1 /* 2 * fs/eventpoll.c (Efficient event retrieval implementation) 3 * Copyright (C) 2001,...,2009 Davide Libenzi 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * Davide Libenzi <davidel@xmailserver.org> 11 * 12 */ 13 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/sched/signal.h> 17 #include <linux/fs.h> 18 #include <linux/file.h> 19 #include <linux/signal.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/slab.h> 23 #include <linux/poll.h> 24 #include <linux/string.h> 25 #include <linux/list.h> 26 #include <linux/hash.h> 27 #include <linux/spinlock.h> 28 #include <linux/syscalls.h> 29 #include <linux/rbtree.h> 30 #include <linux/wait.h> 31 #include <linux/eventpoll.h> 32 #include <linux/mount.h> 33 #include <linux/bitops.h> 34 #include <linux/mutex.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/device.h> 37 #include <linux/uaccess.h> 38 #include <asm/io.h> 39 #include <asm/mman.h> 40 #include <linux/atomic.h> 41 #include <linux/proc_fs.h> 42 #include <linux/seq_file.h> 43 #include <linux/compat.h> 44 #include <linux/rculist.h> 45 #include <net/busy_poll.h> 46 47 /* 48 * LOCKING: 49 * There are three level of locking required by epoll : 50 * 51 * 1) epmutex (mutex) 52 * 2) ep->mtx (mutex) 53 * 3) ep->lock (spinlock) 54 * 55 * The acquire order is the one listed above, from 1 to 3. 56 * We need a spinlock (ep->lock) because we manipulate objects 57 * from inside the poll callback, that might be triggered from 58 * a wake_up() that in turn might be called from IRQ context. 59 * So we can't sleep inside the poll callback and hence we need 60 * a spinlock. During the event transfer loop (from kernel to 61 * user space) we could end up sleeping due a copy_to_user(), so 62 * we need a lock that will allow us to sleep. This lock is a 63 * mutex (ep->mtx). It is acquired during the event transfer loop, 64 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 65 * Then we also need a global mutex to serialize eventpoll_release_file() 66 * and ep_free(). 67 * This mutex is acquired by ep_free() during the epoll file 68 * cleanup path and it is also acquired by eventpoll_release_file() 69 * if a file has been pushed inside an epoll set and it is then 70 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL). 71 * It is also acquired when inserting an epoll fd onto another epoll 72 * fd. We do this so that we walk the epoll tree and ensure that this 73 * insertion does not create a cycle of epoll file descriptors, which 74 * could lead to deadlock. We need a global mutex to prevent two 75 * simultaneous inserts (A into B and B into A) from racing and 76 * constructing a cycle without either insert observing that it is 77 * going to. 78 * It is necessary to acquire multiple "ep->mtx"es at once in the 79 * case when one epoll fd is added to another. In this case, we 80 * always acquire the locks in the order of nesting (i.e. after 81 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 82 * before e2->mtx). Since we disallow cycles of epoll file 83 * descriptors, this ensures that the mutexes are well-ordered. In 84 * order to communicate this nesting to lockdep, when walking a tree 85 * of epoll file descriptors, we use the current recursion depth as 86 * the lockdep subkey. 87 * It is possible to drop the "ep->mtx" and to use the global 88 * mutex "epmutex" (together with "ep->lock") to have it working, 89 * but having "ep->mtx" will make the interface more scalable. 90 * Events that require holding "epmutex" are very rare, while for 91 * normal operations the epoll private "ep->mtx" will guarantee 92 * a better scalability. 93 */ 94 95 /* Epoll private bits inside the event mask */ 96 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE) 97 98 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT) 99 100 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \ 101 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE) 102 103 /* Maximum number of nesting allowed inside epoll sets */ 104 #define EP_MAX_NESTS 4 105 106 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 107 108 #define EP_UNACTIVE_PTR ((void *) -1L) 109 110 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 111 112 struct epoll_filefd { 113 struct file *file; 114 int fd; 115 } __packed; 116 117 /* 118 * Structure used to track possible nested calls, for too deep recursions 119 * and loop cycles. 120 */ 121 struct nested_call_node { 122 struct list_head llink; 123 void *cookie; 124 void *ctx; 125 }; 126 127 /* 128 * This structure is used as collector for nested calls, to check for 129 * maximum recursion dept and loop cycles. 130 */ 131 struct nested_calls { 132 struct list_head tasks_call_list; 133 spinlock_t lock; 134 }; 135 136 /* 137 * Each file descriptor added to the eventpoll interface will 138 * have an entry of this type linked to the "rbr" RB tree. 139 * Avoid increasing the size of this struct, there can be many thousands 140 * of these on a server and we do not want this to take another cache line. 141 */ 142 struct epitem { 143 union { 144 /* RB tree node links this structure to the eventpoll RB tree */ 145 struct rb_node rbn; 146 /* Used to free the struct epitem */ 147 struct rcu_head rcu; 148 }; 149 150 /* List header used to link this structure to the eventpoll ready list */ 151 struct list_head rdllink; 152 153 /* 154 * Works together "struct eventpoll"->ovflist in keeping the 155 * single linked chain of items. 156 */ 157 struct epitem *next; 158 159 /* The file descriptor information this item refers to */ 160 struct epoll_filefd ffd; 161 162 /* Number of active wait queue attached to poll operations */ 163 int nwait; 164 165 /* List containing poll wait queues */ 166 struct list_head pwqlist; 167 168 /* The "container" of this item */ 169 struct eventpoll *ep; 170 171 /* List header used to link this item to the "struct file" items list */ 172 struct list_head fllink; 173 174 /* wakeup_source used when EPOLLWAKEUP is set */ 175 struct wakeup_source __rcu *ws; 176 177 /* The structure that describe the interested events and the source fd */ 178 struct epoll_event event; 179 }; 180 181 /* 182 * This structure is stored inside the "private_data" member of the file 183 * structure and represents the main data structure for the eventpoll 184 * interface. 185 */ 186 struct eventpoll { 187 /* Protect the access to this structure */ 188 spinlock_t lock; 189 190 /* 191 * This mutex is used to ensure that files are not removed 192 * while epoll is using them. This is held during the event 193 * collection loop, the file cleanup path, the epoll file exit 194 * code and the ctl operations. 195 */ 196 struct mutex mtx; 197 198 /* Wait queue used by sys_epoll_wait() */ 199 wait_queue_head_t wq; 200 201 /* Wait queue used by file->poll() */ 202 wait_queue_head_t poll_wait; 203 204 /* List of ready file descriptors */ 205 struct list_head rdllist; 206 207 /* RB tree root used to store monitored fd structs */ 208 struct rb_root_cached rbr; 209 210 /* 211 * This is a single linked list that chains all the "struct epitem" that 212 * happened while transferring ready events to userspace w/out 213 * holding ->lock. 214 */ 215 struct epitem *ovflist; 216 217 /* wakeup_source used when ep_scan_ready_list is running */ 218 struct wakeup_source *ws; 219 220 /* The user that created the eventpoll descriptor */ 221 struct user_struct *user; 222 223 struct file *file; 224 225 /* used to optimize loop detection check */ 226 int visited; 227 struct list_head visited_list_link; 228 229 #ifdef CONFIG_NET_RX_BUSY_POLL 230 /* used to track busy poll napi_id */ 231 unsigned int napi_id; 232 #endif 233 }; 234 235 /* Wait structure used by the poll hooks */ 236 struct eppoll_entry { 237 /* List header used to link this structure to the "struct epitem" */ 238 struct list_head llink; 239 240 /* The "base" pointer is set to the container "struct epitem" */ 241 struct epitem *base; 242 243 /* 244 * Wait queue item that will be linked to the target file wait 245 * queue head. 246 */ 247 wait_queue_entry_t wait; 248 249 /* The wait queue head that linked the "wait" wait queue item */ 250 wait_queue_head_t *whead; 251 }; 252 253 /* Wrapper struct used by poll queueing */ 254 struct ep_pqueue { 255 poll_table pt; 256 struct epitem *epi; 257 }; 258 259 /* Used by the ep_send_events() function as callback private data */ 260 struct ep_send_events_data { 261 int maxevents; 262 struct epoll_event __user *events; 263 int res; 264 }; 265 266 /* 267 * Configuration options available inside /proc/sys/fs/epoll/ 268 */ 269 /* Maximum number of epoll watched descriptors, per user */ 270 static long max_user_watches __read_mostly; 271 272 /* 273 * This mutex is used to serialize ep_free() and eventpoll_release_file(). 274 */ 275 static DEFINE_MUTEX(epmutex); 276 277 /* Used to check for epoll file descriptor inclusion loops */ 278 static struct nested_calls poll_loop_ncalls; 279 280 /* Slab cache used to allocate "struct epitem" */ 281 static struct kmem_cache *epi_cache __read_mostly; 282 283 /* Slab cache used to allocate "struct eppoll_entry" */ 284 static struct kmem_cache *pwq_cache __read_mostly; 285 286 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */ 287 static LIST_HEAD(visited_list); 288 289 /* 290 * List of files with newly added links, where we may need to limit the number 291 * of emanating paths. Protected by the epmutex. 292 */ 293 static LIST_HEAD(tfile_check_list); 294 295 #ifdef CONFIG_SYSCTL 296 297 #include <linux/sysctl.h> 298 299 static long zero; 300 static long long_max = LONG_MAX; 301 302 struct ctl_table epoll_table[] = { 303 { 304 .procname = "max_user_watches", 305 .data = &max_user_watches, 306 .maxlen = sizeof(max_user_watches), 307 .mode = 0644, 308 .proc_handler = proc_doulongvec_minmax, 309 .extra1 = &zero, 310 .extra2 = &long_max, 311 }, 312 { } 313 }; 314 #endif /* CONFIG_SYSCTL */ 315 316 static const struct file_operations eventpoll_fops; 317 318 static inline int is_file_epoll(struct file *f) 319 { 320 return f->f_op == &eventpoll_fops; 321 } 322 323 /* Setup the structure that is used as key for the RB tree */ 324 static inline void ep_set_ffd(struct epoll_filefd *ffd, 325 struct file *file, int fd) 326 { 327 ffd->file = file; 328 ffd->fd = fd; 329 } 330 331 /* Compare RB tree keys */ 332 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 333 struct epoll_filefd *p2) 334 { 335 return (p1->file > p2->file ? +1: 336 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 337 } 338 339 /* Tells us if the item is currently linked */ 340 static inline int ep_is_linked(struct list_head *p) 341 { 342 return !list_empty(p); 343 } 344 345 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p) 346 { 347 return container_of(p, struct eppoll_entry, wait); 348 } 349 350 /* Get the "struct epitem" from a wait queue pointer */ 351 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p) 352 { 353 return container_of(p, struct eppoll_entry, wait)->base; 354 } 355 356 /* Get the "struct epitem" from an epoll queue wrapper */ 357 static inline struct epitem *ep_item_from_epqueue(poll_table *p) 358 { 359 return container_of(p, struct ep_pqueue, pt)->epi; 360 } 361 362 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ 363 static inline int ep_op_has_event(int op) 364 { 365 return op != EPOLL_CTL_DEL; 366 } 367 368 /* Initialize the poll safe wake up structure */ 369 static void ep_nested_calls_init(struct nested_calls *ncalls) 370 { 371 INIT_LIST_HEAD(&ncalls->tasks_call_list); 372 spin_lock_init(&ncalls->lock); 373 } 374 375 /** 376 * ep_events_available - Checks if ready events might be available. 377 * 378 * @ep: Pointer to the eventpoll context. 379 * 380 * Returns: Returns a value different than zero if ready events are available, 381 * or zero otherwise. 382 */ 383 static inline int ep_events_available(struct eventpoll *ep) 384 { 385 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR; 386 } 387 388 #ifdef CONFIG_NET_RX_BUSY_POLL 389 static bool ep_busy_loop_end(void *p, unsigned long start_time) 390 { 391 struct eventpoll *ep = p; 392 393 return ep_events_available(ep) || busy_loop_timeout(start_time); 394 } 395 #endif /* CONFIG_NET_RX_BUSY_POLL */ 396 397 /* 398 * Busy poll if globally on and supporting sockets found && no events, 399 * busy loop will return if need_resched or ep_events_available. 400 * 401 * we must do our busy polling with irqs enabled 402 */ 403 static void ep_busy_loop(struct eventpoll *ep, int nonblock) 404 { 405 #ifdef CONFIG_NET_RX_BUSY_POLL 406 unsigned int napi_id = READ_ONCE(ep->napi_id); 407 408 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) 409 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep); 410 #endif 411 } 412 413 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep) 414 { 415 #ifdef CONFIG_NET_RX_BUSY_POLL 416 if (ep->napi_id) 417 ep->napi_id = 0; 418 #endif 419 } 420 421 /* 422 * Set epoll busy poll NAPI ID from sk. 423 */ 424 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 425 { 426 #ifdef CONFIG_NET_RX_BUSY_POLL 427 struct eventpoll *ep; 428 unsigned int napi_id; 429 struct socket *sock; 430 struct sock *sk; 431 int err; 432 433 if (!net_busy_loop_on()) 434 return; 435 436 sock = sock_from_file(epi->ffd.file, &err); 437 if (!sock) 438 return; 439 440 sk = sock->sk; 441 if (!sk) 442 return; 443 444 napi_id = READ_ONCE(sk->sk_napi_id); 445 ep = epi->ep; 446 447 /* Non-NAPI IDs can be rejected 448 * or 449 * Nothing to do if we already have this ID 450 */ 451 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id) 452 return; 453 454 /* record NAPI ID for use in next busy poll */ 455 ep->napi_id = napi_id; 456 #endif 457 } 458 459 /** 460 * ep_call_nested - Perform a bound (possibly) nested call, by checking 461 * that the recursion limit is not exceeded, and that 462 * the same nested call (by the meaning of same cookie) is 463 * no re-entered. 464 * 465 * @ncalls: Pointer to the nested_calls structure to be used for this call. 466 * @max_nests: Maximum number of allowed nesting calls. 467 * @nproc: Nested call core function pointer. 468 * @priv: Opaque data to be passed to the @nproc callback. 469 * @cookie: Cookie to be used to identify this nested call. 470 * @ctx: This instance context. 471 * 472 * Returns: Returns the code returned by the @nproc callback, or -1 if 473 * the maximum recursion limit has been exceeded. 474 */ 475 static int ep_call_nested(struct nested_calls *ncalls, int max_nests, 476 int (*nproc)(void *, void *, int), void *priv, 477 void *cookie, void *ctx) 478 { 479 int error, call_nests = 0; 480 unsigned long flags; 481 struct list_head *lsthead = &ncalls->tasks_call_list; 482 struct nested_call_node *tncur; 483 struct nested_call_node tnode; 484 485 spin_lock_irqsave(&ncalls->lock, flags); 486 487 /* 488 * Try to see if the current task is already inside this wakeup call. 489 * We use a list here, since the population inside this set is always 490 * very much limited. 491 */ 492 list_for_each_entry(tncur, lsthead, llink) { 493 if (tncur->ctx == ctx && 494 (tncur->cookie == cookie || ++call_nests > max_nests)) { 495 /* 496 * Ops ... loop detected or maximum nest level reached. 497 * We abort this wake by breaking the cycle itself. 498 */ 499 error = -1; 500 goto out_unlock; 501 } 502 } 503 504 /* Add the current task and cookie to the list */ 505 tnode.ctx = ctx; 506 tnode.cookie = cookie; 507 list_add(&tnode.llink, lsthead); 508 509 spin_unlock_irqrestore(&ncalls->lock, flags); 510 511 /* Call the nested function */ 512 error = (*nproc)(priv, cookie, call_nests); 513 514 /* Remove the current task from the list */ 515 spin_lock_irqsave(&ncalls->lock, flags); 516 list_del(&tnode.llink); 517 out_unlock: 518 spin_unlock_irqrestore(&ncalls->lock, flags); 519 520 return error; 521 } 522 523 /* 524 * As described in commit 0ccf831cb lockdep: annotate epoll 525 * the use of wait queues used by epoll is done in a very controlled 526 * manner. Wake ups can nest inside each other, but are never done 527 * with the same locking. For example: 528 * 529 * dfd = socket(...); 530 * efd1 = epoll_create(); 531 * efd2 = epoll_create(); 532 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 533 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 534 * 535 * When a packet arrives to the device underneath "dfd", the net code will 536 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 537 * callback wakeup entry on that queue, and the wake_up() performed by the 538 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 539 * (efd1) notices that it may have some event ready, so it needs to wake up 540 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 541 * that ends up in another wake_up(), after having checked about the 542 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to 543 * avoid stack blasting. 544 * 545 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 546 * this special case of epoll. 547 */ 548 #ifdef CONFIG_DEBUG_LOCK_ALLOC 549 550 static struct nested_calls poll_safewake_ncalls; 551 552 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests) 553 { 554 unsigned long flags; 555 wait_queue_head_t *wqueue = (wait_queue_head_t *)cookie; 556 557 spin_lock_irqsave_nested(&wqueue->lock, flags, call_nests + 1); 558 wake_up_locked_poll(wqueue, EPOLLIN); 559 spin_unlock_irqrestore(&wqueue->lock, flags); 560 561 return 0; 562 } 563 564 static void ep_poll_safewake(wait_queue_head_t *wq) 565 { 566 int this_cpu = get_cpu(); 567 568 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS, 569 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu); 570 571 put_cpu(); 572 } 573 574 #else 575 576 static void ep_poll_safewake(wait_queue_head_t *wq) 577 { 578 wake_up_poll(wq, EPOLLIN); 579 } 580 581 #endif 582 583 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 584 { 585 wait_queue_head_t *whead; 586 587 rcu_read_lock(); 588 /* 589 * If it is cleared by POLLFREE, it should be rcu-safe. 590 * If we read NULL we need a barrier paired with 591 * smp_store_release() in ep_poll_callback(), otherwise 592 * we rely on whead->lock. 593 */ 594 whead = smp_load_acquire(&pwq->whead); 595 if (whead) 596 remove_wait_queue(whead, &pwq->wait); 597 rcu_read_unlock(); 598 } 599 600 /* 601 * This function unregisters poll callbacks from the associated file 602 * descriptor. Must be called with "mtx" held (or "epmutex" if called from 603 * ep_free). 604 */ 605 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 606 { 607 struct list_head *lsthead = &epi->pwqlist; 608 struct eppoll_entry *pwq; 609 610 while (!list_empty(lsthead)) { 611 pwq = list_first_entry(lsthead, struct eppoll_entry, llink); 612 613 list_del(&pwq->llink); 614 ep_remove_wait_queue(pwq); 615 kmem_cache_free(pwq_cache, pwq); 616 } 617 } 618 619 /* call only when ep->mtx is held */ 620 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) 621 { 622 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); 623 } 624 625 /* call only when ep->mtx is held */ 626 static inline void ep_pm_stay_awake(struct epitem *epi) 627 { 628 struct wakeup_source *ws = ep_wakeup_source(epi); 629 630 if (ws) 631 __pm_stay_awake(ws); 632 } 633 634 static inline bool ep_has_wakeup_source(struct epitem *epi) 635 { 636 return rcu_access_pointer(epi->ws) ? true : false; 637 } 638 639 /* call when ep->mtx cannot be held (ep_poll_callback) */ 640 static inline void ep_pm_stay_awake_rcu(struct epitem *epi) 641 { 642 struct wakeup_source *ws; 643 644 rcu_read_lock(); 645 ws = rcu_dereference(epi->ws); 646 if (ws) 647 __pm_stay_awake(ws); 648 rcu_read_unlock(); 649 } 650 651 /** 652 * ep_scan_ready_list - Scans the ready list in a way that makes possible for 653 * the scan code, to call f_op->poll(). Also allows for 654 * O(NumReady) performance. 655 * 656 * @ep: Pointer to the epoll private data structure. 657 * @sproc: Pointer to the scan callback. 658 * @priv: Private opaque data passed to the @sproc callback. 659 * @depth: The current depth of recursive f_op->poll calls. 660 * @ep_locked: caller already holds ep->mtx 661 * 662 * Returns: The same integer error code returned by the @sproc callback. 663 */ 664 static __poll_t ep_scan_ready_list(struct eventpoll *ep, 665 __poll_t (*sproc)(struct eventpoll *, 666 struct list_head *, void *), 667 void *priv, int depth, bool ep_locked) 668 { 669 __poll_t res; 670 int pwake = 0; 671 unsigned long flags; 672 struct epitem *epi, *nepi; 673 LIST_HEAD(txlist); 674 675 /* 676 * We need to lock this because we could be hit by 677 * eventpoll_release_file() and epoll_ctl(). 678 */ 679 680 if (!ep_locked) 681 mutex_lock_nested(&ep->mtx, depth); 682 683 /* 684 * Steal the ready list, and re-init the original one to the 685 * empty list. Also, set ep->ovflist to NULL so that events 686 * happening while looping w/out locks, are not lost. We cannot 687 * have the poll callback to queue directly on ep->rdllist, 688 * because we want the "sproc" callback to be able to do it 689 * in a lockless way. 690 */ 691 spin_lock_irqsave(&ep->lock, flags); 692 list_splice_init(&ep->rdllist, &txlist); 693 ep->ovflist = NULL; 694 spin_unlock_irqrestore(&ep->lock, flags); 695 696 /* 697 * Now call the callback function. 698 */ 699 res = (*sproc)(ep, &txlist, priv); 700 701 spin_lock_irqsave(&ep->lock, flags); 702 /* 703 * During the time we spent inside the "sproc" callback, some 704 * other events might have been queued by the poll callback. 705 * We re-insert them inside the main ready-list here. 706 */ 707 for (nepi = ep->ovflist; (epi = nepi) != NULL; 708 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 709 /* 710 * We need to check if the item is already in the list. 711 * During the "sproc" callback execution time, items are 712 * queued into ->ovflist but the "txlist" might already 713 * contain them, and the list_splice() below takes care of them. 714 */ 715 if (!ep_is_linked(&epi->rdllink)) { 716 list_add_tail(&epi->rdllink, &ep->rdllist); 717 ep_pm_stay_awake(epi); 718 } 719 } 720 /* 721 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 722 * releasing the lock, events will be queued in the normal way inside 723 * ep->rdllist. 724 */ 725 ep->ovflist = EP_UNACTIVE_PTR; 726 727 /* 728 * Quickly re-inject items left on "txlist". 729 */ 730 list_splice(&txlist, &ep->rdllist); 731 __pm_relax(ep->ws); 732 733 if (!list_empty(&ep->rdllist)) { 734 /* 735 * Wake up (if active) both the eventpoll wait list and 736 * the ->poll() wait list (delayed after we release the lock). 737 */ 738 if (waitqueue_active(&ep->wq)) 739 wake_up_locked(&ep->wq); 740 if (waitqueue_active(&ep->poll_wait)) 741 pwake++; 742 } 743 spin_unlock_irqrestore(&ep->lock, flags); 744 745 if (!ep_locked) 746 mutex_unlock(&ep->mtx); 747 748 /* We have to call this outside the lock */ 749 if (pwake) 750 ep_poll_safewake(&ep->poll_wait); 751 752 return res; 753 } 754 755 static void epi_rcu_free(struct rcu_head *head) 756 { 757 struct epitem *epi = container_of(head, struct epitem, rcu); 758 kmem_cache_free(epi_cache, epi); 759 } 760 761 /* 762 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 763 * all the associated resources. Must be called with "mtx" held. 764 */ 765 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 766 { 767 unsigned long flags; 768 struct file *file = epi->ffd.file; 769 770 /* 771 * Removes poll wait queue hooks. We _have_ to do this without holding 772 * the "ep->lock" otherwise a deadlock might occur. This because of the 773 * sequence of the lock acquisition. Here we do "ep->lock" then the wait 774 * queue head lock when unregistering the wait queue. The wakeup callback 775 * will run by holding the wait queue head lock and will call our callback 776 * that will try to get "ep->lock". 777 */ 778 ep_unregister_pollwait(ep, epi); 779 780 /* Remove the current item from the list of epoll hooks */ 781 spin_lock(&file->f_lock); 782 list_del_rcu(&epi->fllink); 783 spin_unlock(&file->f_lock); 784 785 rb_erase_cached(&epi->rbn, &ep->rbr); 786 787 spin_lock_irqsave(&ep->lock, flags); 788 if (ep_is_linked(&epi->rdllink)) 789 list_del_init(&epi->rdllink); 790 spin_unlock_irqrestore(&ep->lock, flags); 791 792 wakeup_source_unregister(ep_wakeup_source(epi)); 793 /* 794 * At this point it is safe to free the eventpoll item. Use the union 795 * field epi->rcu, since we are trying to minimize the size of 796 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by 797 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make 798 * use of the rbn field. 799 */ 800 call_rcu(&epi->rcu, epi_rcu_free); 801 802 atomic_long_dec(&ep->user->epoll_watches); 803 804 return 0; 805 } 806 807 static void ep_free(struct eventpoll *ep) 808 { 809 struct rb_node *rbp; 810 struct epitem *epi; 811 812 /* We need to release all tasks waiting for these file */ 813 if (waitqueue_active(&ep->poll_wait)) 814 ep_poll_safewake(&ep->poll_wait); 815 816 /* 817 * We need to lock this because we could be hit by 818 * eventpoll_release_file() while we're freeing the "struct eventpoll". 819 * We do not need to hold "ep->mtx" here because the epoll file 820 * is on the way to be removed and no one has references to it 821 * anymore. The only hit might come from eventpoll_release_file() but 822 * holding "epmutex" is sufficient here. 823 */ 824 mutex_lock(&epmutex); 825 826 /* 827 * Walks through the whole tree by unregistering poll callbacks. 828 */ 829 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 830 epi = rb_entry(rbp, struct epitem, rbn); 831 832 ep_unregister_pollwait(ep, epi); 833 cond_resched(); 834 } 835 836 /* 837 * Walks through the whole tree by freeing each "struct epitem". At this 838 * point we are sure no poll callbacks will be lingering around, and also by 839 * holding "epmutex" we can be sure that no file cleanup code will hit 840 * us during this operation. So we can avoid the lock on "ep->lock". 841 * We do not need to lock ep->mtx, either, we only do it to prevent 842 * a lockdep warning. 843 */ 844 mutex_lock(&ep->mtx); 845 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) { 846 epi = rb_entry(rbp, struct epitem, rbn); 847 ep_remove(ep, epi); 848 cond_resched(); 849 } 850 mutex_unlock(&ep->mtx); 851 852 mutex_unlock(&epmutex); 853 mutex_destroy(&ep->mtx); 854 free_uid(ep->user); 855 wakeup_source_unregister(ep->ws); 856 kfree(ep); 857 } 858 859 static int ep_eventpoll_release(struct inode *inode, struct file *file) 860 { 861 struct eventpoll *ep = file->private_data; 862 863 if (ep) 864 ep_free(ep); 865 866 return 0; 867 } 868 869 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head, 870 void *priv); 871 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 872 poll_table *pt); 873 874 /* 875 * Differs from ep_eventpoll_poll() in that internal callers already have 876 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested() 877 * is correctly annotated. 878 */ 879 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, 880 int depth) 881 { 882 struct eventpoll *ep; 883 bool locked; 884 885 pt->_key = epi->event.events; 886 if (!is_file_epoll(epi->ffd.file)) 887 return epi->ffd.file->f_op->poll(epi->ffd.file, pt) & 888 epi->event.events; 889 890 ep = epi->ffd.file->private_data; 891 poll_wait(epi->ffd.file, &ep->poll_wait, pt); 892 locked = pt && (pt->_qproc == ep_ptable_queue_proc); 893 894 return ep_scan_ready_list(epi->ffd.file->private_data, 895 ep_read_events_proc, &depth, depth, 896 locked) & epi->event.events; 897 } 898 899 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head, 900 void *priv) 901 { 902 struct epitem *epi, *tmp; 903 poll_table pt; 904 int depth = *(int *)priv; 905 906 init_poll_funcptr(&pt, NULL); 907 depth++; 908 909 list_for_each_entry_safe(epi, tmp, head, rdllink) { 910 if (ep_item_poll(epi, &pt, depth)) { 911 return EPOLLIN | EPOLLRDNORM; 912 } else { 913 /* 914 * Item has been dropped into the ready list by the poll 915 * callback, but it's not actually ready, as far as 916 * caller requested events goes. We can remove it here. 917 */ 918 __pm_relax(ep_wakeup_source(epi)); 919 list_del_init(&epi->rdllink); 920 } 921 } 922 923 return 0; 924 } 925 926 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait) 927 { 928 struct eventpoll *ep = file->private_data; 929 int depth = 0; 930 931 /* Insert inside our poll wait queue */ 932 poll_wait(file, &ep->poll_wait, wait); 933 934 /* 935 * Proceed to find out if wanted events are really available inside 936 * the ready list. 937 */ 938 return ep_scan_ready_list(ep, ep_read_events_proc, 939 &depth, depth, false); 940 } 941 942 #ifdef CONFIG_PROC_FS 943 static void ep_show_fdinfo(struct seq_file *m, struct file *f) 944 { 945 struct eventpoll *ep = f->private_data; 946 struct rb_node *rbp; 947 948 mutex_lock(&ep->mtx); 949 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 950 struct epitem *epi = rb_entry(rbp, struct epitem, rbn); 951 struct inode *inode = file_inode(epi->ffd.file); 952 953 seq_printf(m, "tfd: %8d events: %8x data: %16llx " 954 " pos:%lli ino:%lx sdev:%x\n", 955 epi->ffd.fd, epi->event.events, 956 (long long)epi->event.data, 957 (long long)epi->ffd.file->f_pos, 958 inode->i_ino, inode->i_sb->s_dev); 959 if (seq_has_overflowed(m)) 960 break; 961 } 962 mutex_unlock(&ep->mtx); 963 } 964 #endif 965 966 /* File callbacks that implement the eventpoll file behaviour */ 967 static const struct file_operations eventpoll_fops = { 968 #ifdef CONFIG_PROC_FS 969 .show_fdinfo = ep_show_fdinfo, 970 #endif 971 .release = ep_eventpoll_release, 972 .poll = ep_eventpoll_poll, 973 .llseek = noop_llseek, 974 }; 975 976 /* 977 * This is called from eventpoll_release() to unlink files from the eventpoll 978 * interface. We need to have this facility to cleanup correctly files that are 979 * closed without being removed from the eventpoll interface. 980 */ 981 void eventpoll_release_file(struct file *file) 982 { 983 struct eventpoll *ep; 984 struct epitem *epi, *next; 985 986 /* 987 * We don't want to get "file->f_lock" because it is not 988 * necessary. It is not necessary because we're in the "struct file" 989 * cleanup path, and this means that no one is using this file anymore. 990 * So, for example, epoll_ctl() cannot hit here since if we reach this 991 * point, the file counter already went to zero and fget() would fail. 992 * The only hit might come from ep_free() but by holding the mutex 993 * will correctly serialize the operation. We do need to acquire 994 * "ep->mtx" after "epmutex" because ep_remove() requires it when called 995 * from anywhere but ep_free(). 996 * 997 * Besides, ep_remove() acquires the lock, so we can't hold it here. 998 */ 999 mutex_lock(&epmutex); 1000 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) { 1001 ep = epi->ep; 1002 mutex_lock_nested(&ep->mtx, 0); 1003 ep_remove(ep, epi); 1004 mutex_unlock(&ep->mtx); 1005 } 1006 mutex_unlock(&epmutex); 1007 } 1008 1009 static int ep_alloc(struct eventpoll **pep) 1010 { 1011 int error; 1012 struct user_struct *user; 1013 struct eventpoll *ep; 1014 1015 user = get_current_user(); 1016 error = -ENOMEM; 1017 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 1018 if (unlikely(!ep)) 1019 goto free_uid; 1020 1021 spin_lock_init(&ep->lock); 1022 mutex_init(&ep->mtx); 1023 init_waitqueue_head(&ep->wq); 1024 init_waitqueue_head(&ep->poll_wait); 1025 INIT_LIST_HEAD(&ep->rdllist); 1026 ep->rbr = RB_ROOT_CACHED; 1027 ep->ovflist = EP_UNACTIVE_PTR; 1028 ep->user = user; 1029 1030 *pep = ep; 1031 1032 return 0; 1033 1034 free_uid: 1035 free_uid(user); 1036 return error; 1037 } 1038 1039 /* 1040 * Search the file inside the eventpoll tree. The RB tree operations 1041 * are protected by the "mtx" mutex, and ep_find() must be called with 1042 * "mtx" held. 1043 */ 1044 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 1045 { 1046 int kcmp; 1047 struct rb_node *rbp; 1048 struct epitem *epi, *epir = NULL; 1049 struct epoll_filefd ffd; 1050 1051 ep_set_ffd(&ffd, file, fd); 1052 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) { 1053 epi = rb_entry(rbp, struct epitem, rbn); 1054 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 1055 if (kcmp > 0) 1056 rbp = rbp->rb_right; 1057 else if (kcmp < 0) 1058 rbp = rbp->rb_left; 1059 else { 1060 epir = epi; 1061 break; 1062 } 1063 } 1064 1065 return epir; 1066 } 1067 1068 #ifdef CONFIG_CHECKPOINT_RESTORE 1069 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff) 1070 { 1071 struct rb_node *rbp; 1072 struct epitem *epi; 1073 1074 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1075 epi = rb_entry(rbp, struct epitem, rbn); 1076 if (epi->ffd.fd == tfd) { 1077 if (toff == 0) 1078 return epi; 1079 else 1080 toff--; 1081 } 1082 cond_resched(); 1083 } 1084 1085 return NULL; 1086 } 1087 1088 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, 1089 unsigned long toff) 1090 { 1091 struct file *file_raw; 1092 struct eventpoll *ep; 1093 struct epitem *epi; 1094 1095 if (!is_file_epoll(file)) 1096 return ERR_PTR(-EINVAL); 1097 1098 ep = file->private_data; 1099 1100 mutex_lock(&ep->mtx); 1101 epi = ep_find_tfd(ep, tfd, toff); 1102 if (epi) 1103 file_raw = epi->ffd.file; 1104 else 1105 file_raw = ERR_PTR(-ENOENT); 1106 mutex_unlock(&ep->mtx); 1107 1108 return file_raw; 1109 } 1110 #endif /* CONFIG_CHECKPOINT_RESTORE */ 1111 1112 /* 1113 * This is the callback that is passed to the wait queue wakeup 1114 * mechanism. It is called by the stored file descriptors when they 1115 * have events to report. 1116 */ 1117 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1118 { 1119 int pwake = 0; 1120 unsigned long flags; 1121 struct epitem *epi = ep_item_from_wait(wait); 1122 struct eventpoll *ep = epi->ep; 1123 __poll_t pollflags = key_to_poll(key); 1124 int ewake = 0; 1125 1126 spin_lock_irqsave(&ep->lock, flags); 1127 1128 ep_set_busy_poll_napi_id(epi); 1129 1130 /* 1131 * If the event mask does not contain any poll(2) event, we consider the 1132 * descriptor to be disabled. This condition is likely the effect of the 1133 * EPOLLONESHOT bit that disables the descriptor when an event is received, 1134 * until the next EPOLL_CTL_MOD will be issued. 1135 */ 1136 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 1137 goto out_unlock; 1138 1139 /* 1140 * Check the events coming with the callback. At this stage, not 1141 * every device reports the events in the "key" parameter of the 1142 * callback. We need to be able to handle both cases here, hence the 1143 * test for "key" != NULL before the event match test. 1144 */ 1145 if (pollflags && !(pollflags & epi->event.events)) 1146 goto out_unlock; 1147 1148 /* 1149 * If we are transferring events to userspace, we can hold no locks 1150 * (because we're accessing user memory, and because of linux f_op->poll() 1151 * semantics). All the events that happen during that period of time are 1152 * chained in ep->ovflist and requeued later on. 1153 */ 1154 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) { 1155 if (epi->next == EP_UNACTIVE_PTR) { 1156 epi->next = ep->ovflist; 1157 ep->ovflist = epi; 1158 if (epi->ws) { 1159 /* 1160 * Activate ep->ws since epi->ws may get 1161 * deactivated at any time. 1162 */ 1163 __pm_stay_awake(ep->ws); 1164 } 1165 1166 } 1167 goto out_unlock; 1168 } 1169 1170 /* If this file is already in the ready list we exit soon */ 1171 if (!ep_is_linked(&epi->rdllink)) { 1172 list_add_tail(&epi->rdllink, &ep->rdllist); 1173 ep_pm_stay_awake_rcu(epi); 1174 } 1175 1176 /* 1177 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1178 * wait list. 1179 */ 1180 if (waitqueue_active(&ep->wq)) { 1181 if ((epi->event.events & EPOLLEXCLUSIVE) && 1182 !(pollflags & POLLFREE)) { 1183 switch (pollflags & EPOLLINOUT_BITS) { 1184 case EPOLLIN: 1185 if (epi->event.events & EPOLLIN) 1186 ewake = 1; 1187 break; 1188 case EPOLLOUT: 1189 if (epi->event.events & EPOLLOUT) 1190 ewake = 1; 1191 break; 1192 case 0: 1193 ewake = 1; 1194 break; 1195 } 1196 } 1197 wake_up_locked(&ep->wq); 1198 } 1199 if (waitqueue_active(&ep->poll_wait)) 1200 pwake++; 1201 1202 out_unlock: 1203 spin_unlock_irqrestore(&ep->lock, flags); 1204 1205 /* We have to call this outside the lock */ 1206 if (pwake) 1207 ep_poll_safewake(&ep->poll_wait); 1208 1209 if (!(epi->event.events & EPOLLEXCLUSIVE)) 1210 ewake = 1; 1211 1212 if (pollflags & POLLFREE) { 1213 /* 1214 * If we race with ep_remove_wait_queue() it can miss 1215 * ->whead = NULL and do another remove_wait_queue() after 1216 * us, so we can't use __remove_wait_queue(). 1217 */ 1218 list_del_init(&wait->entry); 1219 /* 1220 * ->whead != NULL protects us from the race with ep_free() 1221 * or ep_remove(), ep_remove_wait_queue() takes whead->lock 1222 * held by the caller. Once we nullify it, nothing protects 1223 * ep/epi or even wait. 1224 */ 1225 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL); 1226 } 1227 1228 return ewake; 1229 } 1230 1231 /* 1232 * This is the callback that is used to add our wait queue to the 1233 * target file wakeup lists. 1234 */ 1235 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 1236 poll_table *pt) 1237 { 1238 struct epitem *epi = ep_item_from_epqueue(pt); 1239 struct eppoll_entry *pwq; 1240 1241 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { 1242 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 1243 pwq->whead = whead; 1244 pwq->base = epi; 1245 if (epi->event.events & EPOLLEXCLUSIVE) 1246 add_wait_queue_exclusive(whead, &pwq->wait); 1247 else 1248 add_wait_queue(whead, &pwq->wait); 1249 list_add_tail(&pwq->llink, &epi->pwqlist); 1250 epi->nwait++; 1251 } else { 1252 /* We have to signal that an error occurred */ 1253 epi->nwait = -1; 1254 } 1255 } 1256 1257 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1258 { 1259 int kcmp; 1260 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL; 1261 struct epitem *epic; 1262 bool leftmost = true; 1263 1264 while (*p) { 1265 parent = *p; 1266 epic = rb_entry(parent, struct epitem, rbn); 1267 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1268 if (kcmp > 0) { 1269 p = &parent->rb_right; 1270 leftmost = false; 1271 } else 1272 p = &parent->rb_left; 1273 } 1274 rb_link_node(&epi->rbn, parent, p); 1275 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost); 1276 } 1277 1278 1279 1280 #define PATH_ARR_SIZE 5 1281 /* 1282 * These are the number paths of length 1 to 5, that we are allowing to emanate 1283 * from a single file of interest. For example, we allow 1000 paths of length 1284 * 1, to emanate from each file of interest. This essentially represents the 1285 * potential wakeup paths, which need to be limited in order to avoid massive 1286 * uncontrolled wakeup storms. The common use case should be a single ep which 1287 * is connected to n file sources. In this case each file source has 1 path 1288 * of length 1. Thus, the numbers below should be more than sufficient. These 1289 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1290 * and delete can't add additional paths. Protected by the epmutex. 1291 */ 1292 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1293 static int path_count[PATH_ARR_SIZE]; 1294 1295 static int path_count_inc(int nests) 1296 { 1297 /* Allow an arbitrary number of depth 1 paths */ 1298 if (nests == 0) 1299 return 0; 1300 1301 if (++path_count[nests] > path_limits[nests]) 1302 return -1; 1303 return 0; 1304 } 1305 1306 static void path_count_init(void) 1307 { 1308 int i; 1309 1310 for (i = 0; i < PATH_ARR_SIZE; i++) 1311 path_count[i] = 0; 1312 } 1313 1314 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests) 1315 { 1316 int error = 0; 1317 struct file *file = priv; 1318 struct file *child_file; 1319 struct epitem *epi; 1320 1321 /* CTL_DEL can remove links here, but that can't increase our count */ 1322 rcu_read_lock(); 1323 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) { 1324 child_file = epi->ep->file; 1325 if (is_file_epoll(child_file)) { 1326 if (list_empty(&child_file->f_ep_links)) { 1327 if (path_count_inc(call_nests)) { 1328 error = -1; 1329 break; 1330 } 1331 } else { 1332 error = ep_call_nested(&poll_loop_ncalls, 1333 EP_MAX_NESTS, 1334 reverse_path_check_proc, 1335 child_file, child_file, 1336 current); 1337 } 1338 if (error != 0) 1339 break; 1340 } else { 1341 printk(KERN_ERR "reverse_path_check_proc: " 1342 "file is not an ep!\n"); 1343 } 1344 } 1345 rcu_read_unlock(); 1346 return error; 1347 } 1348 1349 /** 1350 * reverse_path_check - The tfile_check_list is list of file *, which have 1351 * links that are proposed to be newly added. We need to 1352 * make sure that those added links don't add too many 1353 * paths such that we will spend all our time waking up 1354 * eventpoll objects. 1355 * 1356 * Returns: Returns zero if the proposed links don't create too many paths, 1357 * -1 otherwise. 1358 */ 1359 static int reverse_path_check(void) 1360 { 1361 int error = 0; 1362 struct file *current_file; 1363 1364 /* let's call this for all tfiles */ 1365 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) { 1366 path_count_init(); 1367 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1368 reverse_path_check_proc, current_file, 1369 current_file, current); 1370 if (error) 1371 break; 1372 } 1373 return error; 1374 } 1375 1376 static int ep_create_wakeup_source(struct epitem *epi) 1377 { 1378 const char *name; 1379 struct wakeup_source *ws; 1380 1381 if (!epi->ep->ws) { 1382 epi->ep->ws = wakeup_source_register("eventpoll"); 1383 if (!epi->ep->ws) 1384 return -ENOMEM; 1385 } 1386 1387 name = epi->ffd.file->f_path.dentry->d_name.name; 1388 ws = wakeup_source_register(name); 1389 1390 if (!ws) 1391 return -ENOMEM; 1392 rcu_assign_pointer(epi->ws, ws); 1393 1394 return 0; 1395 } 1396 1397 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ 1398 static noinline void ep_destroy_wakeup_source(struct epitem *epi) 1399 { 1400 struct wakeup_source *ws = ep_wakeup_source(epi); 1401 1402 RCU_INIT_POINTER(epi->ws, NULL); 1403 1404 /* 1405 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is 1406 * used internally by wakeup_source_remove, too (called by 1407 * wakeup_source_unregister), so we cannot use call_rcu 1408 */ 1409 synchronize_rcu(); 1410 wakeup_source_unregister(ws); 1411 } 1412 1413 /* 1414 * Must be called with "mtx" held. 1415 */ 1416 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event, 1417 struct file *tfile, int fd, int full_check) 1418 { 1419 int error, pwake = 0; 1420 __poll_t revents; 1421 unsigned long flags; 1422 long user_watches; 1423 struct epitem *epi; 1424 struct ep_pqueue epq; 1425 1426 user_watches = atomic_long_read(&ep->user->epoll_watches); 1427 if (unlikely(user_watches >= max_user_watches)) 1428 return -ENOSPC; 1429 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) 1430 return -ENOMEM; 1431 1432 /* Item initialization follow here ... */ 1433 INIT_LIST_HEAD(&epi->rdllink); 1434 INIT_LIST_HEAD(&epi->fllink); 1435 INIT_LIST_HEAD(&epi->pwqlist); 1436 epi->ep = ep; 1437 ep_set_ffd(&epi->ffd, tfile, fd); 1438 epi->event = *event; 1439 epi->nwait = 0; 1440 epi->next = EP_UNACTIVE_PTR; 1441 if (epi->event.events & EPOLLWAKEUP) { 1442 error = ep_create_wakeup_source(epi); 1443 if (error) 1444 goto error_create_wakeup_source; 1445 } else { 1446 RCU_INIT_POINTER(epi->ws, NULL); 1447 } 1448 1449 /* Initialize the poll table using the queue callback */ 1450 epq.epi = epi; 1451 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1452 1453 /* 1454 * Attach the item to the poll hooks and get current event bits. 1455 * We can safely use the file* here because its usage count has 1456 * been increased by the caller of this function. Note that after 1457 * this operation completes, the poll callback can start hitting 1458 * the new item. 1459 */ 1460 revents = ep_item_poll(epi, &epq.pt, 1); 1461 1462 /* 1463 * We have to check if something went wrong during the poll wait queue 1464 * install process. Namely an allocation for a wait queue failed due 1465 * high memory pressure. 1466 */ 1467 error = -ENOMEM; 1468 if (epi->nwait < 0) 1469 goto error_unregister; 1470 1471 /* Add the current item to the list of active epoll hook for this file */ 1472 spin_lock(&tfile->f_lock); 1473 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links); 1474 spin_unlock(&tfile->f_lock); 1475 1476 /* 1477 * Add the current item to the RB tree. All RB tree operations are 1478 * protected by "mtx", and ep_insert() is called with "mtx" held. 1479 */ 1480 ep_rbtree_insert(ep, epi); 1481 1482 /* now check if we've created too many backpaths */ 1483 error = -EINVAL; 1484 if (full_check && reverse_path_check()) 1485 goto error_remove_epi; 1486 1487 /* We have to drop the new item inside our item list to keep track of it */ 1488 spin_lock_irqsave(&ep->lock, flags); 1489 1490 /* record NAPI ID of new item if present */ 1491 ep_set_busy_poll_napi_id(epi); 1492 1493 /* If the file is already "ready" we drop it inside the ready list */ 1494 if (revents && !ep_is_linked(&epi->rdllink)) { 1495 list_add_tail(&epi->rdllink, &ep->rdllist); 1496 ep_pm_stay_awake(epi); 1497 1498 /* Notify waiting tasks that events are available */ 1499 if (waitqueue_active(&ep->wq)) 1500 wake_up_locked(&ep->wq); 1501 if (waitqueue_active(&ep->poll_wait)) 1502 pwake++; 1503 } 1504 1505 spin_unlock_irqrestore(&ep->lock, flags); 1506 1507 atomic_long_inc(&ep->user->epoll_watches); 1508 1509 /* We have to call this outside the lock */ 1510 if (pwake) 1511 ep_poll_safewake(&ep->poll_wait); 1512 1513 return 0; 1514 1515 error_remove_epi: 1516 spin_lock(&tfile->f_lock); 1517 list_del_rcu(&epi->fllink); 1518 spin_unlock(&tfile->f_lock); 1519 1520 rb_erase_cached(&epi->rbn, &ep->rbr); 1521 1522 error_unregister: 1523 ep_unregister_pollwait(ep, epi); 1524 1525 /* 1526 * We need to do this because an event could have been arrived on some 1527 * allocated wait queue. Note that we don't care about the ep->ovflist 1528 * list, since that is used/cleaned only inside a section bound by "mtx". 1529 * And ep_insert() is called with "mtx" held. 1530 */ 1531 spin_lock_irqsave(&ep->lock, flags); 1532 if (ep_is_linked(&epi->rdllink)) 1533 list_del_init(&epi->rdllink); 1534 spin_unlock_irqrestore(&ep->lock, flags); 1535 1536 wakeup_source_unregister(ep_wakeup_source(epi)); 1537 1538 error_create_wakeup_source: 1539 kmem_cache_free(epi_cache, epi); 1540 1541 return error; 1542 } 1543 1544 /* 1545 * Modify the interest event mask by dropping an event if the new mask 1546 * has a match in the current file status. Must be called with "mtx" held. 1547 */ 1548 static int ep_modify(struct eventpoll *ep, struct epitem *epi, 1549 const struct epoll_event *event) 1550 { 1551 int pwake = 0; 1552 poll_table pt; 1553 1554 init_poll_funcptr(&pt, NULL); 1555 1556 /* 1557 * Set the new event interest mask before calling f_op->poll(); 1558 * otherwise we might miss an event that happens between the 1559 * f_op->poll() call and the new event set registering. 1560 */ 1561 epi->event.events = event->events; /* need barrier below */ 1562 epi->event.data = event->data; /* protected by mtx */ 1563 if (epi->event.events & EPOLLWAKEUP) { 1564 if (!ep_has_wakeup_source(epi)) 1565 ep_create_wakeup_source(epi); 1566 } else if (ep_has_wakeup_source(epi)) { 1567 ep_destroy_wakeup_source(epi); 1568 } 1569 1570 /* 1571 * The following barrier has two effects: 1572 * 1573 * 1) Flush epi changes above to other CPUs. This ensures 1574 * we do not miss events from ep_poll_callback if an 1575 * event occurs immediately after we call f_op->poll(). 1576 * We need this because we did not take ep->lock while 1577 * changing epi above (but ep_poll_callback does take 1578 * ep->lock). 1579 * 1580 * 2) We also need to ensure we do not miss _past_ events 1581 * when calling f_op->poll(). This barrier also 1582 * pairs with the barrier in wq_has_sleeper (see 1583 * comments for wq_has_sleeper). 1584 * 1585 * This barrier will now guarantee ep_poll_callback or f_op->poll 1586 * (or both) will notice the readiness of an item. 1587 */ 1588 smp_mb(); 1589 1590 /* 1591 * Get current event bits. We can safely use the file* here because 1592 * its usage count has been increased by the caller of this function. 1593 * If the item is "hot" and it is not registered inside the ready 1594 * list, push it inside. 1595 */ 1596 if (ep_item_poll(epi, &pt, 1)) { 1597 spin_lock_irq(&ep->lock); 1598 if (!ep_is_linked(&epi->rdllink)) { 1599 list_add_tail(&epi->rdllink, &ep->rdllist); 1600 ep_pm_stay_awake(epi); 1601 1602 /* Notify waiting tasks that events are available */ 1603 if (waitqueue_active(&ep->wq)) 1604 wake_up_locked(&ep->wq); 1605 if (waitqueue_active(&ep->poll_wait)) 1606 pwake++; 1607 } 1608 spin_unlock_irq(&ep->lock); 1609 } 1610 1611 /* We have to call this outside the lock */ 1612 if (pwake) 1613 ep_poll_safewake(&ep->poll_wait); 1614 1615 return 0; 1616 } 1617 1618 static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head, 1619 void *priv) 1620 { 1621 struct ep_send_events_data *esed = priv; 1622 __poll_t revents; 1623 struct epitem *epi; 1624 struct epoll_event __user *uevent; 1625 struct wakeup_source *ws; 1626 poll_table pt; 1627 1628 init_poll_funcptr(&pt, NULL); 1629 1630 /* 1631 * We can loop without lock because we are passed a task private list. 1632 * Items cannot vanish during the loop because ep_scan_ready_list() is 1633 * holding "mtx" during this call. 1634 */ 1635 for (esed->res = 0, uevent = esed->events; 1636 !list_empty(head) && esed->res < esed->maxevents;) { 1637 epi = list_first_entry(head, struct epitem, rdllink); 1638 1639 /* 1640 * Activate ep->ws before deactivating epi->ws to prevent 1641 * triggering auto-suspend here (in case we reactive epi->ws 1642 * below). 1643 * 1644 * This could be rearranged to delay the deactivation of epi->ws 1645 * instead, but then epi->ws would temporarily be out of sync 1646 * with ep_is_linked(). 1647 */ 1648 ws = ep_wakeup_source(epi); 1649 if (ws) { 1650 if (ws->active) 1651 __pm_stay_awake(ep->ws); 1652 __pm_relax(ws); 1653 } 1654 1655 list_del_init(&epi->rdllink); 1656 1657 revents = ep_item_poll(epi, &pt, 1); 1658 1659 /* 1660 * If the event mask intersect the caller-requested one, 1661 * deliver the event to userspace. Again, ep_scan_ready_list() 1662 * is holding "mtx", so no operations coming from userspace 1663 * can change the item. 1664 */ 1665 if (revents) { 1666 if (__put_user(revents, &uevent->events) || 1667 __put_user(epi->event.data, &uevent->data)) { 1668 list_add(&epi->rdllink, head); 1669 ep_pm_stay_awake(epi); 1670 if (!esed->res) 1671 esed->res = -EFAULT; 1672 return 0; 1673 } 1674 esed->res++; 1675 uevent++; 1676 if (epi->event.events & EPOLLONESHOT) 1677 epi->event.events &= EP_PRIVATE_BITS; 1678 else if (!(epi->event.events & EPOLLET)) { 1679 /* 1680 * If this file has been added with Level 1681 * Trigger mode, we need to insert back inside 1682 * the ready list, so that the next call to 1683 * epoll_wait() will check again the events 1684 * availability. At this point, no one can insert 1685 * into ep->rdllist besides us. The epoll_ctl() 1686 * callers are locked out by 1687 * ep_scan_ready_list() holding "mtx" and the 1688 * poll callback will queue them in ep->ovflist. 1689 */ 1690 list_add_tail(&epi->rdllink, &ep->rdllist); 1691 ep_pm_stay_awake(epi); 1692 } 1693 } 1694 } 1695 1696 return 0; 1697 } 1698 1699 static int ep_send_events(struct eventpoll *ep, 1700 struct epoll_event __user *events, int maxevents) 1701 { 1702 struct ep_send_events_data esed; 1703 1704 esed.maxevents = maxevents; 1705 esed.events = events; 1706 1707 ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false); 1708 return esed.res; 1709 } 1710 1711 static inline struct timespec64 ep_set_mstimeout(long ms) 1712 { 1713 struct timespec64 now, ts = { 1714 .tv_sec = ms / MSEC_PER_SEC, 1715 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC), 1716 }; 1717 1718 ktime_get_ts64(&now); 1719 return timespec64_add_safe(now, ts); 1720 } 1721 1722 /** 1723 * ep_poll - Retrieves ready events, and delivers them to the caller supplied 1724 * event buffer. 1725 * 1726 * @ep: Pointer to the eventpoll context. 1727 * @events: Pointer to the userspace buffer where the ready events should be 1728 * stored. 1729 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1730 * @timeout: Maximum timeout for the ready events fetch operation, in 1731 * milliseconds. If the @timeout is zero, the function will not block, 1732 * while if the @timeout is less than zero, the function will block 1733 * until at least one event has been retrieved (or an error 1734 * occurred). 1735 * 1736 * Returns: Returns the number of ready events which have been fetched, or an 1737 * error code, in case of error. 1738 */ 1739 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1740 int maxevents, long timeout) 1741 { 1742 int res = 0, eavail, timed_out = 0; 1743 unsigned long flags; 1744 u64 slack = 0; 1745 wait_queue_entry_t wait; 1746 ktime_t expires, *to = NULL; 1747 1748 if (timeout > 0) { 1749 struct timespec64 end_time = ep_set_mstimeout(timeout); 1750 1751 slack = select_estimate_accuracy(&end_time); 1752 to = &expires; 1753 *to = timespec64_to_ktime(end_time); 1754 } else if (timeout == 0) { 1755 /* 1756 * Avoid the unnecessary trip to the wait queue loop, if the 1757 * caller specified a non blocking operation. 1758 */ 1759 timed_out = 1; 1760 spin_lock_irqsave(&ep->lock, flags); 1761 goto check_events; 1762 } 1763 1764 fetch_events: 1765 1766 if (!ep_events_available(ep)) 1767 ep_busy_loop(ep, timed_out); 1768 1769 spin_lock_irqsave(&ep->lock, flags); 1770 1771 if (!ep_events_available(ep)) { 1772 /* 1773 * Busy poll timed out. Drop NAPI ID for now, we can add 1774 * it back in when we have moved a socket with a valid NAPI 1775 * ID onto the ready list. 1776 */ 1777 ep_reset_busy_poll_napi_id(ep); 1778 1779 /* 1780 * We don't have any available event to return to the caller. 1781 * We need to sleep here, and we will be wake up by 1782 * ep_poll_callback() when events will become available. 1783 */ 1784 init_waitqueue_entry(&wait, current); 1785 __add_wait_queue_exclusive(&ep->wq, &wait); 1786 1787 for (;;) { 1788 /* 1789 * We don't want to sleep if the ep_poll_callback() sends us 1790 * a wakeup in between. That's why we set the task state 1791 * to TASK_INTERRUPTIBLE before doing the checks. 1792 */ 1793 set_current_state(TASK_INTERRUPTIBLE); 1794 /* 1795 * Always short-circuit for fatal signals to allow 1796 * threads to make a timely exit without the chance of 1797 * finding more events available and fetching 1798 * repeatedly. 1799 */ 1800 if (fatal_signal_pending(current)) { 1801 res = -EINTR; 1802 break; 1803 } 1804 if (ep_events_available(ep) || timed_out) 1805 break; 1806 if (signal_pending(current)) { 1807 res = -EINTR; 1808 break; 1809 } 1810 1811 spin_unlock_irqrestore(&ep->lock, flags); 1812 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) 1813 timed_out = 1; 1814 1815 spin_lock_irqsave(&ep->lock, flags); 1816 } 1817 1818 __remove_wait_queue(&ep->wq, &wait); 1819 __set_current_state(TASK_RUNNING); 1820 } 1821 check_events: 1822 /* Is it worth to try to dig for events ? */ 1823 eavail = ep_events_available(ep); 1824 1825 spin_unlock_irqrestore(&ep->lock, flags); 1826 1827 /* 1828 * Try to transfer events to user space. In case we get 0 events and 1829 * there's still timeout left over, we go trying again in search of 1830 * more luck. 1831 */ 1832 if (!res && eavail && 1833 !(res = ep_send_events(ep, events, maxevents)) && !timed_out) 1834 goto fetch_events; 1835 1836 return res; 1837 } 1838 1839 /** 1840 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested() 1841 * API, to verify that adding an epoll file inside another 1842 * epoll structure, does not violate the constraints, in 1843 * terms of closed loops, or too deep chains (which can 1844 * result in excessive stack usage). 1845 * 1846 * @priv: Pointer to the epoll file to be currently checked. 1847 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll 1848 * data structure pointer. 1849 * @call_nests: Current dept of the @ep_call_nested() call stack. 1850 * 1851 * Returns: Returns zero if adding the epoll @file inside current epoll 1852 * structure @ep does not violate the constraints, or -1 otherwise. 1853 */ 1854 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests) 1855 { 1856 int error = 0; 1857 struct file *file = priv; 1858 struct eventpoll *ep = file->private_data; 1859 struct eventpoll *ep_tovisit; 1860 struct rb_node *rbp; 1861 struct epitem *epi; 1862 1863 mutex_lock_nested(&ep->mtx, call_nests + 1); 1864 ep->visited = 1; 1865 list_add(&ep->visited_list_link, &visited_list); 1866 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1867 epi = rb_entry(rbp, struct epitem, rbn); 1868 if (unlikely(is_file_epoll(epi->ffd.file))) { 1869 ep_tovisit = epi->ffd.file->private_data; 1870 if (ep_tovisit->visited) 1871 continue; 1872 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1873 ep_loop_check_proc, epi->ffd.file, 1874 ep_tovisit, current); 1875 if (error != 0) 1876 break; 1877 } else { 1878 /* 1879 * If we've reached a file that is not associated with 1880 * an ep, then we need to check if the newly added 1881 * links are going to add too many wakeup paths. We do 1882 * this by adding it to the tfile_check_list, if it's 1883 * not already there, and calling reverse_path_check() 1884 * during ep_insert(). 1885 */ 1886 if (list_empty(&epi->ffd.file->f_tfile_llink)) 1887 list_add(&epi->ffd.file->f_tfile_llink, 1888 &tfile_check_list); 1889 } 1890 } 1891 mutex_unlock(&ep->mtx); 1892 1893 return error; 1894 } 1895 1896 /** 1897 * ep_loop_check - Performs a check to verify that adding an epoll file (@file) 1898 * another epoll file (represented by @ep) does not create 1899 * closed loops or too deep chains. 1900 * 1901 * @ep: Pointer to the epoll private data structure. 1902 * @file: Pointer to the epoll file to be checked. 1903 * 1904 * Returns: Returns zero if adding the epoll @file inside current epoll 1905 * structure @ep does not violate the constraints, or -1 otherwise. 1906 */ 1907 static int ep_loop_check(struct eventpoll *ep, struct file *file) 1908 { 1909 int ret; 1910 struct eventpoll *ep_cur, *ep_next; 1911 1912 ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1913 ep_loop_check_proc, file, ep, current); 1914 /* clear visited list */ 1915 list_for_each_entry_safe(ep_cur, ep_next, &visited_list, 1916 visited_list_link) { 1917 ep_cur->visited = 0; 1918 list_del(&ep_cur->visited_list_link); 1919 } 1920 return ret; 1921 } 1922 1923 static void clear_tfile_check_list(void) 1924 { 1925 struct file *file; 1926 1927 /* first clear the tfile_check_list */ 1928 while (!list_empty(&tfile_check_list)) { 1929 file = list_first_entry(&tfile_check_list, struct file, 1930 f_tfile_llink); 1931 list_del_init(&file->f_tfile_llink); 1932 } 1933 INIT_LIST_HEAD(&tfile_check_list); 1934 } 1935 1936 /* 1937 * Open an eventpoll file descriptor. 1938 */ 1939 SYSCALL_DEFINE1(epoll_create1, int, flags) 1940 { 1941 int error, fd; 1942 struct eventpoll *ep = NULL; 1943 struct file *file; 1944 1945 /* Check the EPOLL_* constant for consistency. */ 1946 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 1947 1948 if (flags & ~EPOLL_CLOEXEC) 1949 return -EINVAL; 1950 /* 1951 * Create the internal data structure ("struct eventpoll"). 1952 */ 1953 error = ep_alloc(&ep); 1954 if (error < 0) 1955 return error; 1956 /* 1957 * Creates all the items needed to setup an eventpoll file. That is, 1958 * a file structure and a free file descriptor. 1959 */ 1960 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 1961 if (fd < 0) { 1962 error = fd; 1963 goto out_free_ep; 1964 } 1965 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 1966 O_RDWR | (flags & O_CLOEXEC)); 1967 if (IS_ERR(file)) { 1968 error = PTR_ERR(file); 1969 goto out_free_fd; 1970 } 1971 ep->file = file; 1972 fd_install(fd, file); 1973 return fd; 1974 1975 out_free_fd: 1976 put_unused_fd(fd); 1977 out_free_ep: 1978 ep_free(ep); 1979 return error; 1980 } 1981 1982 SYSCALL_DEFINE1(epoll_create, int, size) 1983 { 1984 if (size <= 0) 1985 return -EINVAL; 1986 1987 return sys_epoll_create1(0); 1988 } 1989 1990 /* 1991 * The following function implements the controller interface for 1992 * the eventpoll file that enables the insertion/removal/change of 1993 * file descriptors inside the interest set. 1994 */ 1995 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 1996 struct epoll_event __user *, event) 1997 { 1998 int error; 1999 int full_check = 0; 2000 struct fd f, tf; 2001 struct eventpoll *ep; 2002 struct epitem *epi; 2003 struct epoll_event epds; 2004 struct eventpoll *tep = NULL; 2005 2006 error = -EFAULT; 2007 if (ep_op_has_event(op) && 2008 copy_from_user(&epds, event, sizeof(struct epoll_event))) 2009 goto error_return; 2010 2011 error = -EBADF; 2012 f = fdget(epfd); 2013 if (!f.file) 2014 goto error_return; 2015 2016 /* Get the "struct file *" for the target file */ 2017 tf = fdget(fd); 2018 if (!tf.file) 2019 goto error_fput; 2020 2021 /* The target file descriptor must support poll */ 2022 error = -EPERM; 2023 if (!tf.file->f_op->poll) 2024 goto error_tgt_fput; 2025 2026 /* Check if EPOLLWAKEUP is allowed */ 2027 if (ep_op_has_event(op)) 2028 ep_take_care_of_epollwakeup(&epds); 2029 2030 /* 2031 * We have to check that the file structure underneath the file descriptor 2032 * the user passed to us _is_ an eventpoll file. And also we do not permit 2033 * adding an epoll file descriptor inside itself. 2034 */ 2035 error = -EINVAL; 2036 if (f.file == tf.file || !is_file_epoll(f.file)) 2037 goto error_tgt_fput; 2038 2039 /* 2040 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only, 2041 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation. 2042 * Also, we do not currently supported nested exclusive wakeups. 2043 */ 2044 if (ep_op_has_event(op) && (epds.events & EPOLLEXCLUSIVE)) { 2045 if (op == EPOLL_CTL_MOD) 2046 goto error_tgt_fput; 2047 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) || 2048 (epds.events & ~EPOLLEXCLUSIVE_OK_BITS))) 2049 goto error_tgt_fput; 2050 } 2051 2052 /* 2053 * At this point it is safe to assume that the "private_data" contains 2054 * our own data structure. 2055 */ 2056 ep = f.file->private_data; 2057 2058 /* 2059 * When we insert an epoll file descriptor, inside another epoll file 2060 * descriptor, there is the change of creating closed loops, which are 2061 * better be handled here, than in more critical paths. While we are 2062 * checking for loops we also determine the list of files reachable 2063 * and hang them on the tfile_check_list, so we can check that we 2064 * haven't created too many possible wakeup paths. 2065 * 2066 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when 2067 * the epoll file descriptor is attaching directly to a wakeup source, 2068 * unless the epoll file descriptor is nested. The purpose of taking the 2069 * 'epmutex' on add is to prevent complex toplogies such as loops and 2070 * deep wakeup paths from forming in parallel through multiple 2071 * EPOLL_CTL_ADD operations. 2072 */ 2073 mutex_lock_nested(&ep->mtx, 0); 2074 if (op == EPOLL_CTL_ADD) { 2075 if (!list_empty(&f.file->f_ep_links) || 2076 is_file_epoll(tf.file)) { 2077 full_check = 1; 2078 mutex_unlock(&ep->mtx); 2079 mutex_lock(&epmutex); 2080 if (is_file_epoll(tf.file)) { 2081 error = -ELOOP; 2082 if (ep_loop_check(ep, tf.file) != 0) { 2083 clear_tfile_check_list(); 2084 goto error_tgt_fput; 2085 } 2086 } else 2087 list_add(&tf.file->f_tfile_llink, 2088 &tfile_check_list); 2089 mutex_lock_nested(&ep->mtx, 0); 2090 if (is_file_epoll(tf.file)) { 2091 tep = tf.file->private_data; 2092 mutex_lock_nested(&tep->mtx, 1); 2093 } 2094 } 2095 } 2096 2097 /* 2098 * Try to lookup the file inside our RB tree, Since we grabbed "mtx" 2099 * above, we can be sure to be able to use the item looked up by 2100 * ep_find() till we release the mutex. 2101 */ 2102 epi = ep_find(ep, tf.file, fd); 2103 2104 error = -EINVAL; 2105 switch (op) { 2106 case EPOLL_CTL_ADD: 2107 if (!epi) { 2108 epds.events |= EPOLLERR | EPOLLHUP; 2109 error = ep_insert(ep, &epds, tf.file, fd, full_check); 2110 } else 2111 error = -EEXIST; 2112 if (full_check) 2113 clear_tfile_check_list(); 2114 break; 2115 case EPOLL_CTL_DEL: 2116 if (epi) 2117 error = ep_remove(ep, epi); 2118 else 2119 error = -ENOENT; 2120 break; 2121 case EPOLL_CTL_MOD: 2122 if (epi) { 2123 if (!(epi->event.events & EPOLLEXCLUSIVE)) { 2124 epds.events |= EPOLLERR | EPOLLHUP; 2125 error = ep_modify(ep, epi, &epds); 2126 } 2127 } else 2128 error = -ENOENT; 2129 break; 2130 } 2131 if (tep != NULL) 2132 mutex_unlock(&tep->mtx); 2133 mutex_unlock(&ep->mtx); 2134 2135 error_tgt_fput: 2136 if (full_check) 2137 mutex_unlock(&epmutex); 2138 2139 fdput(tf); 2140 error_fput: 2141 fdput(f); 2142 error_return: 2143 2144 return error; 2145 } 2146 2147 /* 2148 * Implement the event wait interface for the eventpoll file. It is the kernel 2149 * part of the user space epoll_wait(2). 2150 */ 2151 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 2152 int, maxevents, int, timeout) 2153 { 2154 int error; 2155 struct fd f; 2156 struct eventpoll *ep; 2157 2158 /* The maximum number of event must be greater than zero */ 2159 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 2160 return -EINVAL; 2161 2162 /* Verify that the area passed by the user is writeable */ 2163 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) 2164 return -EFAULT; 2165 2166 /* Get the "struct file *" for the eventpoll file */ 2167 f = fdget(epfd); 2168 if (!f.file) 2169 return -EBADF; 2170 2171 /* 2172 * We have to check that the file structure underneath the fd 2173 * the user passed to us _is_ an eventpoll file. 2174 */ 2175 error = -EINVAL; 2176 if (!is_file_epoll(f.file)) 2177 goto error_fput; 2178 2179 /* 2180 * At this point it is safe to assume that the "private_data" contains 2181 * our own data structure. 2182 */ 2183 ep = f.file->private_data; 2184 2185 /* Time to fish for events ... */ 2186 error = ep_poll(ep, events, maxevents, timeout); 2187 2188 error_fput: 2189 fdput(f); 2190 return error; 2191 } 2192 2193 /* 2194 * Implement the event wait interface for the eventpoll file. It is the kernel 2195 * part of the user space epoll_pwait(2). 2196 */ 2197 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 2198 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 2199 size_t, sigsetsize) 2200 { 2201 int error; 2202 sigset_t ksigmask, sigsaved; 2203 2204 /* 2205 * If the caller wants a certain signal mask to be set during the wait, 2206 * we apply it here. 2207 */ 2208 if (sigmask) { 2209 if (sigsetsize != sizeof(sigset_t)) 2210 return -EINVAL; 2211 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask))) 2212 return -EFAULT; 2213 sigsaved = current->blocked; 2214 set_current_blocked(&ksigmask); 2215 } 2216 2217 error = sys_epoll_wait(epfd, events, maxevents, timeout); 2218 2219 /* 2220 * If we changed the signal mask, we need to restore the original one. 2221 * In case we've got a signal while waiting, we do not restore the 2222 * signal mask yet, and we allow do_signal() to deliver the signal on 2223 * the way back to userspace, before the signal mask is restored. 2224 */ 2225 if (sigmask) { 2226 if (error == -EINTR) { 2227 memcpy(¤t->saved_sigmask, &sigsaved, 2228 sizeof(sigsaved)); 2229 set_restore_sigmask(); 2230 } else 2231 set_current_blocked(&sigsaved); 2232 } 2233 2234 return error; 2235 } 2236 2237 #ifdef CONFIG_COMPAT 2238 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, 2239 struct epoll_event __user *, events, 2240 int, maxevents, int, timeout, 2241 const compat_sigset_t __user *, sigmask, 2242 compat_size_t, sigsetsize) 2243 { 2244 long err; 2245 sigset_t ksigmask, sigsaved; 2246 2247 /* 2248 * If the caller wants a certain signal mask to be set during the wait, 2249 * we apply it here. 2250 */ 2251 if (sigmask) { 2252 if (sigsetsize != sizeof(compat_sigset_t)) 2253 return -EINVAL; 2254 if (get_compat_sigset(&ksigmask, sigmask)) 2255 return -EFAULT; 2256 sigsaved = current->blocked; 2257 set_current_blocked(&ksigmask); 2258 } 2259 2260 err = sys_epoll_wait(epfd, events, maxevents, timeout); 2261 2262 /* 2263 * If we changed the signal mask, we need to restore the original one. 2264 * In case we've got a signal while waiting, we do not restore the 2265 * signal mask yet, and we allow do_signal() to deliver the signal on 2266 * the way back to userspace, before the signal mask is restored. 2267 */ 2268 if (sigmask) { 2269 if (err == -EINTR) { 2270 memcpy(¤t->saved_sigmask, &sigsaved, 2271 sizeof(sigsaved)); 2272 set_restore_sigmask(); 2273 } else 2274 set_current_blocked(&sigsaved); 2275 } 2276 2277 return err; 2278 } 2279 #endif 2280 2281 static int __init eventpoll_init(void) 2282 { 2283 struct sysinfo si; 2284 2285 si_meminfo(&si); 2286 /* 2287 * Allows top 4% of lomem to be allocated for epoll watches (per user). 2288 */ 2289 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 2290 EP_ITEM_COST; 2291 BUG_ON(max_user_watches < 0); 2292 2293 /* 2294 * Initialize the structure used to perform epoll file descriptor 2295 * inclusion loops checks. 2296 */ 2297 ep_nested_calls_init(&poll_loop_ncalls); 2298 2299 #ifdef CONFIG_DEBUG_LOCK_ALLOC 2300 /* Initialize the structure used to perform safe poll wait head wake ups */ 2301 ep_nested_calls_init(&poll_safewake_ncalls); 2302 #endif 2303 2304 /* 2305 * We can have many thousands of epitems, so prevent this from 2306 * using an extra cache line on 64-bit (and smaller) CPUs 2307 */ 2308 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); 2309 2310 /* Allocates slab cache used to allocate "struct epitem" items */ 2311 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 2312 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 2313 2314 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 2315 pwq_cache = kmem_cache_create("eventpoll_pwq", 2316 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2317 2318 return 0; 2319 } 2320 fs_initcall(eventpoll_init); 2321