xref: /openbmc/linux/fs/eventpoll.c (revision 6ab3d562)
1 /*
2  *  fs/eventpoll.c ( Efficent event polling implementation )
3  *  Copyright (C) 2001,...,2006	 Davide Libenzi
4  *
5  *  This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation; either version 2 of the License, or
8  *  (at your option) any later version.
9  *
10  *  Davide Libenzi <davidel@xmailserver.org>
11  *
12  */
13 
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/sched.h>
18 #include <linux/fs.h>
19 #include <linux/file.h>
20 #include <linux/signal.h>
21 #include <linux/errno.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/poll.h>
25 #include <linux/smp_lock.h>
26 #include <linux/string.h>
27 #include <linux/list.h>
28 #include <linux/hash.h>
29 #include <linux/spinlock.h>
30 #include <linux/syscalls.h>
31 #include <linux/rwsem.h>
32 #include <linux/rbtree.h>
33 #include <linux/wait.h>
34 #include <linux/eventpoll.h>
35 #include <linux/mount.h>
36 #include <linux/bitops.h>
37 #include <linux/mutex.h>
38 #include <asm/uaccess.h>
39 #include <asm/system.h>
40 #include <asm/io.h>
41 #include <asm/mman.h>
42 #include <asm/atomic.h>
43 #include <asm/semaphore.h>
44 
45 
46 /*
47  * LOCKING:
48  * There are three level of locking required by epoll :
49  *
50  * 1) epmutex (mutex)
51  * 2) ep->sem (rw_semaphore)
52  * 3) ep->lock (rw_lock)
53  *
54  * The acquire order is the one listed above, from 1 to 3.
55  * We need a spinlock (ep->lock) because we manipulate objects
56  * from inside the poll callback, that might be triggered from
57  * a wake_up() that in turn might be called from IRQ context.
58  * So we can't sleep inside the poll callback and hence we need
59  * a spinlock. During the event transfer loop (from kernel to
60  * user space) we could end up sleeping due a copy_to_user(), so
61  * we need a lock that will allow us to sleep. This lock is a
62  * read-write semaphore (ep->sem). It is acquired on read during
63  * the event transfer loop and in write during epoll_ctl(EPOLL_CTL_DEL)
64  * and during eventpoll_release_file(). Then we also need a global
65  * semaphore to serialize eventpoll_release_file() and ep_free().
66  * This semaphore is acquired by ep_free() during the epoll file
67  * cleanup path and it is also acquired by eventpoll_release_file()
68  * if a file has been pushed inside an epoll set and it is then
69  * close()d without a previous call toepoll_ctl(EPOLL_CTL_DEL).
70  * It is possible to drop the "ep->sem" and to use the global
71  * semaphore "epmutex" (together with "ep->lock") to have it working,
72  * but having "ep->sem" will make the interface more scalable.
73  * Events that require holding "epmutex" are very rare, while for
74  * normal operations the epoll private "ep->sem" will guarantee
75  * a greater scalability.
76  */
77 
78 
79 #define EVENTPOLLFS_MAGIC 0x03111965 /* My birthday should work for this :) */
80 
81 #define DEBUG_EPOLL 0
82 
83 #if DEBUG_EPOLL > 0
84 #define DPRINTK(x) printk x
85 #define DNPRINTK(n, x) do { if ((n) <= DEBUG_EPOLL) printk x; } while (0)
86 #else /* #if DEBUG_EPOLL > 0 */
87 #define DPRINTK(x) (void) 0
88 #define DNPRINTK(n, x) (void) 0
89 #endif /* #if DEBUG_EPOLL > 0 */
90 
91 #define DEBUG_EPI 0
92 
93 #if DEBUG_EPI != 0
94 #define EPI_SLAB_DEBUG (SLAB_DEBUG_FREE | SLAB_RED_ZONE /* | SLAB_POISON */)
95 #else /* #if DEBUG_EPI != 0 */
96 #define EPI_SLAB_DEBUG 0
97 #endif /* #if DEBUG_EPI != 0 */
98 
99 /* Epoll private bits inside the event mask */
100 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET)
101 
102 /* Maximum number of poll wake up nests we are allowing */
103 #define EP_MAX_POLLWAKE_NESTS 4
104 
105 /* Maximum msec timeout value storeable in a long int */
106 #define EP_MAX_MSTIMEO min(1000ULL * MAX_SCHEDULE_TIMEOUT / HZ, (LONG_MAX - 999ULL) / HZ)
107 
108 
109 struct epoll_filefd {
110 	struct file *file;
111 	int fd;
112 };
113 
114 /*
115  * Node that is linked into the "wake_task_list" member of the "struct poll_safewake".
116  * It is used to keep track on all tasks that are currently inside the wake_up() code
117  * to 1) short-circuit the one coming from the same task and same wait queue head
118  * ( loop ) 2) allow a maximum number of epoll descriptors inclusion nesting
119  * 3) let go the ones coming from other tasks.
120  */
121 struct wake_task_node {
122 	struct list_head llink;
123 	task_t *task;
124 	wait_queue_head_t *wq;
125 };
126 
127 /*
128  * This is used to implement the safe poll wake up avoiding to reenter
129  * the poll callback from inside wake_up().
130  */
131 struct poll_safewake {
132 	struct list_head wake_task_list;
133 	spinlock_t lock;
134 };
135 
136 /*
137  * This structure is stored inside the "private_data" member of the file
138  * structure and rapresent the main data sructure for the eventpoll
139  * interface.
140  */
141 struct eventpoll {
142 	/* Protect the this structure access */
143 	rwlock_t lock;
144 
145 	/*
146 	 * This semaphore is used to ensure that files are not removed
147 	 * while epoll is using them. This is read-held during the event
148 	 * collection loop and it is write-held during the file cleanup
149 	 * path, the epoll file exit code and the ctl operations.
150 	 */
151 	struct rw_semaphore sem;
152 
153 	/* Wait queue used by sys_epoll_wait() */
154 	wait_queue_head_t wq;
155 
156 	/* Wait queue used by file->poll() */
157 	wait_queue_head_t poll_wait;
158 
159 	/* List of ready file descriptors */
160 	struct list_head rdllist;
161 
162 	/* RB-Tree root used to store monitored fd structs */
163 	struct rb_root rbr;
164 };
165 
166 /* Wait structure used by the poll hooks */
167 struct eppoll_entry {
168 	/* List header used to link this structure to the "struct epitem" */
169 	struct list_head llink;
170 
171 	/* The "base" pointer is set to the container "struct epitem" */
172 	void *base;
173 
174 	/*
175 	 * Wait queue item that will be linked to the target file wait
176 	 * queue head.
177 	 */
178 	wait_queue_t wait;
179 
180 	/* The wait queue head that linked the "wait" wait queue item */
181 	wait_queue_head_t *whead;
182 };
183 
184 /*
185  * Each file descriptor added to the eventpoll interface will
186  * have an entry of this type linked to the hash.
187  */
188 struct epitem {
189 	/* RB-Tree node used to link this structure to the eventpoll rb-tree */
190 	struct rb_node rbn;
191 
192 	/* List header used to link this structure to the eventpoll ready list */
193 	struct list_head rdllink;
194 
195 	/* The file descriptor information this item refers to */
196 	struct epoll_filefd ffd;
197 
198 	/* Number of active wait queue attached to poll operations */
199 	int nwait;
200 
201 	/* List containing poll wait queues */
202 	struct list_head pwqlist;
203 
204 	/* The "container" of this item */
205 	struct eventpoll *ep;
206 
207 	/* The structure that describe the interested events and the source fd */
208 	struct epoll_event event;
209 
210 	/*
211 	 * Used to keep track of the usage count of the structure. This avoids
212 	 * that the structure will desappear from underneath our processing.
213 	 */
214 	atomic_t usecnt;
215 
216 	/* List header used to link this item to the "struct file" items list */
217 	struct list_head fllink;
218 
219 	/* List header used to link the item to the transfer list */
220 	struct list_head txlink;
221 
222 	/*
223 	 * This is used during the collection/transfer of events to userspace
224 	 * to pin items empty events set.
225 	 */
226 	unsigned int revents;
227 };
228 
229 /* Wrapper struct used by poll queueing */
230 struct ep_pqueue {
231 	poll_table pt;
232 	struct epitem *epi;
233 };
234 
235 
236 
237 static void ep_poll_safewake_init(struct poll_safewake *psw);
238 static void ep_poll_safewake(struct poll_safewake *psw, wait_queue_head_t *wq);
239 static int ep_getfd(int *efd, struct inode **einode, struct file **efile,
240 		    struct eventpoll *ep);
241 static int ep_alloc(struct eventpoll **pep);
242 static void ep_free(struct eventpoll *ep);
243 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd);
244 static void ep_use_epitem(struct epitem *epi);
245 static void ep_release_epitem(struct epitem *epi);
246 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
247 				 poll_table *pt);
248 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi);
249 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
250 		     struct file *tfile, int fd);
251 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
252 		     struct epoll_event *event);
253 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi);
254 static int ep_unlink(struct eventpoll *ep, struct epitem *epi);
255 static int ep_remove(struct eventpoll *ep, struct epitem *epi);
256 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key);
257 static int ep_eventpoll_close(struct inode *inode, struct file *file);
258 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait);
259 static int ep_collect_ready_items(struct eventpoll *ep,
260 				  struct list_head *txlist, int maxevents);
261 static int ep_send_events(struct eventpoll *ep, struct list_head *txlist,
262 			  struct epoll_event __user *events);
263 static void ep_reinject_items(struct eventpoll *ep, struct list_head *txlist);
264 static int ep_events_transfer(struct eventpoll *ep,
265 			      struct epoll_event __user *events,
266 			      int maxevents);
267 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
268 		   int maxevents, long timeout);
269 static int eventpollfs_delete_dentry(struct dentry *dentry);
270 static struct inode *ep_eventpoll_inode(void);
271 static int eventpollfs_get_sb(struct file_system_type *fs_type,
272 			      int flags, const char *dev_name,
273 			      void *data, struct vfsmount *mnt);
274 
275 /*
276  * This semaphore is used to serialize ep_free() and eventpoll_release_file().
277  */
278 static struct mutex epmutex;
279 
280 /* Safe wake up implementation */
281 static struct poll_safewake psw;
282 
283 /* Slab cache used to allocate "struct epitem" */
284 static kmem_cache_t *epi_cache __read_mostly;
285 
286 /* Slab cache used to allocate "struct eppoll_entry" */
287 static kmem_cache_t *pwq_cache __read_mostly;
288 
289 /* Virtual fs used to allocate inodes for eventpoll files */
290 static struct vfsmount *eventpoll_mnt __read_mostly;
291 
292 /* File callbacks that implement the eventpoll file behaviour */
293 static const struct file_operations eventpoll_fops = {
294 	.release	= ep_eventpoll_close,
295 	.poll		= ep_eventpoll_poll
296 };
297 
298 /*
299  * This is used to register the virtual file system from where
300  * eventpoll inodes are allocated.
301  */
302 static struct file_system_type eventpoll_fs_type = {
303 	.name		= "eventpollfs",
304 	.get_sb		= eventpollfs_get_sb,
305 	.kill_sb	= kill_anon_super,
306 };
307 
308 /* Very basic directory entry operations for the eventpoll virtual file system */
309 static struct dentry_operations eventpollfs_dentry_operations = {
310 	.d_delete	= eventpollfs_delete_dentry,
311 };
312 
313 
314 
315 /* Fast test to see if the file is an evenpoll file */
316 static inline int is_file_epoll(struct file *f)
317 {
318 	return f->f_op == &eventpoll_fops;
319 }
320 
321 /* Setup the structure that is used as key for the rb-tree */
322 static inline void ep_set_ffd(struct epoll_filefd *ffd,
323 			      struct file *file, int fd)
324 {
325 	ffd->file = file;
326 	ffd->fd = fd;
327 }
328 
329 /* Compare rb-tree keys */
330 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
331 			     struct epoll_filefd *p2)
332 {
333 	return (p1->file > p2->file ? +1:
334 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
335 }
336 
337 /* Special initialization for the rb-tree node to detect linkage */
338 static inline void ep_rb_initnode(struct rb_node *n)
339 {
340 	rb_set_parent(n, n);
341 }
342 
343 /* Removes a node from the rb-tree and marks it for a fast is-linked check */
344 static inline void ep_rb_erase(struct rb_node *n, struct rb_root *r)
345 {
346 	rb_erase(n, r);
347 	rb_set_parent(n, n);
348 }
349 
350 /* Fast check to verify that the item is linked to the main rb-tree */
351 static inline int ep_rb_linked(struct rb_node *n)
352 {
353 	return rb_parent(n) != n;
354 }
355 
356 /*
357  * Remove the item from the list and perform its initialization.
358  * This is useful for us because we can test if the item is linked
359  * using "ep_is_linked(p)".
360  */
361 static inline void ep_list_del(struct list_head *p)
362 {
363 	list_del(p);
364 	INIT_LIST_HEAD(p);
365 }
366 
367 /* Tells us if the item is currently linked */
368 static inline int ep_is_linked(struct list_head *p)
369 {
370 	return !list_empty(p);
371 }
372 
373 /* Get the "struct epitem" from a wait queue pointer */
374 static inline struct epitem * ep_item_from_wait(wait_queue_t *p)
375 {
376 	return container_of(p, struct eppoll_entry, wait)->base;
377 }
378 
379 /* Get the "struct epitem" from an epoll queue wrapper */
380 static inline struct epitem * ep_item_from_epqueue(poll_table *p)
381 {
382 	return container_of(p, struct ep_pqueue, pt)->epi;
383 }
384 
385 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
386 static inline int ep_op_hash_event(int op)
387 {
388 	return op != EPOLL_CTL_DEL;
389 }
390 
391 /* Initialize the poll safe wake up structure */
392 static void ep_poll_safewake_init(struct poll_safewake *psw)
393 {
394 
395 	INIT_LIST_HEAD(&psw->wake_task_list);
396 	spin_lock_init(&psw->lock);
397 }
398 
399 
400 /*
401  * Perform a safe wake up of the poll wait list. The problem is that
402  * with the new callback'd wake up system, it is possible that the
403  * poll callback is reentered from inside the call to wake_up() done
404  * on the poll wait queue head. The rule is that we cannot reenter the
405  * wake up code from the same task more than EP_MAX_POLLWAKE_NESTS times,
406  * and we cannot reenter the same wait queue head at all. This will
407  * enable to have a hierarchy of epoll file descriptor of no more than
408  * EP_MAX_POLLWAKE_NESTS deep. We need the irq version of the spin lock
409  * because this one gets called by the poll callback, that in turn is called
410  * from inside a wake_up(), that might be called from irq context.
411  */
412 static void ep_poll_safewake(struct poll_safewake *psw, wait_queue_head_t *wq)
413 {
414 	int wake_nests = 0;
415 	unsigned long flags;
416 	task_t *this_task = current;
417 	struct list_head *lsthead = &psw->wake_task_list, *lnk;
418 	struct wake_task_node *tncur;
419 	struct wake_task_node tnode;
420 
421 	spin_lock_irqsave(&psw->lock, flags);
422 
423 	/* Try to see if the current task is already inside this wakeup call */
424 	list_for_each(lnk, lsthead) {
425 		tncur = list_entry(lnk, struct wake_task_node, llink);
426 
427 		if (tncur->wq == wq ||
428 		    (tncur->task == this_task && ++wake_nests > EP_MAX_POLLWAKE_NESTS)) {
429 			/*
430 			 * Ops ... loop detected or maximum nest level reached.
431 			 * We abort this wake by breaking the cycle itself.
432 			 */
433 			spin_unlock_irqrestore(&psw->lock, flags);
434 			return;
435 		}
436 	}
437 
438 	/* Add the current task to the list */
439 	tnode.task = this_task;
440 	tnode.wq = wq;
441 	list_add(&tnode.llink, lsthead);
442 
443 	spin_unlock_irqrestore(&psw->lock, flags);
444 
445 	/* Do really wake up now */
446 	wake_up(wq);
447 
448 	/* Remove the current task from the list */
449 	spin_lock_irqsave(&psw->lock, flags);
450 	list_del(&tnode.llink);
451 	spin_unlock_irqrestore(&psw->lock, flags);
452 }
453 
454 
455 /*
456  * This is called from eventpoll_release() to unlink files from the eventpoll
457  * interface. We need to have this facility to cleanup correctly files that are
458  * closed without being removed from the eventpoll interface.
459  */
460 void eventpoll_release_file(struct file *file)
461 {
462 	struct list_head *lsthead = &file->f_ep_links;
463 	struct eventpoll *ep;
464 	struct epitem *epi;
465 
466 	/*
467 	 * We don't want to get "file->f_ep_lock" because it is not
468 	 * necessary. It is not necessary because we're in the "struct file"
469 	 * cleanup path, and this means that noone is using this file anymore.
470 	 * The only hit might come from ep_free() but by holding the semaphore
471 	 * will correctly serialize the operation. We do need to acquire
472 	 * "ep->sem" after "epmutex" because ep_remove() requires it when called
473 	 * from anywhere but ep_free().
474 	 */
475 	mutex_lock(&epmutex);
476 
477 	while (!list_empty(lsthead)) {
478 		epi = list_entry(lsthead->next, struct epitem, fllink);
479 
480 		ep = epi->ep;
481 		ep_list_del(&epi->fllink);
482 		down_write(&ep->sem);
483 		ep_remove(ep, epi);
484 		up_write(&ep->sem);
485 	}
486 
487 	mutex_unlock(&epmutex);
488 }
489 
490 
491 /*
492  * It opens an eventpoll file descriptor by suggesting a storage of "size"
493  * file descriptors. The size parameter is just an hint about how to size
494  * data structures. It won't prevent the user to store more than "size"
495  * file descriptors inside the epoll interface. It is the kernel part of
496  * the userspace epoll_create(2).
497  */
498 asmlinkage long sys_epoll_create(int size)
499 {
500 	int error, fd;
501 	struct eventpoll *ep;
502 	struct inode *inode;
503 	struct file *file;
504 
505 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d)\n",
506 		     current, size));
507 
508 	/*
509 	 * Sanity check on the size parameter, and create the internal data
510 	 * structure ( "struct eventpoll" ).
511 	 */
512 	error = -EINVAL;
513 	if (size <= 0 || (error = ep_alloc(&ep)) != 0)
514 		goto eexit_1;
515 
516 	/*
517 	 * Creates all the items needed to setup an eventpoll file. That is,
518 	 * a file structure, and inode and a free file descriptor.
519 	 */
520 	error = ep_getfd(&fd, &inode, &file, ep);
521 	if (error)
522 		goto eexit_2;
523 
524 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d) = %d\n",
525 		     current, size, fd));
526 
527 	return fd;
528 
529 eexit_2:
530 	ep_free(ep);
531 	kfree(ep);
532 eexit_1:
533 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d) = %d\n",
534 		     current, size, error));
535 	return error;
536 }
537 
538 
539 /*
540  * The following function implements the controller interface for
541  * the eventpoll file that enables the insertion/removal/change of
542  * file descriptors inside the interest set.  It represents
543  * the kernel part of the user space epoll_ctl(2).
544  */
545 asmlinkage long
546 sys_epoll_ctl(int epfd, int op, int fd, struct epoll_event __user *event)
547 {
548 	int error;
549 	struct file *file, *tfile;
550 	struct eventpoll *ep;
551 	struct epitem *epi;
552 	struct epoll_event epds;
553 
554 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_ctl(%d, %d, %d, %p)\n",
555 		     current, epfd, op, fd, event));
556 
557 	error = -EFAULT;
558 	if (ep_op_hash_event(op) &&
559 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
560 		goto eexit_1;
561 
562 	/* Get the "struct file *" for the eventpoll file */
563 	error = -EBADF;
564 	file = fget(epfd);
565 	if (!file)
566 		goto eexit_1;
567 
568 	/* Get the "struct file *" for the target file */
569 	tfile = fget(fd);
570 	if (!tfile)
571 		goto eexit_2;
572 
573 	/* The target file descriptor must support poll */
574 	error = -EPERM;
575 	if (!tfile->f_op || !tfile->f_op->poll)
576 		goto eexit_3;
577 
578 	/*
579 	 * We have to check that the file structure underneath the file descriptor
580 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
581 	 * adding an epoll file descriptor inside itself.
582 	 */
583 	error = -EINVAL;
584 	if (file == tfile || !is_file_epoll(file))
585 		goto eexit_3;
586 
587 	/*
588 	 * At this point it is safe to assume that the "private_data" contains
589 	 * our own data structure.
590 	 */
591 	ep = file->private_data;
592 
593 	down_write(&ep->sem);
594 
595 	/* Try to lookup the file inside our hash table */
596 	epi = ep_find(ep, tfile, fd);
597 
598 	error = -EINVAL;
599 	switch (op) {
600 	case EPOLL_CTL_ADD:
601 		if (!epi) {
602 			epds.events |= POLLERR | POLLHUP;
603 
604 			error = ep_insert(ep, &epds, tfile, fd);
605 		} else
606 			error = -EEXIST;
607 		break;
608 	case EPOLL_CTL_DEL:
609 		if (epi)
610 			error = ep_remove(ep, epi);
611 		else
612 			error = -ENOENT;
613 		break;
614 	case EPOLL_CTL_MOD:
615 		if (epi) {
616 			epds.events |= POLLERR | POLLHUP;
617 			error = ep_modify(ep, epi, &epds);
618 		} else
619 			error = -ENOENT;
620 		break;
621 	}
622 
623 	/*
624 	 * The function ep_find() increments the usage count of the structure
625 	 * so, if this is not NULL, we need to release it.
626 	 */
627 	if (epi)
628 		ep_release_epitem(epi);
629 
630 	up_write(&ep->sem);
631 
632 eexit_3:
633 	fput(tfile);
634 eexit_2:
635 	fput(file);
636 eexit_1:
637 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_ctl(%d, %d, %d, %p) = %d\n",
638 		     current, epfd, op, fd, event, error));
639 
640 	return error;
641 }
642 
643 #define MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
644 
645 /*
646  * Implement the event wait interface for the eventpoll file. It is the kernel
647  * part of the user space epoll_wait(2).
648  */
649 asmlinkage long sys_epoll_wait(int epfd, struct epoll_event __user *events,
650 			       int maxevents, int timeout)
651 {
652 	int error;
653 	struct file *file;
654 	struct eventpoll *ep;
655 
656 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_wait(%d, %p, %d, %d)\n",
657 		     current, epfd, events, maxevents, timeout));
658 
659 	/* The maximum number of event must be greater than zero */
660 	if (maxevents <= 0 || maxevents > MAX_EVENTS)
661 		return -EINVAL;
662 
663 	/* Verify that the area passed by the user is writeable */
664 	if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) {
665 		error = -EFAULT;
666 		goto eexit_1;
667 	}
668 
669 	/* Get the "struct file *" for the eventpoll file */
670 	error = -EBADF;
671 	file = fget(epfd);
672 	if (!file)
673 		goto eexit_1;
674 
675 	/*
676 	 * We have to check that the file structure underneath the fd
677 	 * the user passed to us _is_ an eventpoll file.
678 	 */
679 	error = -EINVAL;
680 	if (!is_file_epoll(file))
681 		goto eexit_2;
682 
683 	/*
684 	 * At this point it is safe to assume that the "private_data" contains
685 	 * our own data structure.
686 	 */
687 	ep = file->private_data;
688 
689 	/* Time to fish for events ... */
690 	error = ep_poll(ep, events, maxevents, timeout);
691 
692 eexit_2:
693 	fput(file);
694 eexit_1:
695 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_wait(%d, %p, %d, %d) = %d\n",
696 		     current, epfd, events, maxevents, timeout, error));
697 
698 	return error;
699 }
700 
701 
702 /*
703  * Creates the file descriptor to be used by the epoll interface.
704  */
705 static int ep_getfd(int *efd, struct inode **einode, struct file **efile,
706 		    struct eventpoll *ep)
707 {
708 	struct qstr this;
709 	char name[32];
710 	struct dentry *dentry;
711 	struct inode *inode;
712 	struct file *file;
713 	int error, fd;
714 
715 	/* Get an ready to use file */
716 	error = -ENFILE;
717 	file = get_empty_filp();
718 	if (!file)
719 		goto eexit_1;
720 
721 	/* Allocates an inode from the eventpoll file system */
722 	inode = ep_eventpoll_inode();
723 	error = PTR_ERR(inode);
724 	if (IS_ERR(inode))
725 		goto eexit_2;
726 
727 	/* Allocates a free descriptor to plug the file onto */
728 	error = get_unused_fd();
729 	if (error < 0)
730 		goto eexit_3;
731 	fd = error;
732 
733 	/*
734 	 * Link the inode to a directory entry by creating a unique name
735 	 * using the inode number.
736 	 */
737 	error = -ENOMEM;
738 	sprintf(name, "[%lu]", inode->i_ino);
739 	this.name = name;
740 	this.len = strlen(name);
741 	this.hash = inode->i_ino;
742 	dentry = d_alloc(eventpoll_mnt->mnt_sb->s_root, &this);
743 	if (!dentry)
744 		goto eexit_4;
745 	dentry->d_op = &eventpollfs_dentry_operations;
746 	d_add(dentry, inode);
747 	file->f_vfsmnt = mntget(eventpoll_mnt);
748 	file->f_dentry = dentry;
749 	file->f_mapping = inode->i_mapping;
750 
751 	file->f_pos = 0;
752 	file->f_flags = O_RDONLY;
753 	file->f_op = &eventpoll_fops;
754 	file->f_mode = FMODE_READ;
755 	file->f_version = 0;
756 	file->private_data = ep;
757 
758 	/* Install the new setup file into the allocated fd. */
759 	fd_install(fd, file);
760 
761 	*efd = fd;
762 	*einode = inode;
763 	*efile = file;
764 	return 0;
765 
766 eexit_4:
767 	put_unused_fd(fd);
768 eexit_3:
769 	iput(inode);
770 eexit_2:
771 	put_filp(file);
772 eexit_1:
773 	return error;
774 }
775 
776 
777 static int ep_alloc(struct eventpoll **pep)
778 {
779 	struct eventpoll *ep = kzalloc(sizeof(*ep), GFP_KERNEL);
780 
781 	if (!ep)
782 		return -ENOMEM;
783 
784 	rwlock_init(&ep->lock);
785 	init_rwsem(&ep->sem);
786 	init_waitqueue_head(&ep->wq);
787 	init_waitqueue_head(&ep->poll_wait);
788 	INIT_LIST_HEAD(&ep->rdllist);
789 	ep->rbr = RB_ROOT;
790 
791 	*pep = ep;
792 
793 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_alloc() ep=%p\n",
794 		     current, ep));
795 	return 0;
796 }
797 
798 
799 static void ep_free(struct eventpoll *ep)
800 {
801 	struct rb_node *rbp;
802 	struct epitem *epi;
803 
804 	/* We need to release all tasks waiting for these file */
805 	if (waitqueue_active(&ep->poll_wait))
806 		ep_poll_safewake(&psw, &ep->poll_wait);
807 
808 	/*
809 	 * We need to lock this because we could be hit by
810 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
811 	 * We do not need to hold "ep->sem" here because the epoll file
812 	 * is on the way to be removed and no one has references to it
813 	 * anymore. The only hit might come from eventpoll_release_file() but
814 	 * holding "epmutex" is sufficent here.
815 	 */
816 	mutex_lock(&epmutex);
817 
818 	/*
819 	 * Walks through the whole tree by unregistering poll callbacks.
820 	 */
821 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
822 		epi = rb_entry(rbp, struct epitem, rbn);
823 
824 		ep_unregister_pollwait(ep, epi);
825 	}
826 
827 	/*
828 	 * Walks through the whole hash by freeing each "struct epitem". At this
829 	 * point we are sure no poll callbacks will be lingering around, and also by
830 	 * write-holding "sem" we can be sure that no file cleanup code will hit
831 	 * us during this operation. So we can avoid the lock on "ep->lock".
832 	 */
833 	while ((rbp = rb_first(&ep->rbr)) != 0) {
834 		epi = rb_entry(rbp, struct epitem, rbn);
835 		ep_remove(ep, epi);
836 	}
837 
838 	mutex_unlock(&epmutex);
839 }
840 
841 
842 /*
843  * Search the file inside the eventpoll hash. It add usage count to
844  * the returned item, so the caller must call ep_release_epitem()
845  * after finished using the "struct epitem".
846  */
847 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
848 {
849 	int kcmp;
850 	unsigned long flags;
851 	struct rb_node *rbp;
852 	struct epitem *epi, *epir = NULL;
853 	struct epoll_filefd ffd;
854 
855 	ep_set_ffd(&ffd, file, fd);
856 	read_lock_irqsave(&ep->lock, flags);
857 	for (rbp = ep->rbr.rb_node; rbp; ) {
858 		epi = rb_entry(rbp, struct epitem, rbn);
859 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
860 		if (kcmp > 0)
861 			rbp = rbp->rb_right;
862 		else if (kcmp < 0)
863 			rbp = rbp->rb_left;
864 		else {
865 			ep_use_epitem(epi);
866 			epir = epi;
867 			break;
868 		}
869 	}
870 	read_unlock_irqrestore(&ep->lock, flags);
871 
872 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_find(%p) -> %p\n",
873 		     current, file, epir));
874 
875 	return epir;
876 }
877 
878 
879 /*
880  * Increment the usage count of the "struct epitem" making it sure
881  * that the user will have a valid pointer to reference.
882  */
883 static void ep_use_epitem(struct epitem *epi)
884 {
885 
886 	atomic_inc(&epi->usecnt);
887 }
888 
889 
890 /*
891  * Decrement ( release ) the usage count by signaling that the user
892  * has finished using the structure. It might lead to freeing the
893  * structure itself if the count goes to zero.
894  */
895 static void ep_release_epitem(struct epitem *epi)
896 {
897 
898 	if (atomic_dec_and_test(&epi->usecnt))
899 		kmem_cache_free(epi_cache, epi);
900 }
901 
902 
903 /*
904  * This is the callback that is used to add our wait queue to the
905  * target file wakeup lists.
906  */
907 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
908 				 poll_table *pt)
909 {
910 	struct epitem *epi = ep_item_from_epqueue(pt);
911 	struct eppoll_entry *pwq;
912 
913 	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, SLAB_KERNEL))) {
914 		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
915 		pwq->whead = whead;
916 		pwq->base = epi;
917 		add_wait_queue(whead, &pwq->wait);
918 		list_add_tail(&pwq->llink, &epi->pwqlist);
919 		epi->nwait++;
920 	} else {
921 		/* We have to signal that an error occurred */
922 		epi->nwait = -1;
923 	}
924 }
925 
926 
927 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
928 {
929 	int kcmp;
930 	struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
931 	struct epitem *epic;
932 
933 	while (*p) {
934 		parent = *p;
935 		epic = rb_entry(parent, struct epitem, rbn);
936 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
937 		if (kcmp > 0)
938 			p = &parent->rb_right;
939 		else
940 			p = &parent->rb_left;
941 	}
942 	rb_link_node(&epi->rbn, parent, p);
943 	rb_insert_color(&epi->rbn, &ep->rbr);
944 }
945 
946 
947 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
948 		     struct file *tfile, int fd)
949 {
950 	int error, revents, pwake = 0;
951 	unsigned long flags;
952 	struct epitem *epi;
953 	struct ep_pqueue epq;
954 
955 	error = -ENOMEM;
956 	if (!(epi = kmem_cache_alloc(epi_cache, SLAB_KERNEL)))
957 		goto eexit_1;
958 
959 	/* Item initialization follow here ... */
960 	ep_rb_initnode(&epi->rbn);
961 	INIT_LIST_HEAD(&epi->rdllink);
962 	INIT_LIST_HEAD(&epi->fllink);
963 	INIT_LIST_HEAD(&epi->txlink);
964 	INIT_LIST_HEAD(&epi->pwqlist);
965 	epi->ep = ep;
966 	ep_set_ffd(&epi->ffd, tfile, fd);
967 	epi->event = *event;
968 	atomic_set(&epi->usecnt, 1);
969 	epi->nwait = 0;
970 
971 	/* Initialize the poll table using the queue callback */
972 	epq.epi = epi;
973 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
974 
975 	/*
976 	 * Attach the item to the poll hooks and get current event bits.
977 	 * We can safely use the file* here because its usage count has
978 	 * been increased by the caller of this function.
979 	 */
980 	revents = tfile->f_op->poll(tfile, &epq.pt);
981 
982 	/*
983 	 * We have to check if something went wrong during the poll wait queue
984 	 * install process. Namely an allocation for a wait queue failed due
985 	 * high memory pressure.
986 	 */
987 	if (epi->nwait < 0)
988 		goto eexit_2;
989 
990 	/* Add the current item to the list of active epoll hook for this file */
991 	spin_lock(&tfile->f_ep_lock);
992 	list_add_tail(&epi->fllink, &tfile->f_ep_links);
993 	spin_unlock(&tfile->f_ep_lock);
994 
995 	/* We have to drop the new item inside our item list to keep track of it */
996 	write_lock_irqsave(&ep->lock, flags);
997 
998 	/* Add the current item to the rb-tree */
999 	ep_rbtree_insert(ep, epi);
1000 
1001 	/* If the file is already "ready" we drop it inside the ready list */
1002 	if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
1003 		list_add_tail(&epi->rdllink, &ep->rdllist);
1004 
1005 		/* Notify waiting tasks that events are available */
1006 		if (waitqueue_active(&ep->wq))
1007 			__wake_up_locked(&ep->wq, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE);
1008 		if (waitqueue_active(&ep->poll_wait))
1009 			pwake++;
1010 	}
1011 
1012 	write_unlock_irqrestore(&ep->lock, flags);
1013 
1014 	/* We have to call this outside the lock */
1015 	if (pwake)
1016 		ep_poll_safewake(&psw, &ep->poll_wait);
1017 
1018 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_insert(%p, %p, %d)\n",
1019 		     current, ep, tfile, fd));
1020 
1021 	return 0;
1022 
1023 eexit_2:
1024 	ep_unregister_pollwait(ep, epi);
1025 
1026 	/*
1027 	 * We need to do this because an event could have been arrived on some
1028 	 * allocated wait queue.
1029 	 */
1030 	write_lock_irqsave(&ep->lock, flags);
1031 	if (ep_is_linked(&epi->rdllink))
1032 		ep_list_del(&epi->rdllink);
1033 	write_unlock_irqrestore(&ep->lock, flags);
1034 
1035 	kmem_cache_free(epi_cache, epi);
1036 eexit_1:
1037 	return error;
1038 }
1039 
1040 
1041 /*
1042  * Modify the interest event mask by dropping an event if the new mask
1043  * has a match in the current file status.
1044  */
1045 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1046 {
1047 	int pwake = 0;
1048 	unsigned int revents;
1049 	unsigned long flags;
1050 
1051 	/*
1052 	 * Set the new event interest mask before calling f_op->poll(), otherwise
1053 	 * a potential race might occur. In fact if we do this operation inside
1054 	 * the lock, an event might happen between the f_op->poll() call and the
1055 	 * new event set registering.
1056 	 */
1057 	epi->event.events = event->events;
1058 
1059 	/*
1060 	 * Get current event bits. We can safely use the file* here because
1061 	 * its usage count has been increased by the caller of this function.
1062 	 */
1063 	revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);
1064 
1065 	write_lock_irqsave(&ep->lock, flags);
1066 
1067 	/* Copy the data member from inside the lock */
1068 	epi->event.data = event->data;
1069 
1070 	/*
1071 	 * If the item is not linked to the hash it means that it's on its
1072 	 * way toward the removal. Do nothing in this case.
1073 	 */
1074 	if (ep_rb_linked(&epi->rbn)) {
1075 		/*
1076 		 * If the item is "hot" and it is not registered inside the ready
1077 		 * list, push it inside. If the item is not "hot" and it is currently
1078 		 * registered inside the ready list, unlink it.
1079 		 */
1080 		if (revents & event->events) {
1081 			if (!ep_is_linked(&epi->rdllink)) {
1082 				list_add_tail(&epi->rdllink, &ep->rdllist);
1083 
1084 				/* Notify waiting tasks that events are available */
1085 				if (waitqueue_active(&ep->wq))
1086 					__wake_up_locked(&ep->wq, TASK_UNINTERRUPTIBLE |
1087 							 TASK_INTERRUPTIBLE);
1088 				if (waitqueue_active(&ep->poll_wait))
1089 					pwake++;
1090 			}
1091 		}
1092 	}
1093 
1094 	write_unlock_irqrestore(&ep->lock, flags);
1095 
1096 	/* We have to call this outside the lock */
1097 	if (pwake)
1098 		ep_poll_safewake(&psw, &ep->poll_wait);
1099 
1100 	return 0;
1101 }
1102 
1103 
1104 /*
1105  * This function unregister poll callbacks from the associated file descriptor.
1106  * Since this must be called without holding "ep->lock" the atomic exchange trick
1107  * will protect us from multiple unregister.
1108  */
1109 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
1110 {
1111 	int nwait;
1112 	struct list_head *lsthead = &epi->pwqlist;
1113 	struct eppoll_entry *pwq;
1114 
1115 	/* This is called without locks, so we need the atomic exchange */
1116 	nwait = xchg(&epi->nwait, 0);
1117 
1118 	if (nwait) {
1119 		while (!list_empty(lsthead)) {
1120 			pwq = list_entry(lsthead->next, struct eppoll_entry, llink);
1121 
1122 			ep_list_del(&pwq->llink);
1123 			remove_wait_queue(pwq->whead, &pwq->wait);
1124 			kmem_cache_free(pwq_cache, pwq);
1125 		}
1126 	}
1127 }
1128 
1129 
1130 /*
1131  * Unlink the "struct epitem" from all places it might have been hooked up.
1132  * This function must be called with write IRQ lock on "ep->lock".
1133  */
1134 static int ep_unlink(struct eventpoll *ep, struct epitem *epi)
1135 {
1136 	int error;
1137 
1138 	/*
1139 	 * It can happen that this one is called for an item already unlinked.
1140 	 * The check protect us from doing a double unlink ( crash ).
1141 	 */
1142 	error = -ENOENT;
1143 	if (!ep_rb_linked(&epi->rbn))
1144 		goto eexit_1;
1145 
1146 	/*
1147 	 * Clear the event mask for the unlinked item. This will avoid item
1148 	 * notifications to be sent after the unlink operation from inside
1149 	 * the kernel->userspace event transfer loop.
1150 	 */
1151 	epi->event.events = 0;
1152 
1153 	/*
1154 	 * At this point is safe to do the job, unlink the item from our rb-tree.
1155 	 * This operation togheter with the above check closes the door to
1156 	 * double unlinks.
1157 	 */
1158 	ep_rb_erase(&epi->rbn, &ep->rbr);
1159 
1160 	/*
1161 	 * If the item we are going to remove is inside the ready file descriptors
1162 	 * we want to remove it from this list to avoid stale events.
1163 	 */
1164 	if (ep_is_linked(&epi->rdllink))
1165 		ep_list_del(&epi->rdllink);
1166 
1167 	error = 0;
1168 eexit_1:
1169 
1170 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_unlink(%p, %p) = %d\n",
1171 		     current, ep, epi->file, error));
1172 
1173 	return error;
1174 }
1175 
1176 
1177 /*
1178  * Removes a "struct epitem" from the eventpoll hash and deallocates
1179  * all the associated resources.
1180  */
1181 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
1182 {
1183 	int error;
1184 	unsigned long flags;
1185 	struct file *file = epi->ffd.file;
1186 
1187 	/*
1188 	 * Removes poll wait queue hooks. We _have_ to do this without holding
1189 	 * the "ep->lock" otherwise a deadlock might occur. This because of the
1190 	 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
1191 	 * queue head lock when unregistering the wait queue. The wakeup callback
1192 	 * will run by holding the wait queue head lock and will call our callback
1193 	 * that will try to get "ep->lock".
1194 	 */
1195 	ep_unregister_pollwait(ep, epi);
1196 
1197 	/* Remove the current item from the list of epoll hooks */
1198 	spin_lock(&file->f_ep_lock);
1199 	if (ep_is_linked(&epi->fllink))
1200 		ep_list_del(&epi->fllink);
1201 	spin_unlock(&file->f_ep_lock);
1202 
1203 	/* We need to acquire the write IRQ lock before calling ep_unlink() */
1204 	write_lock_irqsave(&ep->lock, flags);
1205 
1206 	/* Really unlink the item from the hash */
1207 	error = ep_unlink(ep, epi);
1208 
1209 	write_unlock_irqrestore(&ep->lock, flags);
1210 
1211 	if (error)
1212 		goto eexit_1;
1213 
1214 	/* At this point it is safe to free the eventpoll item */
1215 	ep_release_epitem(epi);
1216 
1217 	error = 0;
1218 eexit_1:
1219 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_remove(%p, %p) = %d\n",
1220 		     current, ep, file, error));
1221 
1222 	return error;
1223 }
1224 
1225 
1226 /*
1227  * This is the callback that is passed to the wait queue wakeup
1228  * machanism. It is called by the stored file descriptors when they
1229  * have events to report.
1230  */
1231 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
1232 {
1233 	int pwake = 0;
1234 	unsigned long flags;
1235 	struct epitem *epi = ep_item_from_wait(wait);
1236 	struct eventpoll *ep = epi->ep;
1237 
1238 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: poll_callback(%p) epi=%p ep=%p\n",
1239 		     current, epi->file, epi, ep));
1240 
1241 	write_lock_irqsave(&ep->lock, flags);
1242 
1243 	/*
1244 	 * If the event mask does not contain any poll(2) event, we consider the
1245 	 * descriptor to be disabled. This condition is likely the effect of the
1246 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1247 	 * until the next EPOLL_CTL_MOD will be issued.
1248 	 */
1249 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
1250 		goto is_disabled;
1251 
1252 	/* If this file is already in the ready list we exit soon */
1253 	if (ep_is_linked(&epi->rdllink))
1254 		goto is_linked;
1255 
1256 	list_add_tail(&epi->rdllink, &ep->rdllist);
1257 
1258 is_linked:
1259 	/*
1260 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1261 	 * wait list.
1262 	 */
1263 	if (waitqueue_active(&ep->wq))
1264 		__wake_up_locked(&ep->wq, TASK_UNINTERRUPTIBLE |
1265 				 TASK_INTERRUPTIBLE);
1266 	if (waitqueue_active(&ep->poll_wait))
1267 		pwake++;
1268 
1269 is_disabled:
1270 	write_unlock_irqrestore(&ep->lock, flags);
1271 
1272 	/* We have to call this outside the lock */
1273 	if (pwake)
1274 		ep_poll_safewake(&psw, &ep->poll_wait);
1275 
1276 	return 1;
1277 }
1278 
1279 
1280 static int ep_eventpoll_close(struct inode *inode, struct file *file)
1281 {
1282 	struct eventpoll *ep = file->private_data;
1283 
1284 	if (ep) {
1285 		ep_free(ep);
1286 		kfree(ep);
1287 	}
1288 
1289 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: close() ep=%p\n", current, ep));
1290 	return 0;
1291 }
1292 
1293 
1294 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
1295 {
1296 	unsigned int pollflags = 0;
1297 	unsigned long flags;
1298 	struct eventpoll *ep = file->private_data;
1299 
1300 	/* Insert inside our poll wait queue */
1301 	poll_wait(file, &ep->poll_wait, wait);
1302 
1303 	/* Check our condition */
1304 	read_lock_irqsave(&ep->lock, flags);
1305 	if (!list_empty(&ep->rdllist))
1306 		pollflags = POLLIN | POLLRDNORM;
1307 	read_unlock_irqrestore(&ep->lock, flags);
1308 
1309 	return pollflags;
1310 }
1311 
1312 
1313 /*
1314  * Since we have to release the lock during the __copy_to_user() operation and
1315  * during the f_op->poll() call, we try to collect the maximum number of items
1316  * by reducing the irqlock/irqunlock switching rate.
1317  */
1318 static int ep_collect_ready_items(struct eventpoll *ep, struct list_head *txlist, int maxevents)
1319 {
1320 	int nepi;
1321 	unsigned long flags;
1322 	struct list_head *lsthead = &ep->rdllist, *lnk;
1323 	struct epitem *epi;
1324 
1325 	write_lock_irqsave(&ep->lock, flags);
1326 
1327 	for (nepi = 0, lnk = lsthead->next; lnk != lsthead && nepi < maxevents;) {
1328 		epi = list_entry(lnk, struct epitem, rdllink);
1329 
1330 		lnk = lnk->next;
1331 
1332 		/* If this file is already in the ready list we exit soon */
1333 		if (!ep_is_linked(&epi->txlink)) {
1334 			/*
1335 			 * This is initialized in this way so that the default
1336 			 * behaviour of the reinjecting code will be to push back
1337 			 * the item inside the ready list.
1338 			 */
1339 			epi->revents = epi->event.events;
1340 
1341 			/* Link the ready item into the transfer list */
1342 			list_add(&epi->txlink, txlist);
1343 			nepi++;
1344 
1345 			/*
1346 			 * Unlink the item from the ready list.
1347 			 */
1348 			ep_list_del(&epi->rdllink);
1349 		}
1350 	}
1351 
1352 	write_unlock_irqrestore(&ep->lock, flags);
1353 
1354 	return nepi;
1355 }
1356 
1357 
1358 /*
1359  * This function is called without holding the "ep->lock" since the call to
1360  * __copy_to_user() might sleep, and also f_op->poll() might reenable the IRQ
1361  * because of the way poll() is traditionally implemented in Linux.
1362  */
1363 static int ep_send_events(struct eventpoll *ep, struct list_head *txlist,
1364 			  struct epoll_event __user *events)
1365 {
1366 	int eventcnt = 0;
1367 	unsigned int revents;
1368 	struct list_head *lnk;
1369 	struct epitem *epi;
1370 
1371 	/*
1372 	 * We can loop without lock because this is a task private list.
1373 	 * The test done during the collection loop will guarantee us that
1374 	 * another task will not try to collect this file. Also, items
1375 	 * cannot vanish during the loop because we are holding "sem".
1376 	 */
1377 	list_for_each(lnk, txlist) {
1378 		epi = list_entry(lnk, struct epitem, txlink);
1379 
1380 		/*
1381 		 * Get the ready file event set. We can safely use the file
1382 		 * because we are holding the "sem" in read and this will
1383 		 * guarantee that both the file and the item will not vanish.
1384 		 */
1385 		revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);
1386 
1387 		/*
1388 		 * Set the return event set for the current file descriptor.
1389 		 * Note that only the task task was successfully able to link
1390 		 * the item to its "txlist" will write this field.
1391 		 */
1392 		epi->revents = revents & epi->event.events;
1393 
1394 		if (epi->revents) {
1395 			if (__put_user(epi->revents,
1396 				       &events[eventcnt].events) ||
1397 			    __put_user(epi->event.data,
1398 				       &events[eventcnt].data))
1399 				return -EFAULT;
1400 			if (epi->event.events & EPOLLONESHOT)
1401 				epi->event.events &= EP_PRIVATE_BITS;
1402 			eventcnt++;
1403 		}
1404 	}
1405 	return eventcnt;
1406 }
1407 
1408 
1409 /*
1410  * Walk through the transfer list we collected with ep_collect_ready_items()
1411  * and, if 1) the item is still "alive" 2) its event set is not empty 3) it's
1412  * not already linked, links it to the ready list. Same as above, we are holding
1413  * "sem" so items cannot vanish underneath our nose.
1414  */
1415 static void ep_reinject_items(struct eventpoll *ep, struct list_head *txlist)
1416 {
1417 	int ricnt = 0, pwake = 0;
1418 	unsigned long flags;
1419 	struct epitem *epi;
1420 
1421 	write_lock_irqsave(&ep->lock, flags);
1422 
1423 	while (!list_empty(txlist)) {
1424 		epi = list_entry(txlist->next, struct epitem, txlink);
1425 
1426 		/* Unlink the current item from the transfer list */
1427 		ep_list_del(&epi->txlink);
1428 
1429 		/*
1430 		 * If the item is no more linked to the interest set, we don't
1431 		 * have to push it inside the ready list because the following
1432 		 * ep_release_epitem() is going to drop it. Also, if the current
1433 		 * item is set to have an Edge Triggered behaviour, we don't have
1434 		 * to push it back either.
1435 		 */
1436 		if (ep_rb_linked(&epi->rbn) && !(epi->event.events & EPOLLET) &&
1437 		    (epi->revents & epi->event.events) && !ep_is_linked(&epi->rdllink)) {
1438 			list_add_tail(&epi->rdllink, &ep->rdllist);
1439 			ricnt++;
1440 		}
1441 	}
1442 
1443 	if (ricnt) {
1444 		/*
1445 		 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1446 		 * wait list.
1447 		 */
1448 		if (waitqueue_active(&ep->wq))
1449 			__wake_up_locked(&ep->wq, TASK_UNINTERRUPTIBLE |
1450 					 TASK_INTERRUPTIBLE);
1451 		if (waitqueue_active(&ep->poll_wait))
1452 			pwake++;
1453 	}
1454 
1455 	write_unlock_irqrestore(&ep->lock, flags);
1456 
1457 	/* We have to call this outside the lock */
1458 	if (pwake)
1459 		ep_poll_safewake(&psw, &ep->poll_wait);
1460 }
1461 
1462 
1463 /*
1464  * Perform the transfer of events to user space.
1465  */
1466 static int ep_events_transfer(struct eventpoll *ep,
1467 			      struct epoll_event __user *events, int maxevents)
1468 {
1469 	int eventcnt = 0;
1470 	struct list_head txlist;
1471 
1472 	INIT_LIST_HEAD(&txlist);
1473 
1474 	/*
1475 	 * We need to lock this because we could be hit by
1476 	 * eventpoll_release_file() and epoll_ctl(EPOLL_CTL_DEL).
1477 	 */
1478 	down_read(&ep->sem);
1479 
1480 	/* Collect/extract ready items */
1481 	if (ep_collect_ready_items(ep, &txlist, maxevents) > 0) {
1482 		/* Build result set in userspace */
1483 		eventcnt = ep_send_events(ep, &txlist, events);
1484 
1485 		/* Reinject ready items into the ready list */
1486 		ep_reinject_items(ep, &txlist);
1487 	}
1488 
1489 	up_read(&ep->sem);
1490 
1491 	return eventcnt;
1492 }
1493 
1494 
1495 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1496 		   int maxevents, long timeout)
1497 {
1498 	int res, eavail;
1499 	unsigned long flags;
1500 	long jtimeout;
1501 	wait_queue_t wait;
1502 
1503 	/*
1504 	 * Calculate the timeout by checking for the "infinite" value ( -1 )
1505 	 * and the overflow condition. The passed timeout is in milliseconds,
1506 	 * that why (t * HZ) / 1000.
1507 	 */
1508 	jtimeout = (timeout < 0 || timeout >= EP_MAX_MSTIMEO) ?
1509 		MAX_SCHEDULE_TIMEOUT : (timeout * HZ + 999) / 1000;
1510 
1511 retry:
1512 	write_lock_irqsave(&ep->lock, flags);
1513 
1514 	res = 0;
1515 	if (list_empty(&ep->rdllist)) {
1516 		/*
1517 		 * We don't have any available event to return to the caller.
1518 		 * We need to sleep here, and we will be wake up by
1519 		 * ep_poll_callback() when events will become available.
1520 		 */
1521 		init_waitqueue_entry(&wait, current);
1522 		__add_wait_queue(&ep->wq, &wait);
1523 
1524 		for (;;) {
1525 			/*
1526 			 * We don't want to sleep if the ep_poll_callback() sends us
1527 			 * a wakeup in between. That's why we set the task state
1528 			 * to TASK_INTERRUPTIBLE before doing the checks.
1529 			 */
1530 			set_current_state(TASK_INTERRUPTIBLE);
1531 			if (!list_empty(&ep->rdllist) || !jtimeout)
1532 				break;
1533 			if (signal_pending(current)) {
1534 				res = -EINTR;
1535 				break;
1536 			}
1537 
1538 			write_unlock_irqrestore(&ep->lock, flags);
1539 			jtimeout = schedule_timeout(jtimeout);
1540 			write_lock_irqsave(&ep->lock, flags);
1541 		}
1542 		__remove_wait_queue(&ep->wq, &wait);
1543 
1544 		set_current_state(TASK_RUNNING);
1545 	}
1546 
1547 	/* Is it worth to try to dig for events ? */
1548 	eavail = !list_empty(&ep->rdllist);
1549 
1550 	write_unlock_irqrestore(&ep->lock, flags);
1551 
1552 	/*
1553 	 * Try to transfer events to user space. In case we get 0 events and
1554 	 * there's still timeout left over, we go trying again in search of
1555 	 * more luck.
1556 	 */
1557 	if (!res && eavail &&
1558 	    !(res = ep_events_transfer(ep, events, maxevents)) && jtimeout)
1559 		goto retry;
1560 
1561 	return res;
1562 }
1563 
1564 
1565 static int eventpollfs_delete_dentry(struct dentry *dentry)
1566 {
1567 
1568 	return 1;
1569 }
1570 
1571 
1572 static struct inode *ep_eventpoll_inode(void)
1573 {
1574 	int error = -ENOMEM;
1575 	struct inode *inode = new_inode(eventpoll_mnt->mnt_sb);
1576 
1577 	if (!inode)
1578 		goto eexit_1;
1579 
1580 	inode->i_fop = &eventpoll_fops;
1581 
1582 	/*
1583 	 * Mark the inode dirty from the very beginning,
1584 	 * that way it will never be moved to the dirty
1585 	 * list because mark_inode_dirty() will think
1586 	 * that it already _is_ on the dirty list.
1587 	 */
1588 	inode->i_state = I_DIRTY;
1589 	inode->i_mode = S_IRUSR | S_IWUSR;
1590 	inode->i_uid = current->fsuid;
1591 	inode->i_gid = current->fsgid;
1592 	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1593 	inode->i_blksize = PAGE_SIZE;
1594 	return inode;
1595 
1596 eexit_1:
1597 	return ERR_PTR(error);
1598 }
1599 
1600 
1601 static int
1602 eventpollfs_get_sb(struct file_system_type *fs_type, int flags,
1603 		   const char *dev_name, void *data, struct vfsmount *mnt)
1604 {
1605 	return get_sb_pseudo(fs_type, "eventpoll:", NULL, EVENTPOLLFS_MAGIC,
1606 			     mnt);
1607 }
1608 
1609 
1610 static int __init eventpoll_init(void)
1611 {
1612 	int error;
1613 
1614 	mutex_init(&epmutex);
1615 
1616 	/* Initialize the structure used to perform safe poll wait head wake ups */
1617 	ep_poll_safewake_init(&psw);
1618 
1619 	/* Allocates slab cache used to allocate "struct epitem" items */
1620 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
1621 			0, SLAB_HWCACHE_ALIGN|EPI_SLAB_DEBUG|SLAB_PANIC,
1622 			NULL, NULL);
1623 
1624 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
1625 	pwq_cache = kmem_cache_create("eventpoll_pwq",
1626 			sizeof(struct eppoll_entry), 0,
1627 			EPI_SLAB_DEBUG|SLAB_PANIC, NULL, NULL);
1628 
1629 	/*
1630 	 * Register the virtual file system that will be the source of inodes
1631 	 * for the eventpoll files
1632 	 */
1633 	error = register_filesystem(&eventpoll_fs_type);
1634 	if (error)
1635 		goto epanic;
1636 
1637 	/* Mount the above commented virtual file system */
1638 	eventpoll_mnt = kern_mount(&eventpoll_fs_type);
1639 	error = PTR_ERR(eventpoll_mnt);
1640 	if (IS_ERR(eventpoll_mnt))
1641 		goto epanic;
1642 
1643 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: successfully initialized.\n",
1644 			current));
1645 	return 0;
1646 
1647 epanic:
1648 	panic("eventpoll_init() failed\n");
1649 }
1650 
1651 
1652 static void __exit eventpoll_exit(void)
1653 {
1654 	/* Undo all operations done inside eventpoll_init() */
1655 	unregister_filesystem(&eventpoll_fs_type);
1656 	mntput(eventpoll_mnt);
1657 	kmem_cache_destroy(pwq_cache);
1658 	kmem_cache_destroy(epi_cache);
1659 }
1660 
1661 module_init(eventpoll_init);
1662 module_exit(eventpoll_exit);
1663 
1664 MODULE_LICENSE("GPL");
1665