2277 } else 2278 error = -ENOENT; 2279 break; 2280 } 2281 mutex_unlock(&ep->mtx); 2282 2283 error_tgt_fput: 2284 if (full_check) { 2285 clear_tfile_check_list(); 2286 loop_check_gen++; 2287 mutex_unlock(&epnested_mutex); 2288 } 2289 2290 fdput(tf); 2291 error_fput: 2292 fdput(f); 2293 error_return: 2294 2295 return error; 2296 } 2297 2298 /* 2299 * The following function implements the controller interface for 2300 * the eventpoll file that enables the insertion/removal/change of 2301 * file descriptors inside the interest set. 2302 */ 2303 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 2304 struct epoll_event __user *, event) 2305 { 2306 struct epoll_event epds; 2307 2308 if (ep_op_has_event(op) && 2309 copy_from_user(&epds, event, sizeof(struct epoll_event))) 2310 return -EFAULT; 2311 2312 return do_epoll_ctl(epfd, op, fd, &epds, false); 2313 } 2314 2315 /* 2316 * Implement the event wait interface for the eventpoll file. It is the kernel 2317 * part of the user space epoll_wait(2). 2318 */ 2319 static int do_epoll_wait(int epfd, struct epoll_event __user *events, 2320 int maxevents, struct timespec64 *to) 2321 { 2322 int error; 2323 struct fd f; 2324 struct eventpoll *ep; 2325 2326 /* The maximum number of event must be greater than zero */ 2327 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 2328 return -EINVAL; 2329 2330 /* Verify that the area passed by the user is writeable */ 2331 if (!access_ok(events, maxevents * sizeof(struct epoll_event))) 2332 return -EFAULT; 2333 2334 /* Get the "struct file *" for the eventpoll file */ 2335 f = fdget(epfd); 2336 if (!f.file) 2337 return -EBADF; 2338 2339 /* 2340 * We have to check that the file structure underneath the fd 2341 * the user passed to us _is_ an eventpoll file. 2342 */ 2343 error = -EINVAL; 2344 if (!is_file_epoll(f.file)) 2345 goto error_fput; 2346 2347 /* 2348 * At this point it is safe to assume that the "private_data" contains 2349 * our own data structure. 2350 */ 2351 ep = f.file->private_data; 2352 2353 /* Time to fish for events ... */ 2354 error = ep_poll(ep, events, maxevents, to); 2355 2356 error_fput: 2357 fdput(f); 2358 return error; 2359 } 2360 2361 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 2362 int, maxevents, int, timeout) 2363 { 2364 struct timespec64 to; 2365 2366 return do_epoll_wait(epfd, events, maxevents, 2367 ep_timeout_to_timespec(&to, timeout)); 2368 } 2369 2370 /* 2371 * Implement the event wait interface for the eventpoll file. It is the kernel 2372 * part of the user space epoll_pwait(2). 2373 */ 2374 static int do_epoll_pwait(int epfd, struct epoll_event __user *events, 2375 int maxevents, struct timespec64 *to, 2376 const sigset_t __user *sigmask, size_t sigsetsize) 2377 { 2378 int error; 2379 2380 /* 2381 * If the caller wants a certain signal mask to be set during the wait, 2382 * we apply it here. 2383 */ 2384 error = set_user_sigmask(sigmask, sigsetsize); 2385 if (error) 2386 return error; 2387 2388 error = do_epoll_wait(epfd, events, maxevents, to); 2389 2390 restore_saved_sigmask_unless(error == -EINTR); 2391 2392 return error; 2393 } 2394 2395 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 2396 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 2397 size_t, sigsetsize) 2398 { 2399 struct timespec64 to; 2400 2401 return do_epoll_pwait(epfd, events, maxevents, 2402 ep_timeout_to_timespec(&to, timeout), 2403 sigmask, sigsetsize); 2404 } 2405 2406 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events, 2407 int, maxevents, const struct __kernel_timespec __user *, timeout, 2408 const sigset_t __user *, sigmask, size_t, sigsetsize) 2409 { 2410 struct timespec64 ts, *to = NULL; 2411 2412 if (timeout) { 2413 if (get_timespec64(&ts, timeout)) 2414 return -EFAULT; 2415 to = &ts; 2416 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) 2417 return -EINVAL; 2418 } 2419 2420 return do_epoll_pwait(epfd, events, maxevents, to, 2421 sigmask, sigsetsize); 2422 } 2423 2424 #ifdef CONFIG_COMPAT 2425 static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events, 2426 int maxevents, struct timespec64 *timeout, 2427 const compat_sigset_t __user *sigmask, 2428 compat_size_t sigsetsize) 2429 { 2430 long err; 2431 2432 /* 2433 * If the caller wants a certain signal mask to be set during the wait, 2434 * we apply it here. 2435 */ 2436 err = set_compat_user_sigmask(sigmask, sigsetsize); 2437 if (err) 2438 return err; 2439 2440 err = do_epoll_wait(epfd, events, maxevents, timeout); 2441 2442 restore_saved_sigmask_unless(err == -EINTR); 2443 2444 return err; 2445 } 2446 2447 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, 2448 struct epoll_event __user *, events, 2449 int, maxevents, int, timeout, 2450 const compat_sigset_t __user *, sigmask, 2451 compat_size_t, sigsetsize) 2452 { 2453 struct timespec64 to; 2454 2455 return do_compat_epoll_pwait(epfd, events, maxevents, 2456 ep_timeout_to_timespec(&to, timeout), 2457 sigmask, sigsetsize); 2458 } 2459 2460 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd, 2461 struct epoll_event __user *, events, 2462 int, maxevents, 2463 const struct __kernel_timespec __user *, timeout, 2464 const compat_sigset_t __user *, sigmask, 2465 compat_size_t, sigsetsize) 2466 { 2467 struct timespec64 ts, *to = NULL; 2468 2469 if (timeout) { 2470 if (get_timespec64(&ts, timeout)) 2471 return -EFAULT; 2472 to = &ts; 2473 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) 2474 return -EINVAL; 2475 } 2476 2477 return do_compat_epoll_pwait(epfd, events, maxevents, to, 2478 sigmask, sigsetsize); 2479 } 2480 2481 #endif 2482 2483 static int __init eventpoll_init(void) 2484 { 2485 struct sysinfo si; 2486 2487 si_meminfo(&si); 2488 /* 2489 * Allows top 4% of lomem to be allocated for epoll watches (per user). 2490 */ 2491 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 2492 EP_ITEM_COST; 2493 BUG_ON(max_user_watches < 0); 2494 2495 /* 2496 * We can have many thousands of epitems, so prevent this from 2497 * using an extra cache line on 64-bit (and smaller) CPUs 2498 */ 2499 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); 2500 2501 /* Allocates slab cache used to allocate "struct epitem" items */ 2502 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 2503 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 2504 2505 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 2506 pwq_cache = kmem_cache_create("eventpoll_pwq", 2507 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2508 epoll_sysctls_init(); 2509 2510 ephead_cache = kmem_cache_create("ep_head", 2511 sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2512 2513 return 0; 2514 } 2515 fs_initcall(eventpoll_init); 2516