1 /* 2 * fs/eventpoll.c (Efficient event retrieval implementation) 3 * Copyright (C) 2001,...,2009 Davide Libenzi 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * Davide Libenzi <davidel@xmailserver.org> 11 * 12 */ 13 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/file.h> 19 #include <linux/signal.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/slab.h> 23 #include <linux/poll.h> 24 #include <linux/string.h> 25 #include <linux/list.h> 26 #include <linux/hash.h> 27 #include <linux/spinlock.h> 28 #include <linux/syscalls.h> 29 #include <linux/rbtree.h> 30 #include <linux/wait.h> 31 #include <linux/eventpoll.h> 32 #include <linux/mount.h> 33 #include <linux/bitops.h> 34 #include <linux/mutex.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/device.h> 37 #include <asm/uaccess.h> 38 #include <asm/io.h> 39 #include <asm/mman.h> 40 #include <linux/atomic.h> 41 #include <linux/proc_fs.h> 42 #include <linux/seq_file.h> 43 #include <linux/compat.h> 44 #include <linux/rculist.h> 45 46 /* 47 * LOCKING: 48 * There are three level of locking required by epoll : 49 * 50 * 1) epmutex (mutex) 51 * 2) ep->mtx (mutex) 52 * 3) ep->lock (spinlock) 53 * 54 * The acquire order is the one listed above, from 1 to 3. 55 * We need a spinlock (ep->lock) because we manipulate objects 56 * from inside the poll callback, that might be triggered from 57 * a wake_up() that in turn might be called from IRQ context. 58 * So we can't sleep inside the poll callback and hence we need 59 * a spinlock. During the event transfer loop (from kernel to 60 * user space) we could end up sleeping due a copy_to_user(), so 61 * we need a lock that will allow us to sleep. This lock is a 62 * mutex (ep->mtx). It is acquired during the event transfer loop, 63 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 64 * Then we also need a global mutex to serialize eventpoll_release_file() 65 * and ep_free(). 66 * This mutex is acquired by ep_free() during the epoll file 67 * cleanup path and it is also acquired by eventpoll_release_file() 68 * if a file has been pushed inside an epoll set and it is then 69 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL). 70 * It is also acquired when inserting an epoll fd onto another epoll 71 * fd. We do this so that we walk the epoll tree and ensure that this 72 * insertion does not create a cycle of epoll file descriptors, which 73 * could lead to deadlock. We need a global mutex to prevent two 74 * simultaneous inserts (A into B and B into A) from racing and 75 * constructing a cycle without either insert observing that it is 76 * going to. 77 * It is necessary to acquire multiple "ep->mtx"es at once in the 78 * case when one epoll fd is added to another. In this case, we 79 * always acquire the locks in the order of nesting (i.e. after 80 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 81 * before e2->mtx). Since we disallow cycles of epoll file 82 * descriptors, this ensures that the mutexes are well-ordered. In 83 * order to communicate this nesting to lockdep, when walking a tree 84 * of epoll file descriptors, we use the current recursion depth as 85 * the lockdep subkey. 86 * It is possible to drop the "ep->mtx" and to use the global 87 * mutex "epmutex" (together with "ep->lock") to have it working, 88 * but having "ep->mtx" will make the interface more scalable. 89 * Events that require holding "epmutex" are very rare, while for 90 * normal operations the epoll private "ep->mtx" will guarantee 91 * a better scalability. 92 */ 93 94 /* Epoll private bits inside the event mask */ 95 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET) 96 97 /* Maximum number of nesting allowed inside epoll sets */ 98 #define EP_MAX_NESTS 4 99 100 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 101 102 #define EP_UNACTIVE_PTR ((void *) -1L) 103 104 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 105 106 struct epoll_filefd { 107 struct file *file; 108 int fd; 109 } __packed; 110 111 /* 112 * Structure used to track possible nested calls, for too deep recursions 113 * and loop cycles. 114 */ 115 struct nested_call_node { 116 struct list_head llink; 117 void *cookie; 118 void *ctx; 119 }; 120 121 /* 122 * This structure is used as collector for nested calls, to check for 123 * maximum recursion dept and loop cycles. 124 */ 125 struct nested_calls { 126 struct list_head tasks_call_list; 127 spinlock_t lock; 128 }; 129 130 /* 131 * Each file descriptor added to the eventpoll interface will 132 * have an entry of this type linked to the "rbr" RB tree. 133 * Avoid increasing the size of this struct, there can be many thousands 134 * of these on a server and we do not want this to take another cache line. 135 */ 136 struct epitem { 137 union { 138 /* RB tree node links this structure to the eventpoll RB tree */ 139 struct rb_node rbn; 140 /* Used to free the struct epitem */ 141 struct rcu_head rcu; 142 }; 143 144 /* List header used to link this structure to the eventpoll ready list */ 145 struct list_head rdllink; 146 147 /* 148 * Works together "struct eventpoll"->ovflist in keeping the 149 * single linked chain of items. 150 */ 151 struct epitem *next; 152 153 /* The file descriptor information this item refers to */ 154 struct epoll_filefd ffd; 155 156 /* Number of active wait queue attached to poll operations */ 157 int nwait; 158 159 /* List containing poll wait queues */ 160 struct list_head pwqlist; 161 162 /* The "container" of this item */ 163 struct eventpoll *ep; 164 165 /* List header used to link this item to the "struct file" items list */ 166 struct list_head fllink; 167 168 /* wakeup_source used when EPOLLWAKEUP is set */ 169 struct wakeup_source __rcu *ws; 170 171 /* The structure that describe the interested events and the source fd */ 172 struct epoll_event event; 173 }; 174 175 /* 176 * This structure is stored inside the "private_data" member of the file 177 * structure and represents the main data structure for the eventpoll 178 * interface. 179 */ 180 struct eventpoll { 181 /* Protect the access to this structure */ 182 spinlock_t lock; 183 184 /* 185 * This mutex is used to ensure that files are not removed 186 * while epoll is using them. This is held during the event 187 * collection loop, the file cleanup path, the epoll file exit 188 * code and the ctl operations. 189 */ 190 struct mutex mtx; 191 192 /* Wait queue used by sys_epoll_wait() */ 193 wait_queue_head_t wq; 194 195 /* Wait queue used by file->poll() */ 196 wait_queue_head_t poll_wait; 197 198 /* List of ready file descriptors */ 199 struct list_head rdllist; 200 201 /* RB tree root used to store monitored fd structs */ 202 struct rb_root rbr; 203 204 /* 205 * This is a single linked list that chains all the "struct epitem" that 206 * happened while transferring ready events to userspace w/out 207 * holding ->lock. 208 */ 209 struct epitem *ovflist; 210 211 /* wakeup_source used when ep_scan_ready_list is running */ 212 struct wakeup_source *ws; 213 214 /* The user that created the eventpoll descriptor */ 215 struct user_struct *user; 216 217 struct file *file; 218 219 /* used to optimize loop detection check */ 220 int visited; 221 struct list_head visited_list_link; 222 }; 223 224 /* Wait structure used by the poll hooks */ 225 struct eppoll_entry { 226 /* List header used to link this structure to the "struct epitem" */ 227 struct list_head llink; 228 229 /* The "base" pointer is set to the container "struct epitem" */ 230 struct epitem *base; 231 232 /* 233 * Wait queue item that will be linked to the target file wait 234 * queue head. 235 */ 236 wait_queue_t wait; 237 238 /* The wait queue head that linked the "wait" wait queue item */ 239 wait_queue_head_t *whead; 240 }; 241 242 /* Wrapper struct used by poll queueing */ 243 struct ep_pqueue { 244 poll_table pt; 245 struct epitem *epi; 246 }; 247 248 /* Used by the ep_send_events() function as callback private data */ 249 struct ep_send_events_data { 250 int maxevents; 251 struct epoll_event __user *events; 252 }; 253 254 /* 255 * Configuration options available inside /proc/sys/fs/epoll/ 256 */ 257 /* Maximum number of epoll watched descriptors, per user */ 258 static long max_user_watches __read_mostly; 259 260 /* 261 * This mutex is used to serialize ep_free() and eventpoll_release_file(). 262 */ 263 static DEFINE_MUTEX(epmutex); 264 265 /* Used to check for epoll file descriptor inclusion loops */ 266 static struct nested_calls poll_loop_ncalls; 267 268 /* Used for safe wake up implementation */ 269 static struct nested_calls poll_safewake_ncalls; 270 271 /* Used to call file's f_op->poll() under the nested calls boundaries */ 272 static struct nested_calls poll_readywalk_ncalls; 273 274 /* Slab cache used to allocate "struct epitem" */ 275 static struct kmem_cache *epi_cache __read_mostly; 276 277 /* Slab cache used to allocate "struct eppoll_entry" */ 278 static struct kmem_cache *pwq_cache __read_mostly; 279 280 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */ 281 static LIST_HEAD(visited_list); 282 283 /* 284 * List of files with newly added links, where we may need to limit the number 285 * of emanating paths. Protected by the epmutex. 286 */ 287 static LIST_HEAD(tfile_check_list); 288 289 #ifdef CONFIG_SYSCTL 290 291 #include <linux/sysctl.h> 292 293 static long zero; 294 static long long_max = LONG_MAX; 295 296 ctl_table epoll_table[] = { 297 { 298 .procname = "max_user_watches", 299 .data = &max_user_watches, 300 .maxlen = sizeof(max_user_watches), 301 .mode = 0644, 302 .proc_handler = proc_doulongvec_minmax, 303 .extra1 = &zero, 304 .extra2 = &long_max, 305 }, 306 { } 307 }; 308 #endif /* CONFIG_SYSCTL */ 309 310 static const struct file_operations eventpoll_fops; 311 312 static inline int is_file_epoll(struct file *f) 313 { 314 return f->f_op == &eventpoll_fops; 315 } 316 317 /* Setup the structure that is used as key for the RB tree */ 318 static inline void ep_set_ffd(struct epoll_filefd *ffd, 319 struct file *file, int fd) 320 { 321 ffd->file = file; 322 ffd->fd = fd; 323 } 324 325 /* Compare RB tree keys */ 326 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 327 struct epoll_filefd *p2) 328 { 329 return (p1->file > p2->file ? +1: 330 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 331 } 332 333 /* Tells us if the item is currently linked */ 334 static inline int ep_is_linked(struct list_head *p) 335 { 336 return !list_empty(p); 337 } 338 339 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_t *p) 340 { 341 return container_of(p, struct eppoll_entry, wait); 342 } 343 344 /* Get the "struct epitem" from a wait queue pointer */ 345 static inline struct epitem *ep_item_from_wait(wait_queue_t *p) 346 { 347 return container_of(p, struct eppoll_entry, wait)->base; 348 } 349 350 /* Get the "struct epitem" from an epoll queue wrapper */ 351 static inline struct epitem *ep_item_from_epqueue(poll_table *p) 352 { 353 return container_of(p, struct ep_pqueue, pt)->epi; 354 } 355 356 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ 357 static inline int ep_op_has_event(int op) 358 { 359 return op != EPOLL_CTL_DEL; 360 } 361 362 /* Initialize the poll safe wake up structure */ 363 static void ep_nested_calls_init(struct nested_calls *ncalls) 364 { 365 INIT_LIST_HEAD(&ncalls->tasks_call_list); 366 spin_lock_init(&ncalls->lock); 367 } 368 369 /** 370 * ep_events_available - Checks if ready events might be available. 371 * 372 * @ep: Pointer to the eventpoll context. 373 * 374 * Returns: Returns a value different than zero if ready events are available, 375 * or zero otherwise. 376 */ 377 static inline int ep_events_available(struct eventpoll *ep) 378 { 379 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR; 380 } 381 382 /** 383 * ep_call_nested - Perform a bound (possibly) nested call, by checking 384 * that the recursion limit is not exceeded, and that 385 * the same nested call (by the meaning of same cookie) is 386 * no re-entered. 387 * 388 * @ncalls: Pointer to the nested_calls structure to be used for this call. 389 * @max_nests: Maximum number of allowed nesting calls. 390 * @nproc: Nested call core function pointer. 391 * @priv: Opaque data to be passed to the @nproc callback. 392 * @cookie: Cookie to be used to identify this nested call. 393 * @ctx: This instance context. 394 * 395 * Returns: Returns the code returned by the @nproc callback, or -1 if 396 * the maximum recursion limit has been exceeded. 397 */ 398 static int ep_call_nested(struct nested_calls *ncalls, int max_nests, 399 int (*nproc)(void *, void *, int), void *priv, 400 void *cookie, void *ctx) 401 { 402 int error, call_nests = 0; 403 unsigned long flags; 404 struct list_head *lsthead = &ncalls->tasks_call_list; 405 struct nested_call_node *tncur; 406 struct nested_call_node tnode; 407 408 spin_lock_irqsave(&ncalls->lock, flags); 409 410 /* 411 * Try to see if the current task is already inside this wakeup call. 412 * We use a list here, since the population inside this set is always 413 * very much limited. 414 */ 415 list_for_each_entry(tncur, lsthead, llink) { 416 if (tncur->ctx == ctx && 417 (tncur->cookie == cookie || ++call_nests > max_nests)) { 418 /* 419 * Ops ... loop detected or maximum nest level reached. 420 * We abort this wake by breaking the cycle itself. 421 */ 422 error = -1; 423 goto out_unlock; 424 } 425 } 426 427 /* Add the current task and cookie to the list */ 428 tnode.ctx = ctx; 429 tnode.cookie = cookie; 430 list_add(&tnode.llink, lsthead); 431 432 spin_unlock_irqrestore(&ncalls->lock, flags); 433 434 /* Call the nested function */ 435 error = (*nproc)(priv, cookie, call_nests); 436 437 /* Remove the current task from the list */ 438 spin_lock_irqsave(&ncalls->lock, flags); 439 list_del(&tnode.llink); 440 out_unlock: 441 spin_unlock_irqrestore(&ncalls->lock, flags); 442 443 return error; 444 } 445 446 /* 447 * As described in commit 0ccf831cb lockdep: annotate epoll 448 * the use of wait queues used by epoll is done in a very controlled 449 * manner. Wake ups can nest inside each other, but are never done 450 * with the same locking. For example: 451 * 452 * dfd = socket(...); 453 * efd1 = epoll_create(); 454 * efd2 = epoll_create(); 455 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 456 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 457 * 458 * When a packet arrives to the device underneath "dfd", the net code will 459 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 460 * callback wakeup entry on that queue, and the wake_up() performed by the 461 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 462 * (efd1) notices that it may have some event ready, so it needs to wake up 463 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 464 * that ends up in another wake_up(), after having checked about the 465 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to 466 * avoid stack blasting. 467 * 468 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 469 * this special case of epoll. 470 */ 471 #ifdef CONFIG_DEBUG_LOCK_ALLOC 472 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, 473 unsigned long events, int subclass) 474 { 475 unsigned long flags; 476 477 spin_lock_irqsave_nested(&wqueue->lock, flags, subclass); 478 wake_up_locked_poll(wqueue, events); 479 spin_unlock_irqrestore(&wqueue->lock, flags); 480 } 481 #else 482 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, 483 unsigned long events, int subclass) 484 { 485 wake_up_poll(wqueue, events); 486 } 487 #endif 488 489 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests) 490 { 491 ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN, 492 1 + call_nests); 493 return 0; 494 } 495 496 /* 497 * Perform a safe wake up of the poll wait list. The problem is that 498 * with the new callback'd wake up system, it is possible that the 499 * poll callback is reentered from inside the call to wake_up() done 500 * on the poll wait queue head. The rule is that we cannot reenter the 501 * wake up code from the same task more than EP_MAX_NESTS times, 502 * and we cannot reenter the same wait queue head at all. This will 503 * enable to have a hierarchy of epoll file descriptor of no more than 504 * EP_MAX_NESTS deep. 505 */ 506 static void ep_poll_safewake(wait_queue_head_t *wq) 507 { 508 int this_cpu = get_cpu(); 509 510 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS, 511 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu); 512 513 put_cpu(); 514 } 515 516 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 517 { 518 wait_queue_head_t *whead; 519 520 rcu_read_lock(); 521 /* If it is cleared by POLLFREE, it should be rcu-safe */ 522 whead = rcu_dereference(pwq->whead); 523 if (whead) 524 remove_wait_queue(whead, &pwq->wait); 525 rcu_read_unlock(); 526 } 527 528 /* 529 * This function unregisters poll callbacks from the associated file 530 * descriptor. Must be called with "mtx" held (or "epmutex" if called from 531 * ep_free). 532 */ 533 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 534 { 535 struct list_head *lsthead = &epi->pwqlist; 536 struct eppoll_entry *pwq; 537 538 while (!list_empty(lsthead)) { 539 pwq = list_first_entry(lsthead, struct eppoll_entry, llink); 540 541 list_del(&pwq->llink); 542 ep_remove_wait_queue(pwq); 543 kmem_cache_free(pwq_cache, pwq); 544 } 545 } 546 547 /* call only when ep->mtx is held */ 548 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) 549 { 550 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); 551 } 552 553 /* call only when ep->mtx is held */ 554 static inline void ep_pm_stay_awake(struct epitem *epi) 555 { 556 struct wakeup_source *ws = ep_wakeup_source(epi); 557 558 if (ws) 559 __pm_stay_awake(ws); 560 } 561 562 static inline bool ep_has_wakeup_source(struct epitem *epi) 563 { 564 return rcu_access_pointer(epi->ws) ? true : false; 565 } 566 567 /* call when ep->mtx cannot be held (ep_poll_callback) */ 568 static inline void ep_pm_stay_awake_rcu(struct epitem *epi) 569 { 570 struct wakeup_source *ws; 571 572 rcu_read_lock(); 573 ws = rcu_dereference(epi->ws); 574 if (ws) 575 __pm_stay_awake(ws); 576 rcu_read_unlock(); 577 } 578 579 /** 580 * ep_scan_ready_list - Scans the ready list in a way that makes possible for 581 * the scan code, to call f_op->poll(). Also allows for 582 * O(NumReady) performance. 583 * 584 * @ep: Pointer to the epoll private data structure. 585 * @sproc: Pointer to the scan callback. 586 * @priv: Private opaque data passed to the @sproc callback. 587 * @depth: The current depth of recursive f_op->poll calls. 588 * @ep_locked: caller already holds ep->mtx 589 * 590 * Returns: The same integer error code returned by the @sproc callback. 591 */ 592 static int ep_scan_ready_list(struct eventpoll *ep, 593 int (*sproc)(struct eventpoll *, 594 struct list_head *, void *), 595 void *priv, int depth, bool ep_locked) 596 { 597 int error, pwake = 0; 598 unsigned long flags; 599 struct epitem *epi, *nepi; 600 LIST_HEAD(txlist); 601 602 /* 603 * We need to lock this because we could be hit by 604 * eventpoll_release_file() and epoll_ctl(). 605 */ 606 607 if (!ep_locked) 608 mutex_lock_nested(&ep->mtx, depth); 609 610 /* 611 * Steal the ready list, and re-init the original one to the 612 * empty list. Also, set ep->ovflist to NULL so that events 613 * happening while looping w/out locks, are not lost. We cannot 614 * have the poll callback to queue directly on ep->rdllist, 615 * because we want the "sproc" callback to be able to do it 616 * in a lockless way. 617 */ 618 spin_lock_irqsave(&ep->lock, flags); 619 list_splice_init(&ep->rdllist, &txlist); 620 ep->ovflist = NULL; 621 spin_unlock_irqrestore(&ep->lock, flags); 622 623 /* 624 * Now call the callback function. 625 */ 626 error = (*sproc)(ep, &txlist, priv); 627 628 spin_lock_irqsave(&ep->lock, flags); 629 /* 630 * During the time we spent inside the "sproc" callback, some 631 * other events might have been queued by the poll callback. 632 * We re-insert them inside the main ready-list here. 633 */ 634 for (nepi = ep->ovflist; (epi = nepi) != NULL; 635 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 636 /* 637 * We need to check if the item is already in the list. 638 * During the "sproc" callback execution time, items are 639 * queued into ->ovflist but the "txlist" might already 640 * contain them, and the list_splice() below takes care of them. 641 */ 642 if (!ep_is_linked(&epi->rdllink)) { 643 list_add_tail(&epi->rdllink, &ep->rdllist); 644 ep_pm_stay_awake(epi); 645 } 646 } 647 /* 648 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 649 * releasing the lock, events will be queued in the normal way inside 650 * ep->rdllist. 651 */ 652 ep->ovflist = EP_UNACTIVE_PTR; 653 654 /* 655 * Quickly re-inject items left on "txlist". 656 */ 657 list_splice(&txlist, &ep->rdllist); 658 __pm_relax(ep->ws); 659 660 if (!list_empty(&ep->rdllist)) { 661 /* 662 * Wake up (if active) both the eventpoll wait list and 663 * the ->poll() wait list (delayed after we release the lock). 664 */ 665 if (waitqueue_active(&ep->wq)) 666 wake_up_locked(&ep->wq); 667 if (waitqueue_active(&ep->poll_wait)) 668 pwake++; 669 } 670 spin_unlock_irqrestore(&ep->lock, flags); 671 672 if (!ep_locked) 673 mutex_unlock(&ep->mtx); 674 675 /* We have to call this outside the lock */ 676 if (pwake) 677 ep_poll_safewake(&ep->poll_wait); 678 679 return error; 680 } 681 682 static void epi_rcu_free(struct rcu_head *head) 683 { 684 struct epitem *epi = container_of(head, struct epitem, rcu); 685 kmem_cache_free(epi_cache, epi); 686 } 687 688 /* 689 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 690 * all the associated resources. Must be called with "mtx" held. 691 */ 692 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 693 { 694 unsigned long flags; 695 struct file *file = epi->ffd.file; 696 697 /* 698 * Removes poll wait queue hooks. We _have_ to do this without holding 699 * the "ep->lock" otherwise a deadlock might occur. This because of the 700 * sequence of the lock acquisition. Here we do "ep->lock" then the wait 701 * queue head lock when unregistering the wait queue. The wakeup callback 702 * will run by holding the wait queue head lock and will call our callback 703 * that will try to get "ep->lock". 704 */ 705 ep_unregister_pollwait(ep, epi); 706 707 /* Remove the current item from the list of epoll hooks */ 708 spin_lock(&file->f_lock); 709 list_del_rcu(&epi->fllink); 710 spin_unlock(&file->f_lock); 711 712 rb_erase(&epi->rbn, &ep->rbr); 713 714 spin_lock_irqsave(&ep->lock, flags); 715 if (ep_is_linked(&epi->rdllink)) 716 list_del_init(&epi->rdllink); 717 spin_unlock_irqrestore(&ep->lock, flags); 718 719 wakeup_source_unregister(ep_wakeup_source(epi)); 720 /* 721 * At this point it is safe to free the eventpoll item. Use the union 722 * field epi->rcu, since we are trying to minimize the size of 723 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by 724 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make 725 * use of the rbn field. 726 */ 727 call_rcu(&epi->rcu, epi_rcu_free); 728 729 atomic_long_dec(&ep->user->epoll_watches); 730 731 return 0; 732 } 733 734 static void ep_free(struct eventpoll *ep) 735 { 736 struct rb_node *rbp; 737 struct epitem *epi; 738 739 /* We need to release all tasks waiting for these file */ 740 if (waitqueue_active(&ep->poll_wait)) 741 ep_poll_safewake(&ep->poll_wait); 742 743 /* 744 * We need to lock this because we could be hit by 745 * eventpoll_release_file() while we're freeing the "struct eventpoll". 746 * We do not need to hold "ep->mtx" here because the epoll file 747 * is on the way to be removed and no one has references to it 748 * anymore. The only hit might come from eventpoll_release_file() but 749 * holding "epmutex" is sufficient here. 750 */ 751 mutex_lock(&epmutex); 752 753 /* 754 * Walks through the whole tree by unregistering poll callbacks. 755 */ 756 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 757 epi = rb_entry(rbp, struct epitem, rbn); 758 759 ep_unregister_pollwait(ep, epi); 760 cond_resched(); 761 } 762 763 /* 764 * Walks through the whole tree by freeing each "struct epitem". At this 765 * point we are sure no poll callbacks will be lingering around, and also by 766 * holding "epmutex" we can be sure that no file cleanup code will hit 767 * us during this operation. So we can avoid the lock on "ep->lock". 768 * We do not need to lock ep->mtx, either, we only do it to prevent 769 * a lockdep warning. 770 */ 771 mutex_lock(&ep->mtx); 772 while ((rbp = rb_first(&ep->rbr)) != NULL) { 773 epi = rb_entry(rbp, struct epitem, rbn); 774 ep_remove(ep, epi); 775 cond_resched(); 776 } 777 mutex_unlock(&ep->mtx); 778 779 mutex_unlock(&epmutex); 780 mutex_destroy(&ep->mtx); 781 free_uid(ep->user); 782 wakeup_source_unregister(ep->ws); 783 kfree(ep); 784 } 785 786 static int ep_eventpoll_release(struct inode *inode, struct file *file) 787 { 788 struct eventpoll *ep = file->private_data; 789 790 if (ep) 791 ep_free(ep); 792 793 return 0; 794 } 795 796 static inline unsigned int ep_item_poll(struct epitem *epi, poll_table *pt) 797 { 798 pt->_key = epi->event.events; 799 800 return epi->ffd.file->f_op->poll(epi->ffd.file, pt) & epi->event.events; 801 } 802 803 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head, 804 void *priv) 805 { 806 struct epitem *epi, *tmp; 807 poll_table pt; 808 809 init_poll_funcptr(&pt, NULL); 810 811 list_for_each_entry_safe(epi, tmp, head, rdllink) { 812 if (ep_item_poll(epi, &pt)) 813 return POLLIN | POLLRDNORM; 814 else { 815 /* 816 * Item has been dropped into the ready list by the poll 817 * callback, but it's not actually ready, as far as 818 * caller requested events goes. We can remove it here. 819 */ 820 __pm_relax(ep_wakeup_source(epi)); 821 list_del_init(&epi->rdllink); 822 } 823 } 824 825 return 0; 826 } 827 828 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 829 poll_table *pt); 830 831 struct readyevents_arg { 832 struct eventpoll *ep; 833 bool locked; 834 }; 835 836 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests) 837 { 838 struct readyevents_arg *arg = priv; 839 840 return ep_scan_ready_list(arg->ep, ep_read_events_proc, NULL, 841 call_nests + 1, arg->locked); 842 } 843 844 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait) 845 { 846 int pollflags; 847 struct eventpoll *ep = file->private_data; 848 struct readyevents_arg arg; 849 850 /* 851 * During ep_insert() we already hold the ep->mtx for the tfile. 852 * Prevent re-aquisition. 853 */ 854 arg.locked = wait && (wait->_qproc == ep_ptable_queue_proc); 855 arg.ep = ep; 856 857 /* Insert inside our poll wait queue */ 858 poll_wait(file, &ep->poll_wait, wait); 859 860 /* 861 * Proceed to find out if wanted events are really available inside 862 * the ready list. This need to be done under ep_call_nested() 863 * supervision, since the call to f_op->poll() done on listed files 864 * could re-enter here. 865 */ 866 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS, 867 ep_poll_readyevents_proc, &arg, ep, current); 868 869 return pollflags != -1 ? pollflags : 0; 870 } 871 872 #ifdef CONFIG_PROC_FS 873 static int ep_show_fdinfo(struct seq_file *m, struct file *f) 874 { 875 struct eventpoll *ep = f->private_data; 876 struct rb_node *rbp; 877 int ret = 0; 878 879 mutex_lock(&ep->mtx); 880 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 881 struct epitem *epi = rb_entry(rbp, struct epitem, rbn); 882 883 ret = seq_printf(m, "tfd: %8d events: %8x data: %16llx\n", 884 epi->ffd.fd, epi->event.events, 885 (long long)epi->event.data); 886 if (ret) 887 break; 888 } 889 mutex_unlock(&ep->mtx); 890 891 return ret; 892 } 893 #endif 894 895 /* File callbacks that implement the eventpoll file behaviour */ 896 static const struct file_operations eventpoll_fops = { 897 #ifdef CONFIG_PROC_FS 898 .show_fdinfo = ep_show_fdinfo, 899 #endif 900 .release = ep_eventpoll_release, 901 .poll = ep_eventpoll_poll, 902 .llseek = noop_llseek, 903 }; 904 905 /* 906 * This is called from eventpoll_release() to unlink files from the eventpoll 907 * interface. We need to have this facility to cleanup correctly files that are 908 * closed without being removed from the eventpoll interface. 909 */ 910 void eventpoll_release_file(struct file *file) 911 { 912 struct eventpoll *ep; 913 struct epitem *epi; 914 915 /* 916 * We don't want to get "file->f_lock" because it is not 917 * necessary. It is not necessary because we're in the "struct file" 918 * cleanup path, and this means that no one is using this file anymore. 919 * So, for example, epoll_ctl() cannot hit here since if we reach this 920 * point, the file counter already went to zero and fget() would fail. 921 * The only hit might come from ep_free() but by holding the mutex 922 * will correctly serialize the operation. We do need to acquire 923 * "ep->mtx" after "epmutex" because ep_remove() requires it when called 924 * from anywhere but ep_free(). 925 * 926 * Besides, ep_remove() acquires the lock, so we can't hold it here. 927 */ 928 mutex_lock(&epmutex); 929 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) { 930 ep = epi->ep; 931 mutex_lock_nested(&ep->mtx, 0); 932 ep_remove(ep, epi); 933 mutex_unlock(&ep->mtx); 934 } 935 mutex_unlock(&epmutex); 936 } 937 938 static int ep_alloc(struct eventpoll **pep) 939 { 940 int error; 941 struct user_struct *user; 942 struct eventpoll *ep; 943 944 user = get_current_user(); 945 error = -ENOMEM; 946 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 947 if (unlikely(!ep)) 948 goto free_uid; 949 950 spin_lock_init(&ep->lock); 951 mutex_init(&ep->mtx); 952 init_waitqueue_head(&ep->wq); 953 init_waitqueue_head(&ep->poll_wait); 954 INIT_LIST_HEAD(&ep->rdllist); 955 ep->rbr = RB_ROOT; 956 ep->ovflist = EP_UNACTIVE_PTR; 957 ep->user = user; 958 959 *pep = ep; 960 961 return 0; 962 963 free_uid: 964 free_uid(user); 965 return error; 966 } 967 968 /* 969 * Search the file inside the eventpoll tree. The RB tree operations 970 * are protected by the "mtx" mutex, and ep_find() must be called with 971 * "mtx" held. 972 */ 973 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 974 { 975 int kcmp; 976 struct rb_node *rbp; 977 struct epitem *epi, *epir = NULL; 978 struct epoll_filefd ffd; 979 980 ep_set_ffd(&ffd, file, fd); 981 for (rbp = ep->rbr.rb_node; rbp; ) { 982 epi = rb_entry(rbp, struct epitem, rbn); 983 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 984 if (kcmp > 0) 985 rbp = rbp->rb_right; 986 else if (kcmp < 0) 987 rbp = rbp->rb_left; 988 else { 989 epir = epi; 990 break; 991 } 992 } 993 994 return epir; 995 } 996 997 /* 998 * This is the callback that is passed to the wait queue wakeup 999 * mechanism. It is called by the stored file descriptors when they 1000 * have events to report. 1001 */ 1002 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key) 1003 { 1004 int pwake = 0; 1005 unsigned long flags; 1006 struct epitem *epi = ep_item_from_wait(wait); 1007 struct eventpoll *ep = epi->ep; 1008 1009 if ((unsigned long)key & POLLFREE) { 1010 ep_pwq_from_wait(wait)->whead = NULL; 1011 /* 1012 * whead = NULL above can race with ep_remove_wait_queue() 1013 * which can do another remove_wait_queue() after us, so we 1014 * can't use __remove_wait_queue(). whead->lock is held by 1015 * the caller. 1016 */ 1017 list_del_init(&wait->task_list); 1018 } 1019 1020 spin_lock_irqsave(&ep->lock, flags); 1021 1022 /* 1023 * If the event mask does not contain any poll(2) event, we consider the 1024 * descriptor to be disabled. This condition is likely the effect of the 1025 * EPOLLONESHOT bit that disables the descriptor when an event is received, 1026 * until the next EPOLL_CTL_MOD will be issued. 1027 */ 1028 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 1029 goto out_unlock; 1030 1031 /* 1032 * Check the events coming with the callback. At this stage, not 1033 * every device reports the events in the "key" parameter of the 1034 * callback. We need to be able to handle both cases here, hence the 1035 * test for "key" != NULL before the event match test. 1036 */ 1037 if (key && !((unsigned long) key & epi->event.events)) 1038 goto out_unlock; 1039 1040 /* 1041 * If we are transferring events to userspace, we can hold no locks 1042 * (because we're accessing user memory, and because of linux f_op->poll() 1043 * semantics). All the events that happen during that period of time are 1044 * chained in ep->ovflist and requeued later on. 1045 */ 1046 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) { 1047 if (epi->next == EP_UNACTIVE_PTR) { 1048 epi->next = ep->ovflist; 1049 ep->ovflist = epi; 1050 if (epi->ws) { 1051 /* 1052 * Activate ep->ws since epi->ws may get 1053 * deactivated at any time. 1054 */ 1055 __pm_stay_awake(ep->ws); 1056 } 1057 1058 } 1059 goto out_unlock; 1060 } 1061 1062 /* If this file is already in the ready list we exit soon */ 1063 if (!ep_is_linked(&epi->rdllink)) { 1064 list_add_tail(&epi->rdllink, &ep->rdllist); 1065 ep_pm_stay_awake_rcu(epi); 1066 } 1067 1068 /* 1069 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1070 * wait list. 1071 */ 1072 if (waitqueue_active(&ep->wq)) 1073 wake_up_locked(&ep->wq); 1074 if (waitqueue_active(&ep->poll_wait)) 1075 pwake++; 1076 1077 out_unlock: 1078 spin_unlock_irqrestore(&ep->lock, flags); 1079 1080 /* We have to call this outside the lock */ 1081 if (pwake) 1082 ep_poll_safewake(&ep->poll_wait); 1083 1084 return 1; 1085 } 1086 1087 /* 1088 * This is the callback that is used to add our wait queue to the 1089 * target file wakeup lists. 1090 */ 1091 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 1092 poll_table *pt) 1093 { 1094 struct epitem *epi = ep_item_from_epqueue(pt); 1095 struct eppoll_entry *pwq; 1096 1097 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { 1098 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 1099 pwq->whead = whead; 1100 pwq->base = epi; 1101 add_wait_queue(whead, &pwq->wait); 1102 list_add_tail(&pwq->llink, &epi->pwqlist); 1103 epi->nwait++; 1104 } else { 1105 /* We have to signal that an error occurred */ 1106 epi->nwait = -1; 1107 } 1108 } 1109 1110 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1111 { 1112 int kcmp; 1113 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL; 1114 struct epitem *epic; 1115 1116 while (*p) { 1117 parent = *p; 1118 epic = rb_entry(parent, struct epitem, rbn); 1119 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1120 if (kcmp > 0) 1121 p = &parent->rb_right; 1122 else 1123 p = &parent->rb_left; 1124 } 1125 rb_link_node(&epi->rbn, parent, p); 1126 rb_insert_color(&epi->rbn, &ep->rbr); 1127 } 1128 1129 1130 1131 #define PATH_ARR_SIZE 5 1132 /* 1133 * These are the number paths of length 1 to 5, that we are allowing to emanate 1134 * from a single file of interest. For example, we allow 1000 paths of length 1135 * 1, to emanate from each file of interest. This essentially represents the 1136 * potential wakeup paths, which need to be limited in order to avoid massive 1137 * uncontrolled wakeup storms. The common use case should be a single ep which 1138 * is connected to n file sources. In this case each file source has 1 path 1139 * of length 1. Thus, the numbers below should be more than sufficient. These 1140 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1141 * and delete can't add additional paths. Protected by the epmutex. 1142 */ 1143 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1144 static int path_count[PATH_ARR_SIZE]; 1145 1146 static int path_count_inc(int nests) 1147 { 1148 /* Allow an arbitrary number of depth 1 paths */ 1149 if (nests == 0) 1150 return 0; 1151 1152 if (++path_count[nests] > path_limits[nests]) 1153 return -1; 1154 return 0; 1155 } 1156 1157 static void path_count_init(void) 1158 { 1159 int i; 1160 1161 for (i = 0; i < PATH_ARR_SIZE; i++) 1162 path_count[i] = 0; 1163 } 1164 1165 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests) 1166 { 1167 int error = 0; 1168 struct file *file = priv; 1169 struct file *child_file; 1170 struct epitem *epi; 1171 1172 /* CTL_DEL can remove links here, but that can't increase our count */ 1173 rcu_read_lock(); 1174 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) { 1175 child_file = epi->ep->file; 1176 if (is_file_epoll(child_file)) { 1177 if (list_empty(&child_file->f_ep_links)) { 1178 if (path_count_inc(call_nests)) { 1179 error = -1; 1180 break; 1181 } 1182 } else { 1183 error = ep_call_nested(&poll_loop_ncalls, 1184 EP_MAX_NESTS, 1185 reverse_path_check_proc, 1186 child_file, child_file, 1187 current); 1188 } 1189 if (error != 0) 1190 break; 1191 } else { 1192 printk(KERN_ERR "reverse_path_check_proc: " 1193 "file is not an ep!\n"); 1194 } 1195 } 1196 rcu_read_unlock(); 1197 return error; 1198 } 1199 1200 /** 1201 * reverse_path_check - The tfile_check_list is list of file *, which have 1202 * links that are proposed to be newly added. We need to 1203 * make sure that those added links don't add too many 1204 * paths such that we will spend all our time waking up 1205 * eventpoll objects. 1206 * 1207 * Returns: Returns zero if the proposed links don't create too many paths, 1208 * -1 otherwise. 1209 */ 1210 static int reverse_path_check(void) 1211 { 1212 int error = 0; 1213 struct file *current_file; 1214 1215 /* let's call this for all tfiles */ 1216 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) { 1217 path_count_init(); 1218 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1219 reverse_path_check_proc, current_file, 1220 current_file, current); 1221 if (error) 1222 break; 1223 } 1224 return error; 1225 } 1226 1227 static int ep_create_wakeup_source(struct epitem *epi) 1228 { 1229 const char *name; 1230 struct wakeup_source *ws; 1231 1232 if (!epi->ep->ws) { 1233 epi->ep->ws = wakeup_source_register("eventpoll"); 1234 if (!epi->ep->ws) 1235 return -ENOMEM; 1236 } 1237 1238 name = epi->ffd.file->f_path.dentry->d_name.name; 1239 ws = wakeup_source_register(name); 1240 1241 if (!ws) 1242 return -ENOMEM; 1243 rcu_assign_pointer(epi->ws, ws); 1244 1245 return 0; 1246 } 1247 1248 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ 1249 static noinline void ep_destroy_wakeup_source(struct epitem *epi) 1250 { 1251 struct wakeup_source *ws = ep_wakeup_source(epi); 1252 1253 RCU_INIT_POINTER(epi->ws, NULL); 1254 1255 /* 1256 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is 1257 * used internally by wakeup_source_remove, too (called by 1258 * wakeup_source_unregister), so we cannot use call_rcu 1259 */ 1260 synchronize_rcu(); 1261 wakeup_source_unregister(ws); 1262 } 1263 1264 /* 1265 * Must be called with "mtx" held. 1266 */ 1267 static int ep_insert(struct eventpoll *ep, struct epoll_event *event, 1268 struct file *tfile, int fd, int full_check) 1269 { 1270 int error, revents, pwake = 0; 1271 unsigned long flags; 1272 long user_watches; 1273 struct epitem *epi; 1274 struct ep_pqueue epq; 1275 1276 user_watches = atomic_long_read(&ep->user->epoll_watches); 1277 if (unlikely(user_watches >= max_user_watches)) 1278 return -ENOSPC; 1279 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) 1280 return -ENOMEM; 1281 1282 /* Item initialization follow here ... */ 1283 INIT_LIST_HEAD(&epi->rdllink); 1284 INIT_LIST_HEAD(&epi->fllink); 1285 INIT_LIST_HEAD(&epi->pwqlist); 1286 epi->ep = ep; 1287 ep_set_ffd(&epi->ffd, tfile, fd); 1288 epi->event = *event; 1289 epi->nwait = 0; 1290 epi->next = EP_UNACTIVE_PTR; 1291 if (epi->event.events & EPOLLWAKEUP) { 1292 error = ep_create_wakeup_source(epi); 1293 if (error) 1294 goto error_create_wakeup_source; 1295 } else { 1296 RCU_INIT_POINTER(epi->ws, NULL); 1297 } 1298 1299 /* Initialize the poll table using the queue callback */ 1300 epq.epi = epi; 1301 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1302 1303 /* 1304 * Attach the item to the poll hooks and get current event bits. 1305 * We can safely use the file* here because its usage count has 1306 * been increased by the caller of this function. Note that after 1307 * this operation completes, the poll callback can start hitting 1308 * the new item. 1309 */ 1310 revents = ep_item_poll(epi, &epq.pt); 1311 1312 /* 1313 * We have to check if something went wrong during the poll wait queue 1314 * install process. Namely an allocation for a wait queue failed due 1315 * high memory pressure. 1316 */ 1317 error = -ENOMEM; 1318 if (epi->nwait < 0) 1319 goto error_unregister; 1320 1321 /* Add the current item to the list of active epoll hook for this file */ 1322 spin_lock(&tfile->f_lock); 1323 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links); 1324 spin_unlock(&tfile->f_lock); 1325 1326 /* 1327 * Add the current item to the RB tree. All RB tree operations are 1328 * protected by "mtx", and ep_insert() is called with "mtx" held. 1329 */ 1330 ep_rbtree_insert(ep, epi); 1331 1332 /* now check if we've created too many backpaths */ 1333 error = -EINVAL; 1334 if (full_check && reverse_path_check()) 1335 goto error_remove_epi; 1336 1337 /* We have to drop the new item inside our item list to keep track of it */ 1338 spin_lock_irqsave(&ep->lock, flags); 1339 1340 /* If the file is already "ready" we drop it inside the ready list */ 1341 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) { 1342 list_add_tail(&epi->rdllink, &ep->rdllist); 1343 ep_pm_stay_awake(epi); 1344 1345 /* Notify waiting tasks that events are available */ 1346 if (waitqueue_active(&ep->wq)) 1347 wake_up_locked(&ep->wq); 1348 if (waitqueue_active(&ep->poll_wait)) 1349 pwake++; 1350 } 1351 1352 spin_unlock_irqrestore(&ep->lock, flags); 1353 1354 atomic_long_inc(&ep->user->epoll_watches); 1355 1356 /* We have to call this outside the lock */ 1357 if (pwake) 1358 ep_poll_safewake(&ep->poll_wait); 1359 1360 return 0; 1361 1362 error_remove_epi: 1363 spin_lock(&tfile->f_lock); 1364 list_del_rcu(&epi->fllink); 1365 spin_unlock(&tfile->f_lock); 1366 1367 rb_erase(&epi->rbn, &ep->rbr); 1368 1369 error_unregister: 1370 ep_unregister_pollwait(ep, epi); 1371 1372 /* 1373 * We need to do this because an event could have been arrived on some 1374 * allocated wait queue. Note that we don't care about the ep->ovflist 1375 * list, since that is used/cleaned only inside a section bound by "mtx". 1376 * And ep_insert() is called with "mtx" held. 1377 */ 1378 spin_lock_irqsave(&ep->lock, flags); 1379 if (ep_is_linked(&epi->rdllink)) 1380 list_del_init(&epi->rdllink); 1381 spin_unlock_irqrestore(&ep->lock, flags); 1382 1383 wakeup_source_unregister(ep_wakeup_source(epi)); 1384 1385 error_create_wakeup_source: 1386 kmem_cache_free(epi_cache, epi); 1387 1388 return error; 1389 } 1390 1391 /* 1392 * Modify the interest event mask by dropping an event if the new mask 1393 * has a match in the current file status. Must be called with "mtx" held. 1394 */ 1395 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event) 1396 { 1397 int pwake = 0; 1398 unsigned int revents; 1399 poll_table pt; 1400 1401 init_poll_funcptr(&pt, NULL); 1402 1403 /* 1404 * Set the new event interest mask before calling f_op->poll(); 1405 * otherwise we might miss an event that happens between the 1406 * f_op->poll() call and the new event set registering. 1407 */ 1408 epi->event.events = event->events; /* need barrier below */ 1409 epi->event.data = event->data; /* protected by mtx */ 1410 if (epi->event.events & EPOLLWAKEUP) { 1411 if (!ep_has_wakeup_source(epi)) 1412 ep_create_wakeup_source(epi); 1413 } else if (ep_has_wakeup_source(epi)) { 1414 ep_destroy_wakeup_source(epi); 1415 } 1416 1417 /* 1418 * The following barrier has two effects: 1419 * 1420 * 1) Flush epi changes above to other CPUs. This ensures 1421 * we do not miss events from ep_poll_callback if an 1422 * event occurs immediately after we call f_op->poll(). 1423 * We need this because we did not take ep->lock while 1424 * changing epi above (but ep_poll_callback does take 1425 * ep->lock). 1426 * 1427 * 2) We also need to ensure we do not miss _past_ events 1428 * when calling f_op->poll(). This barrier also 1429 * pairs with the barrier in wq_has_sleeper (see 1430 * comments for wq_has_sleeper). 1431 * 1432 * This barrier will now guarantee ep_poll_callback or f_op->poll 1433 * (or both) will notice the readiness of an item. 1434 */ 1435 smp_mb(); 1436 1437 /* 1438 * Get current event bits. We can safely use the file* here because 1439 * its usage count has been increased by the caller of this function. 1440 */ 1441 revents = ep_item_poll(epi, &pt); 1442 1443 /* 1444 * If the item is "hot" and it is not registered inside the ready 1445 * list, push it inside. 1446 */ 1447 if (revents & event->events) { 1448 spin_lock_irq(&ep->lock); 1449 if (!ep_is_linked(&epi->rdllink)) { 1450 list_add_tail(&epi->rdllink, &ep->rdllist); 1451 ep_pm_stay_awake(epi); 1452 1453 /* Notify waiting tasks that events are available */ 1454 if (waitqueue_active(&ep->wq)) 1455 wake_up_locked(&ep->wq); 1456 if (waitqueue_active(&ep->poll_wait)) 1457 pwake++; 1458 } 1459 spin_unlock_irq(&ep->lock); 1460 } 1461 1462 /* We have to call this outside the lock */ 1463 if (pwake) 1464 ep_poll_safewake(&ep->poll_wait); 1465 1466 return 0; 1467 } 1468 1469 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head, 1470 void *priv) 1471 { 1472 struct ep_send_events_data *esed = priv; 1473 int eventcnt; 1474 unsigned int revents; 1475 struct epitem *epi; 1476 struct epoll_event __user *uevent; 1477 struct wakeup_source *ws; 1478 poll_table pt; 1479 1480 init_poll_funcptr(&pt, NULL); 1481 1482 /* 1483 * We can loop without lock because we are passed a task private list. 1484 * Items cannot vanish during the loop because ep_scan_ready_list() is 1485 * holding "mtx" during this call. 1486 */ 1487 for (eventcnt = 0, uevent = esed->events; 1488 !list_empty(head) && eventcnt < esed->maxevents;) { 1489 epi = list_first_entry(head, struct epitem, rdllink); 1490 1491 /* 1492 * Activate ep->ws before deactivating epi->ws to prevent 1493 * triggering auto-suspend here (in case we reactive epi->ws 1494 * below). 1495 * 1496 * This could be rearranged to delay the deactivation of epi->ws 1497 * instead, but then epi->ws would temporarily be out of sync 1498 * with ep_is_linked(). 1499 */ 1500 ws = ep_wakeup_source(epi); 1501 if (ws) { 1502 if (ws->active) 1503 __pm_stay_awake(ep->ws); 1504 __pm_relax(ws); 1505 } 1506 1507 list_del_init(&epi->rdllink); 1508 1509 revents = ep_item_poll(epi, &pt); 1510 1511 /* 1512 * If the event mask intersect the caller-requested one, 1513 * deliver the event to userspace. Again, ep_scan_ready_list() 1514 * is holding "mtx", so no operations coming from userspace 1515 * can change the item. 1516 */ 1517 if (revents) { 1518 if (__put_user(revents, &uevent->events) || 1519 __put_user(epi->event.data, &uevent->data)) { 1520 list_add(&epi->rdllink, head); 1521 ep_pm_stay_awake(epi); 1522 return eventcnt ? eventcnt : -EFAULT; 1523 } 1524 eventcnt++; 1525 uevent++; 1526 if (epi->event.events & EPOLLONESHOT) 1527 epi->event.events &= EP_PRIVATE_BITS; 1528 else if (!(epi->event.events & EPOLLET)) { 1529 /* 1530 * If this file has been added with Level 1531 * Trigger mode, we need to insert back inside 1532 * the ready list, so that the next call to 1533 * epoll_wait() will check again the events 1534 * availability. At this point, no one can insert 1535 * into ep->rdllist besides us. The epoll_ctl() 1536 * callers are locked out by 1537 * ep_scan_ready_list() holding "mtx" and the 1538 * poll callback will queue them in ep->ovflist. 1539 */ 1540 list_add_tail(&epi->rdllink, &ep->rdllist); 1541 ep_pm_stay_awake(epi); 1542 } 1543 } 1544 } 1545 1546 return eventcnt; 1547 } 1548 1549 static int ep_send_events(struct eventpoll *ep, 1550 struct epoll_event __user *events, int maxevents) 1551 { 1552 struct ep_send_events_data esed; 1553 1554 esed.maxevents = maxevents; 1555 esed.events = events; 1556 1557 return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false); 1558 } 1559 1560 static inline struct timespec ep_set_mstimeout(long ms) 1561 { 1562 struct timespec now, ts = { 1563 .tv_sec = ms / MSEC_PER_SEC, 1564 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC), 1565 }; 1566 1567 ktime_get_ts(&now); 1568 return timespec_add_safe(now, ts); 1569 } 1570 1571 /** 1572 * ep_poll - Retrieves ready events, and delivers them to the caller supplied 1573 * event buffer. 1574 * 1575 * @ep: Pointer to the eventpoll context. 1576 * @events: Pointer to the userspace buffer where the ready events should be 1577 * stored. 1578 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1579 * @timeout: Maximum timeout for the ready events fetch operation, in 1580 * milliseconds. If the @timeout is zero, the function will not block, 1581 * while if the @timeout is less than zero, the function will block 1582 * until at least one event has been retrieved (or an error 1583 * occurred). 1584 * 1585 * Returns: Returns the number of ready events which have been fetched, or an 1586 * error code, in case of error. 1587 */ 1588 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1589 int maxevents, long timeout) 1590 { 1591 int res = 0, eavail, timed_out = 0; 1592 unsigned long flags; 1593 long slack = 0; 1594 wait_queue_t wait; 1595 ktime_t expires, *to = NULL; 1596 1597 if (timeout > 0) { 1598 struct timespec end_time = ep_set_mstimeout(timeout); 1599 1600 slack = select_estimate_accuracy(&end_time); 1601 to = &expires; 1602 *to = timespec_to_ktime(end_time); 1603 } else if (timeout == 0) { 1604 /* 1605 * Avoid the unnecessary trip to the wait queue loop, if the 1606 * caller specified a non blocking operation. 1607 */ 1608 timed_out = 1; 1609 spin_lock_irqsave(&ep->lock, flags); 1610 goto check_events; 1611 } 1612 1613 fetch_events: 1614 spin_lock_irqsave(&ep->lock, flags); 1615 1616 if (!ep_events_available(ep)) { 1617 /* 1618 * We don't have any available event to return to the caller. 1619 * We need to sleep here, and we will be wake up by 1620 * ep_poll_callback() when events will become available. 1621 */ 1622 init_waitqueue_entry(&wait, current); 1623 __add_wait_queue_exclusive(&ep->wq, &wait); 1624 1625 for (;;) { 1626 /* 1627 * We don't want to sleep if the ep_poll_callback() sends us 1628 * a wakeup in between. That's why we set the task state 1629 * to TASK_INTERRUPTIBLE before doing the checks. 1630 */ 1631 set_current_state(TASK_INTERRUPTIBLE); 1632 if (ep_events_available(ep) || timed_out) 1633 break; 1634 if (signal_pending(current)) { 1635 res = -EINTR; 1636 break; 1637 } 1638 1639 spin_unlock_irqrestore(&ep->lock, flags); 1640 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) 1641 timed_out = 1; 1642 1643 spin_lock_irqsave(&ep->lock, flags); 1644 } 1645 __remove_wait_queue(&ep->wq, &wait); 1646 1647 set_current_state(TASK_RUNNING); 1648 } 1649 check_events: 1650 /* Is it worth to try to dig for events ? */ 1651 eavail = ep_events_available(ep); 1652 1653 spin_unlock_irqrestore(&ep->lock, flags); 1654 1655 /* 1656 * Try to transfer events to user space. In case we get 0 events and 1657 * there's still timeout left over, we go trying again in search of 1658 * more luck. 1659 */ 1660 if (!res && eavail && 1661 !(res = ep_send_events(ep, events, maxevents)) && !timed_out) 1662 goto fetch_events; 1663 1664 return res; 1665 } 1666 1667 /** 1668 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested() 1669 * API, to verify that adding an epoll file inside another 1670 * epoll structure, does not violate the constraints, in 1671 * terms of closed loops, or too deep chains (which can 1672 * result in excessive stack usage). 1673 * 1674 * @priv: Pointer to the epoll file to be currently checked. 1675 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll 1676 * data structure pointer. 1677 * @call_nests: Current dept of the @ep_call_nested() call stack. 1678 * 1679 * Returns: Returns zero if adding the epoll @file inside current epoll 1680 * structure @ep does not violate the constraints, or -1 otherwise. 1681 */ 1682 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests) 1683 { 1684 int error = 0; 1685 struct file *file = priv; 1686 struct eventpoll *ep = file->private_data; 1687 struct eventpoll *ep_tovisit; 1688 struct rb_node *rbp; 1689 struct epitem *epi; 1690 1691 mutex_lock_nested(&ep->mtx, call_nests + 1); 1692 ep->visited = 1; 1693 list_add(&ep->visited_list_link, &visited_list); 1694 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1695 epi = rb_entry(rbp, struct epitem, rbn); 1696 if (unlikely(is_file_epoll(epi->ffd.file))) { 1697 ep_tovisit = epi->ffd.file->private_data; 1698 if (ep_tovisit->visited) 1699 continue; 1700 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1701 ep_loop_check_proc, epi->ffd.file, 1702 ep_tovisit, current); 1703 if (error != 0) 1704 break; 1705 } else { 1706 /* 1707 * If we've reached a file that is not associated with 1708 * an ep, then we need to check if the newly added 1709 * links are going to add too many wakeup paths. We do 1710 * this by adding it to the tfile_check_list, if it's 1711 * not already there, and calling reverse_path_check() 1712 * during ep_insert(). 1713 */ 1714 if (list_empty(&epi->ffd.file->f_tfile_llink)) 1715 list_add(&epi->ffd.file->f_tfile_llink, 1716 &tfile_check_list); 1717 } 1718 } 1719 mutex_unlock(&ep->mtx); 1720 1721 return error; 1722 } 1723 1724 /** 1725 * ep_loop_check - Performs a check to verify that adding an epoll file (@file) 1726 * another epoll file (represented by @ep) does not create 1727 * closed loops or too deep chains. 1728 * 1729 * @ep: Pointer to the epoll private data structure. 1730 * @file: Pointer to the epoll file to be checked. 1731 * 1732 * Returns: Returns zero if adding the epoll @file inside current epoll 1733 * structure @ep does not violate the constraints, or -1 otherwise. 1734 */ 1735 static int ep_loop_check(struct eventpoll *ep, struct file *file) 1736 { 1737 int ret; 1738 struct eventpoll *ep_cur, *ep_next; 1739 1740 ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1741 ep_loop_check_proc, file, ep, current); 1742 /* clear visited list */ 1743 list_for_each_entry_safe(ep_cur, ep_next, &visited_list, 1744 visited_list_link) { 1745 ep_cur->visited = 0; 1746 list_del(&ep_cur->visited_list_link); 1747 } 1748 return ret; 1749 } 1750 1751 static void clear_tfile_check_list(void) 1752 { 1753 struct file *file; 1754 1755 /* first clear the tfile_check_list */ 1756 while (!list_empty(&tfile_check_list)) { 1757 file = list_first_entry(&tfile_check_list, struct file, 1758 f_tfile_llink); 1759 list_del_init(&file->f_tfile_llink); 1760 } 1761 INIT_LIST_HEAD(&tfile_check_list); 1762 } 1763 1764 /* 1765 * Open an eventpoll file descriptor. 1766 */ 1767 SYSCALL_DEFINE1(epoll_create1, int, flags) 1768 { 1769 int error, fd; 1770 struct eventpoll *ep = NULL; 1771 struct file *file; 1772 1773 /* Check the EPOLL_* constant for consistency. */ 1774 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 1775 1776 if (flags & ~EPOLL_CLOEXEC) 1777 return -EINVAL; 1778 /* 1779 * Create the internal data structure ("struct eventpoll"). 1780 */ 1781 error = ep_alloc(&ep); 1782 if (error < 0) 1783 return error; 1784 /* 1785 * Creates all the items needed to setup an eventpoll file. That is, 1786 * a file structure and a free file descriptor. 1787 */ 1788 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 1789 if (fd < 0) { 1790 error = fd; 1791 goto out_free_ep; 1792 } 1793 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 1794 O_RDWR | (flags & O_CLOEXEC)); 1795 if (IS_ERR(file)) { 1796 error = PTR_ERR(file); 1797 goto out_free_fd; 1798 } 1799 ep->file = file; 1800 fd_install(fd, file); 1801 return fd; 1802 1803 out_free_fd: 1804 put_unused_fd(fd); 1805 out_free_ep: 1806 ep_free(ep); 1807 return error; 1808 } 1809 1810 SYSCALL_DEFINE1(epoll_create, int, size) 1811 { 1812 if (size <= 0) 1813 return -EINVAL; 1814 1815 return sys_epoll_create1(0); 1816 } 1817 1818 /* 1819 * The following function implements the controller interface for 1820 * the eventpoll file that enables the insertion/removal/change of 1821 * file descriptors inside the interest set. 1822 */ 1823 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 1824 struct epoll_event __user *, event) 1825 { 1826 int error; 1827 int full_check = 0; 1828 struct fd f, tf; 1829 struct eventpoll *ep; 1830 struct epitem *epi; 1831 struct epoll_event epds; 1832 struct eventpoll *tep = NULL; 1833 1834 error = -EFAULT; 1835 if (ep_op_has_event(op) && 1836 copy_from_user(&epds, event, sizeof(struct epoll_event))) 1837 goto error_return; 1838 1839 error = -EBADF; 1840 f = fdget(epfd); 1841 if (!f.file) 1842 goto error_return; 1843 1844 /* Get the "struct file *" for the target file */ 1845 tf = fdget(fd); 1846 if (!tf.file) 1847 goto error_fput; 1848 1849 /* The target file descriptor must support poll */ 1850 error = -EPERM; 1851 if (!tf.file->f_op->poll) 1852 goto error_tgt_fput; 1853 1854 /* Check if EPOLLWAKEUP is allowed */ 1855 ep_take_care_of_epollwakeup(&epds); 1856 1857 /* 1858 * We have to check that the file structure underneath the file descriptor 1859 * the user passed to us _is_ an eventpoll file. And also we do not permit 1860 * adding an epoll file descriptor inside itself. 1861 */ 1862 error = -EINVAL; 1863 if (f.file == tf.file || !is_file_epoll(f.file)) 1864 goto error_tgt_fput; 1865 1866 /* 1867 * At this point it is safe to assume that the "private_data" contains 1868 * our own data structure. 1869 */ 1870 ep = f.file->private_data; 1871 1872 /* 1873 * When we insert an epoll file descriptor, inside another epoll file 1874 * descriptor, there is the change of creating closed loops, which are 1875 * better be handled here, than in more critical paths. While we are 1876 * checking for loops we also determine the list of files reachable 1877 * and hang them on the tfile_check_list, so we can check that we 1878 * haven't created too many possible wakeup paths. 1879 * 1880 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when 1881 * the epoll file descriptor is attaching directly to a wakeup source, 1882 * unless the epoll file descriptor is nested. The purpose of taking the 1883 * 'epmutex' on add is to prevent complex toplogies such as loops and 1884 * deep wakeup paths from forming in parallel through multiple 1885 * EPOLL_CTL_ADD operations. 1886 */ 1887 mutex_lock_nested(&ep->mtx, 0); 1888 if (op == EPOLL_CTL_ADD) { 1889 if (!list_empty(&f.file->f_ep_links) || 1890 is_file_epoll(tf.file)) { 1891 full_check = 1; 1892 mutex_unlock(&ep->mtx); 1893 mutex_lock(&epmutex); 1894 if (is_file_epoll(tf.file)) { 1895 error = -ELOOP; 1896 if (ep_loop_check(ep, tf.file) != 0) { 1897 clear_tfile_check_list(); 1898 goto error_tgt_fput; 1899 } 1900 } else 1901 list_add(&tf.file->f_tfile_llink, 1902 &tfile_check_list); 1903 mutex_lock_nested(&ep->mtx, 0); 1904 if (is_file_epoll(tf.file)) { 1905 tep = tf.file->private_data; 1906 mutex_lock_nested(&tep->mtx, 1); 1907 } 1908 } 1909 } 1910 if (op == EPOLL_CTL_DEL && is_file_epoll(tf.file)) { 1911 tep = tf.file->private_data; 1912 mutex_lock_nested(&tep->mtx, 1); 1913 } 1914 1915 /* 1916 * Try to lookup the file inside our RB tree, Since we grabbed "mtx" 1917 * above, we can be sure to be able to use the item looked up by 1918 * ep_find() till we release the mutex. 1919 */ 1920 epi = ep_find(ep, tf.file, fd); 1921 1922 error = -EINVAL; 1923 switch (op) { 1924 case EPOLL_CTL_ADD: 1925 if (!epi) { 1926 epds.events |= POLLERR | POLLHUP; 1927 error = ep_insert(ep, &epds, tf.file, fd, full_check); 1928 } else 1929 error = -EEXIST; 1930 if (full_check) 1931 clear_tfile_check_list(); 1932 break; 1933 case EPOLL_CTL_DEL: 1934 if (epi) 1935 error = ep_remove(ep, epi); 1936 else 1937 error = -ENOENT; 1938 break; 1939 case EPOLL_CTL_MOD: 1940 if (epi) { 1941 epds.events |= POLLERR | POLLHUP; 1942 error = ep_modify(ep, epi, &epds); 1943 } else 1944 error = -ENOENT; 1945 break; 1946 } 1947 if (tep != NULL) 1948 mutex_unlock(&tep->mtx); 1949 mutex_unlock(&ep->mtx); 1950 1951 error_tgt_fput: 1952 if (full_check) 1953 mutex_unlock(&epmutex); 1954 1955 fdput(tf); 1956 error_fput: 1957 fdput(f); 1958 error_return: 1959 1960 return error; 1961 } 1962 1963 /* 1964 * Implement the event wait interface for the eventpoll file. It is the kernel 1965 * part of the user space epoll_wait(2). 1966 */ 1967 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 1968 int, maxevents, int, timeout) 1969 { 1970 int error; 1971 struct fd f; 1972 struct eventpoll *ep; 1973 1974 /* The maximum number of event must be greater than zero */ 1975 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 1976 return -EINVAL; 1977 1978 /* Verify that the area passed by the user is writeable */ 1979 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) 1980 return -EFAULT; 1981 1982 /* Get the "struct file *" for the eventpoll file */ 1983 f = fdget(epfd); 1984 if (!f.file) 1985 return -EBADF; 1986 1987 /* 1988 * We have to check that the file structure underneath the fd 1989 * the user passed to us _is_ an eventpoll file. 1990 */ 1991 error = -EINVAL; 1992 if (!is_file_epoll(f.file)) 1993 goto error_fput; 1994 1995 /* 1996 * At this point it is safe to assume that the "private_data" contains 1997 * our own data structure. 1998 */ 1999 ep = f.file->private_data; 2000 2001 /* Time to fish for events ... */ 2002 error = ep_poll(ep, events, maxevents, timeout); 2003 2004 error_fput: 2005 fdput(f); 2006 return error; 2007 } 2008 2009 /* 2010 * Implement the event wait interface for the eventpoll file. It is the kernel 2011 * part of the user space epoll_pwait(2). 2012 */ 2013 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 2014 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 2015 size_t, sigsetsize) 2016 { 2017 int error; 2018 sigset_t ksigmask, sigsaved; 2019 2020 /* 2021 * If the caller wants a certain signal mask to be set during the wait, 2022 * we apply it here. 2023 */ 2024 if (sigmask) { 2025 if (sigsetsize != sizeof(sigset_t)) 2026 return -EINVAL; 2027 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask))) 2028 return -EFAULT; 2029 sigsaved = current->blocked; 2030 set_current_blocked(&ksigmask); 2031 } 2032 2033 error = sys_epoll_wait(epfd, events, maxevents, timeout); 2034 2035 /* 2036 * If we changed the signal mask, we need to restore the original one. 2037 * In case we've got a signal while waiting, we do not restore the 2038 * signal mask yet, and we allow do_signal() to deliver the signal on 2039 * the way back to userspace, before the signal mask is restored. 2040 */ 2041 if (sigmask) { 2042 if (error == -EINTR) { 2043 memcpy(¤t->saved_sigmask, &sigsaved, 2044 sizeof(sigsaved)); 2045 set_restore_sigmask(); 2046 } else 2047 set_current_blocked(&sigsaved); 2048 } 2049 2050 return error; 2051 } 2052 2053 #ifdef CONFIG_COMPAT 2054 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, 2055 struct epoll_event __user *, events, 2056 int, maxevents, int, timeout, 2057 const compat_sigset_t __user *, sigmask, 2058 compat_size_t, sigsetsize) 2059 { 2060 long err; 2061 compat_sigset_t csigmask; 2062 sigset_t ksigmask, sigsaved; 2063 2064 /* 2065 * If the caller wants a certain signal mask to be set during the wait, 2066 * we apply it here. 2067 */ 2068 if (sigmask) { 2069 if (sigsetsize != sizeof(compat_sigset_t)) 2070 return -EINVAL; 2071 if (copy_from_user(&csigmask, sigmask, sizeof(csigmask))) 2072 return -EFAULT; 2073 sigset_from_compat(&ksigmask, &csigmask); 2074 sigsaved = current->blocked; 2075 set_current_blocked(&ksigmask); 2076 } 2077 2078 err = sys_epoll_wait(epfd, events, maxevents, timeout); 2079 2080 /* 2081 * If we changed the signal mask, we need to restore the original one. 2082 * In case we've got a signal while waiting, we do not restore the 2083 * signal mask yet, and we allow do_signal() to deliver the signal on 2084 * the way back to userspace, before the signal mask is restored. 2085 */ 2086 if (sigmask) { 2087 if (err == -EINTR) { 2088 memcpy(¤t->saved_sigmask, &sigsaved, 2089 sizeof(sigsaved)); 2090 set_restore_sigmask(); 2091 } else 2092 set_current_blocked(&sigsaved); 2093 } 2094 2095 return err; 2096 } 2097 #endif 2098 2099 static int __init eventpoll_init(void) 2100 { 2101 struct sysinfo si; 2102 2103 si_meminfo(&si); 2104 /* 2105 * Allows top 4% of lomem to be allocated for epoll watches (per user). 2106 */ 2107 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 2108 EP_ITEM_COST; 2109 BUG_ON(max_user_watches < 0); 2110 2111 /* 2112 * Initialize the structure used to perform epoll file descriptor 2113 * inclusion loops checks. 2114 */ 2115 ep_nested_calls_init(&poll_loop_ncalls); 2116 2117 /* Initialize the structure used to perform safe poll wait head wake ups */ 2118 ep_nested_calls_init(&poll_safewake_ncalls); 2119 2120 /* Initialize the structure used to perform file's f_op->poll() calls */ 2121 ep_nested_calls_init(&poll_readywalk_ncalls); 2122 2123 /* 2124 * We can have many thousands of epitems, so prevent this from 2125 * using an extra cache line on 64-bit (and smaller) CPUs 2126 */ 2127 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); 2128 2129 /* Allocates slab cache used to allocate "struct epitem" items */ 2130 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 2131 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 2132 2133 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 2134 pwq_cache = kmem_cache_create("eventpoll_pwq", 2135 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL); 2136 2137 return 0; 2138 } 2139 fs_initcall(eventpoll_init); 2140