xref: /openbmc/linux/fs/eventpoll.c (revision 81895a65)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  fs/eventpoll.c (Efficient event retrieval implementation)
4  *  Copyright (C) 2001,...,2009	 Davide Libenzi
5  *
6  *  Davide Libenzi <davidel@xmailserver.org>
7  */
8 
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/uaccess.h>
33 #include <asm/io.h>
34 #include <asm/mman.h>
35 #include <linux/atomic.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/compat.h>
39 #include <linux/rculist.h>
40 #include <net/busy_poll.h>
41 
42 /*
43  * LOCKING:
44  * There are three level of locking required by epoll :
45  *
46  * 1) epmutex (mutex)
47  * 2) ep->mtx (mutex)
48  * 3) ep->lock (rwlock)
49  *
50  * The acquire order is the one listed above, from 1 to 3.
51  * We need a rwlock (ep->lock) because we manipulate objects
52  * from inside the poll callback, that might be triggered from
53  * a wake_up() that in turn might be called from IRQ context.
54  * So we can't sleep inside the poll callback and hence we need
55  * a spinlock. During the event transfer loop (from kernel to
56  * user space) we could end up sleeping due a copy_to_user(), so
57  * we need a lock that will allow us to sleep. This lock is a
58  * mutex (ep->mtx). It is acquired during the event transfer loop,
59  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60  * Then we also need a global mutex to serialize eventpoll_release_file()
61  * and ep_free().
62  * This mutex is acquired by ep_free() during the epoll file
63  * cleanup path and it is also acquired by eventpoll_release_file()
64  * if a file has been pushed inside an epoll set and it is then
65  * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
66  * It is also acquired when inserting an epoll fd onto another epoll
67  * fd. We do this so that we walk the epoll tree and ensure that this
68  * insertion does not create a cycle of epoll file descriptors, which
69  * could lead to deadlock. We need a global mutex to prevent two
70  * simultaneous inserts (A into B and B into A) from racing and
71  * constructing a cycle without either insert observing that it is
72  * going to.
73  * It is necessary to acquire multiple "ep->mtx"es at once in the
74  * case when one epoll fd is added to another. In this case, we
75  * always acquire the locks in the order of nesting (i.e. after
76  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
77  * before e2->mtx). Since we disallow cycles of epoll file
78  * descriptors, this ensures that the mutexes are well-ordered. In
79  * order to communicate this nesting to lockdep, when walking a tree
80  * of epoll file descriptors, we use the current recursion depth as
81  * the lockdep subkey.
82  * It is possible to drop the "ep->mtx" and to use the global
83  * mutex "epmutex" (together with "ep->lock") to have it working,
84  * but having "ep->mtx" will make the interface more scalable.
85  * Events that require holding "epmutex" are very rare, while for
86  * normal operations the epoll private "ep->mtx" will guarantee
87  * a better scalability.
88  */
89 
90 /* Epoll private bits inside the event mask */
91 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
92 
93 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
94 
95 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
96 				EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
97 
98 /* Maximum number of nesting allowed inside epoll sets */
99 #define EP_MAX_NESTS 4
100 
101 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
102 
103 #define EP_UNACTIVE_PTR ((void *) -1L)
104 
105 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
106 
107 struct epoll_filefd {
108 	struct file *file;
109 	int fd;
110 } __packed;
111 
112 /* Wait structure used by the poll hooks */
113 struct eppoll_entry {
114 	/* List header used to link this structure to the "struct epitem" */
115 	struct eppoll_entry *next;
116 
117 	/* The "base" pointer is set to the container "struct epitem" */
118 	struct epitem *base;
119 
120 	/*
121 	 * Wait queue item that will be linked to the target file wait
122 	 * queue head.
123 	 */
124 	wait_queue_entry_t wait;
125 
126 	/* The wait queue head that linked the "wait" wait queue item */
127 	wait_queue_head_t *whead;
128 };
129 
130 /*
131  * Each file descriptor added to the eventpoll interface will
132  * have an entry of this type linked to the "rbr" RB tree.
133  * Avoid increasing the size of this struct, there can be many thousands
134  * of these on a server and we do not want this to take another cache line.
135  */
136 struct epitem {
137 	union {
138 		/* RB tree node links this structure to the eventpoll RB tree */
139 		struct rb_node rbn;
140 		/* Used to free the struct epitem */
141 		struct rcu_head rcu;
142 	};
143 
144 	/* List header used to link this structure to the eventpoll ready list */
145 	struct list_head rdllink;
146 
147 	/*
148 	 * Works together "struct eventpoll"->ovflist in keeping the
149 	 * single linked chain of items.
150 	 */
151 	struct epitem *next;
152 
153 	/* The file descriptor information this item refers to */
154 	struct epoll_filefd ffd;
155 
156 	/* List containing poll wait queues */
157 	struct eppoll_entry *pwqlist;
158 
159 	/* The "container" of this item */
160 	struct eventpoll *ep;
161 
162 	/* List header used to link this item to the "struct file" items list */
163 	struct hlist_node fllink;
164 
165 	/* wakeup_source used when EPOLLWAKEUP is set */
166 	struct wakeup_source __rcu *ws;
167 
168 	/* The structure that describe the interested events and the source fd */
169 	struct epoll_event event;
170 };
171 
172 /*
173  * This structure is stored inside the "private_data" member of the file
174  * structure and represents the main data structure for the eventpoll
175  * interface.
176  */
177 struct eventpoll {
178 	/*
179 	 * This mutex is used to ensure that files are not removed
180 	 * while epoll is using them. This is held during the event
181 	 * collection loop, the file cleanup path, the epoll file exit
182 	 * code and the ctl operations.
183 	 */
184 	struct mutex mtx;
185 
186 	/* Wait queue used by sys_epoll_wait() */
187 	wait_queue_head_t wq;
188 
189 	/* Wait queue used by file->poll() */
190 	wait_queue_head_t poll_wait;
191 
192 	/* List of ready file descriptors */
193 	struct list_head rdllist;
194 
195 	/* Lock which protects rdllist and ovflist */
196 	rwlock_t lock;
197 
198 	/* RB tree root used to store monitored fd structs */
199 	struct rb_root_cached rbr;
200 
201 	/*
202 	 * This is a single linked list that chains all the "struct epitem" that
203 	 * happened while transferring ready events to userspace w/out
204 	 * holding ->lock.
205 	 */
206 	struct epitem *ovflist;
207 
208 	/* wakeup_source used when ep_scan_ready_list is running */
209 	struct wakeup_source *ws;
210 
211 	/* The user that created the eventpoll descriptor */
212 	struct user_struct *user;
213 
214 	struct file *file;
215 
216 	/* used to optimize loop detection check */
217 	u64 gen;
218 	struct hlist_head refs;
219 
220 #ifdef CONFIG_NET_RX_BUSY_POLL
221 	/* used to track busy poll napi_id */
222 	unsigned int napi_id;
223 #endif
224 
225 #ifdef CONFIG_DEBUG_LOCK_ALLOC
226 	/* tracks wakeup nests for lockdep validation */
227 	u8 nests;
228 #endif
229 };
230 
231 /* Wrapper struct used by poll queueing */
232 struct ep_pqueue {
233 	poll_table pt;
234 	struct epitem *epi;
235 };
236 
237 /*
238  * Configuration options available inside /proc/sys/fs/epoll/
239  */
240 /* Maximum number of epoll watched descriptors, per user */
241 static long max_user_watches __read_mostly;
242 
243 /*
244  * This mutex is used to serialize ep_free() and eventpoll_release_file().
245  */
246 static DEFINE_MUTEX(epmutex);
247 
248 static u64 loop_check_gen = 0;
249 
250 /* Used to check for epoll file descriptor inclusion loops */
251 static struct eventpoll *inserting_into;
252 
253 /* Slab cache used to allocate "struct epitem" */
254 static struct kmem_cache *epi_cache __read_mostly;
255 
256 /* Slab cache used to allocate "struct eppoll_entry" */
257 static struct kmem_cache *pwq_cache __read_mostly;
258 
259 /*
260  * List of files with newly added links, where we may need to limit the number
261  * of emanating paths. Protected by the epmutex.
262  */
263 struct epitems_head {
264 	struct hlist_head epitems;
265 	struct epitems_head *next;
266 };
267 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR;
268 
269 static struct kmem_cache *ephead_cache __read_mostly;
270 
271 static inline void free_ephead(struct epitems_head *head)
272 {
273 	if (head)
274 		kmem_cache_free(ephead_cache, head);
275 }
276 
277 static void list_file(struct file *file)
278 {
279 	struct epitems_head *head;
280 
281 	head = container_of(file->f_ep, struct epitems_head, epitems);
282 	if (!head->next) {
283 		head->next = tfile_check_list;
284 		tfile_check_list = head;
285 	}
286 }
287 
288 static void unlist_file(struct epitems_head *head)
289 {
290 	struct epitems_head *to_free = head;
291 	struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems));
292 	if (p) {
293 		struct epitem *epi= container_of(p, struct epitem, fllink);
294 		spin_lock(&epi->ffd.file->f_lock);
295 		if (!hlist_empty(&head->epitems))
296 			to_free = NULL;
297 		head->next = NULL;
298 		spin_unlock(&epi->ffd.file->f_lock);
299 	}
300 	free_ephead(to_free);
301 }
302 
303 #ifdef CONFIG_SYSCTL
304 
305 #include <linux/sysctl.h>
306 
307 static long long_zero;
308 static long long_max = LONG_MAX;
309 
310 static struct ctl_table epoll_table[] = {
311 	{
312 		.procname	= "max_user_watches",
313 		.data		= &max_user_watches,
314 		.maxlen		= sizeof(max_user_watches),
315 		.mode		= 0644,
316 		.proc_handler	= proc_doulongvec_minmax,
317 		.extra1		= &long_zero,
318 		.extra2		= &long_max,
319 	},
320 	{ }
321 };
322 
323 static void __init epoll_sysctls_init(void)
324 {
325 	register_sysctl("fs/epoll", epoll_table);
326 }
327 #else
328 #define epoll_sysctls_init() do { } while (0)
329 #endif /* CONFIG_SYSCTL */
330 
331 static const struct file_operations eventpoll_fops;
332 
333 static inline int is_file_epoll(struct file *f)
334 {
335 	return f->f_op == &eventpoll_fops;
336 }
337 
338 /* Setup the structure that is used as key for the RB tree */
339 static inline void ep_set_ffd(struct epoll_filefd *ffd,
340 			      struct file *file, int fd)
341 {
342 	ffd->file = file;
343 	ffd->fd = fd;
344 }
345 
346 /* Compare RB tree keys */
347 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
348 			     struct epoll_filefd *p2)
349 {
350 	return (p1->file > p2->file ? +1:
351 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
352 }
353 
354 /* Tells us if the item is currently linked */
355 static inline int ep_is_linked(struct epitem *epi)
356 {
357 	return !list_empty(&epi->rdllink);
358 }
359 
360 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
361 {
362 	return container_of(p, struct eppoll_entry, wait);
363 }
364 
365 /* Get the "struct epitem" from a wait queue pointer */
366 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
367 {
368 	return container_of(p, struct eppoll_entry, wait)->base;
369 }
370 
371 /**
372  * ep_events_available - Checks if ready events might be available.
373  *
374  * @ep: Pointer to the eventpoll context.
375  *
376  * Return: a value different than %zero if ready events are available,
377  *          or %zero otherwise.
378  */
379 static inline int ep_events_available(struct eventpoll *ep)
380 {
381 	return !list_empty_careful(&ep->rdllist) ||
382 		READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
383 }
384 
385 #ifdef CONFIG_NET_RX_BUSY_POLL
386 static bool ep_busy_loop_end(void *p, unsigned long start_time)
387 {
388 	struct eventpoll *ep = p;
389 
390 	return ep_events_available(ep) || busy_loop_timeout(start_time);
391 }
392 
393 /*
394  * Busy poll if globally on and supporting sockets found && no events,
395  * busy loop will return if need_resched or ep_events_available.
396  *
397  * we must do our busy polling with irqs enabled
398  */
399 static bool ep_busy_loop(struct eventpoll *ep, int nonblock)
400 {
401 	unsigned int napi_id = READ_ONCE(ep->napi_id);
402 
403 	if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) {
404 		napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, false,
405 			       BUSY_POLL_BUDGET);
406 		if (ep_events_available(ep))
407 			return true;
408 		/*
409 		 * Busy poll timed out.  Drop NAPI ID for now, we can add
410 		 * it back in when we have moved a socket with a valid NAPI
411 		 * ID onto the ready list.
412 		 */
413 		ep->napi_id = 0;
414 		return false;
415 	}
416 	return false;
417 }
418 
419 /*
420  * Set epoll busy poll NAPI ID from sk.
421  */
422 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
423 {
424 	struct eventpoll *ep;
425 	unsigned int napi_id;
426 	struct socket *sock;
427 	struct sock *sk;
428 
429 	if (!net_busy_loop_on())
430 		return;
431 
432 	sock = sock_from_file(epi->ffd.file);
433 	if (!sock)
434 		return;
435 
436 	sk = sock->sk;
437 	if (!sk)
438 		return;
439 
440 	napi_id = READ_ONCE(sk->sk_napi_id);
441 	ep = epi->ep;
442 
443 	/* Non-NAPI IDs can be rejected
444 	 *	or
445 	 * Nothing to do if we already have this ID
446 	 */
447 	if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
448 		return;
449 
450 	/* record NAPI ID for use in next busy poll */
451 	ep->napi_id = napi_id;
452 }
453 
454 #else
455 
456 static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock)
457 {
458 	return false;
459 }
460 
461 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
462 {
463 }
464 
465 #endif /* CONFIG_NET_RX_BUSY_POLL */
466 
467 /*
468  * As described in commit 0ccf831cb lockdep: annotate epoll
469  * the use of wait queues used by epoll is done in a very controlled
470  * manner. Wake ups can nest inside each other, but are never done
471  * with the same locking. For example:
472  *
473  *   dfd = socket(...);
474  *   efd1 = epoll_create();
475  *   efd2 = epoll_create();
476  *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
477  *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
478  *
479  * When a packet arrives to the device underneath "dfd", the net code will
480  * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
481  * callback wakeup entry on that queue, and the wake_up() performed by the
482  * "dfd" net code will end up in ep_poll_callback(). At this point epoll
483  * (efd1) notices that it may have some event ready, so it needs to wake up
484  * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
485  * that ends up in another wake_up(), after having checked about the
486  * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
487  * avoid stack blasting.
488  *
489  * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
490  * this special case of epoll.
491  */
492 #ifdef CONFIG_DEBUG_LOCK_ALLOC
493 
494 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
495 {
496 	struct eventpoll *ep_src;
497 	unsigned long flags;
498 	u8 nests = 0;
499 
500 	/*
501 	 * To set the subclass or nesting level for spin_lock_irqsave_nested()
502 	 * it might be natural to create a per-cpu nest count. However, since
503 	 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
504 	 * schedule() in the -rt kernel, the per-cpu variable are no longer
505 	 * protected. Thus, we are introducing a per eventpoll nest field.
506 	 * If we are not being call from ep_poll_callback(), epi is NULL and
507 	 * we are at the first level of nesting, 0. Otherwise, we are being
508 	 * called from ep_poll_callback() and if a previous wakeup source is
509 	 * not an epoll file itself, we are at depth 1 since the wakeup source
510 	 * is depth 0. If the wakeup source is a previous epoll file in the
511 	 * wakeup chain then we use its nests value and record ours as
512 	 * nests + 1. The previous epoll file nests value is stable since its
513 	 * already holding its own poll_wait.lock.
514 	 */
515 	if (epi) {
516 		if ((is_file_epoll(epi->ffd.file))) {
517 			ep_src = epi->ffd.file->private_data;
518 			nests = ep_src->nests;
519 		} else {
520 			nests = 1;
521 		}
522 	}
523 	spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
524 	ep->nests = nests + 1;
525 	wake_up_locked_poll(&ep->poll_wait, EPOLLIN);
526 	ep->nests = 0;
527 	spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
528 }
529 
530 #else
531 
532 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
533 {
534 	wake_up_poll(&ep->poll_wait, EPOLLIN);
535 }
536 
537 #endif
538 
539 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
540 {
541 	wait_queue_head_t *whead;
542 
543 	rcu_read_lock();
544 	/*
545 	 * If it is cleared by POLLFREE, it should be rcu-safe.
546 	 * If we read NULL we need a barrier paired with
547 	 * smp_store_release() in ep_poll_callback(), otherwise
548 	 * we rely on whead->lock.
549 	 */
550 	whead = smp_load_acquire(&pwq->whead);
551 	if (whead)
552 		remove_wait_queue(whead, &pwq->wait);
553 	rcu_read_unlock();
554 }
555 
556 /*
557  * This function unregisters poll callbacks from the associated file
558  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
559  * ep_free).
560  */
561 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
562 {
563 	struct eppoll_entry **p = &epi->pwqlist;
564 	struct eppoll_entry *pwq;
565 
566 	while ((pwq = *p) != NULL) {
567 		*p = pwq->next;
568 		ep_remove_wait_queue(pwq);
569 		kmem_cache_free(pwq_cache, pwq);
570 	}
571 }
572 
573 /* call only when ep->mtx is held */
574 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
575 {
576 	return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
577 }
578 
579 /* call only when ep->mtx is held */
580 static inline void ep_pm_stay_awake(struct epitem *epi)
581 {
582 	struct wakeup_source *ws = ep_wakeup_source(epi);
583 
584 	if (ws)
585 		__pm_stay_awake(ws);
586 }
587 
588 static inline bool ep_has_wakeup_source(struct epitem *epi)
589 {
590 	return rcu_access_pointer(epi->ws) ? true : false;
591 }
592 
593 /* call when ep->mtx cannot be held (ep_poll_callback) */
594 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
595 {
596 	struct wakeup_source *ws;
597 
598 	rcu_read_lock();
599 	ws = rcu_dereference(epi->ws);
600 	if (ws)
601 		__pm_stay_awake(ws);
602 	rcu_read_unlock();
603 }
604 
605 
606 /*
607  * ep->mutex needs to be held because we could be hit by
608  * eventpoll_release_file() and epoll_ctl().
609  */
610 static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist)
611 {
612 	/*
613 	 * Steal the ready list, and re-init the original one to the
614 	 * empty list. Also, set ep->ovflist to NULL so that events
615 	 * happening while looping w/out locks, are not lost. We cannot
616 	 * have the poll callback to queue directly on ep->rdllist,
617 	 * because we want the "sproc" callback to be able to do it
618 	 * in a lockless way.
619 	 */
620 	lockdep_assert_irqs_enabled();
621 	write_lock_irq(&ep->lock);
622 	list_splice_init(&ep->rdllist, txlist);
623 	WRITE_ONCE(ep->ovflist, NULL);
624 	write_unlock_irq(&ep->lock);
625 }
626 
627 static void ep_done_scan(struct eventpoll *ep,
628 			 struct list_head *txlist)
629 {
630 	struct epitem *epi, *nepi;
631 
632 	write_lock_irq(&ep->lock);
633 	/*
634 	 * During the time we spent inside the "sproc" callback, some
635 	 * other events might have been queued by the poll callback.
636 	 * We re-insert them inside the main ready-list here.
637 	 */
638 	for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
639 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
640 		/*
641 		 * We need to check if the item is already in the list.
642 		 * During the "sproc" callback execution time, items are
643 		 * queued into ->ovflist but the "txlist" might already
644 		 * contain them, and the list_splice() below takes care of them.
645 		 */
646 		if (!ep_is_linked(epi)) {
647 			/*
648 			 * ->ovflist is LIFO, so we have to reverse it in order
649 			 * to keep in FIFO.
650 			 */
651 			list_add(&epi->rdllink, &ep->rdllist);
652 			ep_pm_stay_awake(epi);
653 		}
654 	}
655 	/*
656 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
657 	 * releasing the lock, events will be queued in the normal way inside
658 	 * ep->rdllist.
659 	 */
660 	WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
661 
662 	/*
663 	 * Quickly re-inject items left on "txlist".
664 	 */
665 	list_splice(txlist, &ep->rdllist);
666 	__pm_relax(ep->ws);
667 
668 	if (!list_empty(&ep->rdllist)) {
669 		if (waitqueue_active(&ep->wq))
670 			wake_up(&ep->wq);
671 	}
672 
673 	write_unlock_irq(&ep->lock);
674 }
675 
676 static void epi_rcu_free(struct rcu_head *head)
677 {
678 	struct epitem *epi = container_of(head, struct epitem, rcu);
679 	kmem_cache_free(epi_cache, epi);
680 }
681 
682 /*
683  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
684  * all the associated resources. Must be called with "mtx" held.
685  */
686 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
687 {
688 	struct file *file = epi->ffd.file;
689 	struct epitems_head *to_free;
690 	struct hlist_head *head;
691 
692 	lockdep_assert_irqs_enabled();
693 
694 	/*
695 	 * Removes poll wait queue hooks.
696 	 */
697 	ep_unregister_pollwait(ep, epi);
698 
699 	/* Remove the current item from the list of epoll hooks */
700 	spin_lock(&file->f_lock);
701 	to_free = NULL;
702 	head = file->f_ep;
703 	if (head->first == &epi->fllink && !epi->fllink.next) {
704 		file->f_ep = NULL;
705 		if (!is_file_epoll(file)) {
706 			struct epitems_head *v;
707 			v = container_of(head, struct epitems_head, epitems);
708 			if (!smp_load_acquire(&v->next))
709 				to_free = v;
710 		}
711 	}
712 	hlist_del_rcu(&epi->fllink);
713 	spin_unlock(&file->f_lock);
714 	free_ephead(to_free);
715 
716 	rb_erase_cached(&epi->rbn, &ep->rbr);
717 
718 	write_lock_irq(&ep->lock);
719 	if (ep_is_linked(epi))
720 		list_del_init(&epi->rdllink);
721 	write_unlock_irq(&ep->lock);
722 
723 	wakeup_source_unregister(ep_wakeup_source(epi));
724 	/*
725 	 * At this point it is safe to free the eventpoll item. Use the union
726 	 * field epi->rcu, since we are trying to minimize the size of
727 	 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
728 	 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
729 	 * use of the rbn field.
730 	 */
731 	call_rcu(&epi->rcu, epi_rcu_free);
732 
733 	percpu_counter_dec(&ep->user->epoll_watches);
734 
735 	return 0;
736 }
737 
738 static void ep_free(struct eventpoll *ep)
739 {
740 	struct rb_node *rbp;
741 	struct epitem *epi;
742 
743 	/* We need to release all tasks waiting for these file */
744 	if (waitqueue_active(&ep->poll_wait))
745 		ep_poll_safewake(ep, NULL);
746 
747 	/*
748 	 * We need to lock this because we could be hit by
749 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
750 	 * We do not need to hold "ep->mtx" here because the epoll file
751 	 * is on the way to be removed and no one has references to it
752 	 * anymore. The only hit might come from eventpoll_release_file() but
753 	 * holding "epmutex" is sufficient here.
754 	 */
755 	mutex_lock(&epmutex);
756 
757 	/*
758 	 * Walks through the whole tree by unregistering poll callbacks.
759 	 */
760 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
761 		epi = rb_entry(rbp, struct epitem, rbn);
762 
763 		ep_unregister_pollwait(ep, epi);
764 		cond_resched();
765 	}
766 
767 	/*
768 	 * Walks through the whole tree by freeing each "struct epitem". At this
769 	 * point we are sure no poll callbacks will be lingering around, and also by
770 	 * holding "epmutex" we can be sure that no file cleanup code will hit
771 	 * us during this operation. So we can avoid the lock on "ep->lock".
772 	 * We do not need to lock ep->mtx, either, we only do it to prevent
773 	 * a lockdep warning.
774 	 */
775 	mutex_lock(&ep->mtx);
776 	while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
777 		epi = rb_entry(rbp, struct epitem, rbn);
778 		ep_remove(ep, epi);
779 		cond_resched();
780 	}
781 	mutex_unlock(&ep->mtx);
782 
783 	mutex_unlock(&epmutex);
784 	mutex_destroy(&ep->mtx);
785 	free_uid(ep->user);
786 	wakeup_source_unregister(ep->ws);
787 	kfree(ep);
788 }
789 
790 static int ep_eventpoll_release(struct inode *inode, struct file *file)
791 {
792 	struct eventpoll *ep = file->private_data;
793 
794 	if (ep)
795 		ep_free(ep);
796 
797 	return 0;
798 }
799 
800 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth);
801 
802 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth)
803 {
804 	struct eventpoll *ep = file->private_data;
805 	LIST_HEAD(txlist);
806 	struct epitem *epi, *tmp;
807 	poll_table pt;
808 	__poll_t res = 0;
809 
810 	init_poll_funcptr(&pt, NULL);
811 
812 	/* Insert inside our poll wait queue */
813 	poll_wait(file, &ep->poll_wait, wait);
814 
815 	/*
816 	 * Proceed to find out if wanted events are really available inside
817 	 * the ready list.
818 	 */
819 	mutex_lock_nested(&ep->mtx, depth);
820 	ep_start_scan(ep, &txlist);
821 	list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
822 		if (ep_item_poll(epi, &pt, depth + 1)) {
823 			res = EPOLLIN | EPOLLRDNORM;
824 			break;
825 		} else {
826 			/*
827 			 * Item has been dropped into the ready list by the poll
828 			 * callback, but it's not actually ready, as far as
829 			 * caller requested events goes. We can remove it here.
830 			 */
831 			__pm_relax(ep_wakeup_source(epi));
832 			list_del_init(&epi->rdllink);
833 		}
834 	}
835 	ep_done_scan(ep, &txlist);
836 	mutex_unlock(&ep->mtx);
837 	return res;
838 }
839 
840 /*
841  * Differs from ep_eventpoll_poll() in that internal callers already have
842  * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
843  * is correctly annotated.
844  */
845 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
846 				 int depth)
847 {
848 	struct file *file = epi->ffd.file;
849 	__poll_t res;
850 
851 	pt->_key = epi->event.events;
852 	if (!is_file_epoll(file))
853 		res = vfs_poll(file, pt);
854 	else
855 		res = __ep_eventpoll_poll(file, pt, depth);
856 	return res & epi->event.events;
857 }
858 
859 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
860 {
861 	return __ep_eventpoll_poll(file, wait, 0);
862 }
863 
864 #ifdef CONFIG_PROC_FS
865 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
866 {
867 	struct eventpoll *ep = f->private_data;
868 	struct rb_node *rbp;
869 
870 	mutex_lock(&ep->mtx);
871 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
872 		struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
873 		struct inode *inode = file_inode(epi->ffd.file);
874 
875 		seq_printf(m, "tfd: %8d events: %8x data: %16llx "
876 			   " pos:%lli ino:%lx sdev:%x\n",
877 			   epi->ffd.fd, epi->event.events,
878 			   (long long)epi->event.data,
879 			   (long long)epi->ffd.file->f_pos,
880 			   inode->i_ino, inode->i_sb->s_dev);
881 		if (seq_has_overflowed(m))
882 			break;
883 	}
884 	mutex_unlock(&ep->mtx);
885 }
886 #endif
887 
888 /* File callbacks that implement the eventpoll file behaviour */
889 static const struct file_operations eventpoll_fops = {
890 #ifdef CONFIG_PROC_FS
891 	.show_fdinfo	= ep_show_fdinfo,
892 #endif
893 	.release	= ep_eventpoll_release,
894 	.poll		= ep_eventpoll_poll,
895 	.llseek		= noop_llseek,
896 };
897 
898 /*
899  * This is called from eventpoll_release() to unlink files from the eventpoll
900  * interface. We need to have this facility to cleanup correctly files that are
901  * closed without being removed from the eventpoll interface.
902  */
903 void eventpoll_release_file(struct file *file)
904 {
905 	struct eventpoll *ep;
906 	struct epitem *epi;
907 	struct hlist_node *next;
908 
909 	/*
910 	 * We don't want to get "file->f_lock" because it is not
911 	 * necessary. It is not necessary because we're in the "struct file"
912 	 * cleanup path, and this means that no one is using this file anymore.
913 	 * So, for example, epoll_ctl() cannot hit here since if we reach this
914 	 * point, the file counter already went to zero and fget() would fail.
915 	 * The only hit might come from ep_free() but by holding the mutex
916 	 * will correctly serialize the operation. We do need to acquire
917 	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
918 	 * from anywhere but ep_free().
919 	 *
920 	 * Besides, ep_remove() acquires the lock, so we can't hold it here.
921 	 */
922 	mutex_lock(&epmutex);
923 	if (unlikely(!file->f_ep)) {
924 		mutex_unlock(&epmutex);
925 		return;
926 	}
927 	hlist_for_each_entry_safe(epi, next, file->f_ep, fllink) {
928 		ep = epi->ep;
929 		mutex_lock_nested(&ep->mtx, 0);
930 		ep_remove(ep, epi);
931 		mutex_unlock(&ep->mtx);
932 	}
933 	mutex_unlock(&epmutex);
934 }
935 
936 static int ep_alloc(struct eventpoll **pep)
937 {
938 	int error;
939 	struct user_struct *user;
940 	struct eventpoll *ep;
941 
942 	user = get_current_user();
943 	error = -ENOMEM;
944 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
945 	if (unlikely(!ep))
946 		goto free_uid;
947 
948 	mutex_init(&ep->mtx);
949 	rwlock_init(&ep->lock);
950 	init_waitqueue_head(&ep->wq);
951 	init_waitqueue_head(&ep->poll_wait);
952 	INIT_LIST_HEAD(&ep->rdllist);
953 	ep->rbr = RB_ROOT_CACHED;
954 	ep->ovflist = EP_UNACTIVE_PTR;
955 	ep->user = user;
956 
957 	*pep = ep;
958 
959 	return 0;
960 
961 free_uid:
962 	free_uid(user);
963 	return error;
964 }
965 
966 /*
967  * Search the file inside the eventpoll tree. The RB tree operations
968  * are protected by the "mtx" mutex, and ep_find() must be called with
969  * "mtx" held.
970  */
971 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
972 {
973 	int kcmp;
974 	struct rb_node *rbp;
975 	struct epitem *epi, *epir = NULL;
976 	struct epoll_filefd ffd;
977 
978 	ep_set_ffd(&ffd, file, fd);
979 	for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
980 		epi = rb_entry(rbp, struct epitem, rbn);
981 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
982 		if (kcmp > 0)
983 			rbp = rbp->rb_right;
984 		else if (kcmp < 0)
985 			rbp = rbp->rb_left;
986 		else {
987 			epir = epi;
988 			break;
989 		}
990 	}
991 
992 	return epir;
993 }
994 
995 #ifdef CONFIG_KCMP
996 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
997 {
998 	struct rb_node *rbp;
999 	struct epitem *epi;
1000 
1001 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1002 		epi = rb_entry(rbp, struct epitem, rbn);
1003 		if (epi->ffd.fd == tfd) {
1004 			if (toff == 0)
1005 				return epi;
1006 			else
1007 				toff--;
1008 		}
1009 		cond_resched();
1010 	}
1011 
1012 	return NULL;
1013 }
1014 
1015 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1016 				     unsigned long toff)
1017 {
1018 	struct file *file_raw;
1019 	struct eventpoll *ep;
1020 	struct epitem *epi;
1021 
1022 	if (!is_file_epoll(file))
1023 		return ERR_PTR(-EINVAL);
1024 
1025 	ep = file->private_data;
1026 
1027 	mutex_lock(&ep->mtx);
1028 	epi = ep_find_tfd(ep, tfd, toff);
1029 	if (epi)
1030 		file_raw = epi->ffd.file;
1031 	else
1032 		file_raw = ERR_PTR(-ENOENT);
1033 	mutex_unlock(&ep->mtx);
1034 
1035 	return file_raw;
1036 }
1037 #endif /* CONFIG_KCMP */
1038 
1039 /*
1040  * Adds a new entry to the tail of the list in a lockless way, i.e.
1041  * multiple CPUs are allowed to call this function concurrently.
1042  *
1043  * Beware: it is necessary to prevent any other modifications of the
1044  *         existing list until all changes are completed, in other words
1045  *         concurrent list_add_tail_lockless() calls should be protected
1046  *         with a read lock, where write lock acts as a barrier which
1047  *         makes sure all list_add_tail_lockless() calls are fully
1048  *         completed.
1049  *
1050  *        Also an element can be locklessly added to the list only in one
1051  *        direction i.e. either to the tail or to the head, otherwise
1052  *        concurrent access will corrupt the list.
1053  *
1054  * Return: %false if element has been already added to the list, %true
1055  * otherwise.
1056  */
1057 static inline bool list_add_tail_lockless(struct list_head *new,
1058 					  struct list_head *head)
1059 {
1060 	struct list_head *prev;
1061 
1062 	/*
1063 	 * This is simple 'new->next = head' operation, but cmpxchg()
1064 	 * is used in order to detect that same element has been just
1065 	 * added to the list from another CPU: the winner observes
1066 	 * new->next == new.
1067 	 */
1068 	if (cmpxchg(&new->next, new, head) != new)
1069 		return false;
1070 
1071 	/*
1072 	 * Initially ->next of a new element must be updated with the head
1073 	 * (we are inserting to the tail) and only then pointers are atomically
1074 	 * exchanged.  XCHG guarantees memory ordering, thus ->next should be
1075 	 * updated before pointers are actually swapped and pointers are
1076 	 * swapped before prev->next is updated.
1077 	 */
1078 
1079 	prev = xchg(&head->prev, new);
1080 
1081 	/*
1082 	 * It is safe to modify prev->next and new->prev, because a new element
1083 	 * is added only to the tail and new->next is updated before XCHG.
1084 	 */
1085 
1086 	prev->next = new;
1087 	new->prev = prev;
1088 
1089 	return true;
1090 }
1091 
1092 /*
1093  * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1094  * i.e. multiple CPUs are allowed to call this function concurrently.
1095  *
1096  * Return: %false if epi element has been already chained, %true otherwise.
1097  */
1098 static inline bool chain_epi_lockless(struct epitem *epi)
1099 {
1100 	struct eventpoll *ep = epi->ep;
1101 
1102 	/* Fast preliminary check */
1103 	if (epi->next != EP_UNACTIVE_PTR)
1104 		return false;
1105 
1106 	/* Check that the same epi has not been just chained from another CPU */
1107 	if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1108 		return false;
1109 
1110 	/* Atomically exchange tail */
1111 	epi->next = xchg(&ep->ovflist, epi);
1112 
1113 	return true;
1114 }
1115 
1116 /*
1117  * This is the callback that is passed to the wait queue wakeup
1118  * mechanism. It is called by the stored file descriptors when they
1119  * have events to report.
1120  *
1121  * This callback takes a read lock in order not to contend with concurrent
1122  * events from another file descriptor, thus all modifications to ->rdllist
1123  * or ->ovflist are lockless.  Read lock is paired with the write lock from
1124  * ep_scan_ready_list(), which stops all list modifications and guarantees
1125  * that lists state is seen correctly.
1126  *
1127  * Another thing worth to mention is that ep_poll_callback() can be called
1128  * concurrently for the same @epi from different CPUs if poll table was inited
1129  * with several wait queues entries.  Plural wakeup from different CPUs of a
1130  * single wait queue is serialized by wq.lock, but the case when multiple wait
1131  * queues are used should be detected accordingly.  This is detected using
1132  * cmpxchg() operation.
1133  */
1134 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1135 {
1136 	int pwake = 0;
1137 	struct epitem *epi = ep_item_from_wait(wait);
1138 	struct eventpoll *ep = epi->ep;
1139 	__poll_t pollflags = key_to_poll(key);
1140 	unsigned long flags;
1141 	int ewake = 0;
1142 
1143 	read_lock_irqsave(&ep->lock, flags);
1144 
1145 	ep_set_busy_poll_napi_id(epi);
1146 
1147 	/*
1148 	 * If the event mask does not contain any poll(2) event, we consider the
1149 	 * descriptor to be disabled. This condition is likely the effect of the
1150 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1151 	 * until the next EPOLL_CTL_MOD will be issued.
1152 	 */
1153 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
1154 		goto out_unlock;
1155 
1156 	/*
1157 	 * Check the events coming with the callback. At this stage, not
1158 	 * every device reports the events in the "key" parameter of the
1159 	 * callback. We need to be able to handle both cases here, hence the
1160 	 * test for "key" != NULL before the event match test.
1161 	 */
1162 	if (pollflags && !(pollflags & epi->event.events))
1163 		goto out_unlock;
1164 
1165 	/*
1166 	 * If we are transferring events to userspace, we can hold no locks
1167 	 * (because we're accessing user memory, and because of linux f_op->poll()
1168 	 * semantics). All the events that happen during that period of time are
1169 	 * chained in ep->ovflist and requeued later on.
1170 	 */
1171 	if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1172 		if (chain_epi_lockless(epi))
1173 			ep_pm_stay_awake_rcu(epi);
1174 	} else if (!ep_is_linked(epi)) {
1175 		/* In the usual case, add event to ready list. */
1176 		if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1177 			ep_pm_stay_awake_rcu(epi);
1178 	}
1179 
1180 	/*
1181 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1182 	 * wait list.
1183 	 */
1184 	if (waitqueue_active(&ep->wq)) {
1185 		if ((epi->event.events & EPOLLEXCLUSIVE) &&
1186 					!(pollflags & POLLFREE)) {
1187 			switch (pollflags & EPOLLINOUT_BITS) {
1188 			case EPOLLIN:
1189 				if (epi->event.events & EPOLLIN)
1190 					ewake = 1;
1191 				break;
1192 			case EPOLLOUT:
1193 				if (epi->event.events & EPOLLOUT)
1194 					ewake = 1;
1195 				break;
1196 			case 0:
1197 				ewake = 1;
1198 				break;
1199 			}
1200 		}
1201 		wake_up(&ep->wq);
1202 	}
1203 	if (waitqueue_active(&ep->poll_wait))
1204 		pwake++;
1205 
1206 out_unlock:
1207 	read_unlock_irqrestore(&ep->lock, flags);
1208 
1209 	/* We have to call this outside the lock */
1210 	if (pwake)
1211 		ep_poll_safewake(ep, epi);
1212 
1213 	if (!(epi->event.events & EPOLLEXCLUSIVE))
1214 		ewake = 1;
1215 
1216 	if (pollflags & POLLFREE) {
1217 		/*
1218 		 * If we race with ep_remove_wait_queue() it can miss
1219 		 * ->whead = NULL and do another remove_wait_queue() after
1220 		 * us, so we can't use __remove_wait_queue().
1221 		 */
1222 		list_del_init(&wait->entry);
1223 		/*
1224 		 * ->whead != NULL protects us from the race with ep_free()
1225 		 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1226 		 * held by the caller. Once we nullify it, nothing protects
1227 		 * ep/epi or even wait.
1228 		 */
1229 		smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1230 	}
1231 
1232 	return ewake;
1233 }
1234 
1235 /*
1236  * This is the callback that is used to add our wait queue to the
1237  * target file wakeup lists.
1238  */
1239 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1240 				 poll_table *pt)
1241 {
1242 	struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1243 	struct epitem *epi = epq->epi;
1244 	struct eppoll_entry *pwq;
1245 
1246 	if (unlikely(!epi))	// an earlier allocation has failed
1247 		return;
1248 
1249 	pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1250 	if (unlikely(!pwq)) {
1251 		epq->epi = NULL;
1252 		return;
1253 	}
1254 
1255 	init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1256 	pwq->whead = whead;
1257 	pwq->base = epi;
1258 	if (epi->event.events & EPOLLEXCLUSIVE)
1259 		add_wait_queue_exclusive(whead, &pwq->wait);
1260 	else
1261 		add_wait_queue(whead, &pwq->wait);
1262 	pwq->next = epi->pwqlist;
1263 	epi->pwqlist = pwq;
1264 }
1265 
1266 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1267 {
1268 	int kcmp;
1269 	struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1270 	struct epitem *epic;
1271 	bool leftmost = true;
1272 
1273 	while (*p) {
1274 		parent = *p;
1275 		epic = rb_entry(parent, struct epitem, rbn);
1276 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1277 		if (kcmp > 0) {
1278 			p = &parent->rb_right;
1279 			leftmost = false;
1280 		} else
1281 			p = &parent->rb_left;
1282 	}
1283 	rb_link_node(&epi->rbn, parent, p);
1284 	rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1285 }
1286 
1287 
1288 
1289 #define PATH_ARR_SIZE 5
1290 /*
1291  * These are the number paths of length 1 to 5, that we are allowing to emanate
1292  * from a single file of interest. For example, we allow 1000 paths of length
1293  * 1, to emanate from each file of interest. This essentially represents the
1294  * potential wakeup paths, which need to be limited in order to avoid massive
1295  * uncontrolled wakeup storms. The common use case should be a single ep which
1296  * is connected to n file sources. In this case each file source has 1 path
1297  * of length 1. Thus, the numbers below should be more than sufficient. These
1298  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1299  * and delete can't add additional paths. Protected by the epmutex.
1300  */
1301 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1302 static int path_count[PATH_ARR_SIZE];
1303 
1304 static int path_count_inc(int nests)
1305 {
1306 	/* Allow an arbitrary number of depth 1 paths */
1307 	if (nests == 0)
1308 		return 0;
1309 
1310 	if (++path_count[nests] > path_limits[nests])
1311 		return -1;
1312 	return 0;
1313 }
1314 
1315 static void path_count_init(void)
1316 {
1317 	int i;
1318 
1319 	for (i = 0; i < PATH_ARR_SIZE; i++)
1320 		path_count[i] = 0;
1321 }
1322 
1323 static int reverse_path_check_proc(struct hlist_head *refs, int depth)
1324 {
1325 	int error = 0;
1326 	struct epitem *epi;
1327 
1328 	if (depth > EP_MAX_NESTS) /* too deep nesting */
1329 		return -1;
1330 
1331 	/* CTL_DEL can remove links here, but that can't increase our count */
1332 	hlist_for_each_entry_rcu(epi, refs, fllink) {
1333 		struct hlist_head *refs = &epi->ep->refs;
1334 		if (hlist_empty(refs))
1335 			error = path_count_inc(depth);
1336 		else
1337 			error = reverse_path_check_proc(refs, depth + 1);
1338 		if (error != 0)
1339 			break;
1340 	}
1341 	return error;
1342 }
1343 
1344 /**
1345  * reverse_path_check - The tfile_check_list is list of epitem_head, which have
1346  *                      links that are proposed to be newly added. We need to
1347  *                      make sure that those added links don't add too many
1348  *                      paths such that we will spend all our time waking up
1349  *                      eventpoll objects.
1350  *
1351  * Return: %zero if the proposed links don't create too many paths,
1352  *	    %-1 otherwise.
1353  */
1354 static int reverse_path_check(void)
1355 {
1356 	struct epitems_head *p;
1357 
1358 	for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) {
1359 		int error;
1360 		path_count_init();
1361 		rcu_read_lock();
1362 		error = reverse_path_check_proc(&p->epitems, 0);
1363 		rcu_read_unlock();
1364 		if (error)
1365 			return error;
1366 	}
1367 	return 0;
1368 }
1369 
1370 static int ep_create_wakeup_source(struct epitem *epi)
1371 {
1372 	struct name_snapshot n;
1373 	struct wakeup_source *ws;
1374 
1375 	if (!epi->ep->ws) {
1376 		epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1377 		if (!epi->ep->ws)
1378 			return -ENOMEM;
1379 	}
1380 
1381 	take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1382 	ws = wakeup_source_register(NULL, n.name.name);
1383 	release_dentry_name_snapshot(&n);
1384 
1385 	if (!ws)
1386 		return -ENOMEM;
1387 	rcu_assign_pointer(epi->ws, ws);
1388 
1389 	return 0;
1390 }
1391 
1392 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1393 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1394 {
1395 	struct wakeup_source *ws = ep_wakeup_source(epi);
1396 
1397 	RCU_INIT_POINTER(epi->ws, NULL);
1398 
1399 	/*
1400 	 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1401 	 * used internally by wakeup_source_remove, too (called by
1402 	 * wakeup_source_unregister), so we cannot use call_rcu
1403 	 */
1404 	synchronize_rcu();
1405 	wakeup_source_unregister(ws);
1406 }
1407 
1408 static int attach_epitem(struct file *file, struct epitem *epi)
1409 {
1410 	struct epitems_head *to_free = NULL;
1411 	struct hlist_head *head = NULL;
1412 	struct eventpoll *ep = NULL;
1413 
1414 	if (is_file_epoll(file))
1415 		ep = file->private_data;
1416 
1417 	if (ep) {
1418 		head = &ep->refs;
1419 	} else if (!READ_ONCE(file->f_ep)) {
1420 allocate:
1421 		to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL);
1422 		if (!to_free)
1423 			return -ENOMEM;
1424 		head = &to_free->epitems;
1425 	}
1426 	spin_lock(&file->f_lock);
1427 	if (!file->f_ep) {
1428 		if (unlikely(!head)) {
1429 			spin_unlock(&file->f_lock);
1430 			goto allocate;
1431 		}
1432 		file->f_ep = head;
1433 		to_free = NULL;
1434 	}
1435 	hlist_add_head_rcu(&epi->fllink, file->f_ep);
1436 	spin_unlock(&file->f_lock);
1437 	free_ephead(to_free);
1438 	return 0;
1439 }
1440 
1441 /*
1442  * Must be called with "mtx" held.
1443  */
1444 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1445 		     struct file *tfile, int fd, int full_check)
1446 {
1447 	int error, pwake = 0;
1448 	__poll_t revents;
1449 	struct epitem *epi;
1450 	struct ep_pqueue epq;
1451 	struct eventpoll *tep = NULL;
1452 
1453 	if (is_file_epoll(tfile))
1454 		tep = tfile->private_data;
1455 
1456 	lockdep_assert_irqs_enabled();
1457 
1458 	if (unlikely(percpu_counter_compare(&ep->user->epoll_watches,
1459 					    max_user_watches) >= 0))
1460 		return -ENOSPC;
1461 	percpu_counter_inc(&ep->user->epoll_watches);
1462 
1463 	if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) {
1464 		percpu_counter_dec(&ep->user->epoll_watches);
1465 		return -ENOMEM;
1466 	}
1467 
1468 	/* Item initialization follow here ... */
1469 	INIT_LIST_HEAD(&epi->rdllink);
1470 	epi->ep = ep;
1471 	ep_set_ffd(&epi->ffd, tfile, fd);
1472 	epi->event = *event;
1473 	epi->next = EP_UNACTIVE_PTR;
1474 
1475 	if (tep)
1476 		mutex_lock_nested(&tep->mtx, 1);
1477 	/* Add the current item to the list of active epoll hook for this file */
1478 	if (unlikely(attach_epitem(tfile, epi) < 0)) {
1479 		if (tep)
1480 			mutex_unlock(&tep->mtx);
1481 		kmem_cache_free(epi_cache, epi);
1482 		percpu_counter_dec(&ep->user->epoll_watches);
1483 		return -ENOMEM;
1484 	}
1485 
1486 	if (full_check && !tep)
1487 		list_file(tfile);
1488 
1489 	/*
1490 	 * Add the current item to the RB tree. All RB tree operations are
1491 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1492 	 */
1493 	ep_rbtree_insert(ep, epi);
1494 	if (tep)
1495 		mutex_unlock(&tep->mtx);
1496 
1497 	/* now check if we've created too many backpaths */
1498 	if (unlikely(full_check && reverse_path_check())) {
1499 		ep_remove(ep, epi);
1500 		return -EINVAL;
1501 	}
1502 
1503 	if (epi->event.events & EPOLLWAKEUP) {
1504 		error = ep_create_wakeup_source(epi);
1505 		if (error) {
1506 			ep_remove(ep, epi);
1507 			return error;
1508 		}
1509 	}
1510 
1511 	/* Initialize the poll table using the queue callback */
1512 	epq.epi = epi;
1513 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1514 
1515 	/*
1516 	 * Attach the item to the poll hooks and get current event bits.
1517 	 * We can safely use the file* here because its usage count has
1518 	 * been increased by the caller of this function. Note that after
1519 	 * this operation completes, the poll callback can start hitting
1520 	 * the new item.
1521 	 */
1522 	revents = ep_item_poll(epi, &epq.pt, 1);
1523 
1524 	/*
1525 	 * We have to check if something went wrong during the poll wait queue
1526 	 * install process. Namely an allocation for a wait queue failed due
1527 	 * high memory pressure.
1528 	 */
1529 	if (unlikely(!epq.epi)) {
1530 		ep_remove(ep, epi);
1531 		return -ENOMEM;
1532 	}
1533 
1534 	/* We have to drop the new item inside our item list to keep track of it */
1535 	write_lock_irq(&ep->lock);
1536 
1537 	/* record NAPI ID of new item if present */
1538 	ep_set_busy_poll_napi_id(epi);
1539 
1540 	/* If the file is already "ready" we drop it inside the ready list */
1541 	if (revents && !ep_is_linked(epi)) {
1542 		list_add_tail(&epi->rdllink, &ep->rdllist);
1543 		ep_pm_stay_awake(epi);
1544 
1545 		/* Notify waiting tasks that events are available */
1546 		if (waitqueue_active(&ep->wq))
1547 			wake_up(&ep->wq);
1548 		if (waitqueue_active(&ep->poll_wait))
1549 			pwake++;
1550 	}
1551 
1552 	write_unlock_irq(&ep->lock);
1553 
1554 	/* We have to call this outside the lock */
1555 	if (pwake)
1556 		ep_poll_safewake(ep, NULL);
1557 
1558 	return 0;
1559 }
1560 
1561 /*
1562  * Modify the interest event mask by dropping an event if the new mask
1563  * has a match in the current file status. Must be called with "mtx" held.
1564  */
1565 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1566 		     const struct epoll_event *event)
1567 {
1568 	int pwake = 0;
1569 	poll_table pt;
1570 
1571 	lockdep_assert_irqs_enabled();
1572 
1573 	init_poll_funcptr(&pt, NULL);
1574 
1575 	/*
1576 	 * Set the new event interest mask before calling f_op->poll();
1577 	 * otherwise we might miss an event that happens between the
1578 	 * f_op->poll() call and the new event set registering.
1579 	 */
1580 	epi->event.events = event->events; /* need barrier below */
1581 	epi->event.data = event->data; /* protected by mtx */
1582 	if (epi->event.events & EPOLLWAKEUP) {
1583 		if (!ep_has_wakeup_source(epi))
1584 			ep_create_wakeup_source(epi);
1585 	} else if (ep_has_wakeup_source(epi)) {
1586 		ep_destroy_wakeup_source(epi);
1587 	}
1588 
1589 	/*
1590 	 * The following barrier has two effects:
1591 	 *
1592 	 * 1) Flush epi changes above to other CPUs.  This ensures
1593 	 *    we do not miss events from ep_poll_callback if an
1594 	 *    event occurs immediately after we call f_op->poll().
1595 	 *    We need this because we did not take ep->lock while
1596 	 *    changing epi above (but ep_poll_callback does take
1597 	 *    ep->lock).
1598 	 *
1599 	 * 2) We also need to ensure we do not miss _past_ events
1600 	 *    when calling f_op->poll().  This barrier also
1601 	 *    pairs with the barrier in wq_has_sleeper (see
1602 	 *    comments for wq_has_sleeper).
1603 	 *
1604 	 * This barrier will now guarantee ep_poll_callback or f_op->poll
1605 	 * (or both) will notice the readiness of an item.
1606 	 */
1607 	smp_mb();
1608 
1609 	/*
1610 	 * Get current event bits. We can safely use the file* here because
1611 	 * its usage count has been increased by the caller of this function.
1612 	 * If the item is "hot" and it is not registered inside the ready
1613 	 * list, push it inside.
1614 	 */
1615 	if (ep_item_poll(epi, &pt, 1)) {
1616 		write_lock_irq(&ep->lock);
1617 		if (!ep_is_linked(epi)) {
1618 			list_add_tail(&epi->rdllink, &ep->rdllist);
1619 			ep_pm_stay_awake(epi);
1620 
1621 			/* Notify waiting tasks that events are available */
1622 			if (waitqueue_active(&ep->wq))
1623 				wake_up(&ep->wq);
1624 			if (waitqueue_active(&ep->poll_wait))
1625 				pwake++;
1626 		}
1627 		write_unlock_irq(&ep->lock);
1628 	}
1629 
1630 	/* We have to call this outside the lock */
1631 	if (pwake)
1632 		ep_poll_safewake(ep, NULL);
1633 
1634 	return 0;
1635 }
1636 
1637 static int ep_send_events(struct eventpoll *ep,
1638 			  struct epoll_event __user *events, int maxevents)
1639 {
1640 	struct epitem *epi, *tmp;
1641 	LIST_HEAD(txlist);
1642 	poll_table pt;
1643 	int res = 0;
1644 
1645 	/*
1646 	 * Always short-circuit for fatal signals to allow threads to make a
1647 	 * timely exit without the chance of finding more events available and
1648 	 * fetching repeatedly.
1649 	 */
1650 	if (fatal_signal_pending(current))
1651 		return -EINTR;
1652 
1653 	init_poll_funcptr(&pt, NULL);
1654 
1655 	mutex_lock(&ep->mtx);
1656 	ep_start_scan(ep, &txlist);
1657 
1658 	/*
1659 	 * We can loop without lock because we are passed a task private list.
1660 	 * Items cannot vanish during the loop we are holding ep->mtx.
1661 	 */
1662 	list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
1663 		struct wakeup_source *ws;
1664 		__poll_t revents;
1665 
1666 		if (res >= maxevents)
1667 			break;
1668 
1669 		/*
1670 		 * Activate ep->ws before deactivating epi->ws to prevent
1671 		 * triggering auto-suspend here (in case we reactive epi->ws
1672 		 * below).
1673 		 *
1674 		 * This could be rearranged to delay the deactivation of epi->ws
1675 		 * instead, but then epi->ws would temporarily be out of sync
1676 		 * with ep_is_linked().
1677 		 */
1678 		ws = ep_wakeup_source(epi);
1679 		if (ws) {
1680 			if (ws->active)
1681 				__pm_stay_awake(ep->ws);
1682 			__pm_relax(ws);
1683 		}
1684 
1685 		list_del_init(&epi->rdllink);
1686 
1687 		/*
1688 		 * If the event mask intersect the caller-requested one,
1689 		 * deliver the event to userspace. Again, we are holding ep->mtx,
1690 		 * so no operations coming from userspace can change the item.
1691 		 */
1692 		revents = ep_item_poll(epi, &pt, 1);
1693 		if (!revents)
1694 			continue;
1695 
1696 		events = epoll_put_uevent(revents, epi->event.data, events);
1697 		if (!events) {
1698 			list_add(&epi->rdllink, &txlist);
1699 			ep_pm_stay_awake(epi);
1700 			if (!res)
1701 				res = -EFAULT;
1702 			break;
1703 		}
1704 		res++;
1705 		if (epi->event.events & EPOLLONESHOT)
1706 			epi->event.events &= EP_PRIVATE_BITS;
1707 		else if (!(epi->event.events & EPOLLET)) {
1708 			/*
1709 			 * If this file has been added with Level
1710 			 * Trigger mode, we need to insert back inside
1711 			 * the ready list, so that the next call to
1712 			 * epoll_wait() will check again the events
1713 			 * availability. At this point, no one can insert
1714 			 * into ep->rdllist besides us. The epoll_ctl()
1715 			 * callers are locked out by
1716 			 * ep_scan_ready_list() holding "mtx" and the
1717 			 * poll callback will queue them in ep->ovflist.
1718 			 */
1719 			list_add_tail(&epi->rdllink, &ep->rdllist);
1720 			ep_pm_stay_awake(epi);
1721 		}
1722 	}
1723 	ep_done_scan(ep, &txlist);
1724 	mutex_unlock(&ep->mtx);
1725 
1726 	return res;
1727 }
1728 
1729 static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms)
1730 {
1731 	struct timespec64 now;
1732 
1733 	if (ms < 0)
1734 		return NULL;
1735 
1736 	if (!ms) {
1737 		to->tv_sec = 0;
1738 		to->tv_nsec = 0;
1739 		return to;
1740 	}
1741 
1742 	to->tv_sec = ms / MSEC_PER_SEC;
1743 	to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC);
1744 
1745 	ktime_get_ts64(&now);
1746 	*to = timespec64_add_safe(now, *to);
1747 	return to;
1748 }
1749 
1750 /*
1751  * autoremove_wake_function, but remove even on failure to wake up, because we
1752  * know that default_wake_function/ttwu will only fail if the thread is already
1753  * woken, and in that case the ep_poll loop will remove the entry anyways, not
1754  * try to reuse it.
1755  */
1756 static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry,
1757 				       unsigned int mode, int sync, void *key)
1758 {
1759 	int ret = default_wake_function(wq_entry, mode, sync, key);
1760 
1761 	list_del_init(&wq_entry->entry);
1762 	return ret;
1763 }
1764 
1765 /**
1766  * ep_poll - Retrieves ready events, and delivers them to the caller-supplied
1767  *           event buffer.
1768  *
1769  * @ep: Pointer to the eventpoll context.
1770  * @events: Pointer to the userspace buffer where the ready events should be
1771  *          stored.
1772  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1773  * @timeout: Maximum timeout for the ready events fetch operation, in
1774  *           timespec. If the timeout is zero, the function will not block,
1775  *           while if the @timeout ptr is NULL, the function will block
1776  *           until at least one event has been retrieved (or an error
1777  *           occurred).
1778  *
1779  * Return: the number of ready events which have been fetched, or an
1780  *          error code, in case of error.
1781  */
1782 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1783 		   int maxevents, struct timespec64 *timeout)
1784 {
1785 	int res, eavail, timed_out = 0;
1786 	u64 slack = 0;
1787 	wait_queue_entry_t wait;
1788 	ktime_t expires, *to = NULL;
1789 
1790 	lockdep_assert_irqs_enabled();
1791 
1792 	if (timeout && (timeout->tv_sec | timeout->tv_nsec)) {
1793 		slack = select_estimate_accuracy(timeout);
1794 		to = &expires;
1795 		*to = timespec64_to_ktime(*timeout);
1796 	} else if (timeout) {
1797 		/*
1798 		 * Avoid the unnecessary trip to the wait queue loop, if the
1799 		 * caller specified a non blocking operation.
1800 		 */
1801 		timed_out = 1;
1802 	}
1803 
1804 	/*
1805 	 * This call is racy: We may or may not see events that are being added
1806 	 * to the ready list under the lock (e.g., in IRQ callbacks). For cases
1807 	 * with a non-zero timeout, this thread will check the ready list under
1808 	 * lock and will add to the wait queue.  For cases with a zero
1809 	 * timeout, the user by definition should not care and will have to
1810 	 * recheck again.
1811 	 */
1812 	eavail = ep_events_available(ep);
1813 
1814 	while (1) {
1815 		if (eavail) {
1816 			/*
1817 			 * Try to transfer events to user space. In case we get
1818 			 * 0 events and there's still timeout left over, we go
1819 			 * trying again in search of more luck.
1820 			 */
1821 			res = ep_send_events(ep, events, maxevents);
1822 			if (res)
1823 				return res;
1824 		}
1825 
1826 		if (timed_out)
1827 			return 0;
1828 
1829 		eavail = ep_busy_loop(ep, timed_out);
1830 		if (eavail)
1831 			continue;
1832 
1833 		if (signal_pending(current))
1834 			return -EINTR;
1835 
1836 		/*
1837 		 * Internally init_wait() uses autoremove_wake_function(),
1838 		 * thus wait entry is removed from the wait queue on each
1839 		 * wakeup. Why it is important? In case of several waiters
1840 		 * each new wakeup will hit the next waiter, giving it the
1841 		 * chance to harvest new event. Otherwise wakeup can be
1842 		 * lost. This is also good performance-wise, because on
1843 		 * normal wakeup path no need to call __remove_wait_queue()
1844 		 * explicitly, thus ep->lock is not taken, which halts the
1845 		 * event delivery.
1846 		 *
1847 		 * In fact, we now use an even more aggressive function that
1848 		 * unconditionally removes, because we don't reuse the wait
1849 		 * entry between loop iterations. This lets us also avoid the
1850 		 * performance issue if a process is killed, causing all of its
1851 		 * threads to wake up without being removed normally.
1852 		 */
1853 		init_wait(&wait);
1854 		wait.func = ep_autoremove_wake_function;
1855 
1856 		write_lock_irq(&ep->lock);
1857 		/*
1858 		 * Barrierless variant, waitqueue_active() is called under
1859 		 * the same lock on wakeup ep_poll_callback() side, so it
1860 		 * is safe to avoid an explicit barrier.
1861 		 */
1862 		__set_current_state(TASK_INTERRUPTIBLE);
1863 
1864 		/*
1865 		 * Do the final check under the lock. ep_scan_ready_list()
1866 		 * plays with two lists (->rdllist and ->ovflist) and there
1867 		 * is always a race when both lists are empty for short
1868 		 * period of time although events are pending, so lock is
1869 		 * important.
1870 		 */
1871 		eavail = ep_events_available(ep);
1872 		if (!eavail)
1873 			__add_wait_queue_exclusive(&ep->wq, &wait);
1874 
1875 		write_unlock_irq(&ep->lock);
1876 
1877 		if (!eavail)
1878 			timed_out = !schedule_hrtimeout_range(to, slack,
1879 							      HRTIMER_MODE_ABS);
1880 		__set_current_state(TASK_RUNNING);
1881 
1882 		/*
1883 		 * We were woken up, thus go and try to harvest some events.
1884 		 * If timed out and still on the wait queue, recheck eavail
1885 		 * carefully under lock, below.
1886 		 */
1887 		eavail = 1;
1888 
1889 		if (!list_empty_careful(&wait.entry)) {
1890 			write_lock_irq(&ep->lock);
1891 			/*
1892 			 * If the thread timed out and is not on the wait queue,
1893 			 * it means that the thread was woken up after its
1894 			 * timeout expired before it could reacquire the lock.
1895 			 * Thus, when wait.entry is empty, it needs to harvest
1896 			 * events.
1897 			 */
1898 			if (timed_out)
1899 				eavail = list_empty(&wait.entry);
1900 			__remove_wait_queue(&ep->wq, &wait);
1901 			write_unlock_irq(&ep->lock);
1902 		}
1903 	}
1904 }
1905 
1906 /**
1907  * ep_loop_check_proc - verify that adding an epoll file inside another
1908  *                      epoll structure does not violate the constraints, in
1909  *                      terms of closed loops, or too deep chains (which can
1910  *                      result in excessive stack usage).
1911  *
1912  * @ep: the &struct eventpoll to be currently checked.
1913  * @depth: Current depth of the path being checked.
1914  *
1915  * Return: %zero if adding the epoll @file inside current epoll
1916  *          structure @ep does not violate the constraints, or %-1 otherwise.
1917  */
1918 static int ep_loop_check_proc(struct eventpoll *ep, int depth)
1919 {
1920 	int error = 0;
1921 	struct rb_node *rbp;
1922 	struct epitem *epi;
1923 
1924 	mutex_lock_nested(&ep->mtx, depth + 1);
1925 	ep->gen = loop_check_gen;
1926 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1927 		epi = rb_entry(rbp, struct epitem, rbn);
1928 		if (unlikely(is_file_epoll(epi->ffd.file))) {
1929 			struct eventpoll *ep_tovisit;
1930 			ep_tovisit = epi->ffd.file->private_data;
1931 			if (ep_tovisit->gen == loop_check_gen)
1932 				continue;
1933 			if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS)
1934 				error = -1;
1935 			else
1936 				error = ep_loop_check_proc(ep_tovisit, depth + 1);
1937 			if (error != 0)
1938 				break;
1939 		} else {
1940 			/*
1941 			 * If we've reached a file that is not associated with
1942 			 * an ep, then we need to check if the newly added
1943 			 * links are going to add too many wakeup paths. We do
1944 			 * this by adding it to the tfile_check_list, if it's
1945 			 * not already there, and calling reverse_path_check()
1946 			 * during ep_insert().
1947 			 */
1948 			list_file(epi->ffd.file);
1949 		}
1950 	}
1951 	mutex_unlock(&ep->mtx);
1952 
1953 	return error;
1954 }
1955 
1956 /**
1957  * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
1958  *                 into another epoll file (represented by @ep) does not create
1959  *                 closed loops or too deep chains.
1960  *
1961  * @ep: Pointer to the epoll we are inserting into.
1962  * @to: Pointer to the epoll to be inserted.
1963  *
1964  * Return: %zero if adding the epoll @to inside the epoll @from
1965  * does not violate the constraints, or %-1 otherwise.
1966  */
1967 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to)
1968 {
1969 	inserting_into = ep;
1970 	return ep_loop_check_proc(to, 0);
1971 }
1972 
1973 static void clear_tfile_check_list(void)
1974 {
1975 	rcu_read_lock();
1976 	while (tfile_check_list != EP_UNACTIVE_PTR) {
1977 		struct epitems_head *head = tfile_check_list;
1978 		tfile_check_list = head->next;
1979 		unlist_file(head);
1980 	}
1981 	rcu_read_unlock();
1982 }
1983 
1984 /*
1985  * Open an eventpoll file descriptor.
1986  */
1987 static int do_epoll_create(int flags)
1988 {
1989 	int error, fd;
1990 	struct eventpoll *ep = NULL;
1991 	struct file *file;
1992 
1993 	/* Check the EPOLL_* constant for consistency.  */
1994 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1995 
1996 	if (flags & ~EPOLL_CLOEXEC)
1997 		return -EINVAL;
1998 	/*
1999 	 * Create the internal data structure ("struct eventpoll").
2000 	 */
2001 	error = ep_alloc(&ep);
2002 	if (error < 0)
2003 		return error;
2004 	/*
2005 	 * Creates all the items needed to setup an eventpoll file. That is,
2006 	 * a file structure and a free file descriptor.
2007 	 */
2008 	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2009 	if (fd < 0) {
2010 		error = fd;
2011 		goto out_free_ep;
2012 	}
2013 	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2014 				 O_RDWR | (flags & O_CLOEXEC));
2015 	if (IS_ERR(file)) {
2016 		error = PTR_ERR(file);
2017 		goto out_free_fd;
2018 	}
2019 	ep->file = file;
2020 	fd_install(fd, file);
2021 	return fd;
2022 
2023 out_free_fd:
2024 	put_unused_fd(fd);
2025 out_free_ep:
2026 	ep_free(ep);
2027 	return error;
2028 }
2029 
2030 SYSCALL_DEFINE1(epoll_create1, int, flags)
2031 {
2032 	return do_epoll_create(flags);
2033 }
2034 
2035 SYSCALL_DEFINE1(epoll_create, int, size)
2036 {
2037 	if (size <= 0)
2038 		return -EINVAL;
2039 
2040 	return do_epoll_create(0);
2041 }
2042 
2043 static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2044 				   bool nonblock)
2045 {
2046 	if (!nonblock) {
2047 		mutex_lock_nested(mutex, depth);
2048 		return 0;
2049 	}
2050 	if (mutex_trylock(mutex))
2051 		return 0;
2052 	return -EAGAIN;
2053 }
2054 
2055 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2056 		 bool nonblock)
2057 {
2058 	int error;
2059 	int full_check = 0;
2060 	struct fd f, tf;
2061 	struct eventpoll *ep;
2062 	struct epitem *epi;
2063 	struct eventpoll *tep = NULL;
2064 
2065 	error = -EBADF;
2066 	f = fdget(epfd);
2067 	if (!f.file)
2068 		goto error_return;
2069 
2070 	/* Get the "struct file *" for the target file */
2071 	tf = fdget(fd);
2072 	if (!tf.file)
2073 		goto error_fput;
2074 
2075 	/* The target file descriptor must support poll */
2076 	error = -EPERM;
2077 	if (!file_can_poll(tf.file))
2078 		goto error_tgt_fput;
2079 
2080 	/* Check if EPOLLWAKEUP is allowed */
2081 	if (ep_op_has_event(op))
2082 		ep_take_care_of_epollwakeup(epds);
2083 
2084 	/*
2085 	 * We have to check that the file structure underneath the file descriptor
2086 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
2087 	 * adding an epoll file descriptor inside itself.
2088 	 */
2089 	error = -EINVAL;
2090 	if (f.file == tf.file || !is_file_epoll(f.file))
2091 		goto error_tgt_fput;
2092 
2093 	/*
2094 	 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2095 	 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2096 	 * Also, we do not currently supported nested exclusive wakeups.
2097 	 */
2098 	if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2099 		if (op == EPOLL_CTL_MOD)
2100 			goto error_tgt_fput;
2101 		if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2102 				(epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2103 			goto error_tgt_fput;
2104 	}
2105 
2106 	/*
2107 	 * At this point it is safe to assume that the "private_data" contains
2108 	 * our own data structure.
2109 	 */
2110 	ep = f.file->private_data;
2111 
2112 	/*
2113 	 * When we insert an epoll file descriptor inside another epoll file
2114 	 * descriptor, there is the chance of creating closed loops, which are
2115 	 * better be handled here, than in more critical paths. While we are
2116 	 * checking for loops we also determine the list of files reachable
2117 	 * and hang them on the tfile_check_list, so we can check that we
2118 	 * haven't created too many possible wakeup paths.
2119 	 *
2120 	 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2121 	 * the epoll file descriptor is attaching directly to a wakeup source,
2122 	 * unless the epoll file descriptor is nested. The purpose of taking the
2123 	 * 'epmutex' on add is to prevent complex toplogies such as loops and
2124 	 * deep wakeup paths from forming in parallel through multiple
2125 	 * EPOLL_CTL_ADD operations.
2126 	 */
2127 	error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2128 	if (error)
2129 		goto error_tgt_fput;
2130 	if (op == EPOLL_CTL_ADD) {
2131 		if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen ||
2132 		    is_file_epoll(tf.file)) {
2133 			mutex_unlock(&ep->mtx);
2134 			error = epoll_mutex_lock(&epmutex, 0, nonblock);
2135 			if (error)
2136 				goto error_tgt_fput;
2137 			loop_check_gen++;
2138 			full_check = 1;
2139 			if (is_file_epoll(tf.file)) {
2140 				tep = tf.file->private_data;
2141 				error = -ELOOP;
2142 				if (ep_loop_check(ep, tep) != 0)
2143 					goto error_tgt_fput;
2144 			}
2145 			error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2146 			if (error)
2147 				goto error_tgt_fput;
2148 		}
2149 	}
2150 
2151 	/*
2152 	 * Try to lookup the file inside our RB tree. Since we grabbed "mtx"
2153 	 * above, we can be sure to be able to use the item looked up by
2154 	 * ep_find() till we release the mutex.
2155 	 */
2156 	epi = ep_find(ep, tf.file, fd);
2157 
2158 	error = -EINVAL;
2159 	switch (op) {
2160 	case EPOLL_CTL_ADD:
2161 		if (!epi) {
2162 			epds->events |= EPOLLERR | EPOLLHUP;
2163 			error = ep_insert(ep, epds, tf.file, fd, full_check);
2164 		} else
2165 			error = -EEXIST;
2166 		break;
2167 	case EPOLL_CTL_DEL:
2168 		if (epi)
2169 			error = ep_remove(ep, epi);
2170 		else
2171 			error = -ENOENT;
2172 		break;
2173 	case EPOLL_CTL_MOD:
2174 		if (epi) {
2175 			if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2176 				epds->events |= EPOLLERR | EPOLLHUP;
2177 				error = ep_modify(ep, epi, epds);
2178 			}
2179 		} else
2180 			error = -ENOENT;
2181 		break;
2182 	}
2183 	mutex_unlock(&ep->mtx);
2184 
2185 error_tgt_fput:
2186 	if (full_check) {
2187 		clear_tfile_check_list();
2188 		loop_check_gen++;
2189 		mutex_unlock(&epmutex);
2190 	}
2191 
2192 	fdput(tf);
2193 error_fput:
2194 	fdput(f);
2195 error_return:
2196 
2197 	return error;
2198 }
2199 
2200 /*
2201  * The following function implements the controller interface for
2202  * the eventpoll file that enables the insertion/removal/change of
2203  * file descriptors inside the interest set.
2204  */
2205 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2206 		struct epoll_event __user *, event)
2207 {
2208 	struct epoll_event epds;
2209 
2210 	if (ep_op_has_event(op) &&
2211 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
2212 		return -EFAULT;
2213 
2214 	return do_epoll_ctl(epfd, op, fd, &epds, false);
2215 }
2216 
2217 /*
2218  * Implement the event wait interface for the eventpoll file. It is the kernel
2219  * part of the user space epoll_wait(2).
2220  */
2221 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2222 			 int maxevents, struct timespec64 *to)
2223 {
2224 	int error;
2225 	struct fd f;
2226 	struct eventpoll *ep;
2227 
2228 	/* The maximum number of event must be greater than zero */
2229 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2230 		return -EINVAL;
2231 
2232 	/* Verify that the area passed by the user is writeable */
2233 	if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2234 		return -EFAULT;
2235 
2236 	/* Get the "struct file *" for the eventpoll file */
2237 	f = fdget(epfd);
2238 	if (!f.file)
2239 		return -EBADF;
2240 
2241 	/*
2242 	 * We have to check that the file structure underneath the fd
2243 	 * the user passed to us _is_ an eventpoll file.
2244 	 */
2245 	error = -EINVAL;
2246 	if (!is_file_epoll(f.file))
2247 		goto error_fput;
2248 
2249 	/*
2250 	 * At this point it is safe to assume that the "private_data" contains
2251 	 * our own data structure.
2252 	 */
2253 	ep = f.file->private_data;
2254 
2255 	/* Time to fish for events ... */
2256 	error = ep_poll(ep, events, maxevents, to);
2257 
2258 error_fput:
2259 	fdput(f);
2260 	return error;
2261 }
2262 
2263 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2264 		int, maxevents, int, timeout)
2265 {
2266 	struct timespec64 to;
2267 
2268 	return do_epoll_wait(epfd, events, maxevents,
2269 			     ep_timeout_to_timespec(&to, timeout));
2270 }
2271 
2272 /*
2273  * Implement the event wait interface for the eventpoll file. It is the kernel
2274  * part of the user space epoll_pwait(2).
2275  */
2276 static int do_epoll_pwait(int epfd, struct epoll_event __user *events,
2277 			  int maxevents, struct timespec64 *to,
2278 			  const sigset_t __user *sigmask, size_t sigsetsize)
2279 {
2280 	int error;
2281 
2282 	/*
2283 	 * If the caller wants a certain signal mask to be set during the wait,
2284 	 * we apply it here.
2285 	 */
2286 	error = set_user_sigmask(sigmask, sigsetsize);
2287 	if (error)
2288 		return error;
2289 
2290 	error = do_epoll_wait(epfd, events, maxevents, to);
2291 
2292 	restore_saved_sigmask_unless(error == -EINTR);
2293 
2294 	return error;
2295 }
2296 
2297 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2298 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2299 		size_t, sigsetsize)
2300 {
2301 	struct timespec64 to;
2302 
2303 	return do_epoll_pwait(epfd, events, maxevents,
2304 			      ep_timeout_to_timespec(&to, timeout),
2305 			      sigmask, sigsetsize);
2306 }
2307 
2308 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events,
2309 		int, maxevents, const struct __kernel_timespec __user *, timeout,
2310 		const sigset_t __user *, sigmask, size_t, sigsetsize)
2311 {
2312 	struct timespec64 ts, *to = NULL;
2313 
2314 	if (timeout) {
2315 		if (get_timespec64(&ts, timeout))
2316 			return -EFAULT;
2317 		to = &ts;
2318 		if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2319 			return -EINVAL;
2320 	}
2321 
2322 	return do_epoll_pwait(epfd, events, maxevents, to,
2323 			      sigmask, sigsetsize);
2324 }
2325 
2326 #ifdef CONFIG_COMPAT
2327 static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events,
2328 				 int maxevents, struct timespec64 *timeout,
2329 				 const compat_sigset_t __user *sigmask,
2330 				 compat_size_t sigsetsize)
2331 {
2332 	long err;
2333 
2334 	/*
2335 	 * If the caller wants a certain signal mask to be set during the wait,
2336 	 * we apply it here.
2337 	 */
2338 	err = set_compat_user_sigmask(sigmask, sigsetsize);
2339 	if (err)
2340 		return err;
2341 
2342 	err = do_epoll_wait(epfd, events, maxevents, timeout);
2343 
2344 	restore_saved_sigmask_unless(err == -EINTR);
2345 
2346 	return err;
2347 }
2348 
2349 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2350 		       struct epoll_event __user *, events,
2351 		       int, maxevents, int, timeout,
2352 		       const compat_sigset_t __user *, sigmask,
2353 		       compat_size_t, sigsetsize)
2354 {
2355 	struct timespec64 to;
2356 
2357 	return do_compat_epoll_pwait(epfd, events, maxevents,
2358 				     ep_timeout_to_timespec(&to, timeout),
2359 				     sigmask, sigsetsize);
2360 }
2361 
2362 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd,
2363 		       struct epoll_event __user *, events,
2364 		       int, maxevents,
2365 		       const struct __kernel_timespec __user *, timeout,
2366 		       const compat_sigset_t __user *, sigmask,
2367 		       compat_size_t, sigsetsize)
2368 {
2369 	struct timespec64 ts, *to = NULL;
2370 
2371 	if (timeout) {
2372 		if (get_timespec64(&ts, timeout))
2373 			return -EFAULT;
2374 		to = &ts;
2375 		if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2376 			return -EINVAL;
2377 	}
2378 
2379 	return do_compat_epoll_pwait(epfd, events, maxevents, to,
2380 				     sigmask, sigsetsize);
2381 }
2382 
2383 #endif
2384 
2385 static int __init eventpoll_init(void)
2386 {
2387 	struct sysinfo si;
2388 
2389 	si_meminfo(&si);
2390 	/*
2391 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2392 	 */
2393 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2394 		EP_ITEM_COST;
2395 	BUG_ON(max_user_watches < 0);
2396 
2397 	/*
2398 	 * We can have many thousands of epitems, so prevent this from
2399 	 * using an extra cache line on 64-bit (and smaller) CPUs
2400 	 */
2401 	BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2402 
2403 	/* Allocates slab cache used to allocate "struct epitem" items */
2404 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2405 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2406 
2407 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
2408 	pwq_cache = kmem_cache_create("eventpoll_pwq",
2409 		sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2410 	epoll_sysctls_init();
2411 
2412 	ephead_cache = kmem_cache_create("ep_head",
2413 		sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2414 
2415 	return 0;
2416 }
2417 fs_initcall(eventpoll_init);
2418