xref: /openbmc/linux/fs/eventpoll.c (revision 7b73a9c8)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  fs/eventpoll.c (Efficient event retrieval implementation)
4  *  Copyright (C) 2001,...,2009	 Davide Libenzi
5  *
6  *  Davide Libenzi <davidel@xmailserver.org>
7  */
8 
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/uaccess.h>
33 #include <asm/io.h>
34 #include <asm/mman.h>
35 #include <linux/atomic.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/compat.h>
39 #include <linux/rculist.h>
40 #include <net/busy_poll.h>
41 
42 /*
43  * LOCKING:
44  * There are three level of locking required by epoll :
45  *
46  * 1) epmutex (mutex)
47  * 2) ep->mtx (mutex)
48  * 3) ep->lock (rwlock)
49  *
50  * The acquire order is the one listed above, from 1 to 3.
51  * We need a rwlock (ep->lock) because we manipulate objects
52  * from inside the poll callback, that might be triggered from
53  * a wake_up() that in turn might be called from IRQ context.
54  * So we can't sleep inside the poll callback and hence we need
55  * a spinlock. During the event transfer loop (from kernel to
56  * user space) we could end up sleeping due a copy_to_user(), so
57  * we need a lock that will allow us to sleep. This lock is a
58  * mutex (ep->mtx). It is acquired during the event transfer loop,
59  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60  * Then we also need a global mutex to serialize eventpoll_release_file()
61  * and ep_free().
62  * This mutex is acquired by ep_free() during the epoll file
63  * cleanup path and it is also acquired by eventpoll_release_file()
64  * if a file has been pushed inside an epoll set and it is then
65  * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
66  * It is also acquired when inserting an epoll fd onto another epoll
67  * fd. We do this so that we walk the epoll tree and ensure that this
68  * insertion does not create a cycle of epoll file descriptors, which
69  * could lead to deadlock. We need a global mutex to prevent two
70  * simultaneous inserts (A into B and B into A) from racing and
71  * constructing a cycle without either insert observing that it is
72  * going to.
73  * It is necessary to acquire multiple "ep->mtx"es at once in the
74  * case when one epoll fd is added to another. In this case, we
75  * always acquire the locks in the order of nesting (i.e. after
76  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
77  * before e2->mtx). Since we disallow cycles of epoll file
78  * descriptors, this ensures that the mutexes are well-ordered. In
79  * order to communicate this nesting to lockdep, when walking a tree
80  * of epoll file descriptors, we use the current recursion depth as
81  * the lockdep subkey.
82  * It is possible to drop the "ep->mtx" and to use the global
83  * mutex "epmutex" (together with "ep->lock") to have it working,
84  * but having "ep->mtx" will make the interface more scalable.
85  * Events that require holding "epmutex" are very rare, while for
86  * normal operations the epoll private "ep->mtx" will guarantee
87  * a better scalability.
88  */
89 
90 /* Epoll private bits inside the event mask */
91 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
92 
93 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
94 
95 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
96 				EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
97 
98 /* Maximum number of nesting allowed inside epoll sets */
99 #define EP_MAX_NESTS 4
100 
101 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
102 
103 #define EP_UNACTIVE_PTR ((void *) -1L)
104 
105 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
106 
107 struct epoll_filefd {
108 	struct file *file;
109 	int fd;
110 } __packed;
111 
112 /*
113  * Structure used to track possible nested calls, for too deep recursions
114  * and loop cycles.
115  */
116 struct nested_call_node {
117 	struct list_head llink;
118 	void *cookie;
119 	void *ctx;
120 };
121 
122 /*
123  * This structure is used as collector for nested calls, to check for
124  * maximum recursion dept and loop cycles.
125  */
126 struct nested_calls {
127 	struct list_head tasks_call_list;
128 	spinlock_t lock;
129 };
130 
131 /*
132  * Each file descriptor added to the eventpoll interface will
133  * have an entry of this type linked to the "rbr" RB tree.
134  * Avoid increasing the size of this struct, there can be many thousands
135  * of these on a server and we do not want this to take another cache line.
136  */
137 struct epitem {
138 	union {
139 		/* RB tree node links this structure to the eventpoll RB tree */
140 		struct rb_node rbn;
141 		/* Used to free the struct epitem */
142 		struct rcu_head rcu;
143 	};
144 
145 	/* List header used to link this structure to the eventpoll ready list */
146 	struct list_head rdllink;
147 
148 	/*
149 	 * Works together "struct eventpoll"->ovflist in keeping the
150 	 * single linked chain of items.
151 	 */
152 	struct epitem *next;
153 
154 	/* The file descriptor information this item refers to */
155 	struct epoll_filefd ffd;
156 
157 	/* Number of active wait queue attached to poll operations */
158 	int nwait;
159 
160 	/* List containing poll wait queues */
161 	struct list_head pwqlist;
162 
163 	/* The "container" of this item */
164 	struct eventpoll *ep;
165 
166 	/* List header used to link this item to the "struct file" items list */
167 	struct list_head fllink;
168 
169 	/* wakeup_source used when EPOLLWAKEUP is set */
170 	struct wakeup_source __rcu *ws;
171 
172 	/* The structure that describe the interested events and the source fd */
173 	struct epoll_event event;
174 };
175 
176 /*
177  * This structure is stored inside the "private_data" member of the file
178  * structure and represents the main data structure for the eventpoll
179  * interface.
180  */
181 struct eventpoll {
182 	/*
183 	 * This mutex is used to ensure that files are not removed
184 	 * while epoll is using them. This is held during the event
185 	 * collection loop, the file cleanup path, the epoll file exit
186 	 * code and the ctl operations.
187 	 */
188 	struct mutex mtx;
189 
190 	/* Wait queue used by sys_epoll_wait() */
191 	wait_queue_head_t wq;
192 
193 	/* Wait queue used by file->poll() */
194 	wait_queue_head_t poll_wait;
195 
196 	/* List of ready file descriptors */
197 	struct list_head rdllist;
198 
199 	/* Lock which protects rdllist and ovflist */
200 	rwlock_t lock;
201 
202 	/* RB tree root used to store monitored fd structs */
203 	struct rb_root_cached rbr;
204 
205 	/*
206 	 * This is a single linked list that chains all the "struct epitem" that
207 	 * happened while transferring ready events to userspace w/out
208 	 * holding ->lock.
209 	 */
210 	struct epitem *ovflist;
211 
212 	/* wakeup_source used when ep_scan_ready_list is running */
213 	struct wakeup_source *ws;
214 
215 	/* The user that created the eventpoll descriptor */
216 	struct user_struct *user;
217 
218 	struct file *file;
219 
220 	/* used to optimize loop detection check */
221 	int visited;
222 	struct list_head visited_list_link;
223 
224 #ifdef CONFIG_NET_RX_BUSY_POLL
225 	/* used to track busy poll napi_id */
226 	unsigned int napi_id;
227 #endif
228 };
229 
230 /* Wait structure used by the poll hooks */
231 struct eppoll_entry {
232 	/* List header used to link this structure to the "struct epitem" */
233 	struct list_head llink;
234 
235 	/* The "base" pointer is set to the container "struct epitem" */
236 	struct epitem *base;
237 
238 	/*
239 	 * Wait queue item that will be linked to the target file wait
240 	 * queue head.
241 	 */
242 	wait_queue_entry_t wait;
243 
244 	/* The wait queue head that linked the "wait" wait queue item */
245 	wait_queue_head_t *whead;
246 };
247 
248 /* Wrapper struct used by poll queueing */
249 struct ep_pqueue {
250 	poll_table pt;
251 	struct epitem *epi;
252 };
253 
254 /* Used by the ep_send_events() function as callback private data */
255 struct ep_send_events_data {
256 	int maxevents;
257 	struct epoll_event __user *events;
258 	int res;
259 };
260 
261 /*
262  * Configuration options available inside /proc/sys/fs/epoll/
263  */
264 /* Maximum number of epoll watched descriptors, per user */
265 static long max_user_watches __read_mostly;
266 
267 /*
268  * This mutex is used to serialize ep_free() and eventpoll_release_file().
269  */
270 static DEFINE_MUTEX(epmutex);
271 
272 /* Used to check for epoll file descriptor inclusion loops */
273 static struct nested_calls poll_loop_ncalls;
274 
275 /* Slab cache used to allocate "struct epitem" */
276 static struct kmem_cache *epi_cache __read_mostly;
277 
278 /* Slab cache used to allocate "struct eppoll_entry" */
279 static struct kmem_cache *pwq_cache __read_mostly;
280 
281 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
282 static LIST_HEAD(visited_list);
283 
284 /*
285  * List of files with newly added links, where we may need to limit the number
286  * of emanating paths. Protected by the epmutex.
287  */
288 static LIST_HEAD(tfile_check_list);
289 
290 #ifdef CONFIG_SYSCTL
291 
292 #include <linux/sysctl.h>
293 
294 static long long_zero;
295 static long long_max = LONG_MAX;
296 
297 struct ctl_table epoll_table[] = {
298 	{
299 		.procname	= "max_user_watches",
300 		.data		= &max_user_watches,
301 		.maxlen		= sizeof(max_user_watches),
302 		.mode		= 0644,
303 		.proc_handler	= proc_doulongvec_minmax,
304 		.extra1		= &long_zero,
305 		.extra2		= &long_max,
306 	},
307 	{ }
308 };
309 #endif /* CONFIG_SYSCTL */
310 
311 static const struct file_operations eventpoll_fops;
312 
313 static inline int is_file_epoll(struct file *f)
314 {
315 	return f->f_op == &eventpoll_fops;
316 }
317 
318 /* Setup the structure that is used as key for the RB tree */
319 static inline void ep_set_ffd(struct epoll_filefd *ffd,
320 			      struct file *file, int fd)
321 {
322 	ffd->file = file;
323 	ffd->fd = fd;
324 }
325 
326 /* Compare RB tree keys */
327 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
328 			     struct epoll_filefd *p2)
329 {
330 	return (p1->file > p2->file ? +1:
331 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
332 }
333 
334 /* Tells us if the item is currently linked */
335 static inline int ep_is_linked(struct epitem *epi)
336 {
337 	return !list_empty(&epi->rdllink);
338 }
339 
340 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
341 {
342 	return container_of(p, struct eppoll_entry, wait);
343 }
344 
345 /* Get the "struct epitem" from a wait queue pointer */
346 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
347 {
348 	return container_of(p, struct eppoll_entry, wait)->base;
349 }
350 
351 /* Get the "struct epitem" from an epoll queue wrapper */
352 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
353 {
354 	return container_of(p, struct ep_pqueue, pt)->epi;
355 }
356 
357 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
358 static inline int ep_op_has_event(int op)
359 {
360 	return op != EPOLL_CTL_DEL;
361 }
362 
363 /* Initialize the poll safe wake up structure */
364 static void ep_nested_calls_init(struct nested_calls *ncalls)
365 {
366 	INIT_LIST_HEAD(&ncalls->tasks_call_list);
367 	spin_lock_init(&ncalls->lock);
368 }
369 
370 /**
371  * ep_events_available - Checks if ready events might be available.
372  *
373  * @ep: Pointer to the eventpoll context.
374  *
375  * Returns: Returns a value different than zero if ready events are available,
376  *          or zero otherwise.
377  */
378 static inline int ep_events_available(struct eventpoll *ep)
379 {
380 	return !list_empty_careful(&ep->rdllist) ||
381 		READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
382 }
383 
384 #ifdef CONFIG_NET_RX_BUSY_POLL
385 static bool ep_busy_loop_end(void *p, unsigned long start_time)
386 {
387 	struct eventpoll *ep = p;
388 
389 	return ep_events_available(ep) || busy_loop_timeout(start_time);
390 }
391 
392 /*
393  * Busy poll if globally on and supporting sockets found && no events,
394  * busy loop will return if need_resched or ep_events_available.
395  *
396  * we must do our busy polling with irqs enabled
397  */
398 static void ep_busy_loop(struct eventpoll *ep, int nonblock)
399 {
400 	unsigned int napi_id = READ_ONCE(ep->napi_id);
401 
402 	if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
403 		napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep);
404 }
405 
406 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
407 {
408 	if (ep->napi_id)
409 		ep->napi_id = 0;
410 }
411 
412 /*
413  * Set epoll busy poll NAPI ID from sk.
414  */
415 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
416 {
417 	struct eventpoll *ep;
418 	unsigned int napi_id;
419 	struct socket *sock;
420 	struct sock *sk;
421 	int err;
422 
423 	if (!net_busy_loop_on())
424 		return;
425 
426 	sock = sock_from_file(epi->ffd.file, &err);
427 	if (!sock)
428 		return;
429 
430 	sk = sock->sk;
431 	if (!sk)
432 		return;
433 
434 	napi_id = READ_ONCE(sk->sk_napi_id);
435 	ep = epi->ep;
436 
437 	/* Non-NAPI IDs can be rejected
438 	 *	or
439 	 * Nothing to do if we already have this ID
440 	 */
441 	if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
442 		return;
443 
444 	/* record NAPI ID for use in next busy poll */
445 	ep->napi_id = napi_id;
446 }
447 
448 #else
449 
450 static inline void ep_busy_loop(struct eventpoll *ep, int nonblock)
451 {
452 }
453 
454 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
455 {
456 }
457 
458 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
459 {
460 }
461 
462 #endif /* CONFIG_NET_RX_BUSY_POLL */
463 
464 /**
465  * ep_call_nested - Perform a bound (possibly) nested call, by checking
466  *                  that the recursion limit is not exceeded, and that
467  *                  the same nested call (by the meaning of same cookie) is
468  *                  no re-entered.
469  *
470  * @ncalls: Pointer to the nested_calls structure to be used for this call.
471  * @nproc: Nested call core function pointer.
472  * @priv: Opaque data to be passed to the @nproc callback.
473  * @cookie: Cookie to be used to identify this nested call.
474  * @ctx: This instance context.
475  *
476  * Returns: Returns the code returned by the @nproc callback, or -1 if
477  *          the maximum recursion limit has been exceeded.
478  */
479 static int ep_call_nested(struct nested_calls *ncalls,
480 			  int (*nproc)(void *, void *, int), void *priv,
481 			  void *cookie, void *ctx)
482 {
483 	int error, call_nests = 0;
484 	unsigned long flags;
485 	struct list_head *lsthead = &ncalls->tasks_call_list;
486 	struct nested_call_node *tncur;
487 	struct nested_call_node tnode;
488 
489 	spin_lock_irqsave(&ncalls->lock, flags);
490 
491 	/*
492 	 * Try to see if the current task is already inside this wakeup call.
493 	 * We use a list here, since the population inside this set is always
494 	 * very much limited.
495 	 */
496 	list_for_each_entry(tncur, lsthead, llink) {
497 		if (tncur->ctx == ctx &&
498 		    (tncur->cookie == cookie || ++call_nests > EP_MAX_NESTS)) {
499 			/*
500 			 * Ops ... loop detected or maximum nest level reached.
501 			 * We abort this wake by breaking the cycle itself.
502 			 */
503 			error = -1;
504 			goto out_unlock;
505 		}
506 	}
507 
508 	/* Add the current task and cookie to the list */
509 	tnode.ctx = ctx;
510 	tnode.cookie = cookie;
511 	list_add(&tnode.llink, lsthead);
512 
513 	spin_unlock_irqrestore(&ncalls->lock, flags);
514 
515 	/* Call the nested function */
516 	error = (*nproc)(priv, cookie, call_nests);
517 
518 	/* Remove the current task from the list */
519 	spin_lock_irqsave(&ncalls->lock, flags);
520 	list_del(&tnode.llink);
521 out_unlock:
522 	spin_unlock_irqrestore(&ncalls->lock, flags);
523 
524 	return error;
525 }
526 
527 /*
528  * As described in commit 0ccf831cb lockdep: annotate epoll
529  * the use of wait queues used by epoll is done in a very controlled
530  * manner. Wake ups can nest inside each other, but are never done
531  * with the same locking. For example:
532  *
533  *   dfd = socket(...);
534  *   efd1 = epoll_create();
535  *   efd2 = epoll_create();
536  *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
537  *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
538  *
539  * When a packet arrives to the device underneath "dfd", the net code will
540  * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
541  * callback wakeup entry on that queue, and the wake_up() performed by the
542  * "dfd" net code will end up in ep_poll_callback(). At this point epoll
543  * (efd1) notices that it may have some event ready, so it needs to wake up
544  * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
545  * that ends up in another wake_up(), after having checked about the
546  * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
547  * avoid stack blasting.
548  *
549  * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
550  * this special case of epoll.
551  */
552 #ifdef CONFIG_DEBUG_LOCK_ALLOC
553 
554 static DEFINE_PER_CPU(int, wakeup_nest);
555 
556 static void ep_poll_safewake(wait_queue_head_t *wq)
557 {
558 	unsigned long flags;
559 	int subclass;
560 
561 	local_irq_save(flags);
562 	preempt_disable();
563 	subclass = __this_cpu_read(wakeup_nest);
564 	spin_lock_nested(&wq->lock, subclass + 1);
565 	__this_cpu_inc(wakeup_nest);
566 	wake_up_locked_poll(wq, POLLIN);
567 	__this_cpu_dec(wakeup_nest);
568 	spin_unlock(&wq->lock);
569 	local_irq_restore(flags);
570 	preempt_enable();
571 }
572 
573 #else
574 
575 static void ep_poll_safewake(wait_queue_head_t *wq)
576 {
577 	wake_up_poll(wq, EPOLLIN);
578 }
579 
580 #endif
581 
582 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
583 {
584 	wait_queue_head_t *whead;
585 
586 	rcu_read_lock();
587 	/*
588 	 * If it is cleared by POLLFREE, it should be rcu-safe.
589 	 * If we read NULL we need a barrier paired with
590 	 * smp_store_release() in ep_poll_callback(), otherwise
591 	 * we rely on whead->lock.
592 	 */
593 	whead = smp_load_acquire(&pwq->whead);
594 	if (whead)
595 		remove_wait_queue(whead, &pwq->wait);
596 	rcu_read_unlock();
597 }
598 
599 /*
600  * This function unregisters poll callbacks from the associated file
601  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
602  * ep_free).
603  */
604 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
605 {
606 	struct list_head *lsthead = &epi->pwqlist;
607 	struct eppoll_entry *pwq;
608 
609 	while (!list_empty(lsthead)) {
610 		pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
611 
612 		list_del(&pwq->llink);
613 		ep_remove_wait_queue(pwq);
614 		kmem_cache_free(pwq_cache, pwq);
615 	}
616 }
617 
618 /* call only when ep->mtx is held */
619 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
620 {
621 	return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
622 }
623 
624 /* call only when ep->mtx is held */
625 static inline void ep_pm_stay_awake(struct epitem *epi)
626 {
627 	struct wakeup_source *ws = ep_wakeup_source(epi);
628 
629 	if (ws)
630 		__pm_stay_awake(ws);
631 }
632 
633 static inline bool ep_has_wakeup_source(struct epitem *epi)
634 {
635 	return rcu_access_pointer(epi->ws) ? true : false;
636 }
637 
638 /* call when ep->mtx cannot be held (ep_poll_callback) */
639 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
640 {
641 	struct wakeup_source *ws;
642 
643 	rcu_read_lock();
644 	ws = rcu_dereference(epi->ws);
645 	if (ws)
646 		__pm_stay_awake(ws);
647 	rcu_read_unlock();
648 }
649 
650 /**
651  * ep_scan_ready_list - Scans the ready list in a way that makes possible for
652  *                      the scan code, to call f_op->poll(). Also allows for
653  *                      O(NumReady) performance.
654  *
655  * @ep: Pointer to the epoll private data structure.
656  * @sproc: Pointer to the scan callback.
657  * @priv: Private opaque data passed to the @sproc callback.
658  * @depth: The current depth of recursive f_op->poll calls.
659  * @ep_locked: caller already holds ep->mtx
660  *
661  * Returns: The same integer error code returned by the @sproc callback.
662  */
663 static __poll_t ep_scan_ready_list(struct eventpoll *ep,
664 			      __poll_t (*sproc)(struct eventpoll *,
665 					   struct list_head *, void *),
666 			      void *priv, int depth, bool ep_locked)
667 {
668 	__poll_t res;
669 	struct epitem *epi, *nepi;
670 	LIST_HEAD(txlist);
671 
672 	lockdep_assert_irqs_enabled();
673 
674 	/*
675 	 * We need to lock this because we could be hit by
676 	 * eventpoll_release_file() and epoll_ctl().
677 	 */
678 
679 	if (!ep_locked)
680 		mutex_lock_nested(&ep->mtx, depth);
681 
682 	/*
683 	 * Steal the ready list, and re-init the original one to the
684 	 * empty list. Also, set ep->ovflist to NULL so that events
685 	 * happening while looping w/out locks, are not lost. We cannot
686 	 * have the poll callback to queue directly on ep->rdllist,
687 	 * because we want the "sproc" callback to be able to do it
688 	 * in a lockless way.
689 	 */
690 	write_lock_irq(&ep->lock);
691 	list_splice_init(&ep->rdllist, &txlist);
692 	WRITE_ONCE(ep->ovflist, NULL);
693 	write_unlock_irq(&ep->lock);
694 
695 	/*
696 	 * Now call the callback function.
697 	 */
698 	res = (*sproc)(ep, &txlist, priv);
699 
700 	write_lock_irq(&ep->lock);
701 	/*
702 	 * During the time we spent inside the "sproc" callback, some
703 	 * other events might have been queued by the poll callback.
704 	 * We re-insert them inside the main ready-list here.
705 	 */
706 	for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
707 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
708 		/*
709 		 * We need to check if the item is already in the list.
710 		 * During the "sproc" callback execution time, items are
711 		 * queued into ->ovflist but the "txlist" might already
712 		 * contain them, and the list_splice() below takes care of them.
713 		 */
714 		if (!ep_is_linked(epi)) {
715 			/*
716 			 * ->ovflist is LIFO, so we have to reverse it in order
717 			 * to keep in FIFO.
718 			 */
719 			list_add(&epi->rdllink, &ep->rdllist);
720 			ep_pm_stay_awake(epi);
721 		}
722 	}
723 	/*
724 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
725 	 * releasing the lock, events will be queued in the normal way inside
726 	 * ep->rdllist.
727 	 */
728 	WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
729 
730 	/*
731 	 * Quickly re-inject items left on "txlist".
732 	 */
733 	list_splice(&txlist, &ep->rdllist);
734 	__pm_relax(ep->ws);
735 	write_unlock_irq(&ep->lock);
736 
737 	if (!ep_locked)
738 		mutex_unlock(&ep->mtx);
739 
740 	return res;
741 }
742 
743 static void epi_rcu_free(struct rcu_head *head)
744 {
745 	struct epitem *epi = container_of(head, struct epitem, rcu);
746 	kmem_cache_free(epi_cache, epi);
747 }
748 
749 /*
750  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
751  * all the associated resources. Must be called with "mtx" held.
752  */
753 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
754 {
755 	struct file *file = epi->ffd.file;
756 
757 	lockdep_assert_irqs_enabled();
758 
759 	/*
760 	 * Removes poll wait queue hooks.
761 	 */
762 	ep_unregister_pollwait(ep, epi);
763 
764 	/* Remove the current item from the list of epoll hooks */
765 	spin_lock(&file->f_lock);
766 	list_del_rcu(&epi->fllink);
767 	spin_unlock(&file->f_lock);
768 
769 	rb_erase_cached(&epi->rbn, &ep->rbr);
770 
771 	write_lock_irq(&ep->lock);
772 	if (ep_is_linked(epi))
773 		list_del_init(&epi->rdllink);
774 	write_unlock_irq(&ep->lock);
775 
776 	wakeup_source_unregister(ep_wakeup_source(epi));
777 	/*
778 	 * At this point it is safe to free the eventpoll item. Use the union
779 	 * field epi->rcu, since we are trying to minimize the size of
780 	 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
781 	 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
782 	 * use of the rbn field.
783 	 */
784 	call_rcu(&epi->rcu, epi_rcu_free);
785 
786 	atomic_long_dec(&ep->user->epoll_watches);
787 
788 	return 0;
789 }
790 
791 static void ep_free(struct eventpoll *ep)
792 {
793 	struct rb_node *rbp;
794 	struct epitem *epi;
795 
796 	/* We need to release all tasks waiting for these file */
797 	if (waitqueue_active(&ep->poll_wait))
798 		ep_poll_safewake(&ep->poll_wait);
799 
800 	/*
801 	 * We need to lock this because we could be hit by
802 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
803 	 * We do not need to hold "ep->mtx" here because the epoll file
804 	 * is on the way to be removed and no one has references to it
805 	 * anymore. The only hit might come from eventpoll_release_file() but
806 	 * holding "epmutex" is sufficient here.
807 	 */
808 	mutex_lock(&epmutex);
809 
810 	/*
811 	 * Walks through the whole tree by unregistering poll callbacks.
812 	 */
813 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
814 		epi = rb_entry(rbp, struct epitem, rbn);
815 
816 		ep_unregister_pollwait(ep, epi);
817 		cond_resched();
818 	}
819 
820 	/*
821 	 * Walks through the whole tree by freeing each "struct epitem". At this
822 	 * point we are sure no poll callbacks will be lingering around, and also by
823 	 * holding "epmutex" we can be sure that no file cleanup code will hit
824 	 * us during this operation. So we can avoid the lock on "ep->lock".
825 	 * We do not need to lock ep->mtx, either, we only do it to prevent
826 	 * a lockdep warning.
827 	 */
828 	mutex_lock(&ep->mtx);
829 	while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
830 		epi = rb_entry(rbp, struct epitem, rbn);
831 		ep_remove(ep, epi);
832 		cond_resched();
833 	}
834 	mutex_unlock(&ep->mtx);
835 
836 	mutex_unlock(&epmutex);
837 	mutex_destroy(&ep->mtx);
838 	free_uid(ep->user);
839 	wakeup_source_unregister(ep->ws);
840 	kfree(ep);
841 }
842 
843 static int ep_eventpoll_release(struct inode *inode, struct file *file)
844 {
845 	struct eventpoll *ep = file->private_data;
846 
847 	if (ep)
848 		ep_free(ep);
849 
850 	return 0;
851 }
852 
853 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
854 			       void *priv);
855 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
856 				 poll_table *pt);
857 
858 /*
859  * Differs from ep_eventpoll_poll() in that internal callers already have
860  * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
861  * is correctly annotated.
862  */
863 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
864 				 int depth)
865 {
866 	struct eventpoll *ep;
867 	bool locked;
868 
869 	pt->_key = epi->event.events;
870 	if (!is_file_epoll(epi->ffd.file))
871 		return vfs_poll(epi->ffd.file, pt) & epi->event.events;
872 
873 	ep = epi->ffd.file->private_data;
874 	poll_wait(epi->ffd.file, &ep->poll_wait, pt);
875 	locked = pt && (pt->_qproc == ep_ptable_queue_proc);
876 
877 	return ep_scan_ready_list(epi->ffd.file->private_data,
878 				  ep_read_events_proc, &depth, depth,
879 				  locked) & epi->event.events;
880 }
881 
882 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
883 			       void *priv)
884 {
885 	struct epitem *epi, *tmp;
886 	poll_table pt;
887 	int depth = *(int *)priv;
888 
889 	init_poll_funcptr(&pt, NULL);
890 	depth++;
891 
892 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
893 		if (ep_item_poll(epi, &pt, depth)) {
894 			return EPOLLIN | EPOLLRDNORM;
895 		} else {
896 			/*
897 			 * Item has been dropped into the ready list by the poll
898 			 * callback, but it's not actually ready, as far as
899 			 * caller requested events goes. We can remove it here.
900 			 */
901 			__pm_relax(ep_wakeup_source(epi));
902 			list_del_init(&epi->rdllink);
903 		}
904 	}
905 
906 	return 0;
907 }
908 
909 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
910 {
911 	struct eventpoll *ep = file->private_data;
912 	int depth = 0;
913 
914 	/* Insert inside our poll wait queue */
915 	poll_wait(file, &ep->poll_wait, wait);
916 
917 	/*
918 	 * Proceed to find out if wanted events are really available inside
919 	 * the ready list.
920 	 */
921 	return ep_scan_ready_list(ep, ep_read_events_proc,
922 				  &depth, depth, false);
923 }
924 
925 #ifdef CONFIG_PROC_FS
926 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
927 {
928 	struct eventpoll *ep = f->private_data;
929 	struct rb_node *rbp;
930 
931 	mutex_lock(&ep->mtx);
932 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
933 		struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
934 		struct inode *inode = file_inode(epi->ffd.file);
935 
936 		seq_printf(m, "tfd: %8d events: %8x data: %16llx "
937 			   " pos:%lli ino:%lx sdev:%x\n",
938 			   epi->ffd.fd, epi->event.events,
939 			   (long long)epi->event.data,
940 			   (long long)epi->ffd.file->f_pos,
941 			   inode->i_ino, inode->i_sb->s_dev);
942 		if (seq_has_overflowed(m))
943 			break;
944 	}
945 	mutex_unlock(&ep->mtx);
946 }
947 #endif
948 
949 /* File callbacks that implement the eventpoll file behaviour */
950 static const struct file_operations eventpoll_fops = {
951 #ifdef CONFIG_PROC_FS
952 	.show_fdinfo	= ep_show_fdinfo,
953 #endif
954 	.release	= ep_eventpoll_release,
955 	.poll		= ep_eventpoll_poll,
956 	.llseek		= noop_llseek,
957 };
958 
959 /*
960  * This is called from eventpoll_release() to unlink files from the eventpoll
961  * interface. We need to have this facility to cleanup correctly files that are
962  * closed without being removed from the eventpoll interface.
963  */
964 void eventpoll_release_file(struct file *file)
965 {
966 	struct eventpoll *ep;
967 	struct epitem *epi, *next;
968 
969 	/*
970 	 * We don't want to get "file->f_lock" because it is not
971 	 * necessary. It is not necessary because we're in the "struct file"
972 	 * cleanup path, and this means that no one is using this file anymore.
973 	 * So, for example, epoll_ctl() cannot hit here since if we reach this
974 	 * point, the file counter already went to zero and fget() would fail.
975 	 * The only hit might come from ep_free() but by holding the mutex
976 	 * will correctly serialize the operation. We do need to acquire
977 	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
978 	 * from anywhere but ep_free().
979 	 *
980 	 * Besides, ep_remove() acquires the lock, so we can't hold it here.
981 	 */
982 	mutex_lock(&epmutex);
983 	list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
984 		ep = epi->ep;
985 		mutex_lock_nested(&ep->mtx, 0);
986 		ep_remove(ep, epi);
987 		mutex_unlock(&ep->mtx);
988 	}
989 	mutex_unlock(&epmutex);
990 }
991 
992 static int ep_alloc(struct eventpoll **pep)
993 {
994 	int error;
995 	struct user_struct *user;
996 	struct eventpoll *ep;
997 
998 	user = get_current_user();
999 	error = -ENOMEM;
1000 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1001 	if (unlikely(!ep))
1002 		goto free_uid;
1003 
1004 	mutex_init(&ep->mtx);
1005 	rwlock_init(&ep->lock);
1006 	init_waitqueue_head(&ep->wq);
1007 	init_waitqueue_head(&ep->poll_wait);
1008 	INIT_LIST_HEAD(&ep->rdllist);
1009 	ep->rbr = RB_ROOT_CACHED;
1010 	ep->ovflist = EP_UNACTIVE_PTR;
1011 	ep->user = user;
1012 
1013 	*pep = ep;
1014 
1015 	return 0;
1016 
1017 free_uid:
1018 	free_uid(user);
1019 	return error;
1020 }
1021 
1022 /*
1023  * Search the file inside the eventpoll tree. The RB tree operations
1024  * are protected by the "mtx" mutex, and ep_find() must be called with
1025  * "mtx" held.
1026  */
1027 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1028 {
1029 	int kcmp;
1030 	struct rb_node *rbp;
1031 	struct epitem *epi, *epir = NULL;
1032 	struct epoll_filefd ffd;
1033 
1034 	ep_set_ffd(&ffd, file, fd);
1035 	for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1036 		epi = rb_entry(rbp, struct epitem, rbn);
1037 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1038 		if (kcmp > 0)
1039 			rbp = rbp->rb_right;
1040 		else if (kcmp < 0)
1041 			rbp = rbp->rb_left;
1042 		else {
1043 			epir = epi;
1044 			break;
1045 		}
1046 	}
1047 
1048 	return epir;
1049 }
1050 
1051 #ifdef CONFIG_CHECKPOINT_RESTORE
1052 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1053 {
1054 	struct rb_node *rbp;
1055 	struct epitem *epi;
1056 
1057 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1058 		epi = rb_entry(rbp, struct epitem, rbn);
1059 		if (epi->ffd.fd == tfd) {
1060 			if (toff == 0)
1061 				return epi;
1062 			else
1063 				toff--;
1064 		}
1065 		cond_resched();
1066 	}
1067 
1068 	return NULL;
1069 }
1070 
1071 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1072 				     unsigned long toff)
1073 {
1074 	struct file *file_raw;
1075 	struct eventpoll *ep;
1076 	struct epitem *epi;
1077 
1078 	if (!is_file_epoll(file))
1079 		return ERR_PTR(-EINVAL);
1080 
1081 	ep = file->private_data;
1082 
1083 	mutex_lock(&ep->mtx);
1084 	epi = ep_find_tfd(ep, tfd, toff);
1085 	if (epi)
1086 		file_raw = epi->ffd.file;
1087 	else
1088 		file_raw = ERR_PTR(-ENOENT);
1089 	mutex_unlock(&ep->mtx);
1090 
1091 	return file_raw;
1092 }
1093 #endif /* CONFIG_CHECKPOINT_RESTORE */
1094 
1095 /**
1096  * Adds a new entry to the tail of the list in a lockless way, i.e.
1097  * multiple CPUs are allowed to call this function concurrently.
1098  *
1099  * Beware: it is necessary to prevent any other modifications of the
1100  *         existing list until all changes are completed, in other words
1101  *         concurrent list_add_tail_lockless() calls should be protected
1102  *         with a read lock, where write lock acts as a barrier which
1103  *         makes sure all list_add_tail_lockless() calls are fully
1104  *         completed.
1105  *
1106  *        Also an element can be locklessly added to the list only in one
1107  *        direction i.e. either to the tail either to the head, otherwise
1108  *        concurrent access will corrupt the list.
1109  *
1110  * Returns %false if element has been already added to the list, %true
1111  * otherwise.
1112  */
1113 static inline bool list_add_tail_lockless(struct list_head *new,
1114 					  struct list_head *head)
1115 {
1116 	struct list_head *prev;
1117 
1118 	/*
1119 	 * This is simple 'new->next = head' operation, but cmpxchg()
1120 	 * is used in order to detect that same element has been just
1121 	 * added to the list from another CPU: the winner observes
1122 	 * new->next == new.
1123 	 */
1124 	if (cmpxchg(&new->next, new, head) != new)
1125 		return false;
1126 
1127 	/*
1128 	 * Initially ->next of a new element must be updated with the head
1129 	 * (we are inserting to the tail) and only then pointers are atomically
1130 	 * exchanged.  XCHG guarantees memory ordering, thus ->next should be
1131 	 * updated before pointers are actually swapped and pointers are
1132 	 * swapped before prev->next is updated.
1133 	 */
1134 
1135 	prev = xchg(&head->prev, new);
1136 
1137 	/*
1138 	 * It is safe to modify prev->next and new->prev, because a new element
1139 	 * is added only to the tail and new->next is updated before XCHG.
1140 	 */
1141 
1142 	prev->next = new;
1143 	new->prev = prev;
1144 
1145 	return true;
1146 }
1147 
1148 /**
1149  * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1150  * i.e. multiple CPUs are allowed to call this function concurrently.
1151  *
1152  * Returns %false if epi element has been already chained, %true otherwise.
1153  */
1154 static inline bool chain_epi_lockless(struct epitem *epi)
1155 {
1156 	struct eventpoll *ep = epi->ep;
1157 
1158 	/* Check that the same epi has not been just chained from another CPU */
1159 	if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1160 		return false;
1161 
1162 	/* Atomically exchange tail */
1163 	epi->next = xchg(&ep->ovflist, epi);
1164 
1165 	return true;
1166 }
1167 
1168 /*
1169  * This is the callback that is passed to the wait queue wakeup
1170  * mechanism. It is called by the stored file descriptors when they
1171  * have events to report.
1172  *
1173  * This callback takes a read lock in order not to content with concurrent
1174  * events from another file descriptors, thus all modifications to ->rdllist
1175  * or ->ovflist are lockless.  Read lock is paired with the write lock from
1176  * ep_scan_ready_list(), which stops all list modifications and guarantees
1177  * that lists state is seen correctly.
1178  *
1179  * Another thing worth to mention is that ep_poll_callback() can be called
1180  * concurrently for the same @epi from different CPUs if poll table was inited
1181  * with several wait queues entries.  Plural wakeup from different CPUs of a
1182  * single wait queue is serialized by wq.lock, but the case when multiple wait
1183  * queues are used should be detected accordingly.  This is detected using
1184  * cmpxchg() operation.
1185  */
1186 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1187 {
1188 	int pwake = 0;
1189 	struct epitem *epi = ep_item_from_wait(wait);
1190 	struct eventpoll *ep = epi->ep;
1191 	__poll_t pollflags = key_to_poll(key);
1192 	unsigned long flags;
1193 	int ewake = 0;
1194 
1195 	read_lock_irqsave(&ep->lock, flags);
1196 
1197 	ep_set_busy_poll_napi_id(epi);
1198 
1199 	/*
1200 	 * If the event mask does not contain any poll(2) event, we consider the
1201 	 * descriptor to be disabled. This condition is likely the effect of the
1202 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1203 	 * until the next EPOLL_CTL_MOD will be issued.
1204 	 */
1205 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
1206 		goto out_unlock;
1207 
1208 	/*
1209 	 * Check the events coming with the callback. At this stage, not
1210 	 * every device reports the events in the "key" parameter of the
1211 	 * callback. We need to be able to handle both cases here, hence the
1212 	 * test for "key" != NULL before the event match test.
1213 	 */
1214 	if (pollflags && !(pollflags & epi->event.events))
1215 		goto out_unlock;
1216 
1217 	/*
1218 	 * If we are transferring events to userspace, we can hold no locks
1219 	 * (because we're accessing user memory, and because of linux f_op->poll()
1220 	 * semantics). All the events that happen during that period of time are
1221 	 * chained in ep->ovflist and requeued later on.
1222 	 */
1223 	if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1224 		if (epi->next == EP_UNACTIVE_PTR &&
1225 		    chain_epi_lockless(epi))
1226 			ep_pm_stay_awake_rcu(epi);
1227 		goto out_unlock;
1228 	}
1229 
1230 	/* If this file is already in the ready list we exit soon */
1231 	if (!ep_is_linked(epi) &&
1232 	    list_add_tail_lockless(&epi->rdllink, &ep->rdllist)) {
1233 		ep_pm_stay_awake_rcu(epi);
1234 	}
1235 
1236 	/*
1237 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1238 	 * wait list.
1239 	 */
1240 	if (waitqueue_active(&ep->wq)) {
1241 		if ((epi->event.events & EPOLLEXCLUSIVE) &&
1242 					!(pollflags & POLLFREE)) {
1243 			switch (pollflags & EPOLLINOUT_BITS) {
1244 			case EPOLLIN:
1245 				if (epi->event.events & EPOLLIN)
1246 					ewake = 1;
1247 				break;
1248 			case EPOLLOUT:
1249 				if (epi->event.events & EPOLLOUT)
1250 					ewake = 1;
1251 				break;
1252 			case 0:
1253 				ewake = 1;
1254 				break;
1255 			}
1256 		}
1257 		wake_up(&ep->wq);
1258 	}
1259 	if (waitqueue_active(&ep->poll_wait))
1260 		pwake++;
1261 
1262 out_unlock:
1263 	read_unlock_irqrestore(&ep->lock, flags);
1264 
1265 	/* We have to call this outside the lock */
1266 	if (pwake)
1267 		ep_poll_safewake(&ep->poll_wait);
1268 
1269 	if (!(epi->event.events & EPOLLEXCLUSIVE))
1270 		ewake = 1;
1271 
1272 	if (pollflags & POLLFREE) {
1273 		/*
1274 		 * If we race with ep_remove_wait_queue() it can miss
1275 		 * ->whead = NULL and do another remove_wait_queue() after
1276 		 * us, so we can't use __remove_wait_queue().
1277 		 */
1278 		list_del_init(&wait->entry);
1279 		/*
1280 		 * ->whead != NULL protects us from the race with ep_free()
1281 		 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1282 		 * held by the caller. Once we nullify it, nothing protects
1283 		 * ep/epi or even wait.
1284 		 */
1285 		smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1286 	}
1287 
1288 	return ewake;
1289 }
1290 
1291 /*
1292  * This is the callback that is used to add our wait queue to the
1293  * target file wakeup lists.
1294  */
1295 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1296 				 poll_table *pt)
1297 {
1298 	struct epitem *epi = ep_item_from_epqueue(pt);
1299 	struct eppoll_entry *pwq;
1300 
1301 	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1302 		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1303 		pwq->whead = whead;
1304 		pwq->base = epi;
1305 		if (epi->event.events & EPOLLEXCLUSIVE)
1306 			add_wait_queue_exclusive(whead, &pwq->wait);
1307 		else
1308 			add_wait_queue(whead, &pwq->wait);
1309 		list_add_tail(&pwq->llink, &epi->pwqlist);
1310 		epi->nwait++;
1311 	} else {
1312 		/* We have to signal that an error occurred */
1313 		epi->nwait = -1;
1314 	}
1315 }
1316 
1317 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1318 {
1319 	int kcmp;
1320 	struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1321 	struct epitem *epic;
1322 	bool leftmost = true;
1323 
1324 	while (*p) {
1325 		parent = *p;
1326 		epic = rb_entry(parent, struct epitem, rbn);
1327 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1328 		if (kcmp > 0) {
1329 			p = &parent->rb_right;
1330 			leftmost = false;
1331 		} else
1332 			p = &parent->rb_left;
1333 	}
1334 	rb_link_node(&epi->rbn, parent, p);
1335 	rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1336 }
1337 
1338 
1339 
1340 #define PATH_ARR_SIZE 5
1341 /*
1342  * These are the number paths of length 1 to 5, that we are allowing to emanate
1343  * from a single file of interest. For example, we allow 1000 paths of length
1344  * 1, to emanate from each file of interest. This essentially represents the
1345  * potential wakeup paths, which need to be limited in order to avoid massive
1346  * uncontrolled wakeup storms. The common use case should be a single ep which
1347  * is connected to n file sources. In this case each file source has 1 path
1348  * of length 1. Thus, the numbers below should be more than sufficient. These
1349  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1350  * and delete can't add additional paths. Protected by the epmutex.
1351  */
1352 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1353 static int path_count[PATH_ARR_SIZE];
1354 
1355 static int path_count_inc(int nests)
1356 {
1357 	/* Allow an arbitrary number of depth 1 paths */
1358 	if (nests == 0)
1359 		return 0;
1360 
1361 	if (++path_count[nests] > path_limits[nests])
1362 		return -1;
1363 	return 0;
1364 }
1365 
1366 static void path_count_init(void)
1367 {
1368 	int i;
1369 
1370 	for (i = 0; i < PATH_ARR_SIZE; i++)
1371 		path_count[i] = 0;
1372 }
1373 
1374 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1375 {
1376 	int error = 0;
1377 	struct file *file = priv;
1378 	struct file *child_file;
1379 	struct epitem *epi;
1380 
1381 	/* CTL_DEL can remove links here, but that can't increase our count */
1382 	rcu_read_lock();
1383 	list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1384 		child_file = epi->ep->file;
1385 		if (is_file_epoll(child_file)) {
1386 			if (list_empty(&child_file->f_ep_links)) {
1387 				if (path_count_inc(call_nests)) {
1388 					error = -1;
1389 					break;
1390 				}
1391 			} else {
1392 				error = ep_call_nested(&poll_loop_ncalls,
1393 							reverse_path_check_proc,
1394 							child_file, child_file,
1395 							current);
1396 			}
1397 			if (error != 0)
1398 				break;
1399 		} else {
1400 			printk(KERN_ERR "reverse_path_check_proc: "
1401 				"file is not an ep!\n");
1402 		}
1403 	}
1404 	rcu_read_unlock();
1405 	return error;
1406 }
1407 
1408 /**
1409  * reverse_path_check - The tfile_check_list is list of file *, which have
1410  *                      links that are proposed to be newly added. We need to
1411  *                      make sure that those added links don't add too many
1412  *                      paths such that we will spend all our time waking up
1413  *                      eventpoll objects.
1414  *
1415  * Returns: Returns zero if the proposed links don't create too many paths,
1416  *	    -1 otherwise.
1417  */
1418 static int reverse_path_check(void)
1419 {
1420 	int error = 0;
1421 	struct file *current_file;
1422 
1423 	/* let's call this for all tfiles */
1424 	list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1425 		path_count_init();
1426 		error = ep_call_nested(&poll_loop_ncalls,
1427 					reverse_path_check_proc, current_file,
1428 					current_file, current);
1429 		if (error)
1430 			break;
1431 	}
1432 	return error;
1433 }
1434 
1435 static int ep_create_wakeup_source(struct epitem *epi)
1436 {
1437 	const char *name;
1438 	struct wakeup_source *ws;
1439 
1440 	if (!epi->ep->ws) {
1441 		epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1442 		if (!epi->ep->ws)
1443 			return -ENOMEM;
1444 	}
1445 
1446 	name = epi->ffd.file->f_path.dentry->d_name.name;
1447 	ws = wakeup_source_register(NULL, name);
1448 
1449 	if (!ws)
1450 		return -ENOMEM;
1451 	rcu_assign_pointer(epi->ws, ws);
1452 
1453 	return 0;
1454 }
1455 
1456 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1457 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1458 {
1459 	struct wakeup_source *ws = ep_wakeup_source(epi);
1460 
1461 	RCU_INIT_POINTER(epi->ws, NULL);
1462 
1463 	/*
1464 	 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1465 	 * used internally by wakeup_source_remove, too (called by
1466 	 * wakeup_source_unregister), so we cannot use call_rcu
1467 	 */
1468 	synchronize_rcu();
1469 	wakeup_source_unregister(ws);
1470 }
1471 
1472 /*
1473  * Must be called with "mtx" held.
1474  */
1475 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1476 		     struct file *tfile, int fd, int full_check)
1477 {
1478 	int error, pwake = 0;
1479 	__poll_t revents;
1480 	long user_watches;
1481 	struct epitem *epi;
1482 	struct ep_pqueue epq;
1483 
1484 	lockdep_assert_irqs_enabled();
1485 
1486 	user_watches = atomic_long_read(&ep->user->epoll_watches);
1487 	if (unlikely(user_watches >= max_user_watches))
1488 		return -ENOSPC;
1489 	if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1490 		return -ENOMEM;
1491 
1492 	/* Item initialization follow here ... */
1493 	INIT_LIST_HEAD(&epi->rdllink);
1494 	INIT_LIST_HEAD(&epi->fllink);
1495 	INIT_LIST_HEAD(&epi->pwqlist);
1496 	epi->ep = ep;
1497 	ep_set_ffd(&epi->ffd, tfile, fd);
1498 	epi->event = *event;
1499 	epi->nwait = 0;
1500 	epi->next = EP_UNACTIVE_PTR;
1501 	if (epi->event.events & EPOLLWAKEUP) {
1502 		error = ep_create_wakeup_source(epi);
1503 		if (error)
1504 			goto error_create_wakeup_source;
1505 	} else {
1506 		RCU_INIT_POINTER(epi->ws, NULL);
1507 	}
1508 
1509 	/* Initialize the poll table using the queue callback */
1510 	epq.epi = epi;
1511 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1512 
1513 	/*
1514 	 * Attach the item to the poll hooks and get current event bits.
1515 	 * We can safely use the file* here because its usage count has
1516 	 * been increased by the caller of this function. Note that after
1517 	 * this operation completes, the poll callback can start hitting
1518 	 * the new item.
1519 	 */
1520 	revents = ep_item_poll(epi, &epq.pt, 1);
1521 
1522 	/*
1523 	 * We have to check if something went wrong during the poll wait queue
1524 	 * install process. Namely an allocation for a wait queue failed due
1525 	 * high memory pressure.
1526 	 */
1527 	error = -ENOMEM;
1528 	if (epi->nwait < 0)
1529 		goto error_unregister;
1530 
1531 	/* Add the current item to the list of active epoll hook for this file */
1532 	spin_lock(&tfile->f_lock);
1533 	list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1534 	spin_unlock(&tfile->f_lock);
1535 
1536 	/*
1537 	 * Add the current item to the RB tree. All RB tree operations are
1538 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1539 	 */
1540 	ep_rbtree_insert(ep, epi);
1541 
1542 	/* now check if we've created too many backpaths */
1543 	error = -EINVAL;
1544 	if (full_check && reverse_path_check())
1545 		goto error_remove_epi;
1546 
1547 	/* We have to drop the new item inside our item list to keep track of it */
1548 	write_lock_irq(&ep->lock);
1549 
1550 	/* record NAPI ID of new item if present */
1551 	ep_set_busy_poll_napi_id(epi);
1552 
1553 	/* If the file is already "ready" we drop it inside the ready list */
1554 	if (revents && !ep_is_linked(epi)) {
1555 		list_add_tail(&epi->rdllink, &ep->rdllist);
1556 		ep_pm_stay_awake(epi);
1557 
1558 		/* Notify waiting tasks that events are available */
1559 		if (waitqueue_active(&ep->wq))
1560 			wake_up(&ep->wq);
1561 		if (waitqueue_active(&ep->poll_wait))
1562 			pwake++;
1563 	}
1564 
1565 	write_unlock_irq(&ep->lock);
1566 
1567 	atomic_long_inc(&ep->user->epoll_watches);
1568 
1569 	/* We have to call this outside the lock */
1570 	if (pwake)
1571 		ep_poll_safewake(&ep->poll_wait);
1572 
1573 	return 0;
1574 
1575 error_remove_epi:
1576 	spin_lock(&tfile->f_lock);
1577 	list_del_rcu(&epi->fllink);
1578 	spin_unlock(&tfile->f_lock);
1579 
1580 	rb_erase_cached(&epi->rbn, &ep->rbr);
1581 
1582 error_unregister:
1583 	ep_unregister_pollwait(ep, epi);
1584 
1585 	/*
1586 	 * We need to do this because an event could have been arrived on some
1587 	 * allocated wait queue. Note that we don't care about the ep->ovflist
1588 	 * list, since that is used/cleaned only inside a section bound by "mtx".
1589 	 * And ep_insert() is called with "mtx" held.
1590 	 */
1591 	write_lock_irq(&ep->lock);
1592 	if (ep_is_linked(epi))
1593 		list_del_init(&epi->rdllink);
1594 	write_unlock_irq(&ep->lock);
1595 
1596 	wakeup_source_unregister(ep_wakeup_source(epi));
1597 
1598 error_create_wakeup_source:
1599 	kmem_cache_free(epi_cache, epi);
1600 
1601 	return error;
1602 }
1603 
1604 /*
1605  * Modify the interest event mask by dropping an event if the new mask
1606  * has a match in the current file status. Must be called with "mtx" held.
1607  */
1608 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1609 		     const struct epoll_event *event)
1610 {
1611 	int pwake = 0;
1612 	poll_table pt;
1613 
1614 	lockdep_assert_irqs_enabled();
1615 
1616 	init_poll_funcptr(&pt, NULL);
1617 
1618 	/*
1619 	 * Set the new event interest mask before calling f_op->poll();
1620 	 * otherwise we might miss an event that happens between the
1621 	 * f_op->poll() call and the new event set registering.
1622 	 */
1623 	epi->event.events = event->events; /* need barrier below */
1624 	epi->event.data = event->data; /* protected by mtx */
1625 	if (epi->event.events & EPOLLWAKEUP) {
1626 		if (!ep_has_wakeup_source(epi))
1627 			ep_create_wakeup_source(epi);
1628 	} else if (ep_has_wakeup_source(epi)) {
1629 		ep_destroy_wakeup_source(epi);
1630 	}
1631 
1632 	/*
1633 	 * The following barrier has two effects:
1634 	 *
1635 	 * 1) Flush epi changes above to other CPUs.  This ensures
1636 	 *    we do not miss events from ep_poll_callback if an
1637 	 *    event occurs immediately after we call f_op->poll().
1638 	 *    We need this because we did not take ep->lock while
1639 	 *    changing epi above (but ep_poll_callback does take
1640 	 *    ep->lock).
1641 	 *
1642 	 * 2) We also need to ensure we do not miss _past_ events
1643 	 *    when calling f_op->poll().  This barrier also
1644 	 *    pairs with the barrier in wq_has_sleeper (see
1645 	 *    comments for wq_has_sleeper).
1646 	 *
1647 	 * This barrier will now guarantee ep_poll_callback or f_op->poll
1648 	 * (or both) will notice the readiness of an item.
1649 	 */
1650 	smp_mb();
1651 
1652 	/*
1653 	 * Get current event bits. We can safely use the file* here because
1654 	 * its usage count has been increased by the caller of this function.
1655 	 * If the item is "hot" and it is not registered inside the ready
1656 	 * list, push it inside.
1657 	 */
1658 	if (ep_item_poll(epi, &pt, 1)) {
1659 		write_lock_irq(&ep->lock);
1660 		if (!ep_is_linked(epi)) {
1661 			list_add_tail(&epi->rdllink, &ep->rdllist);
1662 			ep_pm_stay_awake(epi);
1663 
1664 			/* Notify waiting tasks that events are available */
1665 			if (waitqueue_active(&ep->wq))
1666 				wake_up(&ep->wq);
1667 			if (waitqueue_active(&ep->poll_wait))
1668 				pwake++;
1669 		}
1670 		write_unlock_irq(&ep->lock);
1671 	}
1672 
1673 	/* We have to call this outside the lock */
1674 	if (pwake)
1675 		ep_poll_safewake(&ep->poll_wait);
1676 
1677 	return 0;
1678 }
1679 
1680 static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1681 			       void *priv)
1682 {
1683 	struct ep_send_events_data *esed = priv;
1684 	__poll_t revents;
1685 	struct epitem *epi, *tmp;
1686 	struct epoll_event __user *uevent = esed->events;
1687 	struct wakeup_source *ws;
1688 	poll_table pt;
1689 
1690 	init_poll_funcptr(&pt, NULL);
1691 	esed->res = 0;
1692 
1693 	/*
1694 	 * We can loop without lock because we are passed a task private list.
1695 	 * Items cannot vanish during the loop because ep_scan_ready_list() is
1696 	 * holding "mtx" during this call.
1697 	 */
1698 	lockdep_assert_held(&ep->mtx);
1699 
1700 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
1701 		if (esed->res >= esed->maxevents)
1702 			break;
1703 
1704 		/*
1705 		 * Activate ep->ws before deactivating epi->ws to prevent
1706 		 * triggering auto-suspend here (in case we reactive epi->ws
1707 		 * below).
1708 		 *
1709 		 * This could be rearranged to delay the deactivation of epi->ws
1710 		 * instead, but then epi->ws would temporarily be out of sync
1711 		 * with ep_is_linked().
1712 		 */
1713 		ws = ep_wakeup_source(epi);
1714 		if (ws) {
1715 			if (ws->active)
1716 				__pm_stay_awake(ep->ws);
1717 			__pm_relax(ws);
1718 		}
1719 
1720 		list_del_init(&epi->rdllink);
1721 
1722 		/*
1723 		 * If the event mask intersect the caller-requested one,
1724 		 * deliver the event to userspace. Again, ep_scan_ready_list()
1725 		 * is holding ep->mtx, so no operations coming from userspace
1726 		 * can change the item.
1727 		 */
1728 		revents = ep_item_poll(epi, &pt, 1);
1729 		if (!revents)
1730 			continue;
1731 
1732 		if (__put_user(revents, &uevent->events) ||
1733 		    __put_user(epi->event.data, &uevent->data)) {
1734 			list_add(&epi->rdllink, head);
1735 			ep_pm_stay_awake(epi);
1736 			if (!esed->res)
1737 				esed->res = -EFAULT;
1738 			return 0;
1739 		}
1740 		esed->res++;
1741 		uevent++;
1742 		if (epi->event.events & EPOLLONESHOT)
1743 			epi->event.events &= EP_PRIVATE_BITS;
1744 		else if (!(epi->event.events & EPOLLET)) {
1745 			/*
1746 			 * If this file has been added with Level
1747 			 * Trigger mode, we need to insert back inside
1748 			 * the ready list, so that the next call to
1749 			 * epoll_wait() will check again the events
1750 			 * availability. At this point, no one can insert
1751 			 * into ep->rdllist besides us. The epoll_ctl()
1752 			 * callers are locked out by
1753 			 * ep_scan_ready_list() holding "mtx" and the
1754 			 * poll callback will queue them in ep->ovflist.
1755 			 */
1756 			list_add_tail(&epi->rdllink, &ep->rdllist);
1757 			ep_pm_stay_awake(epi);
1758 		}
1759 	}
1760 
1761 	return 0;
1762 }
1763 
1764 static int ep_send_events(struct eventpoll *ep,
1765 			  struct epoll_event __user *events, int maxevents)
1766 {
1767 	struct ep_send_events_data esed;
1768 
1769 	esed.maxevents = maxevents;
1770 	esed.events = events;
1771 
1772 	ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1773 	return esed.res;
1774 }
1775 
1776 static inline struct timespec64 ep_set_mstimeout(long ms)
1777 {
1778 	struct timespec64 now, ts = {
1779 		.tv_sec = ms / MSEC_PER_SEC,
1780 		.tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1781 	};
1782 
1783 	ktime_get_ts64(&now);
1784 	return timespec64_add_safe(now, ts);
1785 }
1786 
1787 /**
1788  * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1789  *           event buffer.
1790  *
1791  * @ep: Pointer to the eventpoll context.
1792  * @events: Pointer to the userspace buffer where the ready events should be
1793  *          stored.
1794  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1795  * @timeout: Maximum timeout for the ready events fetch operation, in
1796  *           milliseconds. If the @timeout is zero, the function will not block,
1797  *           while if the @timeout is less than zero, the function will block
1798  *           until at least one event has been retrieved (or an error
1799  *           occurred).
1800  *
1801  * Returns: Returns the number of ready events which have been fetched, or an
1802  *          error code, in case of error.
1803  */
1804 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1805 		   int maxevents, long timeout)
1806 {
1807 	int res = 0, eavail, timed_out = 0;
1808 	u64 slack = 0;
1809 	bool waiter = false;
1810 	wait_queue_entry_t wait;
1811 	ktime_t expires, *to = NULL;
1812 
1813 	lockdep_assert_irqs_enabled();
1814 
1815 	if (timeout > 0) {
1816 		struct timespec64 end_time = ep_set_mstimeout(timeout);
1817 
1818 		slack = select_estimate_accuracy(&end_time);
1819 		to = &expires;
1820 		*to = timespec64_to_ktime(end_time);
1821 	} else if (timeout == 0) {
1822 		/*
1823 		 * Avoid the unnecessary trip to the wait queue loop, if the
1824 		 * caller specified a non blocking operation. We still need
1825 		 * lock because we could race and not see an epi being added
1826 		 * to the ready list while in irq callback. Thus incorrectly
1827 		 * returning 0 back to userspace.
1828 		 */
1829 		timed_out = 1;
1830 
1831 		write_lock_irq(&ep->lock);
1832 		eavail = ep_events_available(ep);
1833 		write_unlock_irq(&ep->lock);
1834 
1835 		goto send_events;
1836 	}
1837 
1838 fetch_events:
1839 
1840 	if (!ep_events_available(ep))
1841 		ep_busy_loop(ep, timed_out);
1842 
1843 	eavail = ep_events_available(ep);
1844 	if (eavail)
1845 		goto send_events;
1846 
1847 	/*
1848 	 * Busy poll timed out.  Drop NAPI ID for now, we can add
1849 	 * it back in when we have moved a socket with a valid NAPI
1850 	 * ID onto the ready list.
1851 	 */
1852 	ep_reset_busy_poll_napi_id(ep);
1853 
1854 	/*
1855 	 * We don't have any available event to return to the caller.  We need
1856 	 * to sleep here, and we will be woken by ep_poll_callback() when events
1857 	 * become available.
1858 	 */
1859 	if (!waiter) {
1860 		waiter = true;
1861 		init_waitqueue_entry(&wait, current);
1862 
1863 		spin_lock_irq(&ep->wq.lock);
1864 		__add_wait_queue_exclusive(&ep->wq, &wait);
1865 		spin_unlock_irq(&ep->wq.lock);
1866 	}
1867 
1868 	for (;;) {
1869 		/*
1870 		 * We don't want to sleep if the ep_poll_callback() sends us
1871 		 * a wakeup in between. That's why we set the task state
1872 		 * to TASK_INTERRUPTIBLE before doing the checks.
1873 		 */
1874 		set_current_state(TASK_INTERRUPTIBLE);
1875 		/*
1876 		 * Always short-circuit for fatal signals to allow
1877 		 * threads to make a timely exit without the chance of
1878 		 * finding more events available and fetching
1879 		 * repeatedly.
1880 		 */
1881 		if (fatal_signal_pending(current)) {
1882 			res = -EINTR;
1883 			break;
1884 		}
1885 
1886 		eavail = ep_events_available(ep);
1887 		if (eavail)
1888 			break;
1889 		if (signal_pending(current)) {
1890 			res = -EINTR;
1891 			break;
1892 		}
1893 
1894 		if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) {
1895 			timed_out = 1;
1896 			break;
1897 		}
1898 	}
1899 
1900 	__set_current_state(TASK_RUNNING);
1901 
1902 send_events:
1903 	/*
1904 	 * Try to transfer events to user space. In case we get 0 events and
1905 	 * there's still timeout left over, we go trying again in search of
1906 	 * more luck.
1907 	 */
1908 	if (!res && eavail &&
1909 	    !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1910 		goto fetch_events;
1911 
1912 	if (waiter) {
1913 		spin_lock_irq(&ep->wq.lock);
1914 		__remove_wait_queue(&ep->wq, &wait);
1915 		spin_unlock_irq(&ep->wq.lock);
1916 	}
1917 
1918 	return res;
1919 }
1920 
1921 /**
1922  * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1923  *                      API, to verify that adding an epoll file inside another
1924  *                      epoll structure, does not violate the constraints, in
1925  *                      terms of closed loops, or too deep chains (which can
1926  *                      result in excessive stack usage).
1927  *
1928  * @priv: Pointer to the epoll file to be currently checked.
1929  * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1930  *          data structure pointer.
1931  * @call_nests: Current dept of the @ep_call_nested() call stack.
1932  *
1933  * Returns: Returns zero if adding the epoll @file inside current epoll
1934  *          structure @ep does not violate the constraints, or -1 otherwise.
1935  */
1936 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1937 {
1938 	int error = 0;
1939 	struct file *file = priv;
1940 	struct eventpoll *ep = file->private_data;
1941 	struct eventpoll *ep_tovisit;
1942 	struct rb_node *rbp;
1943 	struct epitem *epi;
1944 
1945 	mutex_lock_nested(&ep->mtx, call_nests + 1);
1946 	ep->visited = 1;
1947 	list_add(&ep->visited_list_link, &visited_list);
1948 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1949 		epi = rb_entry(rbp, struct epitem, rbn);
1950 		if (unlikely(is_file_epoll(epi->ffd.file))) {
1951 			ep_tovisit = epi->ffd.file->private_data;
1952 			if (ep_tovisit->visited)
1953 				continue;
1954 			error = ep_call_nested(&poll_loop_ncalls,
1955 					ep_loop_check_proc, epi->ffd.file,
1956 					ep_tovisit, current);
1957 			if (error != 0)
1958 				break;
1959 		} else {
1960 			/*
1961 			 * If we've reached a file that is not associated with
1962 			 * an ep, then we need to check if the newly added
1963 			 * links are going to add too many wakeup paths. We do
1964 			 * this by adding it to the tfile_check_list, if it's
1965 			 * not already there, and calling reverse_path_check()
1966 			 * during ep_insert().
1967 			 */
1968 			if (list_empty(&epi->ffd.file->f_tfile_llink))
1969 				list_add(&epi->ffd.file->f_tfile_llink,
1970 					 &tfile_check_list);
1971 		}
1972 	}
1973 	mutex_unlock(&ep->mtx);
1974 
1975 	return error;
1976 }
1977 
1978 /**
1979  * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1980  *                 another epoll file (represented by @ep) does not create
1981  *                 closed loops or too deep chains.
1982  *
1983  * @ep: Pointer to the epoll private data structure.
1984  * @file: Pointer to the epoll file to be checked.
1985  *
1986  * Returns: Returns zero if adding the epoll @file inside current epoll
1987  *          structure @ep does not violate the constraints, or -1 otherwise.
1988  */
1989 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1990 {
1991 	int ret;
1992 	struct eventpoll *ep_cur, *ep_next;
1993 
1994 	ret = ep_call_nested(&poll_loop_ncalls,
1995 			      ep_loop_check_proc, file, ep, current);
1996 	/* clear visited list */
1997 	list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
1998 							visited_list_link) {
1999 		ep_cur->visited = 0;
2000 		list_del(&ep_cur->visited_list_link);
2001 	}
2002 	return ret;
2003 }
2004 
2005 static void clear_tfile_check_list(void)
2006 {
2007 	struct file *file;
2008 
2009 	/* first clear the tfile_check_list */
2010 	while (!list_empty(&tfile_check_list)) {
2011 		file = list_first_entry(&tfile_check_list, struct file,
2012 					f_tfile_llink);
2013 		list_del_init(&file->f_tfile_llink);
2014 	}
2015 	INIT_LIST_HEAD(&tfile_check_list);
2016 }
2017 
2018 /*
2019  * Open an eventpoll file descriptor.
2020  */
2021 static int do_epoll_create(int flags)
2022 {
2023 	int error, fd;
2024 	struct eventpoll *ep = NULL;
2025 	struct file *file;
2026 
2027 	/* Check the EPOLL_* constant for consistency.  */
2028 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2029 
2030 	if (flags & ~EPOLL_CLOEXEC)
2031 		return -EINVAL;
2032 	/*
2033 	 * Create the internal data structure ("struct eventpoll").
2034 	 */
2035 	error = ep_alloc(&ep);
2036 	if (error < 0)
2037 		return error;
2038 	/*
2039 	 * Creates all the items needed to setup an eventpoll file. That is,
2040 	 * a file structure and a free file descriptor.
2041 	 */
2042 	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2043 	if (fd < 0) {
2044 		error = fd;
2045 		goto out_free_ep;
2046 	}
2047 	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2048 				 O_RDWR | (flags & O_CLOEXEC));
2049 	if (IS_ERR(file)) {
2050 		error = PTR_ERR(file);
2051 		goto out_free_fd;
2052 	}
2053 	ep->file = file;
2054 	fd_install(fd, file);
2055 	return fd;
2056 
2057 out_free_fd:
2058 	put_unused_fd(fd);
2059 out_free_ep:
2060 	ep_free(ep);
2061 	return error;
2062 }
2063 
2064 SYSCALL_DEFINE1(epoll_create1, int, flags)
2065 {
2066 	return do_epoll_create(flags);
2067 }
2068 
2069 SYSCALL_DEFINE1(epoll_create, int, size)
2070 {
2071 	if (size <= 0)
2072 		return -EINVAL;
2073 
2074 	return do_epoll_create(0);
2075 }
2076 
2077 /*
2078  * The following function implements the controller interface for
2079  * the eventpoll file that enables the insertion/removal/change of
2080  * file descriptors inside the interest set.
2081  */
2082 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2083 		struct epoll_event __user *, event)
2084 {
2085 	int error;
2086 	int full_check = 0;
2087 	struct fd f, tf;
2088 	struct eventpoll *ep;
2089 	struct epitem *epi;
2090 	struct epoll_event epds;
2091 	struct eventpoll *tep = NULL;
2092 
2093 	error = -EFAULT;
2094 	if (ep_op_has_event(op) &&
2095 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
2096 		goto error_return;
2097 
2098 	error = -EBADF;
2099 	f = fdget(epfd);
2100 	if (!f.file)
2101 		goto error_return;
2102 
2103 	/* Get the "struct file *" for the target file */
2104 	tf = fdget(fd);
2105 	if (!tf.file)
2106 		goto error_fput;
2107 
2108 	/* The target file descriptor must support poll */
2109 	error = -EPERM;
2110 	if (!file_can_poll(tf.file))
2111 		goto error_tgt_fput;
2112 
2113 	/* Check if EPOLLWAKEUP is allowed */
2114 	if (ep_op_has_event(op))
2115 		ep_take_care_of_epollwakeup(&epds);
2116 
2117 	/*
2118 	 * We have to check that the file structure underneath the file descriptor
2119 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
2120 	 * adding an epoll file descriptor inside itself.
2121 	 */
2122 	error = -EINVAL;
2123 	if (f.file == tf.file || !is_file_epoll(f.file))
2124 		goto error_tgt_fput;
2125 
2126 	/*
2127 	 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2128 	 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2129 	 * Also, we do not currently supported nested exclusive wakeups.
2130 	 */
2131 	if (ep_op_has_event(op) && (epds.events & EPOLLEXCLUSIVE)) {
2132 		if (op == EPOLL_CTL_MOD)
2133 			goto error_tgt_fput;
2134 		if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2135 				(epds.events & ~EPOLLEXCLUSIVE_OK_BITS)))
2136 			goto error_tgt_fput;
2137 	}
2138 
2139 	/*
2140 	 * At this point it is safe to assume that the "private_data" contains
2141 	 * our own data structure.
2142 	 */
2143 	ep = f.file->private_data;
2144 
2145 	/*
2146 	 * When we insert an epoll file descriptor, inside another epoll file
2147 	 * descriptor, there is the change of creating closed loops, which are
2148 	 * better be handled here, than in more critical paths. While we are
2149 	 * checking for loops we also determine the list of files reachable
2150 	 * and hang them on the tfile_check_list, so we can check that we
2151 	 * haven't created too many possible wakeup paths.
2152 	 *
2153 	 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2154 	 * the epoll file descriptor is attaching directly to a wakeup source,
2155 	 * unless the epoll file descriptor is nested. The purpose of taking the
2156 	 * 'epmutex' on add is to prevent complex toplogies such as loops and
2157 	 * deep wakeup paths from forming in parallel through multiple
2158 	 * EPOLL_CTL_ADD operations.
2159 	 */
2160 	mutex_lock_nested(&ep->mtx, 0);
2161 	if (op == EPOLL_CTL_ADD) {
2162 		if (!list_empty(&f.file->f_ep_links) ||
2163 						is_file_epoll(tf.file)) {
2164 			full_check = 1;
2165 			mutex_unlock(&ep->mtx);
2166 			mutex_lock(&epmutex);
2167 			if (is_file_epoll(tf.file)) {
2168 				error = -ELOOP;
2169 				if (ep_loop_check(ep, tf.file) != 0) {
2170 					clear_tfile_check_list();
2171 					goto error_tgt_fput;
2172 				}
2173 			} else
2174 				list_add(&tf.file->f_tfile_llink,
2175 							&tfile_check_list);
2176 			mutex_lock_nested(&ep->mtx, 0);
2177 			if (is_file_epoll(tf.file)) {
2178 				tep = tf.file->private_data;
2179 				mutex_lock_nested(&tep->mtx, 1);
2180 			}
2181 		}
2182 	}
2183 
2184 	/*
2185 	 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2186 	 * above, we can be sure to be able to use the item looked up by
2187 	 * ep_find() till we release the mutex.
2188 	 */
2189 	epi = ep_find(ep, tf.file, fd);
2190 
2191 	error = -EINVAL;
2192 	switch (op) {
2193 	case EPOLL_CTL_ADD:
2194 		if (!epi) {
2195 			epds.events |= EPOLLERR | EPOLLHUP;
2196 			error = ep_insert(ep, &epds, tf.file, fd, full_check);
2197 		} else
2198 			error = -EEXIST;
2199 		if (full_check)
2200 			clear_tfile_check_list();
2201 		break;
2202 	case EPOLL_CTL_DEL:
2203 		if (epi)
2204 			error = ep_remove(ep, epi);
2205 		else
2206 			error = -ENOENT;
2207 		break;
2208 	case EPOLL_CTL_MOD:
2209 		if (epi) {
2210 			if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2211 				epds.events |= EPOLLERR | EPOLLHUP;
2212 				error = ep_modify(ep, epi, &epds);
2213 			}
2214 		} else
2215 			error = -ENOENT;
2216 		break;
2217 	}
2218 	if (tep != NULL)
2219 		mutex_unlock(&tep->mtx);
2220 	mutex_unlock(&ep->mtx);
2221 
2222 error_tgt_fput:
2223 	if (full_check)
2224 		mutex_unlock(&epmutex);
2225 
2226 	fdput(tf);
2227 error_fput:
2228 	fdput(f);
2229 error_return:
2230 
2231 	return error;
2232 }
2233 
2234 /*
2235  * Implement the event wait interface for the eventpoll file. It is the kernel
2236  * part of the user space epoll_wait(2).
2237  */
2238 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2239 			 int maxevents, int timeout)
2240 {
2241 	int error;
2242 	struct fd f;
2243 	struct eventpoll *ep;
2244 
2245 	/* The maximum number of event must be greater than zero */
2246 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2247 		return -EINVAL;
2248 
2249 	/* Verify that the area passed by the user is writeable */
2250 	if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2251 		return -EFAULT;
2252 
2253 	/* Get the "struct file *" for the eventpoll file */
2254 	f = fdget(epfd);
2255 	if (!f.file)
2256 		return -EBADF;
2257 
2258 	/*
2259 	 * We have to check that the file structure underneath the fd
2260 	 * the user passed to us _is_ an eventpoll file.
2261 	 */
2262 	error = -EINVAL;
2263 	if (!is_file_epoll(f.file))
2264 		goto error_fput;
2265 
2266 	/*
2267 	 * At this point it is safe to assume that the "private_data" contains
2268 	 * our own data structure.
2269 	 */
2270 	ep = f.file->private_data;
2271 
2272 	/* Time to fish for events ... */
2273 	error = ep_poll(ep, events, maxevents, timeout);
2274 
2275 error_fput:
2276 	fdput(f);
2277 	return error;
2278 }
2279 
2280 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2281 		int, maxevents, int, timeout)
2282 {
2283 	return do_epoll_wait(epfd, events, maxevents, timeout);
2284 }
2285 
2286 /*
2287  * Implement the event wait interface for the eventpoll file. It is the kernel
2288  * part of the user space epoll_pwait(2).
2289  */
2290 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2291 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2292 		size_t, sigsetsize)
2293 {
2294 	int error;
2295 
2296 	/*
2297 	 * If the caller wants a certain signal mask to be set during the wait,
2298 	 * we apply it here.
2299 	 */
2300 	error = set_user_sigmask(sigmask, sigsetsize);
2301 	if (error)
2302 		return error;
2303 
2304 	error = do_epoll_wait(epfd, events, maxevents, timeout);
2305 	restore_saved_sigmask_unless(error == -EINTR);
2306 
2307 	return error;
2308 }
2309 
2310 #ifdef CONFIG_COMPAT
2311 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2312 			struct epoll_event __user *, events,
2313 			int, maxevents, int, timeout,
2314 			const compat_sigset_t __user *, sigmask,
2315 			compat_size_t, sigsetsize)
2316 {
2317 	long err;
2318 
2319 	/*
2320 	 * If the caller wants a certain signal mask to be set during the wait,
2321 	 * we apply it here.
2322 	 */
2323 	err = set_compat_user_sigmask(sigmask, sigsetsize);
2324 	if (err)
2325 		return err;
2326 
2327 	err = do_epoll_wait(epfd, events, maxevents, timeout);
2328 	restore_saved_sigmask_unless(err == -EINTR);
2329 
2330 	return err;
2331 }
2332 #endif
2333 
2334 static int __init eventpoll_init(void)
2335 {
2336 	struct sysinfo si;
2337 
2338 	si_meminfo(&si);
2339 	/*
2340 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2341 	 */
2342 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2343 		EP_ITEM_COST;
2344 	BUG_ON(max_user_watches < 0);
2345 
2346 	/*
2347 	 * Initialize the structure used to perform epoll file descriptor
2348 	 * inclusion loops checks.
2349 	 */
2350 	ep_nested_calls_init(&poll_loop_ncalls);
2351 
2352 	/*
2353 	 * We can have many thousands of epitems, so prevent this from
2354 	 * using an extra cache line on 64-bit (and smaller) CPUs
2355 	 */
2356 	BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2357 
2358 	/* Allocates slab cache used to allocate "struct epitem" items */
2359 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2360 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2361 
2362 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
2363 	pwq_cache = kmem_cache_create("eventpoll_pwq",
2364 		sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2365 
2366 	return 0;
2367 }
2368 fs_initcall(eventpoll_init);
2369