1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * fs/eventpoll.c (Efficient event retrieval implementation) 4 * Copyright (C) 2001,...,2009 Davide Libenzi 5 * 6 * Davide Libenzi <davidel@xmailserver.org> 7 */ 8 9 #include <linux/init.h> 10 #include <linux/kernel.h> 11 #include <linux/sched/signal.h> 12 #include <linux/fs.h> 13 #include <linux/file.h> 14 #include <linux/signal.h> 15 #include <linux/errno.h> 16 #include <linux/mm.h> 17 #include <linux/slab.h> 18 #include <linux/poll.h> 19 #include <linux/string.h> 20 #include <linux/list.h> 21 #include <linux/hash.h> 22 #include <linux/spinlock.h> 23 #include <linux/syscalls.h> 24 #include <linux/rbtree.h> 25 #include <linux/wait.h> 26 #include <linux/eventpoll.h> 27 #include <linux/mount.h> 28 #include <linux/bitops.h> 29 #include <linux/mutex.h> 30 #include <linux/anon_inodes.h> 31 #include <linux/device.h> 32 #include <linux/uaccess.h> 33 #include <asm/io.h> 34 #include <asm/mman.h> 35 #include <linux/atomic.h> 36 #include <linux/proc_fs.h> 37 #include <linux/seq_file.h> 38 #include <linux/compat.h> 39 #include <linux/rculist.h> 40 #include <net/busy_poll.h> 41 42 /* 43 * LOCKING: 44 * There are three level of locking required by epoll : 45 * 46 * 1) epnested_mutex (mutex) 47 * 2) ep->mtx (mutex) 48 * 3) ep->lock (rwlock) 49 * 50 * The acquire order is the one listed above, from 1 to 3. 51 * We need a rwlock (ep->lock) because we manipulate objects 52 * from inside the poll callback, that might be triggered from 53 * a wake_up() that in turn might be called from IRQ context. 54 * So we can't sleep inside the poll callback and hence we need 55 * a spinlock. During the event transfer loop (from kernel to 56 * user space) we could end up sleeping due a copy_to_user(), so 57 * we need a lock that will allow us to sleep. This lock is a 58 * mutex (ep->mtx). It is acquired during the event transfer loop, 59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 60 * The epnested_mutex is acquired when inserting an epoll fd onto another 61 * epoll fd. We do this so that we walk the epoll tree and ensure that this 62 * insertion does not create a cycle of epoll file descriptors, which 63 * could lead to deadlock. We need a global mutex to prevent two 64 * simultaneous inserts (A into B and B into A) from racing and 65 * constructing a cycle without either insert observing that it is 66 * going to. 67 * It is necessary to acquire multiple "ep->mtx"es at once in the 68 * case when one epoll fd is added to another. In this case, we 69 * always acquire the locks in the order of nesting (i.e. after 70 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 71 * before e2->mtx). Since we disallow cycles of epoll file 72 * descriptors, this ensures that the mutexes are well-ordered. In 73 * order to communicate this nesting to lockdep, when walking a tree 74 * of epoll file descriptors, we use the current recursion depth as 75 * the lockdep subkey. 76 * It is possible to drop the "ep->mtx" and to use the global 77 * mutex "epnested_mutex" (together with "ep->lock") to have it working, 78 * but having "ep->mtx" will make the interface more scalable. 79 * Events that require holding "epnested_mutex" are very rare, while for 80 * normal operations the epoll private "ep->mtx" will guarantee 81 * a better scalability. 82 */ 83 84 /* Epoll private bits inside the event mask */ 85 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE) 86 87 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT) 88 89 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \ 90 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE) 91 92 /* Maximum number of nesting allowed inside epoll sets */ 93 #define EP_MAX_NESTS 4 94 95 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 96 97 #define EP_UNACTIVE_PTR ((void *) -1L) 98 99 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 100 101 struct epoll_filefd { 102 struct file *file; 103 int fd; 104 } __packed; 105 106 /* Wait structure used by the poll hooks */ 107 struct eppoll_entry { 108 /* List header used to link this structure to the "struct epitem" */ 109 struct eppoll_entry *next; 110 111 /* The "base" pointer is set to the container "struct epitem" */ 112 struct epitem *base; 113 114 /* 115 * Wait queue item that will be linked to the target file wait 116 * queue head. 117 */ 118 wait_queue_entry_t wait; 119 120 /* The wait queue head that linked the "wait" wait queue item */ 121 wait_queue_head_t *whead; 122 }; 123 124 /* 125 * Each file descriptor added to the eventpoll interface will 126 * have an entry of this type linked to the "rbr" RB tree. 127 * Avoid increasing the size of this struct, there can be many thousands 128 * of these on a server and we do not want this to take another cache line. 129 */ 130 struct epitem { 131 union { 132 /* RB tree node links this structure to the eventpoll RB tree */ 133 struct rb_node rbn; 134 /* Used to free the struct epitem */ 135 struct rcu_head rcu; 136 }; 137 138 /* List header used to link this structure to the eventpoll ready list */ 139 struct list_head rdllink; 140 141 /* 142 * Works together "struct eventpoll"->ovflist in keeping the 143 * single linked chain of items. 144 */ 145 struct epitem *next; 146 147 /* The file descriptor information this item refers to */ 148 struct epoll_filefd ffd; 149 150 /* 151 * Protected by file->f_lock, true for to-be-released epitem already 152 * removed from the "struct file" items list; together with 153 * eventpoll->refcount orchestrates "struct eventpoll" disposal 154 */ 155 bool dying; 156 157 /* List containing poll wait queues */ 158 struct eppoll_entry *pwqlist; 159 160 /* The "container" of this item */ 161 struct eventpoll *ep; 162 163 /* List header used to link this item to the "struct file" items list */ 164 struct hlist_node fllink; 165 166 /* wakeup_source used when EPOLLWAKEUP is set */ 167 struct wakeup_source __rcu *ws; 168 169 /* The structure that describe the interested events and the source fd */ 170 struct epoll_event event; 171 }; 172 173 /* 174 * This structure is stored inside the "private_data" member of the file 175 * structure and represents the main data structure for the eventpoll 176 * interface. 177 */ 178 struct eventpoll { 179 /* 180 * This mutex is used to ensure that files are not removed 181 * while epoll is using them. This is held during the event 182 * collection loop, the file cleanup path, the epoll file exit 183 * code and the ctl operations. 184 */ 185 struct mutex mtx; 186 187 /* Wait queue used by sys_epoll_wait() */ 188 wait_queue_head_t wq; 189 190 /* Wait queue used by file->poll() */ 191 wait_queue_head_t poll_wait; 192 193 /* List of ready file descriptors */ 194 struct list_head rdllist; 195 196 /* Lock which protects rdllist and ovflist */ 197 rwlock_t lock; 198 199 /* RB tree root used to store monitored fd structs */ 200 struct rb_root_cached rbr; 201 202 /* 203 * This is a single linked list that chains all the "struct epitem" that 204 * happened while transferring ready events to userspace w/out 205 * holding ->lock. 206 */ 207 struct epitem *ovflist; 208 209 /* wakeup_source used when ep_scan_ready_list is running */ 210 struct wakeup_source *ws; 211 212 /* The user that created the eventpoll descriptor */ 213 struct user_struct *user; 214 215 struct file *file; 216 217 /* used to optimize loop detection check */ 218 u64 gen; 219 struct hlist_head refs; 220 221 /* 222 * usage count, used together with epitem->dying to 223 * orchestrate the disposal of this struct 224 */ 225 refcount_t refcount; 226 227 #ifdef CONFIG_NET_RX_BUSY_POLL 228 /* used to track busy poll napi_id */ 229 unsigned int napi_id; 230 #endif 231 232 #ifdef CONFIG_DEBUG_LOCK_ALLOC 233 /* tracks wakeup nests for lockdep validation */ 234 u8 nests; 235 #endif 236 }; 237 238 /* Wrapper struct used by poll queueing */ 239 struct ep_pqueue { 240 poll_table pt; 241 struct epitem *epi; 242 }; 243 244 /* 245 * Configuration options available inside /proc/sys/fs/epoll/ 246 */ 247 /* Maximum number of epoll watched descriptors, per user */ 248 static long max_user_watches __read_mostly; 249 250 /* Used for cycles detection */ 251 static DEFINE_MUTEX(epnested_mutex); 252 253 static u64 loop_check_gen = 0; 254 255 /* Used to check for epoll file descriptor inclusion loops */ 256 static struct eventpoll *inserting_into; 257 258 /* Slab cache used to allocate "struct epitem" */ 259 static struct kmem_cache *epi_cache __read_mostly; 260 261 /* Slab cache used to allocate "struct eppoll_entry" */ 262 static struct kmem_cache *pwq_cache __read_mostly; 263 264 /* 265 * List of files with newly added links, where we may need to limit the number 266 * of emanating paths. Protected by the epnested_mutex. 267 */ 268 struct epitems_head { 269 struct hlist_head epitems; 270 struct epitems_head *next; 271 }; 272 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR; 273 274 static struct kmem_cache *ephead_cache __read_mostly; 275 276 static inline void free_ephead(struct epitems_head *head) 277 { 278 if (head) 279 kmem_cache_free(ephead_cache, head); 280 } 281 282 static void list_file(struct file *file) 283 { 284 struct epitems_head *head; 285 286 head = container_of(file->f_ep, struct epitems_head, epitems); 287 if (!head->next) { 288 head->next = tfile_check_list; 289 tfile_check_list = head; 290 } 291 } 292 293 static void unlist_file(struct epitems_head *head) 294 { 295 struct epitems_head *to_free = head; 296 struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems)); 297 if (p) { 298 struct epitem *epi= container_of(p, struct epitem, fllink); 299 spin_lock(&epi->ffd.file->f_lock); 300 if (!hlist_empty(&head->epitems)) 301 to_free = NULL; 302 head->next = NULL; 303 spin_unlock(&epi->ffd.file->f_lock); 304 } 305 free_ephead(to_free); 306 } 307 308 #ifdef CONFIG_SYSCTL 309 310 #include <linux/sysctl.h> 311 312 static long long_zero; 313 static long long_max = LONG_MAX; 314 315 static struct ctl_table epoll_table[] = { 316 { 317 .procname = "max_user_watches", 318 .data = &max_user_watches, 319 .maxlen = sizeof(max_user_watches), 320 .mode = 0644, 321 .proc_handler = proc_doulongvec_minmax, 322 .extra1 = &long_zero, 323 .extra2 = &long_max, 324 }, 325 { } 326 }; 327 328 static void __init epoll_sysctls_init(void) 329 { 330 register_sysctl("fs/epoll", epoll_table); 331 } 332 #else 333 #define epoll_sysctls_init() do { } while (0) 334 #endif /* CONFIG_SYSCTL */ 335 336 static const struct file_operations eventpoll_fops; 337 338 static inline int is_file_epoll(struct file *f) 339 { 340 return f->f_op == &eventpoll_fops; 341 } 342 343 /* Setup the structure that is used as key for the RB tree */ 344 static inline void ep_set_ffd(struct epoll_filefd *ffd, 345 struct file *file, int fd) 346 { 347 ffd->file = file; 348 ffd->fd = fd; 349 } 350 351 /* Compare RB tree keys */ 352 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 353 struct epoll_filefd *p2) 354 { 355 return (p1->file > p2->file ? +1: 356 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 357 } 358 359 /* Tells us if the item is currently linked */ 360 static inline int ep_is_linked(struct epitem *epi) 361 { 362 return !list_empty(&epi->rdllink); 363 } 364 365 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p) 366 { 367 return container_of(p, struct eppoll_entry, wait); 368 } 369 370 /* Get the "struct epitem" from a wait queue pointer */ 371 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p) 372 { 373 return container_of(p, struct eppoll_entry, wait)->base; 374 } 375 376 /** 377 * ep_events_available - Checks if ready events might be available. 378 * 379 * @ep: Pointer to the eventpoll context. 380 * 381 * Return: a value different than %zero if ready events are available, 382 * or %zero otherwise. 383 */ 384 static inline int ep_events_available(struct eventpoll *ep) 385 { 386 return !list_empty_careful(&ep->rdllist) || 387 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR; 388 } 389 390 #ifdef CONFIG_NET_RX_BUSY_POLL 391 static bool ep_busy_loop_end(void *p, unsigned long start_time) 392 { 393 struct eventpoll *ep = p; 394 395 return ep_events_available(ep) || busy_loop_timeout(start_time); 396 } 397 398 /* 399 * Busy poll if globally on and supporting sockets found && no events, 400 * busy loop will return if need_resched or ep_events_available. 401 * 402 * we must do our busy polling with irqs enabled 403 */ 404 static bool ep_busy_loop(struct eventpoll *ep, int nonblock) 405 { 406 unsigned int napi_id = READ_ONCE(ep->napi_id); 407 408 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) { 409 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, false, 410 BUSY_POLL_BUDGET); 411 if (ep_events_available(ep)) 412 return true; 413 /* 414 * Busy poll timed out. Drop NAPI ID for now, we can add 415 * it back in when we have moved a socket with a valid NAPI 416 * ID onto the ready list. 417 */ 418 ep->napi_id = 0; 419 return false; 420 } 421 return false; 422 } 423 424 /* 425 * Set epoll busy poll NAPI ID from sk. 426 */ 427 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 428 { 429 struct eventpoll *ep; 430 unsigned int napi_id; 431 struct socket *sock; 432 struct sock *sk; 433 434 if (!net_busy_loop_on()) 435 return; 436 437 sock = sock_from_file(epi->ffd.file); 438 if (!sock) 439 return; 440 441 sk = sock->sk; 442 if (!sk) 443 return; 444 445 napi_id = READ_ONCE(sk->sk_napi_id); 446 ep = epi->ep; 447 448 /* Non-NAPI IDs can be rejected 449 * or 450 * Nothing to do if we already have this ID 451 */ 452 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id) 453 return; 454 455 /* record NAPI ID for use in next busy poll */ 456 ep->napi_id = napi_id; 457 } 458 459 #else 460 461 static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock) 462 { 463 return false; 464 } 465 466 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 467 { 468 } 469 470 #endif /* CONFIG_NET_RX_BUSY_POLL */ 471 472 /* 473 * As described in commit 0ccf831cb lockdep: annotate epoll 474 * the use of wait queues used by epoll is done in a very controlled 475 * manner. Wake ups can nest inside each other, but are never done 476 * with the same locking. For example: 477 * 478 * dfd = socket(...); 479 * efd1 = epoll_create(); 480 * efd2 = epoll_create(); 481 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 482 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 483 * 484 * When a packet arrives to the device underneath "dfd", the net code will 485 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 486 * callback wakeup entry on that queue, and the wake_up() performed by the 487 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 488 * (efd1) notices that it may have some event ready, so it needs to wake up 489 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 490 * that ends up in another wake_up(), after having checked about the 491 * recursion constraints. That are, no more than EP_MAX_NESTS, to avoid 492 * stack blasting. 493 * 494 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 495 * this special case of epoll. 496 */ 497 #ifdef CONFIG_DEBUG_LOCK_ALLOC 498 499 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi, 500 unsigned pollflags) 501 { 502 struct eventpoll *ep_src; 503 unsigned long flags; 504 u8 nests = 0; 505 506 /* 507 * To set the subclass or nesting level for spin_lock_irqsave_nested() 508 * it might be natural to create a per-cpu nest count. However, since 509 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can 510 * schedule() in the -rt kernel, the per-cpu variable are no longer 511 * protected. Thus, we are introducing a per eventpoll nest field. 512 * If we are not being call from ep_poll_callback(), epi is NULL and 513 * we are at the first level of nesting, 0. Otherwise, we are being 514 * called from ep_poll_callback() and if a previous wakeup source is 515 * not an epoll file itself, we are at depth 1 since the wakeup source 516 * is depth 0. If the wakeup source is a previous epoll file in the 517 * wakeup chain then we use its nests value and record ours as 518 * nests + 1. The previous epoll file nests value is stable since its 519 * already holding its own poll_wait.lock. 520 */ 521 if (epi) { 522 if ((is_file_epoll(epi->ffd.file))) { 523 ep_src = epi->ffd.file->private_data; 524 nests = ep_src->nests; 525 } else { 526 nests = 1; 527 } 528 } 529 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests); 530 ep->nests = nests + 1; 531 wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags); 532 ep->nests = 0; 533 spin_unlock_irqrestore(&ep->poll_wait.lock, flags); 534 } 535 536 #else 537 538 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi, 539 __poll_t pollflags) 540 { 541 wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags); 542 } 543 544 #endif 545 546 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 547 { 548 wait_queue_head_t *whead; 549 550 rcu_read_lock(); 551 /* 552 * If it is cleared by POLLFREE, it should be rcu-safe. 553 * If we read NULL we need a barrier paired with 554 * smp_store_release() in ep_poll_callback(), otherwise 555 * we rely on whead->lock. 556 */ 557 whead = smp_load_acquire(&pwq->whead); 558 if (whead) 559 remove_wait_queue(whead, &pwq->wait); 560 rcu_read_unlock(); 561 } 562 563 /* 564 * This function unregisters poll callbacks from the associated file 565 * descriptor. Must be called with "mtx" held. 566 */ 567 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 568 { 569 struct eppoll_entry **p = &epi->pwqlist; 570 struct eppoll_entry *pwq; 571 572 while ((pwq = *p) != NULL) { 573 *p = pwq->next; 574 ep_remove_wait_queue(pwq); 575 kmem_cache_free(pwq_cache, pwq); 576 } 577 } 578 579 /* call only when ep->mtx is held */ 580 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) 581 { 582 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); 583 } 584 585 /* call only when ep->mtx is held */ 586 static inline void ep_pm_stay_awake(struct epitem *epi) 587 { 588 struct wakeup_source *ws = ep_wakeup_source(epi); 589 590 if (ws) 591 __pm_stay_awake(ws); 592 } 593 594 static inline bool ep_has_wakeup_source(struct epitem *epi) 595 { 596 return rcu_access_pointer(epi->ws) ? true : false; 597 } 598 599 /* call when ep->mtx cannot be held (ep_poll_callback) */ 600 static inline void ep_pm_stay_awake_rcu(struct epitem *epi) 601 { 602 struct wakeup_source *ws; 603 604 rcu_read_lock(); 605 ws = rcu_dereference(epi->ws); 606 if (ws) 607 __pm_stay_awake(ws); 608 rcu_read_unlock(); 609 } 610 611 612 /* 613 * ep->mutex needs to be held because we could be hit by 614 * eventpoll_release_file() and epoll_ctl(). 615 */ 616 static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist) 617 { 618 /* 619 * Steal the ready list, and re-init the original one to the 620 * empty list. Also, set ep->ovflist to NULL so that events 621 * happening while looping w/out locks, are not lost. We cannot 622 * have the poll callback to queue directly on ep->rdllist, 623 * because we want the "sproc" callback to be able to do it 624 * in a lockless way. 625 */ 626 lockdep_assert_irqs_enabled(); 627 write_lock_irq(&ep->lock); 628 list_splice_init(&ep->rdllist, txlist); 629 WRITE_ONCE(ep->ovflist, NULL); 630 write_unlock_irq(&ep->lock); 631 } 632 633 static void ep_done_scan(struct eventpoll *ep, 634 struct list_head *txlist) 635 { 636 struct epitem *epi, *nepi; 637 638 write_lock_irq(&ep->lock); 639 /* 640 * During the time we spent inside the "sproc" callback, some 641 * other events might have been queued by the poll callback. 642 * We re-insert them inside the main ready-list here. 643 */ 644 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL; 645 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 646 /* 647 * We need to check if the item is already in the list. 648 * During the "sproc" callback execution time, items are 649 * queued into ->ovflist but the "txlist" might already 650 * contain them, and the list_splice() below takes care of them. 651 */ 652 if (!ep_is_linked(epi)) { 653 /* 654 * ->ovflist is LIFO, so we have to reverse it in order 655 * to keep in FIFO. 656 */ 657 list_add(&epi->rdllink, &ep->rdllist); 658 ep_pm_stay_awake(epi); 659 } 660 } 661 /* 662 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 663 * releasing the lock, events will be queued in the normal way inside 664 * ep->rdllist. 665 */ 666 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR); 667 668 /* 669 * Quickly re-inject items left on "txlist". 670 */ 671 list_splice(txlist, &ep->rdllist); 672 __pm_relax(ep->ws); 673 674 if (!list_empty(&ep->rdllist)) { 675 if (waitqueue_active(&ep->wq)) 676 wake_up(&ep->wq); 677 } 678 679 write_unlock_irq(&ep->lock); 680 } 681 682 static void epi_rcu_free(struct rcu_head *head) 683 { 684 struct epitem *epi = container_of(head, struct epitem, rcu); 685 kmem_cache_free(epi_cache, epi); 686 } 687 688 static void ep_get(struct eventpoll *ep) 689 { 690 refcount_inc(&ep->refcount); 691 } 692 693 /* 694 * Returns true if the event poll can be disposed 695 */ 696 static bool ep_refcount_dec_and_test(struct eventpoll *ep) 697 { 698 if (!refcount_dec_and_test(&ep->refcount)) 699 return false; 700 701 WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.rb_root)); 702 return true; 703 } 704 705 static void ep_free(struct eventpoll *ep) 706 { 707 mutex_destroy(&ep->mtx); 708 free_uid(ep->user); 709 wakeup_source_unregister(ep->ws); 710 kfree(ep); 711 } 712 713 /* 714 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 715 * all the associated resources. Must be called with "mtx" held. 716 * If the dying flag is set, do the removal only if force is true. 717 * This prevents ep_clear_and_put() from dropping all the ep references 718 * while running concurrently with eventpoll_release_file(). 719 * Returns true if the eventpoll can be disposed. 720 */ 721 static bool __ep_remove(struct eventpoll *ep, struct epitem *epi, bool force) 722 { 723 struct file *file = epi->ffd.file; 724 struct epitems_head *to_free; 725 struct hlist_head *head; 726 727 lockdep_assert_irqs_enabled(); 728 729 /* 730 * Removes poll wait queue hooks. 731 */ 732 ep_unregister_pollwait(ep, epi); 733 734 /* Remove the current item from the list of epoll hooks */ 735 spin_lock(&file->f_lock); 736 if (epi->dying && !force) { 737 spin_unlock(&file->f_lock); 738 return false; 739 } 740 741 to_free = NULL; 742 head = file->f_ep; 743 if (head->first == &epi->fllink && !epi->fllink.next) { 744 /* See eventpoll_release() for details. */ 745 WRITE_ONCE(file->f_ep, NULL); 746 if (!is_file_epoll(file)) { 747 struct epitems_head *v; 748 v = container_of(head, struct epitems_head, epitems); 749 if (!smp_load_acquire(&v->next)) 750 to_free = v; 751 } 752 } 753 hlist_del_rcu(&epi->fllink); 754 spin_unlock(&file->f_lock); 755 free_ephead(to_free); 756 757 rb_erase_cached(&epi->rbn, &ep->rbr); 758 759 write_lock_irq(&ep->lock); 760 if (ep_is_linked(epi)) 761 list_del_init(&epi->rdllink); 762 write_unlock_irq(&ep->lock); 763 764 wakeup_source_unregister(ep_wakeup_source(epi)); 765 /* 766 * At this point it is safe to free the eventpoll item. Use the union 767 * field epi->rcu, since we are trying to minimize the size of 768 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by 769 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make 770 * use of the rbn field. 771 */ 772 call_rcu(&epi->rcu, epi_rcu_free); 773 774 percpu_counter_dec(&ep->user->epoll_watches); 775 return ep_refcount_dec_and_test(ep); 776 } 777 778 /* 779 * ep_remove variant for callers owing an additional reference to the ep 780 */ 781 static void ep_remove_safe(struct eventpoll *ep, struct epitem *epi) 782 { 783 WARN_ON_ONCE(__ep_remove(ep, epi, false)); 784 } 785 786 static void ep_clear_and_put(struct eventpoll *ep) 787 { 788 struct rb_node *rbp, *next; 789 struct epitem *epi; 790 bool dispose; 791 792 /* We need to release all tasks waiting for these file */ 793 if (waitqueue_active(&ep->poll_wait)) 794 ep_poll_safewake(ep, NULL, 0); 795 796 mutex_lock(&ep->mtx); 797 798 /* 799 * Walks through the whole tree by unregistering poll callbacks. 800 */ 801 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 802 epi = rb_entry(rbp, struct epitem, rbn); 803 804 ep_unregister_pollwait(ep, epi); 805 cond_resched(); 806 } 807 808 /* 809 * Walks through the whole tree and try to free each "struct epitem". 810 * Note that ep_remove_safe() will not remove the epitem in case of a 811 * racing eventpoll_release_file(); the latter will do the removal. 812 * At this point we are sure no poll callbacks will be lingering around. 813 * Since we still own a reference to the eventpoll struct, the loop can't 814 * dispose it. 815 */ 816 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = next) { 817 next = rb_next(rbp); 818 epi = rb_entry(rbp, struct epitem, rbn); 819 ep_remove_safe(ep, epi); 820 cond_resched(); 821 } 822 823 dispose = ep_refcount_dec_and_test(ep); 824 mutex_unlock(&ep->mtx); 825 826 if (dispose) 827 ep_free(ep); 828 } 829 830 static int ep_eventpoll_release(struct inode *inode, struct file *file) 831 { 832 struct eventpoll *ep = file->private_data; 833 834 if (ep) 835 ep_clear_and_put(ep); 836 837 return 0; 838 } 839 840 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth); 841 842 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth) 843 { 844 struct eventpoll *ep = file->private_data; 845 LIST_HEAD(txlist); 846 struct epitem *epi, *tmp; 847 poll_table pt; 848 __poll_t res = 0; 849 850 init_poll_funcptr(&pt, NULL); 851 852 /* Insert inside our poll wait queue */ 853 poll_wait(file, &ep->poll_wait, wait); 854 855 /* 856 * Proceed to find out if wanted events are really available inside 857 * the ready list. 858 */ 859 mutex_lock_nested(&ep->mtx, depth); 860 ep_start_scan(ep, &txlist); 861 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { 862 if (ep_item_poll(epi, &pt, depth + 1)) { 863 res = EPOLLIN | EPOLLRDNORM; 864 break; 865 } else { 866 /* 867 * Item has been dropped into the ready list by the poll 868 * callback, but it's not actually ready, as far as 869 * caller requested events goes. We can remove it here. 870 */ 871 __pm_relax(ep_wakeup_source(epi)); 872 list_del_init(&epi->rdllink); 873 } 874 } 875 ep_done_scan(ep, &txlist); 876 mutex_unlock(&ep->mtx); 877 return res; 878 } 879 880 /* 881 * The ffd.file pointer may be in the process of being torn down due to 882 * being closed, but we may not have finished eventpoll_release() yet. 883 * 884 * Normally, even with the atomic_long_inc_not_zero, the file may have 885 * been free'd and then gotten re-allocated to something else (since 886 * files are not RCU-delayed, they are SLAB_TYPESAFE_BY_RCU). 887 * 888 * But for epoll, users hold the ep->mtx mutex, and as such any file in 889 * the process of being free'd will block in eventpoll_release_file() 890 * and thus the underlying file allocation will not be free'd, and the 891 * file re-use cannot happen. 892 * 893 * For the same reason we can avoid a rcu_read_lock() around the 894 * operation - 'ffd.file' cannot go away even if the refcount has 895 * reached zero (but we must still not call out to ->poll() functions 896 * etc). 897 */ 898 static struct file *epi_fget(const struct epitem *epi) 899 { 900 struct file *file; 901 902 file = epi->ffd.file; 903 if (!atomic_long_inc_not_zero(&file->f_count)) 904 file = NULL; 905 return file; 906 } 907 908 /* 909 * Differs from ep_eventpoll_poll() in that internal callers already have 910 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested() 911 * is correctly annotated. 912 */ 913 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, 914 int depth) 915 { 916 struct file *file = epi_fget(epi); 917 __poll_t res; 918 919 /* 920 * We could return EPOLLERR | EPOLLHUP or something, but let's 921 * treat this more as "file doesn't exist, poll didn't happen". 922 */ 923 if (!file) 924 return 0; 925 926 pt->_key = epi->event.events; 927 if (!is_file_epoll(file)) 928 res = vfs_poll(file, pt); 929 else 930 res = __ep_eventpoll_poll(file, pt, depth); 931 fput(file); 932 return res & epi->event.events; 933 } 934 935 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait) 936 { 937 return __ep_eventpoll_poll(file, wait, 0); 938 } 939 940 #ifdef CONFIG_PROC_FS 941 static void ep_show_fdinfo(struct seq_file *m, struct file *f) 942 { 943 struct eventpoll *ep = f->private_data; 944 struct rb_node *rbp; 945 946 mutex_lock(&ep->mtx); 947 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 948 struct epitem *epi = rb_entry(rbp, struct epitem, rbn); 949 struct inode *inode = file_inode(epi->ffd.file); 950 951 seq_printf(m, "tfd: %8d events: %8x data: %16llx " 952 " pos:%lli ino:%lx sdev:%x\n", 953 epi->ffd.fd, epi->event.events, 954 (long long)epi->event.data, 955 (long long)epi->ffd.file->f_pos, 956 inode->i_ino, inode->i_sb->s_dev); 957 if (seq_has_overflowed(m)) 958 break; 959 } 960 mutex_unlock(&ep->mtx); 961 } 962 #endif 963 964 /* File callbacks that implement the eventpoll file behaviour */ 965 static const struct file_operations eventpoll_fops = { 966 #ifdef CONFIG_PROC_FS 967 .show_fdinfo = ep_show_fdinfo, 968 #endif 969 .release = ep_eventpoll_release, 970 .poll = ep_eventpoll_poll, 971 .llseek = noop_llseek, 972 }; 973 974 /* 975 * This is called from eventpoll_release() to unlink files from the eventpoll 976 * interface. We need to have this facility to cleanup correctly files that are 977 * closed without being removed from the eventpoll interface. 978 */ 979 void eventpoll_release_file(struct file *file) 980 { 981 struct eventpoll *ep; 982 struct epitem *epi; 983 bool dispose; 984 985 /* 986 * Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from 987 * touching the epitems list before eventpoll_release_file() can access 988 * the ep->mtx. 989 */ 990 again: 991 spin_lock(&file->f_lock); 992 if (file->f_ep && file->f_ep->first) { 993 epi = hlist_entry(file->f_ep->first, struct epitem, fllink); 994 epi->dying = true; 995 spin_unlock(&file->f_lock); 996 997 /* 998 * ep access is safe as we still own a reference to the ep 999 * struct 1000 */ 1001 ep = epi->ep; 1002 mutex_lock(&ep->mtx); 1003 dispose = __ep_remove(ep, epi, true); 1004 mutex_unlock(&ep->mtx); 1005 1006 if (dispose) 1007 ep_free(ep); 1008 goto again; 1009 } 1010 spin_unlock(&file->f_lock); 1011 } 1012 1013 static int ep_alloc(struct eventpoll **pep) 1014 { 1015 struct eventpoll *ep; 1016 1017 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 1018 if (unlikely(!ep)) 1019 return -ENOMEM; 1020 1021 mutex_init(&ep->mtx); 1022 rwlock_init(&ep->lock); 1023 init_waitqueue_head(&ep->wq); 1024 init_waitqueue_head(&ep->poll_wait); 1025 INIT_LIST_HEAD(&ep->rdllist); 1026 ep->rbr = RB_ROOT_CACHED; 1027 ep->ovflist = EP_UNACTIVE_PTR; 1028 ep->user = get_current_user(); 1029 refcount_set(&ep->refcount, 1); 1030 1031 *pep = ep; 1032 1033 return 0; 1034 } 1035 1036 /* 1037 * Search the file inside the eventpoll tree. The RB tree operations 1038 * are protected by the "mtx" mutex, and ep_find() must be called with 1039 * "mtx" held. 1040 */ 1041 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 1042 { 1043 int kcmp; 1044 struct rb_node *rbp; 1045 struct epitem *epi, *epir = NULL; 1046 struct epoll_filefd ffd; 1047 1048 ep_set_ffd(&ffd, file, fd); 1049 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) { 1050 epi = rb_entry(rbp, struct epitem, rbn); 1051 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 1052 if (kcmp > 0) 1053 rbp = rbp->rb_right; 1054 else if (kcmp < 0) 1055 rbp = rbp->rb_left; 1056 else { 1057 epir = epi; 1058 break; 1059 } 1060 } 1061 1062 return epir; 1063 } 1064 1065 #ifdef CONFIG_KCMP 1066 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff) 1067 { 1068 struct rb_node *rbp; 1069 struct epitem *epi; 1070 1071 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1072 epi = rb_entry(rbp, struct epitem, rbn); 1073 if (epi->ffd.fd == tfd) { 1074 if (toff == 0) 1075 return epi; 1076 else 1077 toff--; 1078 } 1079 cond_resched(); 1080 } 1081 1082 return NULL; 1083 } 1084 1085 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, 1086 unsigned long toff) 1087 { 1088 struct file *file_raw; 1089 struct eventpoll *ep; 1090 struct epitem *epi; 1091 1092 if (!is_file_epoll(file)) 1093 return ERR_PTR(-EINVAL); 1094 1095 ep = file->private_data; 1096 1097 mutex_lock(&ep->mtx); 1098 epi = ep_find_tfd(ep, tfd, toff); 1099 if (epi) 1100 file_raw = epi->ffd.file; 1101 else 1102 file_raw = ERR_PTR(-ENOENT); 1103 mutex_unlock(&ep->mtx); 1104 1105 return file_raw; 1106 } 1107 #endif /* CONFIG_KCMP */ 1108 1109 /* 1110 * Adds a new entry to the tail of the list in a lockless way, i.e. 1111 * multiple CPUs are allowed to call this function concurrently. 1112 * 1113 * Beware: it is necessary to prevent any other modifications of the 1114 * existing list until all changes are completed, in other words 1115 * concurrent list_add_tail_lockless() calls should be protected 1116 * with a read lock, where write lock acts as a barrier which 1117 * makes sure all list_add_tail_lockless() calls are fully 1118 * completed. 1119 * 1120 * Also an element can be locklessly added to the list only in one 1121 * direction i.e. either to the tail or to the head, otherwise 1122 * concurrent access will corrupt the list. 1123 * 1124 * Return: %false if element has been already added to the list, %true 1125 * otherwise. 1126 */ 1127 static inline bool list_add_tail_lockless(struct list_head *new, 1128 struct list_head *head) 1129 { 1130 struct list_head *prev; 1131 1132 /* 1133 * This is simple 'new->next = head' operation, but cmpxchg() 1134 * is used in order to detect that same element has been just 1135 * added to the list from another CPU: the winner observes 1136 * new->next == new. 1137 */ 1138 if (!try_cmpxchg(&new->next, &new, head)) 1139 return false; 1140 1141 /* 1142 * Initially ->next of a new element must be updated with the head 1143 * (we are inserting to the tail) and only then pointers are atomically 1144 * exchanged. XCHG guarantees memory ordering, thus ->next should be 1145 * updated before pointers are actually swapped and pointers are 1146 * swapped before prev->next is updated. 1147 */ 1148 1149 prev = xchg(&head->prev, new); 1150 1151 /* 1152 * It is safe to modify prev->next and new->prev, because a new element 1153 * is added only to the tail and new->next is updated before XCHG. 1154 */ 1155 1156 prev->next = new; 1157 new->prev = prev; 1158 1159 return true; 1160 } 1161 1162 /* 1163 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way, 1164 * i.e. multiple CPUs are allowed to call this function concurrently. 1165 * 1166 * Return: %false if epi element has been already chained, %true otherwise. 1167 */ 1168 static inline bool chain_epi_lockless(struct epitem *epi) 1169 { 1170 struct eventpoll *ep = epi->ep; 1171 1172 /* Fast preliminary check */ 1173 if (epi->next != EP_UNACTIVE_PTR) 1174 return false; 1175 1176 /* Check that the same epi has not been just chained from another CPU */ 1177 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR) 1178 return false; 1179 1180 /* Atomically exchange tail */ 1181 epi->next = xchg(&ep->ovflist, epi); 1182 1183 return true; 1184 } 1185 1186 /* 1187 * This is the callback that is passed to the wait queue wakeup 1188 * mechanism. It is called by the stored file descriptors when they 1189 * have events to report. 1190 * 1191 * This callback takes a read lock in order not to contend with concurrent 1192 * events from another file descriptor, thus all modifications to ->rdllist 1193 * or ->ovflist are lockless. Read lock is paired with the write lock from 1194 * ep_scan_ready_list(), which stops all list modifications and guarantees 1195 * that lists state is seen correctly. 1196 * 1197 * Another thing worth to mention is that ep_poll_callback() can be called 1198 * concurrently for the same @epi from different CPUs if poll table was inited 1199 * with several wait queues entries. Plural wakeup from different CPUs of a 1200 * single wait queue is serialized by wq.lock, but the case when multiple wait 1201 * queues are used should be detected accordingly. This is detected using 1202 * cmpxchg() operation. 1203 */ 1204 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1205 { 1206 int pwake = 0; 1207 struct epitem *epi = ep_item_from_wait(wait); 1208 struct eventpoll *ep = epi->ep; 1209 __poll_t pollflags = key_to_poll(key); 1210 unsigned long flags; 1211 int ewake = 0; 1212 1213 read_lock_irqsave(&ep->lock, flags); 1214 1215 ep_set_busy_poll_napi_id(epi); 1216 1217 /* 1218 * If the event mask does not contain any poll(2) event, we consider the 1219 * descriptor to be disabled. This condition is likely the effect of the 1220 * EPOLLONESHOT bit that disables the descriptor when an event is received, 1221 * until the next EPOLL_CTL_MOD will be issued. 1222 */ 1223 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 1224 goto out_unlock; 1225 1226 /* 1227 * Check the events coming with the callback. At this stage, not 1228 * every device reports the events in the "key" parameter of the 1229 * callback. We need to be able to handle both cases here, hence the 1230 * test for "key" != NULL before the event match test. 1231 */ 1232 if (pollflags && !(pollflags & epi->event.events)) 1233 goto out_unlock; 1234 1235 /* 1236 * If we are transferring events to userspace, we can hold no locks 1237 * (because we're accessing user memory, and because of linux f_op->poll() 1238 * semantics). All the events that happen during that period of time are 1239 * chained in ep->ovflist and requeued later on. 1240 */ 1241 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) { 1242 if (chain_epi_lockless(epi)) 1243 ep_pm_stay_awake_rcu(epi); 1244 } else if (!ep_is_linked(epi)) { 1245 /* In the usual case, add event to ready list. */ 1246 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist)) 1247 ep_pm_stay_awake_rcu(epi); 1248 } 1249 1250 /* 1251 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1252 * wait list. 1253 */ 1254 if (waitqueue_active(&ep->wq)) { 1255 if ((epi->event.events & EPOLLEXCLUSIVE) && 1256 !(pollflags & POLLFREE)) { 1257 switch (pollflags & EPOLLINOUT_BITS) { 1258 case EPOLLIN: 1259 if (epi->event.events & EPOLLIN) 1260 ewake = 1; 1261 break; 1262 case EPOLLOUT: 1263 if (epi->event.events & EPOLLOUT) 1264 ewake = 1; 1265 break; 1266 case 0: 1267 ewake = 1; 1268 break; 1269 } 1270 } 1271 wake_up(&ep->wq); 1272 } 1273 if (waitqueue_active(&ep->poll_wait)) 1274 pwake++; 1275 1276 out_unlock: 1277 read_unlock_irqrestore(&ep->lock, flags); 1278 1279 /* We have to call this outside the lock */ 1280 if (pwake) 1281 ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE); 1282 1283 if (!(epi->event.events & EPOLLEXCLUSIVE)) 1284 ewake = 1; 1285 1286 if (pollflags & POLLFREE) { 1287 /* 1288 * If we race with ep_remove_wait_queue() it can miss 1289 * ->whead = NULL and do another remove_wait_queue() after 1290 * us, so we can't use __remove_wait_queue(). 1291 */ 1292 list_del_init(&wait->entry); 1293 /* 1294 * ->whead != NULL protects us from the race with 1295 * ep_clear_and_put() or ep_remove(), ep_remove_wait_queue() 1296 * takes whead->lock held by the caller. Once we nullify it, 1297 * nothing protects ep/epi or even wait. 1298 */ 1299 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL); 1300 } 1301 1302 return ewake; 1303 } 1304 1305 /* 1306 * This is the callback that is used to add our wait queue to the 1307 * target file wakeup lists. 1308 */ 1309 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 1310 poll_table *pt) 1311 { 1312 struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt); 1313 struct epitem *epi = epq->epi; 1314 struct eppoll_entry *pwq; 1315 1316 if (unlikely(!epi)) // an earlier allocation has failed 1317 return; 1318 1319 pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL); 1320 if (unlikely(!pwq)) { 1321 epq->epi = NULL; 1322 return; 1323 } 1324 1325 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 1326 pwq->whead = whead; 1327 pwq->base = epi; 1328 if (epi->event.events & EPOLLEXCLUSIVE) 1329 add_wait_queue_exclusive(whead, &pwq->wait); 1330 else 1331 add_wait_queue(whead, &pwq->wait); 1332 pwq->next = epi->pwqlist; 1333 epi->pwqlist = pwq; 1334 } 1335 1336 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1337 { 1338 int kcmp; 1339 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL; 1340 struct epitem *epic; 1341 bool leftmost = true; 1342 1343 while (*p) { 1344 parent = *p; 1345 epic = rb_entry(parent, struct epitem, rbn); 1346 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1347 if (kcmp > 0) { 1348 p = &parent->rb_right; 1349 leftmost = false; 1350 } else 1351 p = &parent->rb_left; 1352 } 1353 rb_link_node(&epi->rbn, parent, p); 1354 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost); 1355 } 1356 1357 1358 1359 #define PATH_ARR_SIZE 5 1360 /* 1361 * These are the number paths of length 1 to 5, that we are allowing to emanate 1362 * from a single file of interest. For example, we allow 1000 paths of length 1363 * 1, to emanate from each file of interest. This essentially represents the 1364 * potential wakeup paths, which need to be limited in order to avoid massive 1365 * uncontrolled wakeup storms. The common use case should be a single ep which 1366 * is connected to n file sources. In this case each file source has 1 path 1367 * of length 1. Thus, the numbers below should be more than sufficient. These 1368 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1369 * and delete can't add additional paths. Protected by the epnested_mutex. 1370 */ 1371 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1372 static int path_count[PATH_ARR_SIZE]; 1373 1374 static int path_count_inc(int nests) 1375 { 1376 /* Allow an arbitrary number of depth 1 paths */ 1377 if (nests == 0) 1378 return 0; 1379 1380 if (++path_count[nests] > path_limits[nests]) 1381 return -1; 1382 return 0; 1383 } 1384 1385 static void path_count_init(void) 1386 { 1387 int i; 1388 1389 for (i = 0; i < PATH_ARR_SIZE; i++) 1390 path_count[i] = 0; 1391 } 1392 1393 static int reverse_path_check_proc(struct hlist_head *refs, int depth) 1394 { 1395 int error = 0; 1396 struct epitem *epi; 1397 1398 if (depth > EP_MAX_NESTS) /* too deep nesting */ 1399 return -1; 1400 1401 /* CTL_DEL can remove links here, but that can't increase our count */ 1402 hlist_for_each_entry_rcu(epi, refs, fllink) { 1403 struct hlist_head *refs = &epi->ep->refs; 1404 if (hlist_empty(refs)) 1405 error = path_count_inc(depth); 1406 else 1407 error = reverse_path_check_proc(refs, depth + 1); 1408 if (error != 0) 1409 break; 1410 } 1411 return error; 1412 } 1413 1414 /** 1415 * reverse_path_check - The tfile_check_list is list of epitem_head, which have 1416 * links that are proposed to be newly added. We need to 1417 * make sure that those added links don't add too many 1418 * paths such that we will spend all our time waking up 1419 * eventpoll objects. 1420 * 1421 * Return: %zero if the proposed links don't create too many paths, 1422 * %-1 otherwise. 1423 */ 1424 static int reverse_path_check(void) 1425 { 1426 struct epitems_head *p; 1427 1428 for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) { 1429 int error; 1430 path_count_init(); 1431 rcu_read_lock(); 1432 error = reverse_path_check_proc(&p->epitems, 0); 1433 rcu_read_unlock(); 1434 if (error) 1435 return error; 1436 } 1437 return 0; 1438 } 1439 1440 static int ep_create_wakeup_source(struct epitem *epi) 1441 { 1442 struct name_snapshot n; 1443 struct wakeup_source *ws; 1444 1445 if (!epi->ep->ws) { 1446 epi->ep->ws = wakeup_source_register(NULL, "eventpoll"); 1447 if (!epi->ep->ws) 1448 return -ENOMEM; 1449 } 1450 1451 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry); 1452 ws = wakeup_source_register(NULL, n.name.name); 1453 release_dentry_name_snapshot(&n); 1454 1455 if (!ws) 1456 return -ENOMEM; 1457 rcu_assign_pointer(epi->ws, ws); 1458 1459 return 0; 1460 } 1461 1462 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ 1463 static noinline void ep_destroy_wakeup_source(struct epitem *epi) 1464 { 1465 struct wakeup_source *ws = ep_wakeup_source(epi); 1466 1467 RCU_INIT_POINTER(epi->ws, NULL); 1468 1469 /* 1470 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is 1471 * used internally by wakeup_source_remove, too (called by 1472 * wakeup_source_unregister), so we cannot use call_rcu 1473 */ 1474 synchronize_rcu(); 1475 wakeup_source_unregister(ws); 1476 } 1477 1478 static int attach_epitem(struct file *file, struct epitem *epi) 1479 { 1480 struct epitems_head *to_free = NULL; 1481 struct hlist_head *head = NULL; 1482 struct eventpoll *ep = NULL; 1483 1484 if (is_file_epoll(file)) 1485 ep = file->private_data; 1486 1487 if (ep) { 1488 head = &ep->refs; 1489 } else if (!READ_ONCE(file->f_ep)) { 1490 allocate: 1491 to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL); 1492 if (!to_free) 1493 return -ENOMEM; 1494 head = &to_free->epitems; 1495 } 1496 spin_lock(&file->f_lock); 1497 if (!file->f_ep) { 1498 if (unlikely(!head)) { 1499 spin_unlock(&file->f_lock); 1500 goto allocate; 1501 } 1502 /* See eventpoll_release() for details. */ 1503 WRITE_ONCE(file->f_ep, head); 1504 to_free = NULL; 1505 } 1506 hlist_add_head_rcu(&epi->fllink, file->f_ep); 1507 spin_unlock(&file->f_lock); 1508 free_ephead(to_free); 1509 return 0; 1510 } 1511 1512 /* 1513 * Must be called with "mtx" held. 1514 */ 1515 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event, 1516 struct file *tfile, int fd, int full_check) 1517 { 1518 int error, pwake = 0; 1519 __poll_t revents; 1520 struct epitem *epi; 1521 struct ep_pqueue epq; 1522 struct eventpoll *tep = NULL; 1523 1524 if (is_file_epoll(tfile)) 1525 tep = tfile->private_data; 1526 1527 lockdep_assert_irqs_enabled(); 1528 1529 if (unlikely(percpu_counter_compare(&ep->user->epoll_watches, 1530 max_user_watches) >= 0)) 1531 return -ENOSPC; 1532 percpu_counter_inc(&ep->user->epoll_watches); 1533 1534 if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) { 1535 percpu_counter_dec(&ep->user->epoll_watches); 1536 return -ENOMEM; 1537 } 1538 1539 /* Item initialization follow here ... */ 1540 INIT_LIST_HEAD(&epi->rdllink); 1541 epi->ep = ep; 1542 ep_set_ffd(&epi->ffd, tfile, fd); 1543 epi->event = *event; 1544 epi->next = EP_UNACTIVE_PTR; 1545 1546 if (tep) 1547 mutex_lock_nested(&tep->mtx, 1); 1548 /* Add the current item to the list of active epoll hook for this file */ 1549 if (unlikely(attach_epitem(tfile, epi) < 0)) { 1550 if (tep) 1551 mutex_unlock(&tep->mtx); 1552 kmem_cache_free(epi_cache, epi); 1553 percpu_counter_dec(&ep->user->epoll_watches); 1554 return -ENOMEM; 1555 } 1556 1557 if (full_check && !tep) 1558 list_file(tfile); 1559 1560 /* 1561 * Add the current item to the RB tree. All RB tree operations are 1562 * protected by "mtx", and ep_insert() is called with "mtx" held. 1563 */ 1564 ep_rbtree_insert(ep, epi); 1565 if (tep) 1566 mutex_unlock(&tep->mtx); 1567 1568 /* 1569 * ep_remove_safe() calls in the later error paths can't lead to 1570 * ep_free() as the ep file itself still holds an ep reference. 1571 */ 1572 ep_get(ep); 1573 1574 /* now check if we've created too many backpaths */ 1575 if (unlikely(full_check && reverse_path_check())) { 1576 ep_remove_safe(ep, epi); 1577 return -EINVAL; 1578 } 1579 1580 if (epi->event.events & EPOLLWAKEUP) { 1581 error = ep_create_wakeup_source(epi); 1582 if (error) { 1583 ep_remove_safe(ep, epi); 1584 return error; 1585 } 1586 } 1587 1588 /* Initialize the poll table using the queue callback */ 1589 epq.epi = epi; 1590 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1591 1592 /* 1593 * Attach the item to the poll hooks and get current event bits. 1594 * We can safely use the file* here because its usage count has 1595 * been increased by the caller of this function. Note that after 1596 * this operation completes, the poll callback can start hitting 1597 * the new item. 1598 */ 1599 revents = ep_item_poll(epi, &epq.pt, 1); 1600 1601 /* 1602 * We have to check if something went wrong during the poll wait queue 1603 * install process. Namely an allocation for a wait queue failed due 1604 * high memory pressure. 1605 */ 1606 if (unlikely(!epq.epi)) { 1607 ep_remove_safe(ep, epi); 1608 return -ENOMEM; 1609 } 1610 1611 /* We have to drop the new item inside our item list to keep track of it */ 1612 write_lock_irq(&ep->lock); 1613 1614 /* record NAPI ID of new item if present */ 1615 ep_set_busy_poll_napi_id(epi); 1616 1617 /* If the file is already "ready" we drop it inside the ready list */ 1618 if (revents && !ep_is_linked(epi)) { 1619 list_add_tail(&epi->rdllink, &ep->rdllist); 1620 ep_pm_stay_awake(epi); 1621 1622 /* Notify waiting tasks that events are available */ 1623 if (waitqueue_active(&ep->wq)) 1624 wake_up(&ep->wq); 1625 if (waitqueue_active(&ep->poll_wait)) 1626 pwake++; 1627 } 1628 1629 write_unlock_irq(&ep->lock); 1630 1631 /* We have to call this outside the lock */ 1632 if (pwake) 1633 ep_poll_safewake(ep, NULL, 0); 1634 1635 return 0; 1636 } 1637 1638 /* 1639 * Modify the interest event mask by dropping an event if the new mask 1640 * has a match in the current file status. Must be called with "mtx" held. 1641 */ 1642 static int ep_modify(struct eventpoll *ep, struct epitem *epi, 1643 const struct epoll_event *event) 1644 { 1645 int pwake = 0; 1646 poll_table pt; 1647 1648 lockdep_assert_irqs_enabled(); 1649 1650 init_poll_funcptr(&pt, NULL); 1651 1652 /* 1653 * Set the new event interest mask before calling f_op->poll(); 1654 * otherwise we might miss an event that happens between the 1655 * f_op->poll() call and the new event set registering. 1656 */ 1657 epi->event.events = event->events; /* need barrier below */ 1658 epi->event.data = event->data; /* protected by mtx */ 1659 if (epi->event.events & EPOLLWAKEUP) { 1660 if (!ep_has_wakeup_source(epi)) 1661 ep_create_wakeup_source(epi); 1662 } else if (ep_has_wakeup_source(epi)) { 1663 ep_destroy_wakeup_source(epi); 1664 } 1665 1666 /* 1667 * The following barrier has two effects: 1668 * 1669 * 1) Flush epi changes above to other CPUs. This ensures 1670 * we do not miss events from ep_poll_callback if an 1671 * event occurs immediately after we call f_op->poll(). 1672 * We need this because we did not take ep->lock while 1673 * changing epi above (but ep_poll_callback does take 1674 * ep->lock). 1675 * 1676 * 2) We also need to ensure we do not miss _past_ events 1677 * when calling f_op->poll(). This barrier also 1678 * pairs with the barrier in wq_has_sleeper (see 1679 * comments for wq_has_sleeper). 1680 * 1681 * This barrier will now guarantee ep_poll_callback or f_op->poll 1682 * (or both) will notice the readiness of an item. 1683 */ 1684 smp_mb(); 1685 1686 /* 1687 * Get current event bits. We can safely use the file* here because 1688 * its usage count has been increased by the caller of this function. 1689 * If the item is "hot" and it is not registered inside the ready 1690 * list, push it inside. 1691 */ 1692 if (ep_item_poll(epi, &pt, 1)) { 1693 write_lock_irq(&ep->lock); 1694 if (!ep_is_linked(epi)) { 1695 list_add_tail(&epi->rdllink, &ep->rdllist); 1696 ep_pm_stay_awake(epi); 1697 1698 /* Notify waiting tasks that events are available */ 1699 if (waitqueue_active(&ep->wq)) 1700 wake_up(&ep->wq); 1701 if (waitqueue_active(&ep->poll_wait)) 1702 pwake++; 1703 } 1704 write_unlock_irq(&ep->lock); 1705 } 1706 1707 /* We have to call this outside the lock */ 1708 if (pwake) 1709 ep_poll_safewake(ep, NULL, 0); 1710 1711 return 0; 1712 } 1713 1714 static int ep_send_events(struct eventpoll *ep, 1715 struct epoll_event __user *events, int maxevents) 1716 { 1717 struct epitem *epi, *tmp; 1718 LIST_HEAD(txlist); 1719 poll_table pt; 1720 int res = 0; 1721 1722 /* 1723 * Always short-circuit for fatal signals to allow threads to make a 1724 * timely exit without the chance of finding more events available and 1725 * fetching repeatedly. 1726 */ 1727 if (fatal_signal_pending(current)) 1728 return -EINTR; 1729 1730 init_poll_funcptr(&pt, NULL); 1731 1732 mutex_lock(&ep->mtx); 1733 ep_start_scan(ep, &txlist); 1734 1735 /* 1736 * We can loop without lock because we are passed a task private list. 1737 * Items cannot vanish during the loop we are holding ep->mtx. 1738 */ 1739 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { 1740 struct wakeup_source *ws; 1741 __poll_t revents; 1742 1743 if (res >= maxevents) 1744 break; 1745 1746 /* 1747 * Activate ep->ws before deactivating epi->ws to prevent 1748 * triggering auto-suspend here (in case we reactive epi->ws 1749 * below). 1750 * 1751 * This could be rearranged to delay the deactivation of epi->ws 1752 * instead, but then epi->ws would temporarily be out of sync 1753 * with ep_is_linked(). 1754 */ 1755 ws = ep_wakeup_source(epi); 1756 if (ws) { 1757 if (ws->active) 1758 __pm_stay_awake(ep->ws); 1759 __pm_relax(ws); 1760 } 1761 1762 list_del_init(&epi->rdllink); 1763 1764 /* 1765 * If the event mask intersect the caller-requested one, 1766 * deliver the event to userspace. Again, we are holding ep->mtx, 1767 * so no operations coming from userspace can change the item. 1768 */ 1769 revents = ep_item_poll(epi, &pt, 1); 1770 if (!revents) 1771 continue; 1772 1773 events = epoll_put_uevent(revents, epi->event.data, events); 1774 if (!events) { 1775 list_add(&epi->rdllink, &txlist); 1776 ep_pm_stay_awake(epi); 1777 if (!res) 1778 res = -EFAULT; 1779 break; 1780 } 1781 res++; 1782 if (epi->event.events & EPOLLONESHOT) 1783 epi->event.events &= EP_PRIVATE_BITS; 1784 else if (!(epi->event.events & EPOLLET)) { 1785 /* 1786 * If this file has been added with Level 1787 * Trigger mode, we need to insert back inside 1788 * the ready list, so that the next call to 1789 * epoll_wait() will check again the events 1790 * availability. At this point, no one can insert 1791 * into ep->rdllist besides us. The epoll_ctl() 1792 * callers are locked out by 1793 * ep_scan_ready_list() holding "mtx" and the 1794 * poll callback will queue them in ep->ovflist. 1795 */ 1796 list_add_tail(&epi->rdllink, &ep->rdllist); 1797 ep_pm_stay_awake(epi); 1798 } 1799 } 1800 ep_done_scan(ep, &txlist); 1801 mutex_unlock(&ep->mtx); 1802 1803 return res; 1804 } 1805 1806 static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms) 1807 { 1808 struct timespec64 now; 1809 1810 if (ms < 0) 1811 return NULL; 1812 1813 if (!ms) { 1814 to->tv_sec = 0; 1815 to->tv_nsec = 0; 1816 return to; 1817 } 1818 1819 to->tv_sec = ms / MSEC_PER_SEC; 1820 to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC); 1821 1822 ktime_get_ts64(&now); 1823 *to = timespec64_add_safe(now, *to); 1824 return to; 1825 } 1826 1827 /* 1828 * autoremove_wake_function, but remove even on failure to wake up, because we 1829 * know that default_wake_function/ttwu will only fail if the thread is already 1830 * woken, and in that case the ep_poll loop will remove the entry anyways, not 1831 * try to reuse it. 1832 */ 1833 static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry, 1834 unsigned int mode, int sync, void *key) 1835 { 1836 int ret = default_wake_function(wq_entry, mode, sync, key); 1837 1838 /* 1839 * Pairs with list_empty_careful in ep_poll, and ensures future loop 1840 * iterations see the cause of this wakeup. 1841 */ 1842 list_del_init_careful(&wq_entry->entry); 1843 return ret; 1844 } 1845 1846 /** 1847 * ep_poll - Retrieves ready events, and delivers them to the caller-supplied 1848 * event buffer. 1849 * 1850 * @ep: Pointer to the eventpoll context. 1851 * @events: Pointer to the userspace buffer where the ready events should be 1852 * stored. 1853 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1854 * @timeout: Maximum timeout for the ready events fetch operation, in 1855 * timespec. If the timeout is zero, the function will not block, 1856 * while if the @timeout ptr is NULL, the function will block 1857 * until at least one event has been retrieved (or an error 1858 * occurred). 1859 * 1860 * Return: the number of ready events which have been fetched, or an 1861 * error code, in case of error. 1862 */ 1863 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1864 int maxevents, struct timespec64 *timeout) 1865 { 1866 int res, eavail, timed_out = 0; 1867 u64 slack = 0; 1868 wait_queue_entry_t wait; 1869 ktime_t expires, *to = NULL; 1870 1871 lockdep_assert_irqs_enabled(); 1872 1873 if (timeout && (timeout->tv_sec | timeout->tv_nsec)) { 1874 slack = select_estimate_accuracy(timeout); 1875 to = &expires; 1876 *to = timespec64_to_ktime(*timeout); 1877 } else if (timeout) { 1878 /* 1879 * Avoid the unnecessary trip to the wait queue loop, if the 1880 * caller specified a non blocking operation. 1881 */ 1882 timed_out = 1; 1883 } 1884 1885 /* 1886 * This call is racy: We may or may not see events that are being added 1887 * to the ready list under the lock (e.g., in IRQ callbacks). For cases 1888 * with a non-zero timeout, this thread will check the ready list under 1889 * lock and will add to the wait queue. For cases with a zero 1890 * timeout, the user by definition should not care and will have to 1891 * recheck again. 1892 */ 1893 eavail = ep_events_available(ep); 1894 1895 while (1) { 1896 if (eavail) { 1897 /* 1898 * Try to transfer events to user space. In case we get 1899 * 0 events and there's still timeout left over, we go 1900 * trying again in search of more luck. 1901 */ 1902 res = ep_send_events(ep, events, maxevents); 1903 if (res) 1904 return res; 1905 } 1906 1907 if (timed_out) 1908 return 0; 1909 1910 eavail = ep_busy_loop(ep, timed_out); 1911 if (eavail) 1912 continue; 1913 1914 if (signal_pending(current)) 1915 return -EINTR; 1916 1917 /* 1918 * Internally init_wait() uses autoremove_wake_function(), 1919 * thus wait entry is removed from the wait queue on each 1920 * wakeup. Why it is important? In case of several waiters 1921 * each new wakeup will hit the next waiter, giving it the 1922 * chance to harvest new event. Otherwise wakeup can be 1923 * lost. This is also good performance-wise, because on 1924 * normal wakeup path no need to call __remove_wait_queue() 1925 * explicitly, thus ep->lock is not taken, which halts the 1926 * event delivery. 1927 * 1928 * In fact, we now use an even more aggressive function that 1929 * unconditionally removes, because we don't reuse the wait 1930 * entry between loop iterations. This lets us also avoid the 1931 * performance issue if a process is killed, causing all of its 1932 * threads to wake up without being removed normally. 1933 */ 1934 init_wait(&wait); 1935 wait.func = ep_autoremove_wake_function; 1936 1937 write_lock_irq(&ep->lock); 1938 /* 1939 * Barrierless variant, waitqueue_active() is called under 1940 * the same lock on wakeup ep_poll_callback() side, so it 1941 * is safe to avoid an explicit barrier. 1942 */ 1943 __set_current_state(TASK_INTERRUPTIBLE); 1944 1945 /* 1946 * Do the final check under the lock. ep_scan_ready_list() 1947 * plays with two lists (->rdllist and ->ovflist) and there 1948 * is always a race when both lists are empty for short 1949 * period of time although events are pending, so lock is 1950 * important. 1951 */ 1952 eavail = ep_events_available(ep); 1953 if (!eavail) 1954 __add_wait_queue_exclusive(&ep->wq, &wait); 1955 1956 write_unlock_irq(&ep->lock); 1957 1958 if (!eavail) 1959 timed_out = !schedule_hrtimeout_range(to, slack, 1960 HRTIMER_MODE_ABS); 1961 __set_current_state(TASK_RUNNING); 1962 1963 /* 1964 * We were woken up, thus go and try to harvest some events. 1965 * If timed out and still on the wait queue, recheck eavail 1966 * carefully under lock, below. 1967 */ 1968 eavail = 1; 1969 1970 if (!list_empty_careful(&wait.entry)) { 1971 write_lock_irq(&ep->lock); 1972 /* 1973 * If the thread timed out and is not on the wait queue, 1974 * it means that the thread was woken up after its 1975 * timeout expired before it could reacquire the lock. 1976 * Thus, when wait.entry is empty, it needs to harvest 1977 * events. 1978 */ 1979 if (timed_out) 1980 eavail = list_empty(&wait.entry); 1981 __remove_wait_queue(&ep->wq, &wait); 1982 write_unlock_irq(&ep->lock); 1983 } 1984 } 1985 } 1986 1987 /** 1988 * ep_loop_check_proc - verify that adding an epoll file inside another 1989 * epoll structure does not violate the constraints, in 1990 * terms of closed loops, or too deep chains (which can 1991 * result in excessive stack usage). 1992 * 1993 * @ep: the &struct eventpoll to be currently checked. 1994 * @depth: Current depth of the path being checked. 1995 * 1996 * Return: %zero if adding the epoll @file inside current epoll 1997 * structure @ep does not violate the constraints, or %-1 otherwise. 1998 */ 1999 static int ep_loop_check_proc(struct eventpoll *ep, int depth) 2000 { 2001 int error = 0; 2002 struct rb_node *rbp; 2003 struct epitem *epi; 2004 2005 mutex_lock_nested(&ep->mtx, depth + 1); 2006 ep->gen = loop_check_gen; 2007 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 2008 epi = rb_entry(rbp, struct epitem, rbn); 2009 if (unlikely(is_file_epoll(epi->ffd.file))) { 2010 struct eventpoll *ep_tovisit; 2011 ep_tovisit = epi->ffd.file->private_data; 2012 if (ep_tovisit->gen == loop_check_gen) 2013 continue; 2014 if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS) 2015 error = -1; 2016 else 2017 error = ep_loop_check_proc(ep_tovisit, depth + 1); 2018 if (error != 0) 2019 break; 2020 } else { 2021 /* 2022 * If we've reached a file that is not associated with 2023 * an ep, then we need to check if the newly added 2024 * links are going to add too many wakeup paths. We do 2025 * this by adding it to the tfile_check_list, if it's 2026 * not already there, and calling reverse_path_check() 2027 * during ep_insert(). 2028 */ 2029 list_file(epi->ffd.file); 2030 } 2031 } 2032 mutex_unlock(&ep->mtx); 2033 2034 return error; 2035 } 2036 2037 /** 2038 * ep_loop_check - Performs a check to verify that adding an epoll file (@to) 2039 * into another epoll file (represented by @ep) does not create 2040 * closed loops or too deep chains. 2041 * 2042 * @ep: Pointer to the epoll we are inserting into. 2043 * @to: Pointer to the epoll to be inserted. 2044 * 2045 * Return: %zero if adding the epoll @to inside the epoll @from 2046 * does not violate the constraints, or %-1 otherwise. 2047 */ 2048 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to) 2049 { 2050 inserting_into = ep; 2051 return ep_loop_check_proc(to, 0); 2052 } 2053 2054 static void clear_tfile_check_list(void) 2055 { 2056 rcu_read_lock(); 2057 while (tfile_check_list != EP_UNACTIVE_PTR) { 2058 struct epitems_head *head = tfile_check_list; 2059 tfile_check_list = head->next; 2060 unlist_file(head); 2061 } 2062 rcu_read_unlock(); 2063 } 2064 2065 /* 2066 * Open an eventpoll file descriptor. 2067 */ 2068 static int do_epoll_create(int flags) 2069 { 2070 int error, fd; 2071 struct eventpoll *ep = NULL; 2072 struct file *file; 2073 2074 /* Check the EPOLL_* constant for consistency. */ 2075 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 2076 2077 if (flags & ~EPOLL_CLOEXEC) 2078 return -EINVAL; 2079 /* 2080 * Create the internal data structure ("struct eventpoll"). 2081 */ 2082 error = ep_alloc(&ep); 2083 if (error < 0) 2084 return error; 2085 /* 2086 * Creates all the items needed to setup an eventpoll file. That is, 2087 * a file structure and a free file descriptor. 2088 */ 2089 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 2090 if (fd < 0) { 2091 error = fd; 2092 goto out_free_ep; 2093 } 2094 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 2095 O_RDWR | (flags & O_CLOEXEC)); 2096 if (IS_ERR(file)) { 2097 error = PTR_ERR(file); 2098 goto out_free_fd; 2099 } 2100 ep->file = file; 2101 fd_install(fd, file); 2102 return fd; 2103 2104 out_free_fd: 2105 put_unused_fd(fd); 2106 out_free_ep: 2107 ep_clear_and_put(ep); 2108 return error; 2109 } 2110 2111 SYSCALL_DEFINE1(epoll_create1, int, flags) 2112 { 2113 return do_epoll_create(flags); 2114 } 2115 2116 SYSCALL_DEFINE1(epoll_create, int, size) 2117 { 2118 if (size <= 0) 2119 return -EINVAL; 2120 2121 return do_epoll_create(0); 2122 } 2123 2124 #ifdef CONFIG_PM_SLEEP 2125 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev) 2126 { 2127 if ((epev->events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND)) 2128 epev->events &= ~EPOLLWAKEUP; 2129 } 2130 #else 2131 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev) 2132 { 2133 epev->events &= ~EPOLLWAKEUP; 2134 } 2135 #endif 2136 2137 static inline int epoll_mutex_lock(struct mutex *mutex, int depth, 2138 bool nonblock) 2139 { 2140 if (!nonblock) { 2141 mutex_lock_nested(mutex, depth); 2142 return 0; 2143 } 2144 if (mutex_trylock(mutex)) 2145 return 0; 2146 return -EAGAIN; 2147 } 2148 2149 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds, 2150 bool nonblock) 2151 { 2152 int error; 2153 int full_check = 0; 2154 struct fd f, tf; 2155 struct eventpoll *ep; 2156 struct epitem *epi; 2157 struct eventpoll *tep = NULL; 2158 2159 error = -EBADF; 2160 f = fdget(epfd); 2161 if (!f.file) 2162 goto error_return; 2163 2164 /* Get the "struct file *" for the target file */ 2165 tf = fdget(fd); 2166 if (!tf.file) 2167 goto error_fput; 2168 2169 /* The target file descriptor must support poll */ 2170 error = -EPERM; 2171 if (!file_can_poll(tf.file)) 2172 goto error_tgt_fput; 2173 2174 /* Check if EPOLLWAKEUP is allowed */ 2175 if (ep_op_has_event(op)) 2176 ep_take_care_of_epollwakeup(epds); 2177 2178 /* 2179 * We have to check that the file structure underneath the file descriptor 2180 * the user passed to us _is_ an eventpoll file. And also we do not permit 2181 * adding an epoll file descriptor inside itself. 2182 */ 2183 error = -EINVAL; 2184 if (f.file == tf.file || !is_file_epoll(f.file)) 2185 goto error_tgt_fput; 2186 2187 /* 2188 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only, 2189 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation. 2190 * Also, we do not currently supported nested exclusive wakeups. 2191 */ 2192 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) { 2193 if (op == EPOLL_CTL_MOD) 2194 goto error_tgt_fput; 2195 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) || 2196 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS))) 2197 goto error_tgt_fput; 2198 } 2199 2200 /* 2201 * At this point it is safe to assume that the "private_data" contains 2202 * our own data structure. 2203 */ 2204 ep = f.file->private_data; 2205 2206 /* 2207 * When we insert an epoll file descriptor inside another epoll file 2208 * descriptor, there is the chance of creating closed loops, which are 2209 * better be handled here, than in more critical paths. While we are 2210 * checking for loops we also determine the list of files reachable 2211 * and hang them on the tfile_check_list, so we can check that we 2212 * haven't created too many possible wakeup paths. 2213 * 2214 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when 2215 * the epoll file descriptor is attaching directly to a wakeup source, 2216 * unless the epoll file descriptor is nested. The purpose of taking the 2217 * 'epnested_mutex' on add is to prevent complex toplogies such as loops and 2218 * deep wakeup paths from forming in parallel through multiple 2219 * EPOLL_CTL_ADD operations. 2220 */ 2221 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2222 if (error) 2223 goto error_tgt_fput; 2224 if (op == EPOLL_CTL_ADD) { 2225 if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen || 2226 is_file_epoll(tf.file)) { 2227 mutex_unlock(&ep->mtx); 2228 error = epoll_mutex_lock(&epnested_mutex, 0, nonblock); 2229 if (error) 2230 goto error_tgt_fput; 2231 loop_check_gen++; 2232 full_check = 1; 2233 if (is_file_epoll(tf.file)) { 2234 tep = tf.file->private_data; 2235 error = -ELOOP; 2236 if (ep_loop_check(ep, tep) != 0) 2237 goto error_tgt_fput; 2238 } 2239 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2240 if (error) 2241 goto error_tgt_fput; 2242 } 2243 } 2244 2245 /* 2246 * Try to lookup the file inside our RB tree. Since we grabbed "mtx" 2247 * above, we can be sure to be able to use the item looked up by 2248 * ep_find() till we release the mutex. 2249 */ 2250 epi = ep_find(ep, tf.file, fd); 2251 2252 error = -EINVAL; 2253 switch (op) { 2254 case EPOLL_CTL_ADD: 2255 if (!epi) { 2256 epds->events |= EPOLLERR | EPOLLHUP; 2257 error = ep_insert(ep, epds, tf.file, fd, full_check); 2258 } else 2259 error = -EEXIST; 2260 break; 2261 case EPOLL_CTL_DEL: 2262 if (epi) { 2263 /* 2264 * The eventpoll itself is still alive: the refcount 2265 * can't go to zero here. 2266 */ 2267 ep_remove_safe(ep, epi); 2268 error = 0; 2269 } else { 2270 error = -ENOENT; 2271 } 2272 break; 2273 case EPOLL_CTL_MOD: 2274 if (epi) { 2275 if (!(epi->event.events & EPOLLEXCLUSIVE)) { 2276 epds->events |= EPOLLERR | EPOLLHUP; 2277 error = ep_modify(ep, epi, epds); 2278 } 2279 } else 2280 error = -ENOENT; 2281 break; 2282 } 2283 mutex_unlock(&ep->mtx); 2284 2285 error_tgt_fput: 2286 if (full_check) { 2287 clear_tfile_check_list(); 2288 loop_check_gen++; 2289 mutex_unlock(&epnested_mutex); 2290 } 2291 2292 fdput(tf); 2293 error_fput: 2294 fdput(f); 2295 error_return: 2296 2297 return error; 2298 } 2299 2300 /* 2301 * The following function implements the controller interface for 2302 * the eventpoll file that enables the insertion/removal/change of 2303 * file descriptors inside the interest set. 2304 */ 2305 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 2306 struct epoll_event __user *, event) 2307 { 2308 struct epoll_event epds; 2309 2310 if (ep_op_has_event(op) && 2311 copy_from_user(&epds, event, sizeof(struct epoll_event))) 2312 return -EFAULT; 2313 2314 return do_epoll_ctl(epfd, op, fd, &epds, false); 2315 } 2316 2317 /* 2318 * Implement the event wait interface for the eventpoll file. It is the kernel 2319 * part of the user space epoll_wait(2). 2320 */ 2321 static int do_epoll_wait(int epfd, struct epoll_event __user *events, 2322 int maxevents, struct timespec64 *to) 2323 { 2324 int error; 2325 struct fd f; 2326 struct eventpoll *ep; 2327 2328 /* The maximum number of event must be greater than zero */ 2329 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 2330 return -EINVAL; 2331 2332 /* Verify that the area passed by the user is writeable */ 2333 if (!access_ok(events, maxevents * sizeof(struct epoll_event))) 2334 return -EFAULT; 2335 2336 /* Get the "struct file *" for the eventpoll file */ 2337 f = fdget(epfd); 2338 if (!f.file) 2339 return -EBADF; 2340 2341 /* 2342 * We have to check that the file structure underneath the fd 2343 * the user passed to us _is_ an eventpoll file. 2344 */ 2345 error = -EINVAL; 2346 if (!is_file_epoll(f.file)) 2347 goto error_fput; 2348 2349 /* 2350 * At this point it is safe to assume that the "private_data" contains 2351 * our own data structure. 2352 */ 2353 ep = f.file->private_data; 2354 2355 /* Time to fish for events ... */ 2356 error = ep_poll(ep, events, maxevents, to); 2357 2358 error_fput: 2359 fdput(f); 2360 return error; 2361 } 2362 2363 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 2364 int, maxevents, int, timeout) 2365 { 2366 struct timespec64 to; 2367 2368 return do_epoll_wait(epfd, events, maxevents, 2369 ep_timeout_to_timespec(&to, timeout)); 2370 } 2371 2372 /* 2373 * Implement the event wait interface for the eventpoll file. It is the kernel 2374 * part of the user space epoll_pwait(2). 2375 */ 2376 static int do_epoll_pwait(int epfd, struct epoll_event __user *events, 2377 int maxevents, struct timespec64 *to, 2378 const sigset_t __user *sigmask, size_t sigsetsize) 2379 { 2380 int error; 2381 2382 /* 2383 * If the caller wants a certain signal mask to be set during the wait, 2384 * we apply it here. 2385 */ 2386 error = set_user_sigmask(sigmask, sigsetsize); 2387 if (error) 2388 return error; 2389 2390 error = do_epoll_wait(epfd, events, maxevents, to); 2391 2392 restore_saved_sigmask_unless(error == -EINTR); 2393 2394 return error; 2395 } 2396 2397 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 2398 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 2399 size_t, sigsetsize) 2400 { 2401 struct timespec64 to; 2402 2403 return do_epoll_pwait(epfd, events, maxevents, 2404 ep_timeout_to_timespec(&to, timeout), 2405 sigmask, sigsetsize); 2406 } 2407 2408 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events, 2409 int, maxevents, const struct __kernel_timespec __user *, timeout, 2410 const sigset_t __user *, sigmask, size_t, sigsetsize) 2411 { 2412 struct timespec64 ts, *to = NULL; 2413 2414 if (timeout) { 2415 if (get_timespec64(&ts, timeout)) 2416 return -EFAULT; 2417 to = &ts; 2418 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) 2419 return -EINVAL; 2420 } 2421 2422 return do_epoll_pwait(epfd, events, maxevents, to, 2423 sigmask, sigsetsize); 2424 } 2425 2426 #ifdef CONFIG_COMPAT 2427 static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events, 2428 int maxevents, struct timespec64 *timeout, 2429 const compat_sigset_t __user *sigmask, 2430 compat_size_t sigsetsize) 2431 { 2432 long err; 2433 2434 /* 2435 * If the caller wants a certain signal mask to be set during the wait, 2436 * we apply it here. 2437 */ 2438 err = set_compat_user_sigmask(sigmask, sigsetsize); 2439 if (err) 2440 return err; 2441 2442 err = do_epoll_wait(epfd, events, maxevents, timeout); 2443 2444 restore_saved_sigmask_unless(err == -EINTR); 2445 2446 return err; 2447 } 2448 2449 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, 2450 struct epoll_event __user *, events, 2451 int, maxevents, int, timeout, 2452 const compat_sigset_t __user *, sigmask, 2453 compat_size_t, sigsetsize) 2454 { 2455 struct timespec64 to; 2456 2457 return do_compat_epoll_pwait(epfd, events, maxevents, 2458 ep_timeout_to_timespec(&to, timeout), 2459 sigmask, sigsetsize); 2460 } 2461 2462 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd, 2463 struct epoll_event __user *, events, 2464 int, maxevents, 2465 const struct __kernel_timespec __user *, timeout, 2466 const compat_sigset_t __user *, sigmask, 2467 compat_size_t, sigsetsize) 2468 { 2469 struct timespec64 ts, *to = NULL; 2470 2471 if (timeout) { 2472 if (get_timespec64(&ts, timeout)) 2473 return -EFAULT; 2474 to = &ts; 2475 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) 2476 return -EINVAL; 2477 } 2478 2479 return do_compat_epoll_pwait(epfd, events, maxevents, to, 2480 sigmask, sigsetsize); 2481 } 2482 2483 #endif 2484 2485 static int __init eventpoll_init(void) 2486 { 2487 struct sysinfo si; 2488 2489 si_meminfo(&si); 2490 /* 2491 * Allows top 4% of lomem to be allocated for epoll watches (per user). 2492 */ 2493 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 2494 EP_ITEM_COST; 2495 BUG_ON(max_user_watches < 0); 2496 2497 /* 2498 * We can have many thousands of epitems, so prevent this from 2499 * using an extra cache line on 64-bit (and smaller) CPUs 2500 */ 2501 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); 2502 2503 /* Allocates slab cache used to allocate "struct epitem" items */ 2504 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 2505 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 2506 2507 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 2508 pwq_cache = kmem_cache_create("eventpoll_pwq", 2509 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2510 epoll_sysctls_init(); 2511 2512 ephead_cache = kmem_cache_create("ep_head", 2513 sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2514 2515 return 0; 2516 } 2517 fs_initcall(eventpoll_init); 2518