xref: /openbmc/linux/fs/eventpoll.c (revision 8631f940b81bf0da3d375fce166d381fa8c47bb2)
1 /*
2  *  fs/eventpoll.c (Efficient event retrieval implementation)
3  *  Copyright (C) 2001,...,2009	 Davide Libenzi
4  *
5  *  This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation; either version 2 of the License, or
8  *  (at your option) any later version.
9  *
10  *  Davide Libenzi <davidel@xmailserver.org>
11  *
12  */
13 
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched/signal.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/device.h>
37 #include <linux/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <linux/atomic.h>
41 #include <linux/proc_fs.h>
42 #include <linux/seq_file.h>
43 #include <linux/compat.h>
44 #include <linux/rculist.h>
45 #include <net/busy_poll.h>
46 
47 /*
48  * LOCKING:
49  * There are three level of locking required by epoll :
50  *
51  * 1) epmutex (mutex)
52  * 2) ep->mtx (mutex)
53  * 3) ep->wq.lock (spinlock)
54  *
55  * The acquire order is the one listed above, from 1 to 3.
56  * We need a spinlock (ep->wq.lock) because we manipulate objects
57  * from inside the poll callback, that might be triggered from
58  * a wake_up() that in turn might be called from IRQ context.
59  * So we can't sleep inside the poll callback and hence we need
60  * a spinlock. During the event transfer loop (from kernel to
61  * user space) we could end up sleeping due a copy_to_user(), so
62  * we need a lock that will allow us to sleep. This lock is a
63  * mutex (ep->mtx). It is acquired during the event transfer loop,
64  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
65  * Then we also need a global mutex to serialize eventpoll_release_file()
66  * and ep_free().
67  * This mutex is acquired by ep_free() during the epoll file
68  * cleanup path and it is also acquired by eventpoll_release_file()
69  * if a file has been pushed inside an epoll set and it is then
70  * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
71  * It is also acquired when inserting an epoll fd onto another epoll
72  * fd. We do this so that we walk the epoll tree and ensure that this
73  * insertion does not create a cycle of epoll file descriptors, which
74  * could lead to deadlock. We need a global mutex to prevent two
75  * simultaneous inserts (A into B and B into A) from racing and
76  * constructing a cycle without either insert observing that it is
77  * going to.
78  * It is necessary to acquire multiple "ep->mtx"es at once in the
79  * case when one epoll fd is added to another. In this case, we
80  * always acquire the locks in the order of nesting (i.e. after
81  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
82  * before e2->mtx). Since we disallow cycles of epoll file
83  * descriptors, this ensures that the mutexes are well-ordered. In
84  * order to communicate this nesting to lockdep, when walking a tree
85  * of epoll file descriptors, we use the current recursion depth as
86  * the lockdep subkey.
87  * It is possible to drop the "ep->mtx" and to use the global
88  * mutex "epmutex" (together with "ep->wq.lock") to have it working,
89  * but having "ep->mtx" will make the interface more scalable.
90  * Events that require holding "epmutex" are very rare, while for
91  * normal operations the epoll private "ep->mtx" will guarantee
92  * a better scalability.
93  */
94 
95 /* Epoll private bits inside the event mask */
96 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
97 
98 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
99 
100 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
101 				EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
102 
103 /* Maximum number of nesting allowed inside epoll sets */
104 #define EP_MAX_NESTS 4
105 
106 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
107 
108 #define EP_UNACTIVE_PTR ((void *) -1L)
109 
110 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
111 
112 struct epoll_filefd {
113 	struct file *file;
114 	int fd;
115 } __packed;
116 
117 /*
118  * Structure used to track possible nested calls, for too deep recursions
119  * and loop cycles.
120  */
121 struct nested_call_node {
122 	struct list_head llink;
123 	void *cookie;
124 	void *ctx;
125 };
126 
127 /*
128  * This structure is used as collector for nested calls, to check for
129  * maximum recursion dept and loop cycles.
130  */
131 struct nested_calls {
132 	struct list_head tasks_call_list;
133 	spinlock_t lock;
134 };
135 
136 /*
137  * Each file descriptor added to the eventpoll interface will
138  * have an entry of this type linked to the "rbr" RB tree.
139  * Avoid increasing the size of this struct, there can be many thousands
140  * of these on a server and we do not want this to take another cache line.
141  */
142 struct epitem {
143 	union {
144 		/* RB tree node links this structure to the eventpoll RB tree */
145 		struct rb_node rbn;
146 		/* Used to free the struct epitem */
147 		struct rcu_head rcu;
148 	};
149 
150 	/* List header used to link this structure to the eventpoll ready list */
151 	struct list_head rdllink;
152 
153 	/*
154 	 * Works together "struct eventpoll"->ovflist in keeping the
155 	 * single linked chain of items.
156 	 */
157 	struct epitem *next;
158 
159 	/* The file descriptor information this item refers to */
160 	struct epoll_filefd ffd;
161 
162 	/* Number of active wait queue attached to poll operations */
163 	int nwait;
164 
165 	/* List containing poll wait queues */
166 	struct list_head pwqlist;
167 
168 	/* The "container" of this item */
169 	struct eventpoll *ep;
170 
171 	/* List header used to link this item to the "struct file" items list */
172 	struct list_head fllink;
173 
174 	/* wakeup_source used when EPOLLWAKEUP is set */
175 	struct wakeup_source __rcu *ws;
176 
177 	/* The structure that describe the interested events and the source fd */
178 	struct epoll_event event;
179 };
180 
181 /*
182  * This structure is stored inside the "private_data" member of the file
183  * structure and represents the main data structure for the eventpoll
184  * interface.
185  *
186  * Access to it is protected by the lock inside wq.
187  */
188 struct eventpoll {
189 	/*
190 	 * This mutex is used to ensure that files are not removed
191 	 * while epoll is using them. This is held during the event
192 	 * collection loop, the file cleanup path, the epoll file exit
193 	 * code and the ctl operations.
194 	 */
195 	struct mutex mtx;
196 
197 	/* Wait queue used by sys_epoll_wait() */
198 	wait_queue_head_t wq;
199 
200 	/* Wait queue used by file->poll() */
201 	wait_queue_head_t poll_wait;
202 
203 	/* List of ready file descriptors */
204 	struct list_head rdllist;
205 
206 	/* RB tree root used to store monitored fd structs */
207 	struct rb_root_cached rbr;
208 
209 	/*
210 	 * This is a single linked list that chains all the "struct epitem" that
211 	 * happened while transferring ready events to userspace w/out
212 	 * holding ->wq.lock.
213 	 */
214 	struct epitem *ovflist;
215 
216 	/* wakeup_source used when ep_scan_ready_list is running */
217 	struct wakeup_source *ws;
218 
219 	/* The user that created the eventpoll descriptor */
220 	struct user_struct *user;
221 
222 	struct file *file;
223 
224 	/* used to optimize loop detection check */
225 	int visited;
226 	struct list_head visited_list_link;
227 
228 #ifdef CONFIG_NET_RX_BUSY_POLL
229 	/* used to track busy poll napi_id */
230 	unsigned int napi_id;
231 #endif
232 };
233 
234 /* Wait structure used by the poll hooks */
235 struct eppoll_entry {
236 	/* List header used to link this structure to the "struct epitem" */
237 	struct list_head llink;
238 
239 	/* The "base" pointer is set to the container "struct epitem" */
240 	struct epitem *base;
241 
242 	/*
243 	 * Wait queue item that will be linked to the target file wait
244 	 * queue head.
245 	 */
246 	wait_queue_entry_t wait;
247 
248 	/* The wait queue head that linked the "wait" wait queue item */
249 	wait_queue_head_t *whead;
250 };
251 
252 /* Wrapper struct used by poll queueing */
253 struct ep_pqueue {
254 	poll_table pt;
255 	struct epitem *epi;
256 };
257 
258 /* Used by the ep_send_events() function as callback private data */
259 struct ep_send_events_data {
260 	int maxevents;
261 	struct epoll_event __user *events;
262 	int res;
263 };
264 
265 /*
266  * Configuration options available inside /proc/sys/fs/epoll/
267  */
268 /* Maximum number of epoll watched descriptors, per user */
269 static long max_user_watches __read_mostly;
270 
271 /*
272  * This mutex is used to serialize ep_free() and eventpoll_release_file().
273  */
274 static DEFINE_MUTEX(epmutex);
275 
276 /* Used to check for epoll file descriptor inclusion loops */
277 static struct nested_calls poll_loop_ncalls;
278 
279 /* Slab cache used to allocate "struct epitem" */
280 static struct kmem_cache *epi_cache __read_mostly;
281 
282 /* Slab cache used to allocate "struct eppoll_entry" */
283 static struct kmem_cache *pwq_cache __read_mostly;
284 
285 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
286 static LIST_HEAD(visited_list);
287 
288 /*
289  * List of files with newly added links, where we may need to limit the number
290  * of emanating paths. Protected by the epmutex.
291  */
292 static LIST_HEAD(tfile_check_list);
293 
294 #ifdef CONFIG_SYSCTL
295 
296 #include <linux/sysctl.h>
297 
298 static long zero;
299 static long long_max = LONG_MAX;
300 
301 struct ctl_table epoll_table[] = {
302 	{
303 		.procname	= "max_user_watches",
304 		.data		= &max_user_watches,
305 		.maxlen		= sizeof(max_user_watches),
306 		.mode		= 0644,
307 		.proc_handler	= proc_doulongvec_minmax,
308 		.extra1		= &zero,
309 		.extra2		= &long_max,
310 	},
311 	{ }
312 };
313 #endif /* CONFIG_SYSCTL */
314 
315 static const struct file_operations eventpoll_fops;
316 
317 static inline int is_file_epoll(struct file *f)
318 {
319 	return f->f_op == &eventpoll_fops;
320 }
321 
322 /* Setup the structure that is used as key for the RB tree */
323 static inline void ep_set_ffd(struct epoll_filefd *ffd,
324 			      struct file *file, int fd)
325 {
326 	ffd->file = file;
327 	ffd->fd = fd;
328 }
329 
330 /* Compare RB tree keys */
331 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
332 			     struct epoll_filefd *p2)
333 {
334 	return (p1->file > p2->file ? +1:
335 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
336 }
337 
338 /* Tells us if the item is currently linked */
339 static inline int ep_is_linked(struct epitem *epi)
340 {
341 	return !list_empty(&epi->rdllink);
342 }
343 
344 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
345 {
346 	return container_of(p, struct eppoll_entry, wait);
347 }
348 
349 /* Get the "struct epitem" from a wait queue pointer */
350 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
351 {
352 	return container_of(p, struct eppoll_entry, wait)->base;
353 }
354 
355 /* Get the "struct epitem" from an epoll queue wrapper */
356 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
357 {
358 	return container_of(p, struct ep_pqueue, pt)->epi;
359 }
360 
361 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
362 static inline int ep_op_has_event(int op)
363 {
364 	return op != EPOLL_CTL_DEL;
365 }
366 
367 /* Initialize the poll safe wake up structure */
368 static void ep_nested_calls_init(struct nested_calls *ncalls)
369 {
370 	INIT_LIST_HEAD(&ncalls->tasks_call_list);
371 	spin_lock_init(&ncalls->lock);
372 }
373 
374 /**
375  * ep_events_available - Checks if ready events might be available.
376  *
377  * @ep: Pointer to the eventpoll context.
378  *
379  * Returns: Returns a value different than zero if ready events are available,
380  *          or zero otherwise.
381  */
382 static inline int ep_events_available(struct eventpoll *ep)
383 {
384 	return !list_empty_careful(&ep->rdllist) ||
385 		READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
386 }
387 
388 #ifdef CONFIG_NET_RX_BUSY_POLL
389 static bool ep_busy_loop_end(void *p, unsigned long start_time)
390 {
391 	struct eventpoll *ep = p;
392 
393 	return ep_events_available(ep) || busy_loop_timeout(start_time);
394 }
395 
396 /*
397  * Busy poll if globally on and supporting sockets found && no events,
398  * busy loop will return if need_resched or ep_events_available.
399  *
400  * we must do our busy polling with irqs enabled
401  */
402 static void ep_busy_loop(struct eventpoll *ep, int nonblock)
403 {
404 	unsigned int napi_id = READ_ONCE(ep->napi_id);
405 
406 	if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
407 		napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep);
408 }
409 
410 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
411 {
412 	if (ep->napi_id)
413 		ep->napi_id = 0;
414 }
415 
416 /*
417  * Set epoll busy poll NAPI ID from sk.
418  */
419 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
420 {
421 	struct eventpoll *ep;
422 	unsigned int napi_id;
423 	struct socket *sock;
424 	struct sock *sk;
425 	int err;
426 
427 	if (!net_busy_loop_on())
428 		return;
429 
430 	sock = sock_from_file(epi->ffd.file, &err);
431 	if (!sock)
432 		return;
433 
434 	sk = sock->sk;
435 	if (!sk)
436 		return;
437 
438 	napi_id = READ_ONCE(sk->sk_napi_id);
439 	ep = epi->ep;
440 
441 	/* Non-NAPI IDs can be rejected
442 	 *	or
443 	 * Nothing to do if we already have this ID
444 	 */
445 	if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
446 		return;
447 
448 	/* record NAPI ID for use in next busy poll */
449 	ep->napi_id = napi_id;
450 }
451 
452 #else
453 
454 static inline void ep_busy_loop(struct eventpoll *ep, int nonblock)
455 {
456 }
457 
458 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
459 {
460 }
461 
462 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
463 {
464 }
465 
466 #endif /* CONFIG_NET_RX_BUSY_POLL */
467 
468 /**
469  * ep_call_nested - Perform a bound (possibly) nested call, by checking
470  *                  that the recursion limit is not exceeded, and that
471  *                  the same nested call (by the meaning of same cookie) is
472  *                  no re-entered.
473  *
474  * @ncalls: Pointer to the nested_calls structure to be used for this call.
475  * @nproc: Nested call core function pointer.
476  * @priv: Opaque data to be passed to the @nproc callback.
477  * @cookie: Cookie to be used to identify this nested call.
478  * @ctx: This instance context.
479  *
480  * Returns: Returns the code returned by the @nproc callback, or -1 if
481  *          the maximum recursion limit has been exceeded.
482  */
483 static int ep_call_nested(struct nested_calls *ncalls,
484 			  int (*nproc)(void *, void *, int), void *priv,
485 			  void *cookie, void *ctx)
486 {
487 	int error, call_nests = 0;
488 	unsigned long flags;
489 	struct list_head *lsthead = &ncalls->tasks_call_list;
490 	struct nested_call_node *tncur;
491 	struct nested_call_node tnode;
492 
493 	spin_lock_irqsave(&ncalls->lock, flags);
494 
495 	/*
496 	 * Try to see if the current task is already inside this wakeup call.
497 	 * We use a list here, since the population inside this set is always
498 	 * very much limited.
499 	 */
500 	list_for_each_entry(tncur, lsthead, llink) {
501 		if (tncur->ctx == ctx &&
502 		    (tncur->cookie == cookie || ++call_nests > EP_MAX_NESTS)) {
503 			/*
504 			 * Ops ... loop detected or maximum nest level reached.
505 			 * We abort this wake by breaking the cycle itself.
506 			 */
507 			error = -1;
508 			goto out_unlock;
509 		}
510 	}
511 
512 	/* Add the current task and cookie to the list */
513 	tnode.ctx = ctx;
514 	tnode.cookie = cookie;
515 	list_add(&tnode.llink, lsthead);
516 
517 	spin_unlock_irqrestore(&ncalls->lock, flags);
518 
519 	/* Call the nested function */
520 	error = (*nproc)(priv, cookie, call_nests);
521 
522 	/* Remove the current task from the list */
523 	spin_lock_irqsave(&ncalls->lock, flags);
524 	list_del(&tnode.llink);
525 out_unlock:
526 	spin_unlock_irqrestore(&ncalls->lock, flags);
527 
528 	return error;
529 }
530 
531 /*
532  * As described in commit 0ccf831cb lockdep: annotate epoll
533  * the use of wait queues used by epoll is done in a very controlled
534  * manner. Wake ups can nest inside each other, but are never done
535  * with the same locking. For example:
536  *
537  *   dfd = socket(...);
538  *   efd1 = epoll_create();
539  *   efd2 = epoll_create();
540  *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
541  *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
542  *
543  * When a packet arrives to the device underneath "dfd", the net code will
544  * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
545  * callback wakeup entry on that queue, and the wake_up() performed by the
546  * "dfd" net code will end up in ep_poll_callback(). At this point epoll
547  * (efd1) notices that it may have some event ready, so it needs to wake up
548  * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
549  * that ends up in another wake_up(), after having checked about the
550  * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
551  * avoid stack blasting.
552  *
553  * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
554  * this special case of epoll.
555  */
556 #ifdef CONFIG_DEBUG_LOCK_ALLOC
557 
558 static struct nested_calls poll_safewake_ncalls;
559 
560 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
561 {
562 	unsigned long flags;
563 	wait_queue_head_t *wqueue = (wait_queue_head_t *)cookie;
564 
565 	spin_lock_irqsave_nested(&wqueue->lock, flags, call_nests + 1);
566 	wake_up_locked_poll(wqueue, EPOLLIN);
567 	spin_unlock_irqrestore(&wqueue->lock, flags);
568 
569 	return 0;
570 }
571 
572 static void ep_poll_safewake(wait_queue_head_t *wq)
573 {
574 	int this_cpu = get_cpu();
575 
576 	ep_call_nested(&poll_safewake_ncalls,
577 		       ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
578 
579 	put_cpu();
580 }
581 
582 #else
583 
584 static void ep_poll_safewake(wait_queue_head_t *wq)
585 {
586 	wake_up_poll(wq, EPOLLIN);
587 }
588 
589 #endif
590 
591 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
592 {
593 	wait_queue_head_t *whead;
594 
595 	rcu_read_lock();
596 	/*
597 	 * If it is cleared by POLLFREE, it should be rcu-safe.
598 	 * If we read NULL we need a barrier paired with
599 	 * smp_store_release() in ep_poll_callback(), otherwise
600 	 * we rely on whead->lock.
601 	 */
602 	whead = smp_load_acquire(&pwq->whead);
603 	if (whead)
604 		remove_wait_queue(whead, &pwq->wait);
605 	rcu_read_unlock();
606 }
607 
608 /*
609  * This function unregisters poll callbacks from the associated file
610  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
611  * ep_free).
612  */
613 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
614 {
615 	struct list_head *lsthead = &epi->pwqlist;
616 	struct eppoll_entry *pwq;
617 
618 	while (!list_empty(lsthead)) {
619 		pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
620 
621 		list_del(&pwq->llink);
622 		ep_remove_wait_queue(pwq);
623 		kmem_cache_free(pwq_cache, pwq);
624 	}
625 }
626 
627 /* call only when ep->mtx is held */
628 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
629 {
630 	return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
631 }
632 
633 /* call only when ep->mtx is held */
634 static inline void ep_pm_stay_awake(struct epitem *epi)
635 {
636 	struct wakeup_source *ws = ep_wakeup_source(epi);
637 
638 	if (ws)
639 		__pm_stay_awake(ws);
640 }
641 
642 static inline bool ep_has_wakeup_source(struct epitem *epi)
643 {
644 	return rcu_access_pointer(epi->ws) ? true : false;
645 }
646 
647 /* call when ep->mtx cannot be held (ep_poll_callback) */
648 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
649 {
650 	struct wakeup_source *ws;
651 
652 	rcu_read_lock();
653 	ws = rcu_dereference(epi->ws);
654 	if (ws)
655 		__pm_stay_awake(ws);
656 	rcu_read_unlock();
657 }
658 
659 /**
660  * ep_scan_ready_list - Scans the ready list in a way that makes possible for
661  *                      the scan code, to call f_op->poll(). Also allows for
662  *                      O(NumReady) performance.
663  *
664  * @ep: Pointer to the epoll private data structure.
665  * @sproc: Pointer to the scan callback.
666  * @priv: Private opaque data passed to the @sproc callback.
667  * @depth: The current depth of recursive f_op->poll calls.
668  * @ep_locked: caller already holds ep->mtx
669  *
670  * Returns: The same integer error code returned by the @sproc callback.
671  */
672 static __poll_t ep_scan_ready_list(struct eventpoll *ep,
673 			      __poll_t (*sproc)(struct eventpoll *,
674 					   struct list_head *, void *),
675 			      void *priv, int depth, bool ep_locked)
676 {
677 	__poll_t res;
678 	int pwake = 0;
679 	struct epitem *epi, *nepi;
680 	LIST_HEAD(txlist);
681 
682 	lockdep_assert_irqs_enabled();
683 
684 	/*
685 	 * We need to lock this because we could be hit by
686 	 * eventpoll_release_file() and epoll_ctl().
687 	 */
688 
689 	if (!ep_locked)
690 		mutex_lock_nested(&ep->mtx, depth);
691 
692 	/*
693 	 * Steal the ready list, and re-init the original one to the
694 	 * empty list. Also, set ep->ovflist to NULL so that events
695 	 * happening while looping w/out locks, are not lost. We cannot
696 	 * have the poll callback to queue directly on ep->rdllist,
697 	 * because we want the "sproc" callback to be able to do it
698 	 * in a lockless way.
699 	 */
700 	spin_lock_irq(&ep->wq.lock);
701 	list_splice_init(&ep->rdllist, &txlist);
702 	WRITE_ONCE(ep->ovflist, NULL);
703 	spin_unlock_irq(&ep->wq.lock);
704 
705 	/*
706 	 * Now call the callback function.
707 	 */
708 	res = (*sproc)(ep, &txlist, priv);
709 
710 	spin_lock_irq(&ep->wq.lock);
711 	/*
712 	 * During the time we spent inside the "sproc" callback, some
713 	 * other events might have been queued by the poll callback.
714 	 * We re-insert them inside the main ready-list here.
715 	 */
716 	for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
717 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
718 		/*
719 		 * We need to check if the item is already in the list.
720 		 * During the "sproc" callback execution time, items are
721 		 * queued into ->ovflist but the "txlist" might already
722 		 * contain them, and the list_splice() below takes care of them.
723 		 */
724 		if (!ep_is_linked(epi)) {
725 			list_add_tail(&epi->rdllink, &ep->rdllist);
726 			ep_pm_stay_awake(epi);
727 		}
728 	}
729 	/*
730 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
731 	 * releasing the lock, events will be queued in the normal way inside
732 	 * ep->rdllist.
733 	 */
734 	WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
735 
736 	/*
737 	 * Quickly re-inject items left on "txlist".
738 	 */
739 	list_splice(&txlist, &ep->rdllist);
740 	__pm_relax(ep->ws);
741 
742 	if (!list_empty(&ep->rdllist)) {
743 		/*
744 		 * Wake up (if active) both the eventpoll wait list and
745 		 * the ->poll() wait list (delayed after we release the lock).
746 		 */
747 		if (waitqueue_active(&ep->wq))
748 			wake_up_locked(&ep->wq);
749 		if (waitqueue_active(&ep->poll_wait))
750 			pwake++;
751 	}
752 	spin_unlock_irq(&ep->wq.lock);
753 
754 	if (!ep_locked)
755 		mutex_unlock(&ep->mtx);
756 
757 	/* We have to call this outside the lock */
758 	if (pwake)
759 		ep_poll_safewake(&ep->poll_wait);
760 
761 	return res;
762 }
763 
764 static void epi_rcu_free(struct rcu_head *head)
765 {
766 	struct epitem *epi = container_of(head, struct epitem, rcu);
767 	kmem_cache_free(epi_cache, epi);
768 }
769 
770 /*
771  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
772  * all the associated resources. Must be called with "mtx" held.
773  */
774 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
775 {
776 	struct file *file = epi->ffd.file;
777 
778 	lockdep_assert_irqs_enabled();
779 
780 	/*
781 	 * Removes poll wait queue hooks.
782 	 */
783 	ep_unregister_pollwait(ep, epi);
784 
785 	/* Remove the current item from the list of epoll hooks */
786 	spin_lock(&file->f_lock);
787 	list_del_rcu(&epi->fllink);
788 	spin_unlock(&file->f_lock);
789 
790 	rb_erase_cached(&epi->rbn, &ep->rbr);
791 
792 	spin_lock_irq(&ep->wq.lock);
793 	if (ep_is_linked(epi))
794 		list_del_init(&epi->rdllink);
795 	spin_unlock_irq(&ep->wq.lock);
796 
797 	wakeup_source_unregister(ep_wakeup_source(epi));
798 	/*
799 	 * At this point it is safe to free the eventpoll item. Use the union
800 	 * field epi->rcu, since we are trying to minimize the size of
801 	 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
802 	 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
803 	 * use of the rbn field.
804 	 */
805 	call_rcu(&epi->rcu, epi_rcu_free);
806 
807 	atomic_long_dec(&ep->user->epoll_watches);
808 
809 	return 0;
810 }
811 
812 static void ep_free(struct eventpoll *ep)
813 {
814 	struct rb_node *rbp;
815 	struct epitem *epi;
816 
817 	/* We need to release all tasks waiting for these file */
818 	if (waitqueue_active(&ep->poll_wait))
819 		ep_poll_safewake(&ep->poll_wait);
820 
821 	/*
822 	 * We need to lock this because we could be hit by
823 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
824 	 * We do not need to hold "ep->mtx" here because the epoll file
825 	 * is on the way to be removed and no one has references to it
826 	 * anymore. The only hit might come from eventpoll_release_file() but
827 	 * holding "epmutex" is sufficient here.
828 	 */
829 	mutex_lock(&epmutex);
830 
831 	/*
832 	 * Walks through the whole tree by unregistering poll callbacks.
833 	 */
834 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
835 		epi = rb_entry(rbp, struct epitem, rbn);
836 
837 		ep_unregister_pollwait(ep, epi);
838 		cond_resched();
839 	}
840 
841 	/*
842 	 * Walks through the whole tree by freeing each "struct epitem". At this
843 	 * point we are sure no poll callbacks will be lingering around, and also by
844 	 * holding "epmutex" we can be sure that no file cleanup code will hit
845 	 * us during this operation. So we can avoid the lock on "ep->wq.lock".
846 	 * We do not need to lock ep->mtx, either, we only do it to prevent
847 	 * a lockdep warning.
848 	 */
849 	mutex_lock(&ep->mtx);
850 	while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
851 		epi = rb_entry(rbp, struct epitem, rbn);
852 		ep_remove(ep, epi);
853 		cond_resched();
854 	}
855 	mutex_unlock(&ep->mtx);
856 
857 	mutex_unlock(&epmutex);
858 	mutex_destroy(&ep->mtx);
859 	free_uid(ep->user);
860 	wakeup_source_unregister(ep->ws);
861 	kfree(ep);
862 }
863 
864 static int ep_eventpoll_release(struct inode *inode, struct file *file)
865 {
866 	struct eventpoll *ep = file->private_data;
867 
868 	if (ep)
869 		ep_free(ep);
870 
871 	return 0;
872 }
873 
874 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
875 			       void *priv);
876 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
877 				 poll_table *pt);
878 
879 /*
880  * Differs from ep_eventpoll_poll() in that internal callers already have
881  * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
882  * is correctly annotated.
883  */
884 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
885 				 int depth)
886 {
887 	struct eventpoll *ep;
888 	bool locked;
889 
890 	pt->_key = epi->event.events;
891 	if (!is_file_epoll(epi->ffd.file))
892 		return vfs_poll(epi->ffd.file, pt) & epi->event.events;
893 
894 	ep = epi->ffd.file->private_data;
895 	poll_wait(epi->ffd.file, &ep->poll_wait, pt);
896 	locked = pt && (pt->_qproc == ep_ptable_queue_proc);
897 
898 	return ep_scan_ready_list(epi->ffd.file->private_data,
899 				  ep_read_events_proc, &depth, depth,
900 				  locked) & epi->event.events;
901 }
902 
903 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
904 			       void *priv)
905 {
906 	struct epitem *epi, *tmp;
907 	poll_table pt;
908 	int depth = *(int *)priv;
909 
910 	init_poll_funcptr(&pt, NULL);
911 	depth++;
912 
913 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
914 		if (ep_item_poll(epi, &pt, depth)) {
915 			return EPOLLIN | EPOLLRDNORM;
916 		} else {
917 			/*
918 			 * Item has been dropped into the ready list by the poll
919 			 * callback, but it's not actually ready, as far as
920 			 * caller requested events goes. We can remove it here.
921 			 */
922 			__pm_relax(ep_wakeup_source(epi));
923 			list_del_init(&epi->rdllink);
924 		}
925 	}
926 
927 	return 0;
928 }
929 
930 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
931 {
932 	struct eventpoll *ep = file->private_data;
933 	int depth = 0;
934 
935 	/* Insert inside our poll wait queue */
936 	poll_wait(file, &ep->poll_wait, wait);
937 
938 	/*
939 	 * Proceed to find out if wanted events are really available inside
940 	 * the ready list.
941 	 */
942 	return ep_scan_ready_list(ep, ep_read_events_proc,
943 				  &depth, depth, false);
944 }
945 
946 #ifdef CONFIG_PROC_FS
947 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
948 {
949 	struct eventpoll *ep = f->private_data;
950 	struct rb_node *rbp;
951 
952 	mutex_lock(&ep->mtx);
953 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
954 		struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
955 		struct inode *inode = file_inode(epi->ffd.file);
956 
957 		seq_printf(m, "tfd: %8d events: %8x data: %16llx "
958 			   " pos:%lli ino:%lx sdev:%x\n",
959 			   epi->ffd.fd, epi->event.events,
960 			   (long long)epi->event.data,
961 			   (long long)epi->ffd.file->f_pos,
962 			   inode->i_ino, inode->i_sb->s_dev);
963 		if (seq_has_overflowed(m))
964 			break;
965 	}
966 	mutex_unlock(&ep->mtx);
967 }
968 #endif
969 
970 /* File callbacks that implement the eventpoll file behaviour */
971 static const struct file_operations eventpoll_fops = {
972 #ifdef CONFIG_PROC_FS
973 	.show_fdinfo	= ep_show_fdinfo,
974 #endif
975 	.release	= ep_eventpoll_release,
976 	.poll		= ep_eventpoll_poll,
977 	.llseek		= noop_llseek,
978 };
979 
980 /*
981  * This is called from eventpoll_release() to unlink files from the eventpoll
982  * interface. We need to have this facility to cleanup correctly files that are
983  * closed without being removed from the eventpoll interface.
984  */
985 void eventpoll_release_file(struct file *file)
986 {
987 	struct eventpoll *ep;
988 	struct epitem *epi, *next;
989 
990 	/*
991 	 * We don't want to get "file->f_lock" because it is not
992 	 * necessary. It is not necessary because we're in the "struct file"
993 	 * cleanup path, and this means that no one is using this file anymore.
994 	 * So, for example, epoll_ctl() cannot hit here since if we reach this
995 	 * point, the file counter already went to zero and fget() would fail.
996 	 * The only hit might come from ep_free() but by holding the mutex
997 	 * will correctly serialize the operation. We do need to acquire
998 	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
999 	 * from anywhere but ep_free().
1000 	 *
1001 	 * Besides, ep_remove() acquires the lock, so we can't hold it here.
1002 	 */
1003 	mutex_lock(&epmutex);
1004 	list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
1005 		ep = epi->ep;
1006 		mutex_lock_nested(&ep->mtx, 0);
1007 		ep_remove(ep, epi);
1008 		mutex_unlock(&ep->mtx);
1009 	}
1010 	mutex_unlock(&epmutex);
1011 }
1012 
1013 static int ep_alloc(struct eventpoll **pep)
1014 {
1015 	int error;
1016 	struct user_struct *user;
1017 	struct eventpoll *ep;
1018 
1019 	user = get_current_user();
1020 	error = -ENOMEM;
1021 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1022 	if (unlikely(!ep))
1023 		goto free_uid;
1024 
1025 	mutex_init(&ep->mtx);
1026 	init_waitqueue_head(&ep->wq);
1027 	init_waitqueue_head(&ep->poll_wait);
1028 	INIT_LIST_HEAD(&ep->rdllist);
1029 	ep->rbr = RB_ROOT_CACHED;
1030 	ep->ovflist = EP_UNACTIVE_PTR;
1031 	ep->user = user;
1032 
1033 	*pep = ep;
1034 
1035 	return 0;
1036 
1037 free_uid:
1038 	free_uid(user);
1039 	return error;
1040 }
1041 
1042 /*
1043  * Search the file inside the eventpoll tree. The RB tree operations
1044  * are protected by the "mtx" mutex, and ep_find() must be called with
1045  * "mtx" held.
1046  */
1047 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1048 {
1049 	int kcmp;
1050 	struct rb_node *rbp;
1051 	struct epitem *epi, *epir = NULL;
1052 	struct epoll_filefd ffd;
1053 
1054 	ep_set_ffd(&ffd, file, fd);
1055 	for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1056 		epi = rb_entry(rbp, struct epitem, rbn);
1057 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1058 		if (kcmp > 0)
1059 			rbp = rbp->rb_right;
1060 		else if (kcmp < 0)
1061 			rbp = rbp->rb_left;
1062 		else {
1063 			epir = epi;
1064 			break;
1065 		}
1066 	}
1067 
1068 	return epir;
1069 }
1070 
1071 #ifdef CONFIG_CHECKPOINT_RESTORE
1072 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1073 {
1074 	struct rb_node *rbp;
1075 	struct epitem *epi;
1076 
1077 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1078 		epi = rb_entry(rbp, struct epitem, rbn);
1079 		if (epi->ffd.fd == tfd) {
1080 			if (toff == 0)
1081 				return epi;
1082 			else
1083 				toff--;
1084 		}
1085 		cond_resched();
1086 	}
1087 
1088 	return NULL;
1089 }
1090 
1091 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1092 				     unsigned long toff)
1093 {
1094 	struct file *file_raw;
1095 	struct eventpoll *ep;
1096 	struct epitem *epi;
1097 
1098 	if (!is_file_epoll(file))
1099 		return ERR_PTR(-EINVAL);
1100 
1101 	ep = file->private_data;
1102 
1103 	mutex_lock(&ep->mtx);
1104 	epi = ep_find_tfd(ep, tfd, toff);
1105 	if (epi)
1106 		file_raw = epi->ffd.file;
1107 	else
1108 		file_raw = ERR_PTR(-ENOENT);
1109 	mutex_unlock(&ep->mtx);
1110 
1111 	return file_raw;
1112 }
1113 #endif /* CONFIG_CHECKPOINT_RESTORE */
1114 
1115 /*
1116  * This is the callback that is passed to the wait queue wakeup
1117  * mechanism. It is called by the stored file descriptors when they
1118  * have events to report.
1119  */
1120 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1121 {
1122 	int pwake = 0;
1123 	unsigned long flags;
1124 	struct epitem *epi = ep_item_from_wait(wait);
1125 	struct eventpoll *ep = epi->ep;
1126 	__poll_t pollflags = key_to_poll(key);
1127 	int ewake = 0;
1128 
1129 	spin_lock_irqsave(&ep->wq.lock, flags);
1130 
1131 	ep_set_busy_poll_napi_id(epi);
1132 
1133 	/*
1134 	 * If the event mask does not contain any poll(2) event, we consider the
1135 	 * descriptor to be disabled. This condition is likely the effect of the
1136 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1137 	 * until the next EPOLL_CTL_MOD will be issued.
1138 	 */
1139 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
1140 		goto out_unlock;
1141 
1142 	/*
1143 	 * Check the events coming with the callback. At this stage, not
1144 	 * every device reports the events in the "key" parameter of the
1145 	 * callback. We need to be able to handle both cases here, hence the
1146 	 * test for "key" != NULL before the event match test.
1147 	 */
1148 	if (pollflags && !(pollflags & epi->event.events))
1149 		goto out_unlock;
1150 
1151 	/*
1152 	 * If we are transferring events to userspace, we can hold no locks
1153 	 * (because we're accessing user memory, and because of linux f_op->poll()
1154 	 * semantics). All the events that happen during that period of time are
1155 	 * chained in ep->ovflist and requeued later on.
1156 	 */
1157 	if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1158 		if (epi->next == EP_UNACTIVE_PTR) {
1159 			epi->next = READ_ONCE(ep->ovflist);
1160 			WRITE_ONCE(ep->ovflist, epi);
1161 			if (epi->ws) {
1162 				/*
1163 				 * Activate ep->ws since epi->ws may get
1164 				 * deactivated at any time.
1165 				 */
1166 				__pm_stay_awake(ep->ws);
1167 			}
1168 
1169 		}
1170 		goto out_unlock;
1171 	}
1172 
1173 	/* If this file is already in the ready list we exit soon */
1174 	if (!ep_is_linked(epi)) {
1175 		list_add_tail(&epi->rdllink, &ep->rdllist);
1176 		ep_pm_stay_awake_rcu(epi);
1177 	}
1178 
1179 	/*
1180 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1181 	 * wait list.
1182 	 */
1183 	if (waitqueue_active(&ep->wq)) {
1184 		if ((epi->event.events & EPOLLEXCLUSIVE) &&
1185 					!(pollflags & POLLFREE)) {
1186 			switch (pollflags & EPOLLINOUT_BITS) {
1187 			case EPOLLIN:
1188 				if (epi->event.events & EPOLLIN)
1189 					ewake = 1;
1190 				break;
1191 			case EPOLLOUT:
1192 				if (epi->event.events & EPOLLOUT)
1193 					ewake = 1;
1194 				break;
1195 			case 0:
1196 				ewake = 1;
1197 				break;
1198 			}
1199 		}
1200 		wake_up_locked(&ep->wq);
1201 	}
1202 	if (waitqueue_active(&ep->poll_wait))
1203 		pwake++;
1204 
1205 out_unlock:
1206 	spin_unlock_irqrestore(&ep->wq.lock, flags);
1207 
1208 	/* We have to call this outside the lock */
1209 	if (pwake)
1210 		ep_poll_safewake(&ep->poll_wait);
1211 
1212 	if (!(epi->event.events & EPOLLEXCLUSIVE))
1213 		ewake = 1;
1214 
1215 	if (pollflags & POLLFREE) {
1216 		/*
1217 		 * If we race with ep_remove_wait_queue() it can miss
1218 		 * ->whead = NULL and do another remove_wait_queue() after
1219 		 * us, so we can't use __remove_wait_queue().
1220 		 */
1221 		list_del_init(&wait->entry);
1222 		/*
1223 		 * ->whead != NULL protects us from the race with ep_free()
1224 		 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1225 		 * held by the caller. Once we nullify it, nothing protects
1226 		 * ep/epi or even wait.
1227 		 */
1228 		smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1229 	}
1230 
1231 	return ewake;
1232 }
1233 
1234 /*
1235  * This is the callback that is used to add our wait queue to the
1236  * target file wakeup lists.
1237  */
1238 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1239 				 poll_table *pt)
1240 {
1241 	struct epitem *epi = ep_item_from_epqueue(pt);
1242 	struct eppoll_entry *pwq;
1243 
1244 	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1245 		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1246 		pwq->whead = whead;
1247 		pwq->base = epi;
1248 		if (epi->event.events & EPOLLEXCLUSIVE)
1249 			add_wait_queue_exclusive(whead, &pwq->wait);
1250 		else
1251 			add_wait_queue(whead, &pwq->wait);
1252 		list_add_tail(&pwq->llink, &epi->pwqlist);
1253 		epi->nwait++;
1254 	} else {
1255 		/* We have to signal that an error occurred */
1256 		epi->nwait = -1;
1257 	}
1258 }
1259 
1260 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1261 {
1262 	int kcmp;
1263 	struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1264 	struct epitem *epic;
1265 	bool leftmost = true;
1266 
1267 	while (*p) {
1268 		parent = *p;
1269 		epic = rb_entry(parent, struct epitem, rbn);
1270 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1271 		if (kcmp > 0) {
1272 			p = &parent->rb_right;
1273 			leftmost = false;
1274 		} else
1275 			p = &parent->rb_left;
1276 	}
1277 	rb_link_node(&epi->rbn, parent, p);
1278 	rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1279 }
1280 
1281 
1282 
1283 #define PATH_ARR_SIZE 5
1284 /*
1285  * These are the number paths of length 1 to 5, that we are allowing to emanate
1286  * from a single file of interest. For example, we allow 1000 paths of length
1287  * 1, to emanate from each file of interest. This essentially represents the
1288  * potential wakeup paths, which need to be limited in order to avoid massive
1289  * uncontrolled wakeup storms. The common use case should be a single ep which
1290  * is connected to n file sources. In this case each file source has 1 path
1291  * of length 1. Thus, the numbers below should be more than sufficient. These
1292  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1293  * and delete can't add additional paths. Protected by the epmutex.
1294  */
1295 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1296 static int path_count[PATH_ARR_SIZE];
1297 
1298 static int path_count_inc(int nests)
1299 {
1300 	/* Allow an arbitrary number of depth 1 paths */
1301 	if (nests == 0)
1302 		return 0;
1303 
1304 	if (++path_count[nests] > path_limits[nests])
1305 		return -1;
1306 	return 0;
1307 }
1308 
1309 static void path_count_init(void)
1310 {
1311 	int i;
1312 
1313 	for (i = 0; i < PATH_ARR_SIZE; i++)
1314 		path_count[i] = 0;
1315 }
1316 
1317 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1318 {
1319 	int error = 0;
1320 	struct file *file = priv;
1321 	struct file *child_file;
1322 	struct epitem *epi;
1323 
1324 	/* CTL_DEL can remove links here, but that can't increase our count */
1325 	rcu_read_lock();
1326 	list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1327 		child_file = epi->ep->file;
1328 		if (is_file_epoll(child_file)) {
1329 			if (list_empty(&child_file->f_ep_links)) {
1330 				if (path_count_inc(call_nests)) {
1331 					error = -1;
1332 					break;
1333 				}
1334 			} else {
1335 				error = ep_call_nested(&poll_loop_ncalls,
1336 							reverse_path_check_proc,
1337 							child_file, child_file,
1338 							current);
1339 			}
1340 			if (error != 0)
1341 				break;
1342 		} else {
1343 			printk(KERN_ERR "reverse_path_check_proc: "
1344 				"file is not an ep!\n");
1345 		}
1346 	}
1347 	rcu_read_unlock();
1348 	return error;
1349 }
1350 
1351 /**
1352  * reverse_path_check - The tfile_check_list is list of file *, which have
1353  *                      links that are proposed to be newly added. We need to
1354  *                      make sure that those added links don't add too many
1355  *                      paths such that we will spend all our time waking up
1356  *                      eventpoll objects.
1357  *
1358  * Returns: Returns zero if the proposed links don't create too many paths,
1359  *	    -1 otherwise.
1360  */
1361 static int reverse_path_check(void)
1362 {
1363 	int error = 0;
1364 	struct file *current_file;
1365 
1366 	/* let's call this for all tfiles */
1367 	list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1368 		path_count_init();
1369 		error = ep_call_nested(&poll_loop_ncalls,
1370 					reverse_path_check_proc, current_file,
1371 					current_file, current);
1372 		if (error)
1373 			break;
1374 	}
1375 	return error;
1376 }
1377 
1378 static int ep_create_wakeup_source(struct epitem *epi)
1379 {
1380 	const char *name;
1381 	struct wakeup_source *ws;
1382 
1383 	if (!epi->ep->ws) {
1384 		epi->ep->ws = wakeup_source_register("eventpoll");
1385 		if (!epi->ep->ws)
1386 			return -ENOMEM;
1387 	}
1388 
1389 	name = epi->ffd.file->f_path.dentry->d_name.name;
1390 	ws = wakeup_source_register(name);
1391 
1392 	if (!ws)
1393 		return -ENOMEM;
1394 	rcu_assign_pointer(epi->ws, ws);
1395 
1396 	return 0;
1397 }
1398 
1399 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1400 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1401 {
1402 	struct wakeup_source *ws = ep_wakeup_source(epi);
1403 
1404 	RCU_INIT_POINTER(epi->ws, NULL);
1405 
1406 	/*
1407 	 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1408 	 * used internally by wakeup_source_remove, too (called by
1409 	 * wakeup_source_unregister), so we cannot use call_rcu
1410 	 */
1411 	synchronize_rcu();
1412 	wakeup_source_unregister(ws);
1413 }
1414 
1415 /*
1416  * Must be called with "mtx" held.
1417  */
1418 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1419 		     struct file *tfile, int fd, int full_check)
1420 {
1421 	int error, pwake = 0;
1422 	__poll_t revents;
1423 	long user_watches;
1424 	struct epitem *epi;
1425 	struct ep_pqueue epq;
1426 
1427 	lockdep_assert_irqs_enabled();
1428 
1429 	user_watches = atomic_long_read(&ep->user->epoll_watches);
1430 	if (unlikely(user_watches >= max_user_watches))
1431 		return -ENOSPC;
1432 	if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1433 		return -ENOMEM;
1434 
1435 	/* Item initialization follow here ... */
1436 	INIT_LIST_HEAD(&epi->rdllink);
1437 	INIT_LIST_HEAD(&epi->fllink);
1438 	INIT_LIST_HEAD(&epi->pwqlist);
1439 	epi->ep = ep;
1440 	ep_set_ffd(&epi->ffd, tfile, fd);
1441 	epi->event = *event;
1442 	epi->nwait = 0;
1443 	epi->next = EP_UNACTIVE_PTR;
1444 	if (epi->event.events & EPOLLWAKEUP) {
1445 		error = ep_create_wakeup_source(epi);
1446 		if (error)
1447 			goto error_create_wakeup_source;
1448 	} else {
1449 		RCU_INIT_POINTER(epi->ws, NULL);
1450 	}
1451 
1452 	/* Initialize the poll table using the queue callback */
1453 	epq.epi = epi;
1454 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1455 
1456 	/*
1457 	 * Attach the item to the poll hooks and get current event bits.
1458 	 * We can safely use the file* here because its usage count has
1459 	 * been increased by the caller of this function. Note that after
1460 	 * this operation completes, the poll callback can start hitting
1461 	 * the new item.
1462 	 */
1463 	revents = ep_item_poll(epi, &epq.pt, 1);
1464 
1465 	/*
1466 	 * We have to check if something went wrong during the poll wait queue
1467 	 * install process. Namely an allocation for a wait queue failed due
1468 	 * high memory pressure.
1469 	 */
1470 	error = -ENOMEM;
1471 	if (epi->nwait < 0)
1472 		goto error_unregister;
1473 
1474 	/* Add the current item to the list of active epoll hook for this file */
1475 	spin_lock(&tfile->f_lock);
1476 	list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1477 	spin_unlock(&tfile->f_lock);
1478 
1479 	/*
1480 	 * Add the current item to the RB tree. All RB tree operations are
1481 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1482 	 */
1483 	ep_rbtree_insert(ep, epi);
1484 
1485 	/* now check if we've created too many backpaths */
1486 	error = -EINVAL;
1487 	if (full_check && reverse_path_check())
1488 		goto error_remove_epi;
1489 
1490 	/* We have to drop the new item inside our item list to keep track of it */
1491 	spin_lock_irq(&ep->wq.lock);
1492 
1493 	/* record NAPI ID of new item if present */
1494 	ep_set_busy_poll_napi_id(epi);
1495 
1496 	/* If the file is already "ready" we drop it inside the ready list */
1497 	if (revents && !ep_is_linked(epi)) {
1498 		list_add_tail(&epi->rdllink, &ep->rdllist);
1499 		ep_pm_stay_awake(epi);
1500 
1501 		/* Notify waiting tasks that events are available */
1502 		if (waitqueue_active(&ep->wq))
1503 			wake_up_locked(&ep->wq);
1504 		if (waitqueue_active(&ep->poll_wait))
1505 			pwake++;
1506 	}
1507 
1508 	spin_unlock_irq(&ep->wq.lock);
1509 
1510 	atomic_long_inc(&ep->user->epoll_watches);
1511 
1512 	/* We have to call this outside the lock */
1513 	if (pwake)
1514 		ep_poll_safewake(&ep->poll_wait);
1515 
1516 	return 0;
1517 
1518 error_remove_epi:
1519 	spin_lock(&tfile->f_lock);
1520 	list_del_rcu(&epi->fllink);
1521 	spin_unlock(&tfile->f_lock);
1522 
1523 	rb_erase_cached(&epi->rbn, &ep->rbr);
1524 
1525 error_unregister:
1526 	ep_unregister_pollwait(ep, epi);
1527 
1528 	/*
1529 	 * We need to do this because an event could have been arrived on some
1530 	 * allocated wait queue. Note that we don't care about the ep->ovflist
1531 	 * list, since that is used/cleaned only inside a section bound by "mtx".
1532 	 * And ep_insert() is called with "mtx" held.
1533 	 */
1534 	spin_lock_irq(&ep->wq.lock);
1535 	if (ep_is_linked(epi))
1536 		list_del_init(&epi->rdllink);
1537 	spin_unlock_irq(&ep->wq.lock);
1538 
1539 	wakeup_source_unregister(ep_wakeup_source(epi));
1540 
1541 error_create_wakeup_source:
1542 	kmem_cache_free(epi_cache, epi);
1543 
1544 	return error;
1545 }
1546 
1547 /*
1548  * Modify the interest event mask by dropping an event if the new mask
1549  * has a match in the current file status. Must be called with "mtx" held.
1550  */
1551 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1552 		     const struct epoll_event *event)
1553 {
1554 	int pwake = 0;
1555 	poll_table pt;
1556 
1557 	lockdep_assert_irqs_enabled();
1558 
1559 	init_poll_funcptr(&pt, NULL);
1560 
1561 	/*
1562 	 * Set the new event interest mask before calling f_op->poll();
1563 	 * otherwise we might miss an event that happens between the
1564 	 * f_op->poll() call and the new event set registering.
1565 	 */
1566 	epi->event.events = event->events; /* need barrier below */
1567 	epi->event.data = event->data; /* protected by mtx */
1568 	if (epi->event.events & EPOLLWAKEUP) {
1569 		if (!ep_has_wakeup_source(epi))
1570 			ep_create_wakeup_source(epi);
1571 	} else if (ep_has_wakeup_source(epi)) {
1572 		ep_destroy_wakeup_source(epi);
1573 	}
1574 
1575 	/*
1576 	 * The following barrier has two effects:
1577 	 *
1578 	 * 1) Flush epi changes above to other CPUs.  This ensures
1579 	 *    we do not miss events from ep_poll_callback if an
1580 	 *    event occurs immediately after we call f_op->poll().
1581 	 *    We need this because we did not take ep->wq.lock while
1582 	 *    changing epi above (but ep_poll_callback does take
1583 	 *    ep->wq.lock).
1584 	 *
1585 	 * 2) We also need to ensure we do not miss _past_ events
1586 	 *    when calling f_op->poll().  This barrier also
1587 	 *    pairs with the barrier in wq_has_sleeper (see
1588 	 *    comments for wq_has_sleeper).
1589 	 *
1590 	 * This barrier will now guarantee ep_poll_callback or f_op->poll
1591 	 * (or both) will notice the readiness of an item.
1592 	 */
1593 	smp_mb();
1594 
1595 	/*
1596 	 * Get current event bits. We can safely use the file* here because
1597 	 * its usage count has been increased by the caller of this function.
1598 	 * If the item is "hot" and it is not registered inside the ready
1599 	 * list, push it inside.
1600 	 */
1601 	if (ep_item_poll(epi, &pt, 1)) {
1602 		spin_lock_irq(&ep->wq.lock);
1603 		if (!ep_is_linked(epi)) {
1604 			list_add_tail(&epi->rdllink, &ep->rdllist);
1605 			ep_pm_stay_awake(epi);
1606 
1607 			/* Notify waiting tasks that events are available */
1608 			if (waitqueue_active(&ep->wq))
1609 				wake_up_locked(&ep->wq);
1610 			if (waitqueue_active(&ep->poll_wait))
1611 				pwake++;
1612 		}
1613 		spin_unlock_irq(&ep->wq.lock);
1614 	}
1615 
1616 	/* We have to call this outside the lock */
1617 	if (pwake)
1618 		ep_poll_safewake(&ep->poll_wait);
1619 
1620 	return 0;
1621 }
1622 
1623 static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1624 			       void *priv)
1625 {
1626 	struct ep_send_events_data *esed = priv;
1627 	__poll_t revents;
1628 	struct epitem *epi, *tmp;
1629 	struct epoll_event __user *uevent = esed->events;
1630 	struct wakeup_source *ws;
1631 	poll_table pt;
1632 
1633 	init_poll_funcptr(&pt, NULL);
1634 	esed->res = 0;
1635 
1636 	/*
1637 	 * We can loop without lock because we are passed a task private list.
1638 	 * Items cannot vanish during the loop because ep_scan_ready_list() is
1639 	 * holding "mtx" during this call.
1640 	 */
1641 	lockdep_assert_held(&ep->mtx);
1642 
1643 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
1644 		if (esed->res >= esed->maxevents)
1645 			break;
1646 
1647 		/*
1648 		 * Activate ep->ws before deactivating epi->ws to prevent
1649 		 * triggering auto-suspend here (in case we reactive epi->ws
1650 		 * below).
1651 		 *
1652 		 * This could be rearranged to delay the deactivation of epi->ws
1653 		 * instead, but then epi->ws would temporarily be out of sync
1654 		 * with ep_is_linked().
1655 		 */
1656 		ws = ep_wakeup_source(epi);
1657 		if (ws) {
1658 			if (ws->active)
1659 				__pm_stay_awake(ep->ws);
1660 			__pm_relax(ws);
1661 		}
1662 
1663 		list_del_init(&epi->rdllink);
1664 
1665 		/*
1666 		 * If the event mask intersect the caller-requested one,
1667 		 * deliver the event to userspace. Again, ep_scan_ready_list()
1668 		 * is holding ep->mtx, so no operations coming from userspace
1669 		 * can change the item.
1670 		 */
1671 		revents = ep_item_poll(epi, &pt, 1);
1672 		if (!revents)
1673 			continue;
1674 
1675 		if (__put_user(revents, &uevent->events) ||
1676 		    __put_user(epi->event.data, &uevent->data)) {
1677 			list_add(&epi->rdllink, head);
1678 			ep_pm_stay_awake(epi);
1679 			if (!esed->res)
1680 				esed->res = -EFAULT;
1681 			return 0;
1682 		}
1683 		esed->res++;
1684 		uevent++;
1685 		if (epi->event.events & EPOLLONESHOT)
1686 			epi->event.events &= EP_PRIVATE_BITS;
1687 		else if (!(epi->event.events & EPOLLET)) {
1688 			/*
1689 			 * If this file has been added with Level
1690 			 * Trigger mode, we need to insert back inside
1691 			 * the ready list, so that the next call to
1692 			 * epoll_wait() will check again the events
1693 			 * availability. At this point, no one can insert
1694 			 * into ep->rdllist besides us. The epoll_ctl()
1695 			 * callers are locked out by
1696 			 * ep_scan_ready_list() holding "mtx" and the
1697 			 * poll callback will queue them in ep->ovflist.
1698 			 */
1699 			list_add_tail(&epi->rdllink, &ep->rdllist);
1700 			ep_pm_stay_awake(epi);
1701 		}
1702 	}
1703 
1704 	return 0;
1705 }
1706 
1707 static int ep_send_events(struct eventpoll *ep,
1708 			  struct epoll_event __user *events, int maxevents)
1709 {
1710 	struct ep_send_events_data esed;
1711 
1712 	esed.maxevents = maxevents;
1713 	esed.events = events;
1714 
1715 	ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1716 	return esed.res;
1717 }
1718 
1719 static inline struct timespec64 ep_set_mstimeout(long ms)
1720 {
1721 	struct timespec64 now, ts = {
1722 		.tv_sec = ms / MSEC_PER_SEC,
1723 		.tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1724 	};
1725 
1726 	ktime_get_ts64(&now);
1727 	return timespec64_add_safe(now, ts);
1728 }
1729 
1730 /**
1731  * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1732  *           event buffer.
1733  *
1734  * @ep: Pointer to the eventpoll context.
1735  * @events: Pointer to the userspace buffer where the ready events should be
1736  *          stored.
1737  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1738  * @timeout: Maximum timeout for the ready events fetch operation, in
1739  *           milliseconds. If the @timeout is zero, the function will not block,
1740  *           while if the @timeout is less than zero, the function will block
1741  *           until at least one event has been retrieved (or an error
1742  *           occurred).
1743  *
1744  * Returns: Returns the number of ready events which have been fetched, or an
1745  *          error code, in case of error.
1746  */
1747 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1748 		   int maxevents, long timeout)
1749 {
1750 	int res = 0, eavail, timed_out = 0;
1751 	u64 slack = 0;
1752 	bool waiter = false;
1753 	wait_queue_entry_t wait;
1754 	ktime_t expires, *to = NULL;
1755 
1756 	lockdep_assert_irqs_enabled();
1757 
1758 	if (timeout > 0) {
1759 		struct timespec64 end_time = ep_set_mstimeout(timeout);
1760 
1761 		slack = select_estimate_accuracy(&end_time);
1762 		to = &expires;
1763 		*to = timespec64_to_ktime(end_time);
1764 	} else if (timeout == 0) {
1765 		/*
1766 		 * Avoid the unnecessary trip to the wait queue loop, if the
1767 		 * caller specified a non blocking operation. We still need
1768 		 * lock because we could race and not see an epi being added
1769 		 * to the ready list while in irq callback. Thus incorrectly
1770 		 * returning 0 back to userspace.
1771 		 */
1772 		timed_out = 1;
1773 
1774 		spin_lock_irq(&ep->wq.lock);
1775 		eavail = ep_events_available(ep);
1776 		spin_unlock_irq(&ep->wq.lock);
1777 
1778 		goto send_events;
1779 	}
1780 
1781 fetch_events:
1782 
1783 	if (!ep_events_available(ep))
1784 		ep_busy_loop(ep, timed_out);
1785 
1786 	eavail = ep_events_available(ep);
1787 	if (eavail)
1788 		goto send_events;
1789 
1790 	/*
1791 	 * Busy poll timed out.  Drop NAPI ID for now, we can add
1792 	 * it back in when we have moved a socket with a valid NAPI
1793 	 * ID onto the ready list.
1794 	 */
1795 	ep_reset_busy_poll_napi_id(ep);
1796 
1797 	/*
1798 	 * We don't have any available event to return to the caller.  We need
1799 	 * to sleep here, and we will be woken by ep_poll_callback() when events
1800 	 * become available.
1801 	 */
1802 	if (!waiter) {
1803 		waiter = true;
1804 		init_waitqueue_entry(&wait, current);
1805 
1806 		spin_lock_irq(&ep->wq.lock);
1807 		__add_wait_queue_exclusive(&ep->wq, &wait);
1808 		spin_unlock_irq(&ep->wq.lock);
1809 	}
1810 
1811 	for (;;) {
1812 		/*
1813 		 * We don't want to sleep if the ep_poll_callback() sends us
1814 		 * a wakeup in between. That's why we set the task state
1815 		 * to TASK_INTERRUPTIBLE before doing the checks.
1816 		 */
1817 		set_current_state(TASK_INTERRUPTIBLE);
1818 		/*
1819 		 * Always short-circuit for fatal signals to allow
1820 		 * threads to make a timely exit without the chance of
1821 		 * finding more events available and fetching
1822 		 * repeatedly.
1823 		 */
1824 		if (fatal_signal_pending(current)) {
1825 			res = -EINTR;
1826 			break;
1827 		}
1828 
1829 		eavail = ep_events_available(ep);
1830 		if (eavail)
1831 			break;
1832 		if (signal_pending(current)) {
1833 			res = -EINTR;
1834 			break;
1835 		}
1836 
1837 		if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) {
1838 			timed_out = 1;
1839 			break;
1840 		}
1841 	}
1842 
1843 	__set_current_state(TASK_RUNNING);
1844 
1845 send_events:
1846 	/*
1847 	 * Try to transfer events to user space. In case we get 0 events and
1848 	 * there's still timeout left over, we go trying again in search of
1849 	 * more luck.
1850 	 */
1851 	if (!res && eavail &&
1852 	    !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1853 		goto fetch_events;
1854 
1855 	if (waiter) {
1856 		spin_lock_irq(&ep->wq.lock);
1857 		__remove_wait_queue(&ep->wq, &wait);
1858 		spin_unlock_irq(&ep->wq.lock);
1859 	}
1860 
1861 	return res;
1862 }
1863 
1864 /**
1865  * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1866  *                      API, to verify that adding an epoll file inside another
1867  *                      epoll structure, does not violate the constraints, in
1868  *                      terms of closed loops, or too deep chains (which can
1869  *                      result in excessive stack usage).
1870  *
1871  * @priv: Pointer to the epoll file to be currently checked.
1872  * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1873  *          data structure pointer.
1874  * @call_nests: Current dept of the @ep_call_nested() call stack.
1875  *
1876  * Returns: Returns zero if adding the epoll @file inside current epoll
1877  *          structure @ep does not violate the constraints, or -1 otherwise.
1878  */
1879 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1880 {
1881 	int error = 0;
1882 	struct file *file = priv;
1883 	struct eventpoll *ep = file->private_data;
1884 	struct eventpoll *ep_tovisit;
1885 	struct rb_node *rbp;
1886 	struct epitem *epi;
1887 
1888 	mutex_lock_nested(&ep->mtx, call_nests + 1);
1889 	ep->visited = 1;
1890 	list_add(&ep->visited_list_link, &visited_list);
1891 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1892 		epi = rb_entry(rbp, struct epitem, rbn);
1893 		if (unlikely(is_file_epoll(epi->ffd.file))) {
1894 			ep_tovisit = epi->ffd.file->private_data;
1895 			if (ep_tovisit->visited)
1896 				continue;
1897 			error = ep_call_nested(&poll_loop_ncalls,
1898 					ep_loop_check_proc, epi->ffd.file,
1899 					ep_tovisit, current);
1900 			if (error != 0)
1901 				break;
1902 		} else {
1903 			/*
1904 			 * If we've reached a file that is not associated with
1905 			 * an ep, then we need to check if the newly added
1906 			 * links are going to add too many wakeup paths. We do
1907 			 * this by adding it to the tfile_check_list, if it's
1908 			 * not already there, and calling reverse_path_check()
1909 			 * during ep_insert().
1910 			 */
1911 			if (list_empty(&epi->ffd.file->f_tfile_llink))
1912 				list_add(&epi->ffd.file->f_tfile_llink,
1913 					 &tfile_check_list);
1914 		}
1915 	}
1916 	mutex_unlock(&ep->mtx);
1917 
1918 	return error;
1919 }
1920 
1921 /**
1922  * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1923  *                 another epoll file (represented by @ep) does not create
1924  *                 closed loops or too deep chains.
1925  *
1926  * @ep: Pointer to the epoll private data structure.
1927  * @file: Pointer to the epoll file to be checked.
1928  *
1929  * Returns: Returns zero if adding the epoll @file inside current epoll
1930  *          structure @ep does not violate the constraints, or -1 otherwise.
1931  */
1932 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1933 {
1934 	int ret;
1935 	struct eventpoll *ep_cur, *ep_next;
1936 
1937 	ret = ep_call_nested(&poll_loop_ncalls,
1938 			      ep_loop_check_proc, file, ep, current);
1939 	/* clear visited list */
1940 	list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
1941 							visited_list_link) {
1942 		ep_cur->visited = 0;
1943 		list_del(&ep_cur->visited_list_link);
1944 	}
1945 	return ret;
1946 }
1947 
1948 static void clear_tfile_check_list(void)
1949 {
1950 	struct file *file;
1951 
1952 	/* first clear the tfile_check_list */
1953 	while (!list_empty(&tfile_check_list)) {
1954 		file = list_first_entry(&tfile_check_list, struct file,
1955 					f_tfile_llink);
1956 		list_del_init(&file->f_tfile_llink);
1957 	}
1958 	INIT_LIST_HEAD(&tfile_check_list);
1959 }
1960 
1961 /*
1962  * Open an eventpoll file descriptor.
1963  */
1964 static int do_epoll_create(int flags)
1965 {
1966 	int error, fd;
1967 	struct eventpoll *ep = NULL;
1968 	struct file *file;
1969 
1970 	/* Check the EPOLL_* constant for consistency.  */
1971 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1972 
1973 	if (flags & ~EPOLL_CLOEXEC)
1974 		return -EINVAL;
1975 	/*
1976 	 * Create the internal data structure ("struct eventpoll").
1977 	 */
1978 	error = ep_alloc(&ep);
1979 	if (error < 0)
1980 		return error;
1981 	/*
1982 	 * Creates all the items needed to setup an eventpoll file. That is,
1983 	 * a file structure and a free file descriptor.
1984 	 */
1985 	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1986 	if (fd < 0) {
1987 		error = fd;
1988 		goto out_free_ep;
1989 	}
1990 	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1991 				 O_RDWR | (flags & O_CLOEXEC));
1992 	if (IS_ERR(file)) {
1993 		error = PTR_ERR(file);
1994 		goto out_free_fd;
1995 	}
1996 	ep->file = file;
1997 	fd_install(fd, file);
1998 	return fd;
1999 
2000 out_free_fd:
2001 	put_unused_fd(fd);
2002 out_free_ep:
2003 	ep_free(ep);
2004 	return error;
2005 }
2006 
2007 SYSCALL_DEFINE1(epoll_create1, int, flags)
2008 {
2009 	return do_epoll_create(flags);
2010 }
2011 
2012 SYSCALL_DEFINE1(epoll_create, int, size)
2013 {
2014 	if (size <= 0)
2015 		return -EINVAL;
2016 
2017 	return do_epoll_create(0);
2018 }
2019 
2020 /*
2021  * The following function implements the controller interface for
2022  * the eventpoll file that enables the insertion/removal/change of
2023  * file descriptors inside the interest set.
2024  */
2025 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2026 		struct epoll_event __user *, event)
2027 {
2028 	int error;
2029 	int full_check = 0;
2030 	struct fd f, tf;
2031 	struct eventpoll *ep;
2032 	struct epitem *epi;
2033 	struct epoll_event epds;
2034 	struct eventpoll *tep = NULL;
2035 
2036 	error = -EFAULT;
2037 	if (ep_op_has_event(op) &&
2038 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
2039 		goto error_return;
2040 
2041 	error = -EBADF;
2042 	f = fdget(epfd);
2043 	if (!f.file)
2044 		goto error_return;
2045 
2046 	/* Get the "struct file *" for the target file */
2047 	tf = fdget(fd);
2048 	if (!tf.file)
2049 		goto error_fput;
2050 
2051 	/* The target file descriptor must support poll */
2052 	error = -EPERM;
2053 	if (!file_can_poll(tf.file))
2054 		goto error_tgt_fput;
2055 
2056 	/* Check if EPOLLWAKEUP is allowed */
2057 	if (ep_op_has_event(op))
2058 		ep_take_care_of_epollwakeup(&epds);
2059 
2060 	/*
2061 	 * We have to check that the file structure underneath the file descriptor
2062 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
2063 	 * adding an epoll file descriptor inside itself.
2064 	 */
2065 	error = -EINVAL;
2066 	if (f.file == tf.file || !is_file_epoll(f.file))
2067 		goto error_tgt_fput;
2068 
2069 	/*
2070 	 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2071 	 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2072 	 * Also, we do not currently supported nested exclusive wakeups.
2073 	 */
2074 	if (ep_op_has_event(op) && (epds.events & EPOLLEXCLUSIVE)) {
2075 		if (op == EPOLL_CTL_MOD)
2076 			goto error_tgt_fput;
2077 		if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2078 				(epds.events & ~EPOLLEXCLUSIVE_OK_BITS)))
2079 			goto error_tgt_fput;
2080 	}
2081 
2082 	/*
2083 	 * At this point it is safe to assume that the "private_data" contains
2084 	 * our own data structure.
2085 	 */
2086 	ep = f.file->private_data;
2087 
2088 	/*
2089 	 * When we insert an epoll file descriptor, inside another epoll file
2090 	 * descriptor, there is the change of creating closed loops, which are
2091 	 * better be handled here, than in more critical paths. While we are
2092 	 * checking for loops we also determine the list of files reachable
2093 	 * and hang them on the tfile_check_list, so we can check that we
2094 	 * haven't created too many possible wakeup paths.
2095 	 *
2096 	 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2097 	 * the epoll file descriptor is attaching directly to a wakeup source,
2098 	 * unless the epoll file descriptor is nested. The purpose of taking the
2099 	 * 'epmutex' on add is to prevent complex toplogies such as loops and
2100 	 * deep wakeup paths from forming in parallel through multiple
2101 	 * EPOLL_CTL_ADD operations.
2102 	 */
2103 	mutex_lock_nested(&ep->mtx, 0);
2104 	if (op == EPOLL_CTL_ADD) {
2105 		if (!list_empty(&f.file->f_ep_links) ||
2106 						is_file_epoll(tf.file)) {
2107 			full_check = 1;
2108 			mutex_unlock(&ep->mtx);
2109 			mutex_lock(&epmutex);
2110 			if (is_file_epoll(tf.file)) {
2111 				error = -ELOOP;
2112 				if (ep_loop_check(ep, tf.file) != 0) {
2113 					clear_tfile_check_list();
2114 					goto error_tgt_fput;
2115 				}
2116 			} else
2117 				list_add(&tf.file->f_tfile_llink,
2118 							&tfile_check_list);
2119 			mutex_lock_nested(&ep->mtx, 0);
2120 			if (is_file_epoll(tf.file)) {
2121 				tep = tf.file->private_data;
2122 				mutex_lock_nested(&tep->mtx, 1);
2123 			}
2124 		}
2125 	}
2126 
2127 	/*
2128 	 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2129 	 * above, we can be sure to be able to use the item looked up by
2130 	 * ep_find() till we release the mutex.
2131 	 */
2132 	epi = ep_find(ep, tf.file, fd);
2133 
2134 	error = -EINVAL;
2135 	switch (op) {
2136 	case EPOLL_CTL_ADD:
2137 		if (!epi) {
2138 			epds.events |= EPOLLERR | EPOLLHUP;
2139 			error = ep_insert(ep, &epds, tf.file, fd, full_check);
2140 		} else
2141 			error = -EEXIST;
2142 		if (full_check)
2143 			clear_tfile_check_list();
2144 		break;
2145 	case EPOLL_CTL_DEL:
2146 		if (epi)
2147 			error = ep_remove(ep, epi);
2148 		else
2149 			error = -ENOENT;
2150 		break;
2151 	case EPOLL_CTL_MOD:
2152 		if (epi) {
2153 			if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2154 				epds.events |= EPOLLERR | EPOLLHUP;
2155 				error = ep_modify(ep, epi, &epds);
2156 			}
2157 		} else
2158 			error = -ENOENT;
2159 		break;
2160 	}
2161 	if (tep != NULL)
2162 		mutex_unlock(&tep->mtx);
2163 	mutex_unlock(&ep->mtx);
2164 
2165 error_tgt_fput:
2166 	if (full_check)
2167 		mutex_unlock(&epmutex);
2168 
2169 	fdput(tf);
2170 error_fput:
2171 	fdput(f);
2172 error_return:
2173 
2174 	return error;
2175 }
2176 
2177 /*
2178  * Implement the event wait interface for the eventpoll file. It is the kernel
2179  * part of the user space epoll_wait(2).
2180  */
2181 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2182 			 int maxevents, int timeout)
2183 {
2184 	int error;
2185 	struct fd f;
2186 	struct eventpoll *ep;
2187 
2188 	/* The maximum number of event must be greater than zero */
2189 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2190 		return -EINVAL;
2191 
2192 	/* Verify that the area passed by the user is writeable */
2193 	if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2194 		return -EFAULT;
2195 
2196 	/* Get the "struct file *" for the eventpoll file */
2197 	f = fdget(epfd);
2198 	if (!f.file)
2199 		return -EBADF;
2200 
2201 	/*
2202 	 * We have to check that the file structure underneath the fd
2203 	 * the user passed to us _is_ an eventpoll file.
2204 	 */
2205 	error = -EINVAL;
2206 	if (!is_file_epoll(f.file))
2207 		goto error_fput;
2208 
2209 	/*
2210 	 * At this point it is safe to assume that the "private_data" contains
2211 	 * our own data structure.
2212 	 */
2213 	ep = f.file->private_data;
2214 
2215 	/* Time to fish for events ... */
2216 	error = ep_poll(ep, events, maxevents, timeout);
2217 
2218 error_fput:
2219 	fdput(f);
2220 	return error;
2221 }
2222 
2223 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2224 		int, maxevents, int, timeout)
2225 {
2226 	return do_epoll_wait(epfd, events, maxevents, timeout);
2227 }
2228 
2229 /*
2230  * Implement the event wait interface for the eventpoll file. It is the kernel
2231  * part of the user space epoll_pwait(2).
2232  */
2233 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2234 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2235 		size_t, sigsetsize)
2236 {
2237 	int error;
2238 	sigset_t ksigmask, sigsaved;
2239 
2240 	/*
2241 	 * If the caller wants a certain signal mask to be set during the wait,
2242 	 * we apply it here.
2243 	 */
2244 	error = set_user_sigmask(sigmask, &ksigmask, &sigsaved, sigsetsize);
2245 	if (error)
2246 		return error;
2247 
2248 	error = do_epoll_wait(epfd, events, maxevents, timeout);
2249 
2250 	restore_user_sigmask(sigmask, &sigsaved);
2251 
2252 	return error;
2253 }
2254 
2255 #ifdef CONFIG_COMPAT
2256 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2257 			struct epoll_event __user *, events,
2258 			int, maxevents, int, timeout,
2259 			const compat_sigset_t __user *, sigmask,
2260 			compat_size_t, sigsetsize)
2261 {
2262 	long err;
2263 	sigset_t ksigmask, sigsaved;
2264 
2265 	/*
2266 	 * If the caller wants a certain signal mask to be set during the wait,
2267 	 * we apply it here.
2268 	 */
2269 	err = set_compat_user_sigmask(sigmask, &ksigmask, &sigsaved, sigsetsize);
2270 	if (err)
2271 		return err;
2272 
2273 	err = do_epoll_wait(epfd, events, maxevents, timeout);
2274 
2275 	restore_user_sigmask(sigmask, &sigsaved);
2276 
2277 	return err;
2278 }
2279 #endif
2280 
2281 static int __init eventpoll_init(void)
2282 {
2283 	struct sysinfo si;
2284 
2285 	si_meminfo(&si);
2286 	/*
2287 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2288 	 */
2289 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2290 		EP_ITEM_COST;
2291 	BUG_ON(max_user_watches < 0);
2292 
2293 	/*
2294 	 * Initialize the structure used to perform epoll file descriptor
2295 	 * inclusion loops checks.
2296 	 */
2297 	ep_nested_calls_init(&poll_loop_ncalls);
2298 
2299 #ifdef CONFIG_DEBUG_LOCK_ALLOC
2300 	/* Initialize the structure used to perform safe poll wait head wake ups */
2301 	ep_nested_calls_init(&poll_safewake_ncalls);
2302 #endif
2303 
2304 	/*
2305 	 * We can have many thousands of epitems, so prevent this from
2306 	 * using an extra cache line on 64-bit (and smaller) CPUs
2307 	 */
2308 	BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2309 
2310 	/* Allocates slab cache used to allocate "struct epitem" items */
2311 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2312 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2313 
2314 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
2315 	pwq_cache = kmem_cache_create("eventpoll_pwq",
2316 		sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2317 
2318 	return 0;
2319 }
2320 fs_initcall(eventpoll_init);
2321