xref: /openbmc/linux/fs/eventpoll.c (revision 8e7a49e0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  fs/eventpoll.c (Efficient event retrieval implementation)
4  *  Copyright (C) 2001,...,2009	 Davide Libenzi
5  *
6  *  Davide Libenzi <davidel@xmailserver.org>
7  */
8 
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/uaccess.h>
33 #include <asm/io.h>
34 #include <asm/mman.h>
35 #include <linux/atomic.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/compat.h>
39 #include <linux/rculist.h>
40 #include <net/busy_poll.h>
41 
42 /*
43  * LOCKING:
44  * There are three level of locking required by epoll :
45  *
46  * 1) epmutex (mutex)
47  * 2) ep->mtx (mutex)
48  * 3) ep->lock (rwlock)
49  *
50  * The acquire order is the one listed above, from 1 to 3.
51  * We need a rwlock (ep->lock) because we manipulate objects
52  * from inside the poll callback, that might be triggered from
53  * a wake_up() that in turn might be called from IRQ context.
54  * So we can't sleep inside the poll callback and hence we need
55  * a spinlock. During the event transfer loop (from kernel to
56  * user space) we could end up sleeping due a copy_to_user(), so
57  * we need a lock that will allow us to sleep. This lock is a
58  * mutex (ep->mtx). It is acquired during the event transfer loop,
59  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60  * Then we also need a global mutex to serialize eventpoll_release_file()
61  * and ep_free().
62  * This mutex is acquired by ep_free() during the epoll file
63  * cleanup path and it is also acquired by eventpoll_release_file()
64  * if a file has been pushed inside an epoll set and it is then
65  * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
66  * It is also acquired when inserting an epoll fd onto another epoll
67  * fd. We do this so that we walk the epoll tree and ensure that this
68  * insertion does not create a cycle of epoll file descriptors, which
69  * could lead to deadlock. We need a global mutex to prevent two
70  * simultaneous inserts (A into B and B into A) from racing and
71  * constructing a cycle without either insert observing that it is
72  * going to.
73  * It is necessary to acquire multiple "ep->mtx"es at once in the
74  * case when one epoll fd is added to another. In this case, we
75  * always acquire the locks in the order of nesting (i.e. after
76  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
77  * before e2->mtx). Since we disallow cycles of epoll file
78  * descriptors, this ensures that the mutexes are well-ordered. In
79  * order to communicate this nesting to lockdep, when walking a tree
80  * of epoll file descriptors, we use the current recursion depth as
81  * the lockdep subkey.
82  * It is possible to drop the "ep->mtx" and to use the global
83  * mutex "epmutex" (together with "ep->lock") to have it working,
84  * but having "ep->mtx" will make the interface more scalable.
85  * Events that require holding "epmutex" are very rare, while for
86  * normal operations the epoll private "ep->mtx" will guarantee
87  * a better scalability.
88  */
89 
90 /* Epoll private bits inside the event mask */
91 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
92 
93 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
94 
95 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
96 				EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
97 
98 /* Maximum number of nesting allowed inside epoll sets */
99 #define EP_MAX_NESTS 4
100 
101 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
102 
103 #define EP_UNACTIVE_PTR ((void *) -1L)
104 
105 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
106 
107 struct epoll_filefd {
108 	struct file *file;
109 	int fd;
110 } __packed;
111 
112 /* Wait structure used by the poll hooks */
113 struct eppoll_entry {
114 	/* List header used to link this structure to the "struct epitem" */
115 	struct eppoll_entry *next;
116 
117 	/* The "base" pointer is set to the container "struct epitem" */
118 	struct epitem *base;
119 
120 	/*
121 	 * Wait queue item that will be linked to the target file wait
122 	 * queue head.
123 	 */
124 	wait_queue_entry_t wait;
125 
126 	/* The wait queue head that linked the "wait" wait queue item */
127 	wait_queue_head_t *whead;
128 };
129 
130 /*
131  * Each file descriptor added to the eventpoll interface will
132  * have an entry of this type linked to the "rbr" RB tree.
133  * Avoid increasing the size of this struct, there can be many thousands
134  * of these on a server and we do not want this to take another cache line.
135  */
136 struct epitem {
137 	union {
138 		/* RB tree node links this structure to the eventpoll RB tree */
139 		struct rb_node rbn;
140 		/* Used to free the struct epitem */
141 		struct rcu_head rcu;
142 	};
143 
144 	/* List header used to link this structure to the eventpoll ready list */
145 	struct list_head rdllink;
146 
147 	/*
148 	 * Works together "struct eventpoll"->ovflist in keeping the
149 	 * single linked chain of items.
150 	 */
151 	struct epitem *next;
152 
153 	/* The file descriptor information this item refers to */
154 	struct epoll_filefd ffd;
155 
156 	/* List containing poll wait queues */
157 	struct eppoll_entry *pwqlist;
158 
159 	/* The "container" of this item */
160 	struct eventpoll *ep;
161 
162 	/* List header used to link this item to the "struct file" items list */
163 	struct hlist_node fllink;
164 
165 	/* wakeup_source used when EPOLLWAKEUP is set */
166 	struct wakeup_source __rcu *ws;
167 
168 	/* The structure that describe the interested events and the source fd */
169 	struct epoll_event event;
170 };
171 
172 /*
173  * This structure is stored inside the "private_data" member of the file
174  * structure and represents the main data structure for the eventpoll
175  * interface.
176  */
177 struct eventpoll {
178 	/*
179 	 * This mutex is used to ensure that files are not removed
180 	 * while epoll is using them. This is held during the event
181 	 * collection loop, the file cleanup path, the epoll file exit
182 	 * code and the ctl operations.
183 	 */
184 	struct mutex mtx;
185 
186 	/* Wait queue used by sys_epoll_wait() */
187 	wait_queue_head_t wq;
188 
189 	/* Wait queue used by file->poll() */
190 	wait_queue_head_t poll_wait;
191 
192 	/* List of ready file descriptors */
193 	struct list_head rdllist;
194 
195 	/* Lock which protects rdllist and ovflist */
196 	rwlock_t lock;
197 
198 	/* RB tree root used to store monitored fd structs */
199 	struct rb_root_cached rbr;
200 
201 	/*
202 	 * This is a single linked list that chains all the "struct epitem" that
203 	 * happened while transferring ready events to userspace w/out
204 	 * holding ->lock.
205 	 */
206 	struct epitem *ovflist;
207 
208 	/* wakeup_source used when ep_scan_ready_list is running */
209 	struct wakeup_source *ws;
210 
211 	/* The user that created the eventpoll descriptor */
212 	struct user_struct *user;
213 
214 	struct file *file;
215 
216 	/* used to optimize loop detection check */
217 	u64 gen;
218 	struct hlist_head refs;
219 
220 #ifdef CONFIG_NET_RX_BUSY_POLL
221 	/* used to track busy poll napi_id */
222 	unsigned int napi_id;
223 #endif
224 
225 #ifdef CONFIG_DEBUG_LOCK_ALLOC
226 	/* tracks wakeup nests for lockdep validation */
227 	u8 nests;
228 #endif
229 };
230 
231 /* Wrapper struct used by poll queueing */
232 struct ep_pqueue {
233 	poll_table pt;
234 	struct epitem *epi;
235 };
236 
237 /*
238  * Configuration options available inside /proc/sys/fs/epoll/
239  */
240 /* Maximum number of epoll watched descriptors, per user */
241 static long max_user_watches __read_mostly;
242 
243 /*
244  * This mutex is used to serialize ep_free() and eventpoll_release_file().
245  */
246 static DEFINE_MUTEX(epmutex);
247 
248 static u64 loop_check_gen = 0;
249 
250 /* Used to check for epoll file descriptor inclusion loops */
251 static struct eventpoll *inserting_into;
252 
253 /* Slab cache used to allocate "struct epitem" */
254 static struct kmem_cache *epi_cache __read_mostly;
255 
256 /* Slab cache used to allocate "struct eppoll_entry" */
257 static struct kmem_cache *pwq_cache __read_mostly;
258 
259 /*
260  * List of files with newly added links, where we may need to limit the number
261  * of emanating paths. Protected by the epmutex.
262  */
263 struct epitems_head {
264 	struct hlist_head epitems;
265 	struct epitems_head *next;
266 };
267 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR;
268 
269 static struct kmem_cache *ephead_cache __read_mostly;
270 
271 static inline void free_ephead(struct epitems_head *head)
272 {
273 	if (head)
274 		kmem_cache_free(ephead_cache, head);
275 }
276 
277 static void list_file(struct file *file)
278 {
279 	struct epitems_head *head;
280 
281 	head = container_of(file->f_ep, struct epitems_head, epitems);
282 	if (!head->next) {
283 		head->next = tfile_check_list;
284 		tfile_check_list = head;
285 	}
286 }
287 
288 static void unlist_file(struct epitems_head *head)
289 {
290 	struct epitems_head *to_free = head;
291 	struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems));
292 	if (p) {
293 		struct epitem *epi= container_of(p, struct epitem, fllink);
294 		spin_lock(&epi->ffd.file->f_lock);
295 		if (!hlist_empty(&head->epitems))
296 			to_free = NULL;
297 		head->next = NULL;
298 		spin_unlock(&epi->ffd.file->f_lock);
299 	}
300 	free_ephead(to_free);
301 }
302 
303 #ifdef CONFIG_SYSCTL
304 
305 #include <linux/sysctl.h>
306 
307 static long long_zero;
308 static long long_max = LONG_MAX;
309 
310 static struct ctl_table epoll_table[] = {
311 	{
312 		.procname	= "max_user_watches",
313 		.data		= &max_user_watches,
314 		.maxlen		= sizeof(max_user_watches),
315 		.mode		= 0644,
316 		.proc_handler	= proc_doulongvec_minmax,
317 		.extra1		= &long_zero,
318 		.extra2		= &long_max,
319 	},
320 	{ }
321 };
322 
323 static void __init epoll_sysctls_init(void)
324 {
325 	register_sysctl("fs/epoll", epoll_table);
326 }
327 #else
328 #define epoll_sysctls_init() do { } while (0)
329 #endif /* CONFIG_SYSCTL */
330 
331 static const struct file_operations eventpoll_fops;
332 
333 static inline int is_file_epoll(struct file *f)
334 {
335 	return f->f_op == &eventpoll_fops;
336 }
337 
338 /* Setup the structure that is used as key for the RB tree */
339 static inline void ep_set_ffd(struct epoll_filefd *ffd,
340 			      struct file *file, int fd)
341 {
342 	ffd->file = file;
343 	ffd->fd = fd;
344 }
345 
346 /* Compare RB tree keys */
347 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
348 			     struct epoll_filefd *p2)
349 {
350 	return (p1->file > p2->file ? +1:
351 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
352 }
353 
354 /* Tells us if the item is currently linked */
355 static inline int ep_is_linked(struct epitem *epi)
356 {
357 	return !list_empty(&epi->rdllink);
358 }
359 
360 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
361 {
362 	return container_of(p, struct eppoll_entry, wait);
363 }
364 
365 /* Get the "struct epitem" from a wait queue pointer */
366 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
367 {
368 	return container_of(p, struct eppoll_entry, wait)->base;
369 }
370 
371 /**
372  * ep_events_available - Checks if ready events might be available.
373  *
374  * @ep: Pointer to the eventpoll context.
375  *
376  * Return: a value different than %zero if ready events are available,
377  *          or %zero otherwise.
378  */
379 static inline int ep_events_available(struct eventpoll *ep)
380 {
381 	return !list_empty_careful(&ep->rdllist) ||
382 		READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
383 }
384 
385 #ifdef CONFIG_NET_RX_BUSY_POLL
386 static bool ep_busy_loop_end(void *p, unsigned long start_time)
387 {
388 	struct eventpoll *ep = p;
389 
390 	return ep_events_available(ep) || busy_loop_timeout(start_time);
391 }
392 
393 /*
394  * Busy poll if globally on and supporting sockets found && no events,
395  * busy loop will return if need_resched or ep_events_available.
396  *
397  * we must do our busy polling with irqs enabled
398  */
399 static bool ep_busy_loop(struct eventpoll *ep, int nonblock)
400 {
401 	unsigned int napi_id = READ_ONCE(ep->napi_id);
402 
403 	if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) {
404 		napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, false,
405 			       BUSY_POLL_BUDGET);
406 		if (ep_events_available(ep))
407 			return true;
408 		/*
409 		 * Busy poll timed out.  Drop NAPI ID for now, we can add
410 		 * it back in when we have moved a socket with a valid NAPI
411 		 * ID onto the ready list.
412 		 */
413 		ep->napi_id = 0;
414 		return false;
415 	}
416 	return false;
417 }
418 
419 /*
420  * Set epoll busy poll NAPI ID from sk.
421  */
422 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
423 {
424 	struct eventpoll *ep;
425 	unsigned int napi_id;
426 	struct socket *sock;
427 	struct sock *sk;
428 
429 	if (!net_busy_loop_on())
430 		return;
431 
432 	sock = sock_from_file(epi->ffd.file);
433 	if (!sock)
434 		return;
435 
436 	sk = sock->sk;
437 	if (!sk)
438 		return;
439 
440 	napi_id = READ_ONCE(sk->sk_napi_id);
441 	ep = epi->ep;
442 
443 	/* Non-NAPI IDs can be rejected
444 	 *	or
445 	 * Nothing to do if we already have this ID
446 	 */
447 	if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
448 		return;
449 
450 	/* record NAPI ID for use in next busy poll */
451 	ep->napi_id = napi_id;
452 }
453 
454 #else
455 
456 static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock)
457 {
458 	return false;
459 }
460 
461 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
462 {
463 }
464 
465 #endif /* CONFIG_NET_RX_BUSY_POLL */
466 
467 /*
468  * As described in commit 0ccf831cb lockdep: annotate epoll
469  * the use of wait queues used by epoll is done in a very controlled
470  * manner. Wake ups can nest inside each other, but are never done
471  * with the same locking. For example:
472  *
473  *   dfd = socket(...);
474  *   efd1 = epoll_create();
475  *   efd2 = epoll_create();
476  *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
477  *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
478  *
479  * When a packet arrives to the device underneath "dfd", the net code will
480  * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
481  * callback wakeup entry on that queue, and the wake_up() performed by the
482  * "dfd" net code will end up in ep_poll_callback(). At this point epoll
483  * (efd1) notices that it may have some event ready, so it needs to wake up
484  * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
485  * that ends up in another wake_up(), after having checked about the
486  * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
487  * avoid stack blasting.
488  *
489  * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
490  * this special case of epoll.
491  */
492 #ifdef CONFIG_DEBUG_LOCK_ALLOC
493 
494 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
495 			     unsigned pollflags)
496 {
497 	struct eventpoll *ep_src;
498 	unsigned long flags;
499 	u8 nests = 0;
500 
501 	/*
502 	 * To set the subclass or nesting level for spin_lock_irqsave_nested()
503 	 * it might be natural to create a per-cpu nest count. However, since
504 	 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
505 	 * schedule() in the -rt kernel, the per-cpu variable are no longer
506 	 * protected. Thus, we are introducing a per eventpoll nest field.
507 	 * If we are not being call from ep_poll_callback(), epi is NULL and
508 	 * we are at the first level of nesting, 0. Otherwise, we are being
509 	 * called from ep_poll_callback() and if a previous wakeup source is
510 	 * not an epoll file itself, we are at depth 1 since the wakeup source
511 	 * is depth 0. If the wakeup source is a previous epoll file in the
512 	 * wakeup chain then we use its nests value and record ours as
513 	 * nests + 1. The previous epoll file nests value is stable since its
514 	 * already holding its own poll_wait.lock.
515 	 */
516 	if (epi) {
517 		if ((is_file_epoll(epi->ffd.file))) {
518 			ep_src = epi->ffd.file->private_data;
519 			nests = ep_src->nests;
520 		} else {
521 			nests = 1;
522 		}
523 	}
524 	spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
525 	ep->nests = nests + 1;
526 	wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags);
527 	ep->nests = 0;
528 	spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
529 }
530 
531 #else
532 
533 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
534 			     unsigned pollflags)
535 {
536 	wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags);
537 }
538 
539 #endif
540 
541 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
542 {
543 	wait_queue_head_t *whead;
544 
545 	rcu_read_lock();
546 	/*
547 	 * If it is cleared by POLLFREE, it should be rcu-safe.
548 	 * If we read NULL we need a barrier paired with
549 	 * smp_store_release() in ep_poll_callback(), otherwise
550 	 * we rely on whead->lock.
551 	 */
552 	whead = smp_load_acquire(&pwq->whead);
553 	if (whead)
554 		remove_wait_queue(whead, &pwq->wait);
555 	rcu_read_unlock();
556 }
557 
558 /*
559  * This function unregisters poll callbacks from the associated file
560  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
561  * ep_free).
562  */
563 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
564 {
565 	struct eppoll_entry **p = &epi->pwqlist;
566 	struct eppoll_entry *pwq;
567 
568 	while ((pwq = *p) != NULL) {
569 		*p = pwq->next;
570 		ep_remove_wait_queue(pwq);
571 		kmem_cache_free(pwq_cache, pwq);
572 	}
573 }
574 
575 /* call only when ep->mtx is held */
576 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
577 {
578 	return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
579 }
580 
581 /* call only when ep->mtx is held */
582 static inline void ep_pm_stay_awake(struct epitem *epi)
583 {
584 	struct wakeup_source *ws = ep_wakeup_source(epi);
585 
586 	if (ws)
587 		__pm_stay_awake(ws);
588 }
589 
590 static inline bool ep_has_wakeup_source(struct epitem *epi)
591 {
592 	return rcu_access_pointer(epi->ws) ? true : false;
593 }
594 
595 /* call when ep->mtx cannot be held (ep_poll_callback) */
596 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
597 {
598 	struct wakeup_source *ws;
599 
600 	rcu_read_lock();
601 	ws = rcu_dereference(epi->ws);
602 	if (ws)
603 		__pm_stay_awake(ws);
604 	rcu_read_unlock();
605 }
606 
607 
608 /*
609  * ep->mutex needs to be held because we could be hit by
610  * eventpoll_release_file() and epoll_ctl().
611  */
612 static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist)
613 {
614 	/*
615 	 * Steal the ready list, and re-init the original one to the
616 	 * empty list. Also, set ep->ovflist to NULL so that events
617 	 * happening while looping w/out locks, are not lost. We cannot
618 	 * have the poll callback to queue directly on ep->rdllist,
619 	 * because we want the "sproc" callback to be able to do it
620 	 * in a lockless way.
621 	 */
622 	lockdep_assert_irqs_enabled();
623 	write_lock_irq(&ep->lock);
624 	list_splice_init(&ep->rdllist, txlist);
625 	WRITE_ONCE(ep->ovflist, NULL);
626 	write_unlock_irq(&ep->lock);
627 }
628 
629 static void ep_done_scan(struct eventpoll *ep,
630 			 struct list_head *txlist)
631 {
632 	struct epitem *epi, *nepi;
633 
634 	write_lock_irq(&ep->lock);
635 	/*
636 	 * During the time we spent inside the "sproc" callback, some
637 	 * other events might have been queued by the poll callback.
638 	 * We re-insert them inside the main ready-list here.
639 	 */
640 	for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
641 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
642 		/*
643 		 * We need to check if the item is already in the list.
644 		 * During the "sproc" callback execution time, items are
645 		 * queued into ->ovflist but the "txlist" might already
646 		 * contain them, and the list_splice() below takes care of them.
647 		 */
648 		if (!ep_is_linked(epi)) {
649 			/*
650 			 * ->ovflist is LIFO, so we have to reverse it in order
651 			 * to keep in FIFO.
652 			 */
653 			list_add(&epi->rdllink, &ep->rdllist);
654 			ep_pm_stay_awake(epi);
655 		}
656 	}
657 	/*
658 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
659 	 * releasing the lock, events will be queued in the normal way inside
660 	 * ep->rdllist.
661 	 */
662 	WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
663 
664 	/*
665 	 * Quickly re-inject items left on "txlist".
666 	 */
667 	list_splice(txlist, &ep->rdllist);
668 	__pm_relax(ep->ws);
669 
670 	if (!list_empty(&ep->rdllist)) {
671 		if (waitqueue_active(&ep->wq))
672 			wake_up(&ep->wq);
673 	}
674 
675 	write_unlock_irq(&ep->lock);
676 }
677 
678 static void epi_rcu_free(struct rcu_head *head)
679 {
680 	struct epitem *epi = container_of(head, struct epitem, rcu);
681 	kmem_cache_free(epi_cache, epi);
682 }
683 
684 /*
685  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
686  * all the associated resources. Must be called with "mtx" held.
687  */
688 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
689 {
690 	struct file *file = epi->ffd.file;
691 	struct epitems_head *to_free;
692 	struct hlist_head *head;
693 
694 	lockdep_assert_irqs_enabled();
695 
696 	/*
697 	 * Removes poll wait queue hooks.
698 	 */
699 	ep_unregister_pollwait(ep, epi);
700 
701 	/* Remove the current item from the list of epoll hooks */
702 	spin_lock(&file->f_lock);
703 	to_free = NULL;
704 	head = file->f_ep;
705 	if (head->first == &epi->fllink && !epi->fllink.next) {
706 		file->f_ep = NULL;
707 		if (!is_file_epoll(file)) {
708 			struct epitems_head *v;
709 			v = container_of(head, struct epitems_head, epitems);
710 			if (!smp_load_acquire(&v->next))
711 				to_free = v;
712 		}
713 	}
714 	hlist_del_rcu(&epi->fllink);
715 	spin_unlock(&file->f_lock);
716 	free_ephead(to_free);
717 
718 	rb_erase_cached(&epi->rbn, &ep->rbr);
719 
720 	write_lock_irq(&ep->lock);
721 	if (ep_is_linked(epi))
722 		list_del_init(&epi->rdllink);
723 	write_unlock_irq(&ep->lock);
724 
725 	wakeup_source_unregister(ep_wakeup_source(epi));
726 	/*
727 	 * At this point it is safe to free the eventpoll item. Use the union
728 	 * field epi->rcu, since we are trying to minimize the size of
729 	 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
730 	 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
731 	 * use of the rbn field.
732 	 */
733 	call_rcu(&epi->rcu, epi_rcu_free);
734 
735 	percpu_counter_dec(&ep->user->epoll_watches);
736 
737 	return 0;
738 }
739 
740 static void ep_free(struct eventpoll *ep)
741 {
742 	struct rb_node *rbp;
743 	struct epitem *epi;
744 
745 	/* We need to release all tasks waiting for these file */
746 	if (waitqueue_active(&ep->poll_wait))
747 		ep_poll_safewake(ep, NULL, 0);
748 
749 	/*
750 	 * We need to lock this because we could be hit by
751 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
752 	 * We do not need to hold "ep->mtx" here because the epoll file
753 	 * is on the way to be removed and no one has references to it
754 	 * anymore. The only hit might come from eventpoll_release_file() but
755 	 * holding "epmutex" is sufficient here.
756 	 */
757 	mutex_lock(&epmutex);
758 
759 	/*
760 	 * Walks through the whole tree by unregistering poll callbacks.
761 	 */
762 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
763 		epi = rb_entry(rbp, struct epitem, rbn);
764 
765 		ep_unregister_pollwait(ep, epi);
766 		cond_resched();
767 	}
768 
769 	/*
770 	 * Walks through the whole tree by freeing each "struct epitem". At this
771 	 * point we are sure no poll callbacks will be lingering around, and also by
772 	 * holding "epmutex" we can be sure that no file cleanup code will hit
773 	 * us during this operation. So we can avoid the lock on "ep->lock".
774 	 * We do not need to lock ep->mtx, either, we only do it to prevent
775 	 * a lockdep warning.
776 	 */
777 	mutex_lock(&ep->mtx);
778 	while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
779 		epi = rb_entry(rbp, struct epitem, rbn);
780 		ep_remove(ep, epi);
781 		cond_resched();
782 	}
783 	mutex_unlock(&ep->mtx);
784 
785 	mutex_unlock(&epmutex);
786 	mutex_destroy(&ep->mtx);
787 	free_uid(ep->user);
788 	wakeup_source_unregister(ep->ws);
789 	kfree(ep);
790 }
791 
792 static int ep_eventpoll_release(struct inode *inode, struct file *file)
793 {
794 	struct eventpoll *ep = file->private_data;
795 
796 	if (ep)
797 		ep_free(ep);
798 
799 	return 0;
800 }
801 
802 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth);
803 
804 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth)
805 {
806 	struct eventpoll *ep = file->private_data;
807 	LIST_HEAD(txlist);
808 	struct epitem *epi, *tmp;
809 	poll_table pt;
810 	__poll_t res = 0;
811 
812 	init_poll_funcptr(&pt, NULL);
813 
814 	/* Insert inside our poll wait queue */
815 	poll_wait(file, &ep->poll_wait, wait);
816 
817 	/*
818 	 * Proceed to find out if wanted events are really available inside
819 	 * the ready list.
820 	 */
821 	mutex_lock_nested(&ep->mtx, depth);
822 	ep_start_scan(ep, &txlist);
823 	list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
824 		if (ep_item_poll(epi, &pt, depth + 1)) {
825 			res = EPOLLIN | EPOLLRDNORM;
826 			break;
827 		} else {
828 			/*
829 			 * Item has been dropped into the ready list by the poll
830 			 * callback, but it's not actually ready, as far as
831 			 * caller requested events goes. We can remove it here.
832 			 */
833 			__pm_relax(ep_wakeup_source(epi));
834 			list_del_init(&epi->rdllink);
835 		}
836 	}
837 	ep_done_scan(ep, &txlist);
838 	mutex_unlock(&ep->mtx);
839 	return res;
840 }
841 
842 /*
843  * Differs from ep_eventpoll_poll() in that internal callers already have
844  * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
845  * is correctly annotated.
846  */
847 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
848 				 int depth)
849 {
850 	struct file *file = epi->ffd.file;
851 	__poll_t res;
852 
853 	pt->_key = epi->event.events;
854 	if (!is_file_epoll(file))
855 		res = vfs_poll(file, pt);
856 	else
857 		res = __ep_eventpoll_poll(file, pt, depth);
858 	return res & epi->event.events;
859 }
860 
861 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
862 {
863 	return __ep_eventpoll_poll(file, wait, 0);
864 }
865 
866 #ifdef CONFIG_PROC_FS
867 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
868 {
869 	struct eventpoll *ep = f->private_data;
870 	struct rb_node *rbp;
871 
872 	mutex_lock(&ep->mtx);
873 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
874 		struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
875 		struct inode *inode = file_inode(epi->ffd.file);
876 
877 		seq_printf(m, "tfd: %8d events: %8x data: %16llx "
878 			   " pos:%lli ino:%lx sdev:%x\n",
879 			   epi->ffd.fd, epi->event.events,
880 			   (long long)epi->event.data,
881 			   (long long)epi->ffd.file->f_pos,
882 			   inode->i_ino, inode->i_sb->s_dev);
883 		if (seq_has_overflowed(m))
884 			break;
885 	}
886 	mutex_unlock(&ep->mtx);
887 }
888 #endif
889 
890 /* File callbacks that implement the eventpoll file behaviour */
891 static const struct file_operations eventpoll_fops = {
892 #ifdef CONFIG_PROC_FS
893 	.show_fdinfo	= ep_show_fdinfo,
894 #endif
895 	.release	= ep_eventpoll_release,
896 	.poll		= ep_eventpoll_poll,
897 	.llseek		= noop_llseek,
898 };
899 
900 /*
901  * This is called from eventpoll_release() to unlink files from the eventpoll
902  * interface. We need to have this facility to cleanup correctly files that are
903  * closed without being removed from the eventpoll interface.
904  */
905 void eventpoll_release_file(struct file *file)
906 {
907 	struct eventpoll *ep;
908 	struct epitem *epi;
909 	struct hlist_node *next;
910 
911 	/*
912 	 * We don't want to get "file->f_lock" because it is not
913 	 * necessary. It is not necessary because we're in the "struct file"
914 	 * cleanup path, and this means that no one is using this file anymore.
915 	 * So, for example, epoll_ctl() cannot hit here since if we reach this
916 	 * point, the file counter already went to zero and fget() would fail.
917 	 * The only hit might come from ep_free() but by holding the mutex
918 	 * will correctly serialize the operation. We do need to acquire
919 	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
920 	 * from anywhere but ep_free().
921 	 *
922 	 * Besides, ep_remove() acquires the lock, so we can't hold it here.
923 	 */
924 	mutex_lock(&epmutex);
925 	if (unlikely(!file->f_ep)) {
926 		mutex_unlock(&epmutex);
927 		return;
928 	}
929 	hlist_for_each_entry_safe(epi, next, file->f_ep, fllink) {
930 		ep = epi->ep;
931 		mutex_lock_nested(&ep->mtx, 0);
932 		ep_remove(ep, epi);
933 		mutex_unlock(&ep->mtx);
934 	}
935 	mutex_unlock(&epmutex);
936 }
937 
938 static int ep_alloc(struct eventpoll **pep)
939 {
940 	int error;
941 	struct user_struct *user;
942 	struct eventpoll *ep;
943 
944 	user = get_current_user();
945 	error = -ENOMEM;
946 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
947 	if (unlikely(!ep))
948 		goto free_uid;
949 
950 	mutex_init(&ep->mtx);
951 	rwlock_init(&ep->lock);
952 	init_waitqueue_head(&ep->wq);
953 	init_waitqueue_head(&ep->poll_wait);
954 	INIT_LIST_HEAD(&ep->rdllist);
955 	ep->rbr = RB_ROOT_CACHED;
956 	ep->ovflist = EP_UNACTIVE_PTR;
957 	ep->user = user;
958 
959 	*pep = ep;
960 
961 	return 0;
962 
963 free_uid:
964 	free_uid(user);
965 	return error;
966 }
967 
968 /*
969  * Search the file inside the eventpoll tree. The RB tree operations
970  * are protected by the "mtx" mutex, and ep_find() must be called with
971  * "mtx" held.
972  */
973 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
974 {
975 	int kcmp;
976 	struct rb_node *rbp;
977 	struct epitem *epi, *epir = NULL;
978 	struct epoll_filefd ffd;
979 
980 	ep_set_ffd(&ffd, file, fd);
981 	for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
982 		epi = rb_entry(rbp, struct epitem, rbn);
983 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
984 		if (kcmp > 0)
985 			rbp = rbp->rb_right;
986 		else if (kcmp < 0)
987 			rbp = rbp->rb_left;
988 		else {
989 			epir = epi;
990 			break;
991 		}
992 	}
993 
994 	return epir;
995 }
996 
997 #ifdef CONFIG_KCMP
998 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
999 {
1000 	struct rb_node *rbp;
1001 	struct epitem *epi;
1002 
1003 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1004 		epi = rb_entry(rbp, struct epitem, rbn);
1005 		if (epi->ffd.fd == tfd) {
1006 			if (toff == 0)
1007 				return epi;
1008 			else
1009 				toff--;
1010 		}
1011 		cond_resched();
1012 	}
1013 
1014 	return NULL;
1015 }
1016 
1017 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1018 				     unsigned long toff)
1019 {
1020 	struct file *file_raw;
1021 	struct eventpoll *ep;
1022 	struct epitem *epi;
1023 
1024 	if (!is_file_epoll(file))
1025 		return ERR_PTR(-EINVAL);
1026 
1027 	ep = file->private_data;
1028 
1029 	mutex_lock(&ep->mtx);
1030 	epi = ep_find_tfd(ep, tfd, toff);
1031 	if (epi)
1032 		file_raw = epi->ffd.file;
1033 	else
1034 		file_raw = ERR_PTR(-ENOENT);
1035 	mutex_unlock(&ep->mtx);
1036 
1037 	return file_raw;
1038 }
1039 #endif /* CONFIG_KCMP */
1040 
1041 /*
1042  * Adds a new entry to the tail of the list in a lockless way, i.e.
1043  * multiple CPUs are allowed to call this function concurrently.
1044  *
1045  * Beware: it is necessary to prevent any other modifications of the
1046  *         existing list until all changes are completed, in other words
1047  *         concurrent list_add_tail_lockless() calls should be protected
1048  *         with a read lock, where write lock acts as a barrier which
1049  *         makes sure all list_add_tail_lockless() calls are fully
1050  *         completed.
1051  *
1052  *        Also an element can be locklessly added to the list only in one
1053  *        direction i.e. either to the tail or to the head, otherwise
1054  *        concurrent access will corrupt the list.
1055  *
1056  * Return: %false if element has been already added to the list, %true
1057  * otherwise.
1058  */
1059 static inline bool list_add_tail_lockless(struct list_head *new,
1060 					  struct list_head *head)
1061 {
1062 	struct list_head *prev;
1063 
1064 	/*
1065 	 * This is simple 'new->next = head' operation, but cmpxchg()
1066 	 * is used in order to detect that same element has been just
1067 	 * added to the list from another CPU: the winner observes
1068 	 * new->next == new.
1069 	 */
1070 	if (!try_cmpxchg(&new->next, &new, head))
1071 		return false;
1072 
1073 	/*
1074 	 * Initially ->next of a new element must be updated with the head
1075 	 * (we are inserting to the tail) and only then pointers are atomically
1076 	 * exchanged.  XCHG guarantees memory ordering, thus ->next should be
1077 	 * updated before pointers are actually swapped and pointers are
1078 	 * swapped before prev->next is updated.
1079 	 */
1080 
1081 	prev = xchg(&head->prev, new);
1082 
1083 	/*
1084 	 * It is safe to modify prev->next and new->prev, because a new element
1085 	 * is added only to the tail and new->next is updated before XCHG.
1086 	 */
1087 
1088 	prev->next = new;
1089 	new->prev = prev;
1090 
1091 	return true;
1092 }
1093 
1094 /*
1095  * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1096  * i.e. multiple CPUs are allowed to call this function concurrently.
1097  *
1098  * Return: %false if epi element has been already chained, %true otherwise.
1099  */
1100 static inline bool chain_epi_lockless(struct epitem *epi)
1101 {
1102 	struct eventpoll *ep = epi->ep;
1103 
1104 	/* Fast preliminary check */
1105 	if (epi->next != EP_UNACTIVE_PTR)
1106 		return false;
1107 
1108 	/* Check that the same epi has not been just chained from another CPU */
1109 	if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1110 		return false;
1111 
1112 	/* Atomically exchange tail */
1113 	epi->next = xchg(&ep->ovflist, epi);
1114 
1115 	return true;
1116 }
1117 
1118 /*
1119  * This is the callback that is passed to the wait queue wakeup
1120  * mechanism. It is called by the stored file descriptors when they
1121  * have events to report.
1122  *
1123  * This callback takes a read lock in order not to contend with concurrent
1124  * events from another file descriptor, thus all modifications to ->rdllist
1125  * or ->ovflist are lockless.  Read lock is paired with the write lock from
1126  * ep_scan_ready_list(), which stops all list modifications and guarantees
1127  * that lists state is seen correctly.
1128  *
1129  * Another thing worth to mention is that ep_poll_callback() can be called
1130  * concurrently for the same @epi from different CPUs if poll table was inited
1131  * with several wait queues entries.  Plural wakeup from different CPUs of a
1132  * single wait queue is serialized by wq.lock, but the case when multiple wait
1133  * queues are used should be detected accordingly.  This is detected using
1134  * cmpxchg() operation.
1135  */
1136 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1137 {
1138 	int pwake = 0;
1139 	struct epitem *epi = ep_item_from_wait(wait);
1140 	struct eventpoll *ep = epi->ep;
1141 	__poll_t pollflags = key_to_poll(key);
1142 	unsigned long flags;
1143 	int ewake = 0;
1144 
1145 	read_lock_irqsave(&ep->lock, flags);
1146 
1147 	ep_set_busy_poll_napi_id(epi);
1148 
1149 	/*
1150 	 * If the event mask does not contain any poll(2) event, we consider the
1151 	 * descriptor to be disabled. This condition is likely the effect of the
1152 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1153 	 * until the next EPOLL_CTL_MOD will be issued.
1154 	 */
1155 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
1156 		goto out_unlock;
1157 
1158 	/*
1159 	 * Check the events coming with the callback. At this stage, not
1160 	 * every device reports the events in the "key" parameter of the
1161 	 * callback. We need to be able to handle both cases here, hence the
1162 	 * test for "key" != NULL before the event match test.
1163 	 */
1164 	if (pollflags && !(pollflags & epi->event.events))
1165 		goto out_unlock;
1166 
1167 	/*
1168 	 * If we are transferring events to userspace, we can hold no locks
1169 	 * (because we're accessing user memory, and because of linux f_op->poll()
1170 	 * semantics). All the events that happen during that period of time are
1171 	 * chained in ep->ovflist and requeued later on.
1172 	 */
1173 	if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1174 		if (chain_epi_lockless(epi))
1175 			ep_pm_stay_awake_rcu(epi);
1176 	} else if (!ep_is_linked(epi)) {
1177 		/* In the usual case, add event to ready list. */
1178 		if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1179 			ep_pm_stay_awake_rcu(epi);
1180 	}
1181 
1182 	/*
1183 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1184 	 * wait list.
1185 	 */
1186 	if (waitqueue_active(&ep->wq)) {
1187 		if ((epi->event.events & EPOLLEXCLUSIVE) &&
1188 					!(pollflags & POLLFREE)) {
1189 			switch (pollflags & EPOLLINOUT_BITS) {
1190 			case EPOLLIN:
1191 				if (epi->event.events & EPOLLIN)
1192 					ewake = 1;
1193 				break;
1194 			case EPOLLOUT:
1195 				if (epi->event.events & EPOLLOUT)
1196 					ewake = 1;
1197 				break;
1198 			case 0:
1199 				ewake = 1;
1200 				break;
1201 			}
1202 		}
1203 		wake_up(&ep->wq);
1204 	}
1205 	if (waitqueue_active(&ep->poll_wait))
1206 		pwake++;
1207 
1208 out_unlock:
1209 	read_unlock_irqrestore(&ep->lock, flags);
1210 
1211 	/* We have to call this outside the lock */
1212 	if (pwake)
1213 		ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE);
1214 
1215 	if (!(epi->event.events & EPOLLEXCLUSIVE))
1216 		ewake = 1;
1217 
1218 	if (pollflags & POLLFREE) {
1219 		/*
1220 		 * If we race with ep_remove_wait_queue() it can miss
1221 		 * ->whead = NULL and do another remove_wait_queue() after
1222 		 * us, so we can't use __remove_wait_queue().
1223 		 */
1224 		list_del_init(&wait->entry);
1225 		/*
1226 		 * ->whead != NULL protects us from the race with ep_free()
1227 		 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1228 		 * held by the caller. Once we nullify it, nothing protects
1229 		 * ep/epi or even wait.
1230 		 */
1231 		smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1232 	}
1233 
1234 	return ewake;
1235 }
1236 
1237 /*
1238  * This is the callback that is used to add our wait queue to the
1239  * target file wakeup lists.
1240  */
1241 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1242 				 poll_table *pt)
1243 {
1244 	struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1245 	struct epitem *epi = epq->epi;
1246 	struct eppoll_entry *pwq;
1247 
1248 	if (unlikely(!epi))	// an earlier allocation has failed
1249 		return;
1250 
1251 	pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1252 	if (unlikely(!pwq)) {
1253 		epq->epi = NULL;
1254 		return;
1255 	}
1256 
1257 	init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1258 	pwq->whead = whead;
1259 	pwq->base = epi;
1260 	if (epi->event.events & EPOLLEXCLUSIVE)
1261 		add_wait_queue_exclusive(whead, &pwq->wait);
1262 	else
1263 		add_wait_queue(whead, &pwq->wait);
1264 	pwq->next = epi->pwqlist;
1265 	epi->pwqlist = pwq;
1266 }
1267 
1268 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1269 {
1270 	int kcmp;
1271 	struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1272 	struct epitem *epic;
1273 	bool leftmost = true;
1274 
1275 	while (*p) {
1276 		parent = *p;
1277 		epic = rb_entry(parent, struct epitem, rbn);
1278 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1279 		if (kcmp > 0) {
1280 			p = &parent->rb_right;
1281 			leftmost = false;
1282 		} else
1283 			p = &parent->rb_left;
1284 	}
1285 	rb_link_node(&epi->rbn, parent, p);
1286 	rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1287 }
1288 
1289 
1290 
1291 #define PATH_ARR_SIZE 5
1292 /*
1293  * These are the number paths of length 1 to 5, that we are allowing to emanate
1294  * from a single file of interest. For example, we allow 1000 paths of length
1295  * 1, to emanate from each file of interest. This essentially represents the
1296  * potential wakeup paths, which need to be limited in order to avoid massive
1297  * uncontrolled wakeup storms. The common use case should be a single ep which
1298  * is connected to n file sources. In this case each file source has 1 path
1299  * of length 1. Thus, the numbers below should be more than sufficient. These
1300  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1301  * and delete can't add additional paths. Protected by the epmutex.
1302  */
1303 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1304 static int path_count[PATH_ARR_SIZE];
1305 
1306 static int path_count_inc(int nests)
1307 {
1308 	/* Allow an arbitrary number of depth 1 paths */
1309 	if (nests == 0)
1310 		return 0;
1311 
1312 	if (++path_count[nests] > path_limits[nests])
1313 		return -1;
1314 	return 0;
1315 }
1316 
1317 static void path_count_init(void)
1318 {
1319 	int i;
1320 
1321 	for (i = 0; i < PATH_ARR_SIZE; i++)
1322 		path_count[i] = 0;
1323 }
1324 
1325 static int reverse_path_check_proc(struct hlist_head *refs, int depth)
1326 {
1327 	int error = 0;
1328 	struct epitem *epi;
1329 
1330 	if (depth > EP_MAX_NESTS) /* too deep nesting */
1331 		return -1;
1332 
1333 	/* CTL_DEL can remove links here, but that can't increase our count */
1334 	hlist_for_each_entry_rcu(epi, refs, fllink) {
1335 		struct hlist_head *refs = &epi->ep->refs;
1336 		if (hlist_empty(refs))
1337 			error = path_count_inc(depth);
1338 		else
1339 			error = reverse_path_check_proc(refs, depth + 1);
1340 		if (error != 0)
1341 			break;
1342 	}
1343 	return error;
1344 }
1345 
1346 /**
1347  * reverse_path_check - The tfile_check_list is list of epitem_head, which have
1348  *                      links that are proposed to be newly added. We need to
1349  *                      make sure that those added links don't add too many
1350  *                      paths such that we will spend all our time waking up
1351  *                      eventpoll objects.
1352  *
1353  * Return: %zero if the proposed links don't create too many paths,
1354  *	    %-1 otherwise.
1355  */
1356 static int reverse_path_check(void)
1357 {
1358 	struct epitems_head *p;
1359 
1360 	for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) {
1361 		int error;
1362 		path_count_init();
1363 		rcu_read_lock();
1364 		error = reverse_path_check_proc(&p->epitems, 0);
1365 		rcu_read_unlock();
1366 		if (error)
1367 			return error;
1368 	}
1369 	return 0;
1370 }
1371 
1372 static int ep_create_wakeup_source(struct epitem *epi)
1373 {
1374 	struct name_snapshot n;
1375 	struct wakeup_source *ws;
1376 
1377 	if (!epi->ep->ws) {
1378 		epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1379 		if (!epi->ep->ws)
1380 			return -ENOMEM;
1381 	}
1382 
1383 	take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1384 	ws = wakeup_source_register(NULL, n.name.name);
1385 	release_dentry_name_snapshot(&n);
1386 
1387 	if (!ws)
1388 		return -ENOMEM;
1389 	rcu_assign_pointer(epi->ws, ws);
1390 
1391 	return 0;
1392 }
1393 
1394 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1395 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1396 {
1397 	struct wakeup_source *ws = ep_wakeup_source(epi);
1398 
1399 	RCU_INIT_POINTER(epi->ws, NULL);
1400 
1401 	/*
1402 	 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1403 	 * used internally by wakeup_source_remove, too (called by
1404 	 * wakeup_source_unregister), so we cannot use call_rcu
1405 	 */
1406 	synchronize_rcu();
1407 	wakeup_source_unregister(ws);
1408 }
1409 
1410 static int attach_epitem(struct file *file, struct epitem *epi)
1411 {
1412 	struct epitems_head *to_free = NULL;
1413 	struct hlist_head *head = NULL;
1414 	struct eventpoll *ep = NULL;
1415 
1416 	if (is_file_epoll(file))
1417 		ep = file->private_data;
1418 
1419 	if (ep) {
1420 		head = &ep->refs;
1421 	} else if (!READ_ONCE(file->f_ep)) {
1422 allocate:
1423 		to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL);
1424 		if (!to_free)
1425 			return -ENOMEM;
1426 		head = &to_free->epitems;
1427 	}
1428 	spin_lock(&file->f_lock);
1429 	if (!file->f_ep) {
1430 		if (unlikely(!head)) {
1431 			spin_unlock(&file->f_lock);
1432 			goto allocate;
1433 		}
1434 		file->f_ep = head;
1435 		to_free = NULL;
1436 	}
1437 	hlist_add_head_rcu(&epi->fllink, file->f_ep);
1438 	spin_unlock(&file->f_lock);
1439 	free_ephead(to_free);
1440 	return 0;
1441 }
1442 
1443 /*
1444  * Must be called with "mtx" held.
1445  */
1446 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1447 		     struct file *tfile, int fd, int full_check)
1448 {
1449 	int error, pwake = 0;
1450 	__poll_t revents;
1451 	struct epitem *epi;
1452 	struct ep_pqueue epq;
1453 	struct eventpoll *tep = NULL;
1454 
1455 	if (is_file_epoll(tfile))
1456 		tep = tfile->private_data;
1457 
1458 	lockdep_assert_irqs_enabled();
1459 
1460 	if (unlikely(percpu_counter_compare(&ep->user->epoll_watches,
1461 					    max_user_watches) >= 0))
1462 		return -ENOSPC;
1463 	percpu_counter_inc(&ep->user->epoll_watches);
1464 
1465 	if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) {
1466 		percpu_counter_dec(&ep->user->epoll_watches);
1467 		return -ENOMEM;
1468 	}
1469 
1470 	/* Item initialization follow here ... */
1471 	INIT_LIST_HEAD(&epi->rdllink);
1472 	epi->ep = ep;
1473 	ep_set_ffd(&epi->ffd, tfile, fd);
1474 	epi->event = *event;
1475 	epi->next = EP_UNACTIVE_PTR;
1476 
1477 	if (tep)
1478 		mutex_lock_nested(&tep->mtx, 1);
1479 	/* Add the current item to the list of active epoll hook for this file */
1480 	if (unlikely(attach_epitem(tfile, epi) < 0)) {
1481 		if (tep)
1482 			mutex_unlock(&tep->mtx);
1483 		kmem_cache_free(epi_cache, epi);
1484 		percpu_counter_dec(&ep->user->epoll_watches);
1485 		return -ENOMEM;
1486 	}
1487 
1488 	if (full_check && !tep)
1489 		list_file(tfile);
1490 
1491 	/*
1492 	 * Add the current item to the RB tree. All RB tree operations are
1493 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1494 	 */
1495 	ep_rbtree_insert(ep, epi);
1496 	if (tep)
1497 		mutex_unlock(&tep->mtx);
1498 
1499 	/* now check if we've created too many backpaths */
1500 	if (unlikely(full_check && reverse_path_check())) {
1501 		ep_remove(ep, epi);
1502 		return -EINVAL;
1503 	}
1504 
1505 	if (epi->event.events & EPOLLWAKEUP) {
1506 		error = ep_create_wakeup_source(epi);
1507 		if (error) {
1508 			ep_remove(ep, epi);
1509 			return error;
1510 		}
1511 	}
1512 
1513 	/* Initialize the poll table using the queue callback */
1514 	epq.epi = epi;
1515 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1516 
1517 	/*
1518 	 * Attach the item to the poll hooks and get current event bits.
1519 	 * We can safely use the file* here because its usage count has
1520 	 * been increased by the caller of this function. Note that after
1521 	 * this operation completes, the poll callback can start hitting
1522 	 * the new item.
1523 	 */
1524 	revents = ep_item_poll(epi, &epq.pt, 1);
1525 
1526 	/*
1527 	 * We have to check if something went wrong during the poll wait queue
1528 	 * install process. Namely an allocation for a wait queue failed due
1529 	 * high memory pressure.
1530 	 */
1531 	if (unlikely(!epq.epi)) {
1532 		ep_remove(ep, epi);
1533 		return -ENOMEM;
1534 	}
1535 
1536 	/* We have to drop the new item inside our item list to keep track of it */
1537 	write_lock_irq(&ep->lock);
1538 
1539 	/* record NAPI ID of new item if present */
1540 	ep_set_busy_poll_napi_id(epi);
1541 
1542 	/* If the file is already "ready" we drop it inside the ready list */
1543 	if (revents && !ep_is_linked(epi)) {
1544 		list_add_tail(&epi->rdllink, &ep->rdllist);
1545 		ep_pm_stay_awake(epi);
1546 
1547 		/* Notify waiting tasks that events are available */
1548 		if (waitqueue_active(&ep->wq))
1549 			wake_up(&ep->wq);
1550 		if (waitqueue_active(&ep->poll_wait))
1551 			pwake++;
1552 	}
1553 
1554 	write_unlock_irq(&ep->lock);
1555 
1556 	/* We have to call this outside the lock */
1557 	if (pwake)
1558 		ep_poll_safewake(ep, NULL, 0);
1559 
1560 	return 0;
1561 }
1562 
1563 /*
1564  * Modify the interest event mask by dropping an event if the new mask
1565  * has a match in the current file status. Must be called with "mtx" held.
1566  */
1567 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1568 		     const struct epoll_event *event)
1569 {
1570 	int pwake = 0;
1571 	poll_table pt;
1572 
1573 	lockdep_assert_irqs_enabled();
1574 
1575 	init_poll_funcptr(&pt, NULL);
1576 
1577 	/*
1578 	 * Set the new event interest mask before calling f_op->poll();
1579 	 * otherwise we might miss an event that happens between the
1580 	 * f_op->poll() call and the new event set registering.
1581 	 */
1582 	epi->event.events = event->events; /* need barrier below */
1583 	epi->event.data = event->data; /* protected by mtx */
1584 	if (epi->event.events & EPOLLWAKEUP) {
1585 		if (!ep_has_wakeup_source(epi))
1586 			ep_create_wakeup_source(epi);
1587 	} else if (ep_has_wakeup_source(epi)) {
1588 		ep_destroy_wakeup_source(epi);
1589 	}
1590 
1591 	/*
1592 	 * The following barrier has two effects:
1593 	 *
1594 	 * 1) Flush epi changes above to other CPUs.  This ensures
1595 	 *    we do not miss events from ep_poll_callback if an
1596 	 *    event occurs immediately after we call f_op->poll().
1597 	 *    We need this because we did not take ep->lock while
1598 	 *    changing epi above (but ep_poll_callback does take
1599 	 *    ep->lock).
1600 	 *
1601 	 * 2) We also need to ensure we do not miss _past_ events
1602 	 *    when calling f_op->poll().  This barrier also
1603 	 *    pairs with the barrier in wq_has_sleeper (see
1604 	 *    comments for wq_has_sleeper).
1605 	 *
1606 	 * This barrier will now guarantee ep_poll_callback or f_op->poll
1607 	 * (or both) will notice the readiness of an item.
1608 	 */
1609 	smp_mb();
1610 
1611 	/*
1612 	 * Get current event bits. We can safely use the file* here because
1613 	 * its usage count has been increased by the caller of this function.
1614 	 * If the item is "hot" and it is not registered inside the ready
1615 	 * list, push it inside.
1616 	 */
1617 	if (ep_item_poll(epi, &pt, 1)) {
1618 		write_lock_irq(&ep->lock);
1619 		if (!ep_is_linked(epi)) {
1620 			list_add_tail(&epi->rdllink, &ep->rdllist);
1621 			ep_pm_stay_awake(epi);
1622 
1623 			/* Notify waiting tasks that events are available */
1624 			if (waitqueue_active(&ep->wq))
1625 				wake_up(&ep->wq);
1626 			if (waitqueue_active(&ep->poll_wait))
1627 				pwake++;
1628 		}
1629 		write_unlock_irq(&ep->lock);
1630 	}
1631 
1632 	/* We have to call this outside the lock */
1633 	if (pwake)
1634 		ep_poll_safewake(ep, NULL, 0);
1635 
1636 	return 0;
1637 }
1638 
1639 static int ep_send_events(struct eventpoll *ep,
1640 			  struct epoll_event __user *events, int maxevents)
1641 {
1642 	struct epitem *epi, *tmp;
1643 	LIST_HEAD(txlist);
1644 	poll_table pt;
1645 	int res = 0;
1646 
1647 	/*
1648 	 * Always short-circuit for fatal signals to allow threads to make a
1649 	 * timely exit without the chance of finding more events available and
1650 	 * fetching repeatedly.
1651 	 */
1652 	if (fatal_signal_pending(current))
1653 		return -EINTR;
1654 
1655 	init_poll_funcptr(&pt, NULL);
1656 
1657 	mutex_lock(&ep->mtx);
1658 	ep_start_scan(ep, &txlist);
1659 
1660 	/*
1661 	 * We can loop without lock because we are passed a task private list.
1662 	 * Items cannot vanish during the loop we are holding ep->mtx.
1663 	 */
1664 	list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
1665 		struct wakeup_source *ws;
1666 		__poll_t revents;
1667 
1668 		if (res >= maxevents)
1669 			break;
1670 
1671 		/*
1672 		 * Activate ep->ws before deactivating epi->ws to prevent
1673 		 * triggering auto-suspend here (in case we reactive epi->ws
1674 		 * below).
1675 		 *
1676 		 * This could be rearranged to delay the deactivation of epi->ws
1677 		 * instead, but then epi->ws would temporarily be out of sync
1678 		 * with ep_is_linked().
1679 		 */
1680 		ws = ep_wakeup_source(epi);
1681 		if (ws) {
1682 			if (ws->active)
1683 				__pm_stay_awake(ep->ws);
1684 			__pm_relax(ws);
1685 		}
1686 
1687 		list_del_init(&epi->rdllink);
1688 
1689 		/*
1690 		 * If the event mask intersect the caller-requested one,
1691 		 * deliver the event to userspace. Again, we are holding ep->mtx,
1692 		 * so no operations coming from userspace can change the item.
1693 		 */
1694 		revents = ep_item_poll(epi, &pt, 1);
1695 		if (!revents)
1696 			continue;
1697 
1698 		events = epoll_put_uevent(revents, epi->event.data, events);
1699 		if (!events) {
1700 			list_add(&epi->rdllink, &txlist);
1701 			ep_pm_stay_awake(epi);
1702 			if (!res)
1703 				res = -EFAULT;
1704 			break;
1705 		}
1706 		res++;
1707 		if (epi->event.events & EPOLLONESHOT)
1708 			epi->event.events &= EP_PRIVATE_BITS;
1709 		else if (!(epi->event.events & EPOLLET)) {
1710 			/*
1711 			 * If this file has been added with Level
1712 			 * Trigger mode, we need to insert back inside
1713 			 * the ready list, so that the next call to
1714 			 * epoll_wait() will check again the events
1715 			 * availability. At this point, no one can insert
1716 			 * into ep->rdllist besides us. The epoll_ctl()
1717 			 * callers are locked out by
1718 			 * ep_scan_ready_list() holding "mtx" and the
1719 			 * poll callback will queue them in ep->ovflist.
1720 			 */
1721 			list_add_tail(&epi->rdllink, &ep->rdllist);
1722 			ep_pm_stay_awake(epi);
1723 		}
1724 	}
1725 	ep_done_scan(ep, &txlist);
1726 	mutex_unlock(&ep->mtx);
1727 
1728 	return res;
1729 }
1730 
1731 static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms)
1732 {
1733 	struct timespec64 now;
1734 
1735 	if (ms < 0)
1736 		return NULL;
1737 
1738 	if (!ms) {
1739 		to->tv_sec = 0;
1740 		to->tv_nsec = 0;
1741 		return to;
1742 	}
1743 
1744 	to->tv_sec = ms / MSEC_PER_SEC;
1745 	to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC);
1746 
1747 	ktime_get_ts64(&now);
1748 	*to = timespec64_add_safe(now, *to);
1749 	return to;
1750 }
1751 
1752 /*
1753  * autoremove_wake_function, but remove even on failure to wake up, because we
1754  * know that default_wake_function/ttwu will only fail if the thread is already
1755  * woken, and in that case the ep_poll loop will remove the entry anyways, not
1756  * try to reuse it.
1757  */
1758 static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry,
1759 				       unsigned int mode, int sync, void *key)
1760 {
1761 	int ret = default_wake_function(wq_entry, mode, sync, key);
1762 
1763 	list_del_init(&wq_entry->entry);
1764 	return ret;
1765 }
1766 
1767 /**
1768  * ep_poll - Retrieves ready events, and delivers them to the caller-supplied
1769  *           event buffer.
1770  *
1771  * @ep: Pointer to the eventpoll context.
1772  * @events: Pointer to the userspace buffer where the ready events should be
1773  *          stored.
1774  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1775  * @timeout: Maximum timeout for the ready events fetch operation, in
1776  *           timespec. If the timeout is zero, the function will not block,
1777  *           while if the @timeout ptr is NULL, the function will block
1778  *           until at least one event has been retrieved (or an error
1779  *           occurred).
1780  *
1781  * Return: the number of ready events which have been fetched, or an
1782  *          error code, in case of error.
1783  */
1784 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1785 		   int maxevents, struct timespec64 *timeout)
1786 {
1787 	int res, eavail, timed_out = 0;
1788 	u64 slack = 0;
1789 	wait_queue_entry_t wait;
1790 	ktime_t expires, *to = NULL;
1791 
1792 	lockdep_assert_irqs_enabled();
1793 
1794 	if (timeout && (timeout->tv_sec | timeout->tv_nsec)) {
1795 		slack = select_estimate_accuracy(timeout);
1796 		to = &expires;
1797 		*to = timespec64_to_ktime(*timeout);
1798 	} else if (timeout) {
1799 		/*
1800 		 * Avoid the unnecessary trip to the wait queue loop, if the
1801 		 * caller specified a non blocking operation.
1802 		 */
1803 		timed_out = 1;
1804 	}
1805 
1806 	/*
1807 	 * This call is racy: We may or may not see events that are being added
1808 	 * to the ready list under the lock (e.g., in IRQ callbacks). For cases
1809 	 * with a non-zero timeout, this thread will check the ready list under
1810 	 * lock and will add to the wait queue.  For cases with a zero
1811 	 * timeout, the user by definition should not care and will have to
1812 	 * recheck again.
1813 	 */
1814 	eavail = ep_events_available(ep);
1815 
1816 	while (1) {
1817 		if (eavail) {
1818 			/*
1819 			 * Try to transfer events to user space. In case we get
1820 			 * 0 events and there's still timeout left over, we go
1821 			 * trying again in search of more luck.
1822 			 */
1823 			res = ep_send_events(ep, events, maxevents);
1824 			if (res)
1825 				return res;
1826 		}
1827 
1828 		if (timed_out)
1829 			return 0;
1830 
1831 		eavail = ep_busy_loop(ep, timed_out);
1832 		if (eavail)
1833 			continue;
1834 
1835 		if (signal_pending(current))
1836 			return -EINTR;
1837 
1838 		/*
1839 		 * Internally init_wait() uses autoremove_wake_function(),
1840 		 * thus wait entry is removed from the wait queue on each
1841 		 * wakeup. Why it is important? In case of several waiters
1842 		 * each new wakeup will hit the next waiter, giving it the
1843 		 * chance to harvest new event. Otherwise wakeup can be
1844 		 * lost. This is also good performance-wise, because on
1845 		 * normal wakeup path no need to call __remove_wait_queue()
1846 		 * explicitly, thus ep->lock is not taken, which halts the
1847 		 * event delivery.
1848 		 *
1849 		 * In fact, we now use an even more aggressive function that
1850 		 * unconditionally removes, because we don't reuse the wait
1851 		 * entry between loop iterations. This lets us also avoid the
1852 		 * performance issue if a process is killed, causing all of its
1853 		 * threads to wake up without being removed normally.
1854 		 */
1855 		init_wait(&wait);
1856 		wait.func = ep_autoremove_wake_function;
1857 
1858 		write_lock_irq(&ep->lock);
1859 		/*
1860 		 * Barrierless variant, waitqueue_active() is called under
1861 		 * the same lock on wakeup ep_poll_callback() side, so it
1862 		 * is safe to avoid an explicit barrier.
1863 		 */
1864 		__set_current_state(TASK_INTERRUPTIBLE);
1865 
1866 		/*
1867 		 * Do the final check under the lock. ep_scan_ready_list()
1868 		 * plays with two lists (->rdllist and ->ovflist) and there
1869 		 * is always a race when both lists are empty for short
1870 		 * period of time although events are pending, so lock is
1871 		 * important.
1872 		 */
1873 		eavail = ep_events_available(ep);
1874 		if (!eavail)
1875 			__add_wait_queue_exclusive(&ep->wq, &wait);
1876 
1877 		write_unlock_irq(&ep->lock);
1878 
1879 		if (!eavail)
1880 			timed_out = !schedule_hrtimeout_range(to, slack,
1881 							      HRTIMER_MODE_ABS);
1882 		__set_current_state(TASK_RUNNING);
1883 
1884 		/*
1885 		 * We were woken up, thus go and try to harvest some events.
1886 		 * If timed out and still on the wait queue, recheck eavail
1887 		 * carefully under lock, below.
1888 		 */
1889 		eavail = 1;
1890 
1891 		if (!list_empty_careful(&wait.entry)) {
1892 			write_lock_irq(&ep->lock);
1893 			/*
1894 			 * If the thread timed out and is not on the wait queue,
1895 			 * it means that the thread was woken up after its
1896 			 * timeout expired before it could reacquire the lock.
1897 			 * Thus, when wait.entry is empty, it needs to harvest
1898 			 * events.
1899 			 */
1900 			if (timed_out)
1901 				eavail = list_empty(&wait.entry);
1902 			__remove_wait_queue(&ep->wq, &wait);
1903 			write_unlock_irq(&ep->lock);
1904 		}
1905 	}
1906 }
1907 
1908 /**
1909  * ep_loop_check_proc - verify that adding an epoll file inside another
1910  *                      epoll structure does not violate the constraints, in
1911  *                      terms of closed loops, or too deep chains (which can
1912  *                      result in excessive stack usage).
1913  *
1914  * @ep: the &struct eventpoll to be currently checked.
1915  * @depth: Current depth of the path being checked.
1916  *
1917  * Return: %zero if adding the epoll @file inside current epoll
1918  *          structure @ep does not violate the constraints, or %-1 otherwise.
1919  */
1920 static int ep_loop_check_proc(struct eventpoll *ep, int depth)
1921 {
1922 	int error = 0;
1923 	struct rb_node *rbp;
1924 	struct epitem *epi;
1925 
1926 	mutex_lock_nested(&ep->mtx, depth + 1);
1927 	ep->gen = loop_check_gen;
1928 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1929 		epi = rb_entry(rbp, struct epitem, rbn);
1930 		if (unlikely(is_file_epoll(epi->ffd.file))) {
1931 			struct eventpoll *ep_tovisit;
1932 			ep_tovisit = epi->ffd.file->private_data;
1933 			if (ep_tovisit->gen == loop_check_gen)
1934 				continue;
1935 			if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS)
1936 				error = -1;
1937 			else
1938 				error = ep_loop_check_proc(ep_tovisit, depth + 1);
1939 			if (error != 0)
1940 				break;
1941 		} else {
1942 			/*
1943 			 * If we've reached a file that is not associated with
1944 			 * an ep, then we need to check if the newly added
1945 			 * links are going to add too many wakeup paths. We do
1946 			 * this by adding it to the tfile_check_list, if it's
1947 			 * not already there, and calling reverse_path_check()
1948 			 * during ep_insert().
1949 			 */
1950 			list_file(epi->ffd.file);
1951 		}
1952 	}
1953 	mutex_unlock(&ep->mtx);
1954 
1955 	return error;
1956 }
1957 
1958 /**
1959  * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
1960  *                 into another epoll file (represented by @ep) does not create
1961  *                 closed loops or too deep chains.
1962  *
1963  * @ep: Pointer to the epoll we are inserting into.
1964  * @to: Pointer to the epoll to be inserted.
1965  *
1966  * Return: %zero if adding the epoll @to inside the epoll @from
1967  * does not violate the constraints, or %-1 otherwise.
1968  */
1969 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to)
1970 {
1971 	inserting_into = ep;
1972 	return ep_loop_check_proc(to, 0);
1973 }
1974 
1975 static void clear_tfile_check_list(void)
1976 {
1977 	rcu_read_lock();
1978 	while (tfile_check_list != EP_UNACTIVE_PTR) {
1979 		struct epitems_head *head = tfile_check_list;
1980 		tfile_check_list = head->next;
1981 		unlist_file(head);
1982 	}
1983 	rcu_read_unlock();
1984 }
1985 
1986 /*
1987  * Open an eventpoll file descriptor.
1988  */
1989 static int do_epoll_create(int flags)
1990 {
1991 	int error, fd;
1992 	struct eventpoll *ep = NULL;
1993 	struct file *file;
1994 
1995 	/* Check the EPOLL_* constant for consistency.  */
1996 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1997 
1998 	if (flags & ~EPOLL_CLOEXEC)
1999 		return -EINVAL;
2000 	/*
2001 	 * Create the internal data structure ("struct eventpoll").
2002 	 */
2003 	error = ep_alloc(&ep);
2004 	if (error < 0)
2005 		return error;
2006 	/*
2007 	 * Creates all the items needed to setup an eventpoll file. That is,
2008 	 * a file structure and a free file descriptor.
2009 	 */
2010 	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2011 	if (fd < 0) {
2012 		error = fd;
2013 		goto out_free_ep;
2014 	}
2015 	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2016 				 O_RDWR | (flags & O_CLOEXEC));
2017 	if (IS_ERR(file)) {
2018 		error = PTR_ERR(file);
2019 		goto out_free_fd;
2020 	}
2021 	ep->file = file;
2022 	fd_install(fd, file);
2023 	return fd;
2024 
2025 out_free_fd:
2026 	put_unused_fd(fd);
2027 out_free_ep:
2028 	ep_free(ep);
2029 	return error;
2030 }
2031 
2032 SYSCALL_DEFINE1(epoll_create1, int, flags)
2033 {
2034 	return do_epoll_create(flags);
2035 }
2036 
2037 SYSCALL_DEFINE1(epoll_create, int, size)
2038 {
2039 	if (size <= 0)
2040 		return -EINVAL;
2041 
2042 	return do_epoll_create(0);
2043 }
2044 
2045 static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2046 				   bool nonblock)
2047 {
2048 	if (!nonblock) {
2049 		mutex_lock_nested(mutex, depth);
2050 		return 0;
2051 	}
2052 	if (mutex_trylock(mutex))
2053 		return 0;
2054 	return -EAGAIN;
2055 }
2056 
2057 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2058 		 bool nonblock)
2059 {
2060 	int error;
2061 	int full_check = 0;
2062 	struct fd f, tf;
2063 	struct eventpoll *ep;
2064 	struct epitem *epi;
2065 	struct eventpoll *tep = NULL;
2066 
2067 	error = -EBADF;
2068 	f = fdget(epfd);
2069 	if (!f.file)
2070 		goto error_return;
2071 
2072 	/* Get the "struct file *" for the target file */
2073 	tf = fdget(fd);
2074 	if (!tf.file)
2075 		goto error_fput;
2076 
2077 	/* The target file descriptor must support poll */
2078 	error = -EPERM;
2079 	if (!file_can_poll(tf.file))
2080 		goto error_tgt_fput;
2081 
2082 	/* Check if EPOLLWAKEUP is allowed */
2083 	if (ep_op_has_event(op))
2084 		ep_take_care_of_epollwakeup(epds);
2085 
2086 	/*
2087 	 * We have to check that the file structure underneath the file descriptor
2088 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
2089 	 * adding an epoll file descriptor inside itself.
2090 	 */
2091 	error = -EINVAL;
2092 	if (f.file == tf.file || !is_file_epoll(f.file))
2093 		goto error_tgt_fput;
2094 
2095 	/*
2096 	 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2097 	 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2098 	 * Also, we do not currently supported nested exclusive wakeups.
2099 	 */
2100 	if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2101 		if (op == EPOLL_CTL_MOD)
2102 			goto error_tgt_fput;
2103 		if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2104 				(epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2105 			goto error_tgt_fput;
2106 	}
2107 
2108 	/*
2109 	 * At this point it is safe to assume that the "private_data" contains
2110 	 * our own data structure.
2111 	 */
2112 	ep = f.file->private_data;
2113 
2114 	/*
2115 	 * When we insert an epoll file descriptor inside another epoll file
2116 	 * descriptor, there is the chance of creating closed loops, which are
2117 	 * better be handled here, than in more critical paths. While we are
2118 	 * checking for loops we also determine the list of files reachable
2119 	 * and hang them on the tfile_check_list, so we can check that we
2120 	 * haven't created too many possible wakeup paths.
2121 	 *
2122 	 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2123 	 * the epoll file descriptor is attaching directly to a wakeup source,
2124 	 * unless the epoll file descriptor is nested. The purpose of taking the
2125 	 * 'epmutex' on add is to prevent complex toplogies such as loops and
2126 	 * deep wakeup paths from forming in parallel through multiple
2127 	 * EPOLL_CTL_ADD operations.
2128 	 */
2129 	error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2130 	if (error)
2131 		goto error_tgt_fput;
2132 	if (op == EPOLL_CTL_ADD) {
2133 		if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen ||
2134 		    is_file_epoll(tf.file)) {
2135 			mutex_unlock(&ep->mtx);
2136 			error = epoll_mutex_lock(&epmutex, 0, nonblock);
2137 			if (error)
2138 				goto error_tgt_fput;
2139 			loop_check_gen++;
2140 			full_check = 1;
2141 			if (is_file_epoll(tf.file)) {
2142 				tep = tf.file->private_data;
2143 				error = -ELOOP;
2144 				if (ep_loop_check(ep, tep) != 0)
2145 					goto error_tgt_fput;
2146 			}
2147 			error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2148 			if (error)
2149 				goto error_tgt_fput;
2150 		}
2151 	}
2152 
2153 	/*
2154 	 * Try to lookup the file inside our RB tree. Since we grabbed "mtx"
2155 	 * above, we can be sure to be able to use the item looked up by
2156 	 * ep_find() till we release the mutex.
2157 	 */
2158 	epi = ep_find(ep, tf.file, fd);
2159 
2160 	error = -EINVAL;
2161 	switch (op) {
2162 	case EPOLL_CTL_ADD:
2163 		if (!epi) {
2164 			epds->events |= EPOLLERR | EPOLLHUP;
2165 			error = ep_insert(ep, epds, tf.file, fd, full_check);
2166 		} else
2167 			error = -EEXIST;
2168 		break;
2169 	case EPOLL_CTL_DEL:
2170 		if (epi)
2171 			error = ep_remove(ep, epi);
2172 		else
2173 			error = -ENOENT;
2174 		break;
2175 	case EPOLL_CTL_MOD:
2176 		if (epi) {
2177 			if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2178 				epds->events |= EPOLLERR | EPOLLHUP;
2179 				error = ep_modify(ep, epi, epds);
2180 			}
2181 		} else
2182 			error = -ENOENT;
2183 		break;
2184 	}
2185 	mutex_unlock(&ep->mtx);
2186 
2187 error_tgt_fput:
2188 	if (full_check) {
2189 		clear_tfile_check_list();
2190 		loop_check_gen++;
2191 		mutex_unlock(&epmutex);
2192 	}
2193 
2194 	fdput(tf);
2195 error_fput:
2196 	fdput(f);
2197 error_return:
2198 
2199 	return error;
2200 }
2201 
2202 /*
2203  * The following function implements the controller interface for
2204  * the eventpoll file that enables the insertion/removal/change of
2205  * file descriptors inside the interest set.
2206  */
2207 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2208 		struct epoll_event __user *, event)
2209 {
2210 	struct epoll_event epds;
2211 
2212 	if (ep_op_has_event(op) &&
2213 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
2214 		return -EFAULT;
2215 
2216 	return do_epoll_ctl(epfd, op, fd, &epds, false);
2217 }
2218 
2219 /*
2220  * Implement the event wait interface for the eventpoll file. It is the kernel
2221  * part of the user space epoll_wait(2).
2222  */
2223 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2224 			 int maxevents, struct timespec64 *to)
2225 {
2226 	int error;
2227 	struct fd f;
2228 	struct eventpoll *ep;
2229 
2230 	/* The maximum number of event must be greater than zero */
2231 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2232 		return -EINVAL;
2233 
2234 	/* Verify that the area passed by the user is writeable */
2235 	if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2236 		return -EFAULT;
2237 
2238 	/* Get the "struct file *" for the eventpoll file */
2239 	f = fdget(epfd);
2240 	if (!f.file)
2241 		return -EBADF;
2242 
2243 	/*
2244 	 * We have to check that the file structure underneath the fd
2245 	 * the user passed to us _is_ an eventpoll file.
2246 	 */
2247 	error = -EINVAL;
2248 	if (!is_file_epoll(f.file))
2249 		goto error_fput;
2250 
2251 	/*
2252 	 * At this point it is safe to assume that the "private_data" contains
2253 	 * our own data structure.
2254 	 */
2255 	ep = f.file->private_data;
2256 
2257 	/* Time to fish for events ... */
2258 	error = ep_poll(ep, events, maxevents, to);
2259 
2260 error_fput:
2261 	fdput(f);
2262 	return error;
2263 }
2264 
2265 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2266 		int, maxevents, int, timeout)
2267 {
2268 	struct timespec64 to;
2269 
2270 	return do_epoll_wait(epfd, events, maxevents,
2271 			     ep_timeout_to_timespec(&to, timeout));
2272 }
2273 
2274 /*
2275  * Implement the event wait interface for the eventpoll file. It is the kernel
2276  * part of the user space epoll_pwait(2).
2277  */
2278 static int do_epoll_pwait(int epfd, struct epoll_event __user *events,
2279 			  int maxevents, struct timespec64 *to,
2280 			  const sigset_t __user *sigmask, size_t sigsetsize)
2281 {
2282 	int error;
2283 
2284 	/*
2285 	 * If the caller wants a certain signal mask to be set during the wait,
2286 	 * we apply it here.
2287 	 */
2288 	error = set_user_sigmask(sigmask, sigsetsize);
2289 	if (error)
2290 		return error;
2291 
2292 	error = do_epoll_wait(epfd, events, maxevents, to);
2293 
2294 	restore_saved_sigmask_unless(error == -EINTR);
2295 
2296 	return error;
2297 }
2298 
2299 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2300 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2301 		size_t, sigsetsize)
2302 {
2303 	struct timespec64 to;
2304 
2305 	return do_epoll_pwait(epfd, events, maxevents,
2306 			      ep_timeout_to_timespec(&to, timeout),
2307 			      sigmask, sigsetsize);
2308 }
2309 
2310 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events,
2311 		int, maxevents, const struct __kernel_timespec __user *, timeout,
2312 		const sigset_t __user *, sigmask, size_t, sigsetsize)
2313 {
2314 	struct timespec64 ts, *to = NULL;
2315 
2316 	if (timeout) {
2317 		if (get_timespec64(&ts, timeout))
2318 			return -EFAULT;
2319 		to = &ts;
2320 		if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2321 			return -EINVAL;
2322 	}
2323 
2324 	return do_epoll_pwait(epfd, events, maxevents, to,
2325 			      sigmask, sigsetsize);
2326 }
2327 
2328 #ifdef CONFIG_COMPAT
2329 static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events,
2330 				 int maxevents, struct timespec64 *timeout,
2331 				 const compat_sigset_t __user *sigmask,
2332 				 compat_size_t sigsetsize)
2333 {
2334 	long err;
2335 
2336 	/*
2337 	 * If the caller wants a certain signal mask to be set during the wait,
2338 	 * we apply it here.
2339 	 */
2340 	err = set_compat_user_sigmask(sigmask, sigsetsize);
2341 	if (err)
2342 		return err;
2343 
2344 	err = do_epoll_wait(epfd, events, maxevents, timeout);
2345 
2346 	restore_saved_sigmask_unless(err == -EINTR);
2347 
2348 	return err;
2349 }
2350 
2351 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2352 		       struct epoll_event __user *, events,
2353 		       int, maxevents, int, timeout,
2354 		       const compat_sigset_t __user *, sigmask,
2355 		       compat_size_t, sigsetsize)
2356 {
2357 	struct timespec64 to;
2358 
2359 	return do_compat_epoll_pwait(epfd, events, maxevents,
2360 				     ep_timeout_to_timespec(&to, timeout),
2361 				     sigmask, sigsetsize);
2362 }
2363 
2364 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd,
2365 		       struct epoll_event __user *, events,
2366 		       int, maxevents,
2367 		       const struct __kernel_timespec __user *, timeout,
2368 		       const compat_sigset_t __user *, sigmask,
2369 		       compat_size_t, sigsetsize)
2370 {
2371 	struct timespec64 ts, *to = NULL;
2372 
2373 	if (timeout) {
2374 		if (get_timespec64(&ts, timeout))
2375 			return -EFAULT;
2376 		to = &ts;
2377 		if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2378 			return -EINVAL;
2379 	}
2380 
2381 	return do_compat_epoll_pwait(epfd, events, maxevents, to,
2382 				     sigmask, sigsetsize);
2383 }
2384 
2385 #endif
2386 
2387 static int __init eventpoll_init(void)
2388 {
2389 	struct sysinfo si;
2390 
2391 	si_meminfo(&si);
2392 	/*
2393 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2394 	 */
2395 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2396 		EP_ITEM_COST;
2397 	BUG_ON(max_user_watches < 0);
2398 
2399 	/*
2400 	 * We can have many thousands of epitems, so prevent this from
2401 	 * using an extra cache line on 64-bit (and smaller) CPUs
2402 	 */
2403 	BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2404 
2405 	/* Allocates slab cache used to allocate "struct epitem" items */
2406 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2407 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2408 
2409 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
2410 	pwq_cache = kmem_cache_create("eventpoll_pwq",
2411 		sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2412 	epoll_sysctls_init();
2413 
2414 	ephead_cache = kmem_cache_create("ep_head",
2415 		sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2416 
2417 	return 0;
2418 }
2419 fs_initcall(eventpoll_init);
2420