1 /* 2 * fs/eventpoll.c (Efficent event polling implementation) 3 * Copyright (C) 2001,...,2007 Davide Libenzi 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * Davide Libenzi <davidel@xmailserver.org> 11 * 12 */ 13 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/file.h> 19 #include <linux/signal.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/slab.h> 23 #include <linux/poll.h> 24 #include <linux/string.h> 25 #include <linux/list.h> 26 #include <linux/hash.h> 27 #include <linux/spinlock.h> 28 #include <linux/syscalls.h> 29 #include <linux/rbtree.h> 30 #include <linux/wait.h> 31 #include <linux/eventpoll.h> 32 #include <linux/mount.h> 33 #include <linux/bitops.h> 34 #include <linux/mutex.h> 35 #include <linux/anon_inodes.h> 36 #include <asm/uaccess.h> 37 #include <asm/system.h> 38 #include <asm/io.h> 39 #include <asm/mman.h> 40 #include <asm/atomic.h> 41 42 /* 43 * LOCKING: 44 * There are three level of locking required by epoll : 45 * 46 * 1) epmutex (mutex) 47 * 2) ep->mtx (mutex) 48 * 3) ep->lock (spinlock) 49 * 50 * The acquire order is the one listed above, from 1 to 3. 51 * We need a spinlock (ep->lock) because we manipulate objects 52 * from inside the poll callback, that might be triggered from 53 * a wake_up() that in turn might be called from IRQ context. 54 * So we can't sleep inside the poll callback and hence we need 55 * a spinlock. During the event transfer loop (from kernel to 56 * user space) we could end up sleeping due a copy_to_user(), so 57 * we need a lock that will allow us to sleep. This lock is a 58 * mutex (ep->mtx). It is acquired during the event transfer loop, 59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 60 * Then we also need a global mutex to serialize eventpoll_release_file() 61 * and ep_free(). 62 * This mutex is acquired by ep_free() during the epoll file 63 * cleanup path and it is also acquired by eventpoll_release_file() 64 * if a file has been pushed inside an epoll set and it is then 65 * close()d without a previous call toepoll_ctl(EPOLL_CTL_DEL). 66 * It is possible to drop the "ep->mtx" and to use the global 67 * mutex "epmutex" (together with "ep->lock") to have it working, 68 * but having "ep->mtx" will make the interface more scalable. 69 * Events that require holding "epmutex" are very rare, while for 70 * normal operations the epoll private "ep->mtx" will guarantee 71 * a better scalability. 72 */ 73 74 #define DEBUG_EPOLL 0 75 76 #if DEBUG_EPOLL > 0 77 #define DPRINTK(x) printk x 78 #define DNPRINTK(n, x) do { if ((n) <= DEBUG_EPOLL) printk x; } while (0) 79 #else /* #if DEBUG_EPOLL > 0 */ 80 #define DPRINTK(x) (void) 0 81 #define DNPRINTK(n, x) (void) 0 82 #endif /* #if DEBUG_EPOLL > 0 */ 83 84 #define DEBUG_EPI 0 85 86 #if DEBUG_EPI != 0 87 #define EPI_SLAB_DEBUG (SLAB_DEBUG_FREE | SLAB_RED_ZONE /* | SLAB_POISON */) 88 #else /* #if DEBUG_EPI != 0 */ 89 #define EPI_SLAB_DEBUG 0 90 #endif /* #if DEBUG_EPI != 0 */ 91 92 /* Epoll private bits inside the event mask */ 93 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET) 94 95 /* Maximum number of poll wake up nests we are allowing */ 96 #define EP_MAX_POLLWAKE_NESTS 4 97 98 /* Maximum msec timeout value storeable in a long int */ 99 #define EP_MAX_MSTIMEO min(1000ULL * MAX_SCHEDULE_TIMEOUT / HZ, (LONG_MAX - 999ULL) / HZ) 100 101 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 102 103 #define EP_UNACTIVE_PTR ((void *) -1L) 104 105 struct epoll_filefd { 106 struct file *file; 107 int fd; 108 }; 109 110 /* 111 * Node that is linked into the "wake_task_list" member of the "struct poll_safewake". 112 * It is used to keep track on all tasks that are currently inside the wake_up() code 113 * to 1) short-circuit the one coming from the same task and same wait queue head 114 * (loop) 2) allow a maximum number of epoll descriptors inclusion nesting 115 * 3) let go the ones coming from other tasks. 116 */ 117 struct wake_task_node { 118 struct list_head llink; 119 struct task_struct *task; 120 wait_queue_head_t *wq; 121 }; 122 123 /* 124 * This is used to implement the safe poll wake up avoiding to reenter 125 * the poll callback from inside wake_up(). 126 */ 127 struct poll_safewake { 128 struct list_head wake_task_list; 129 spinlock_t lock; 130 }; 131 132 /* 133 * Each file descriptor added to the eventpoll interface will 134 * have an entry of this type linked to the "rbr" RB tree. 135 */ 136 struct epitem { 137 /* RB tree node used to link this structure to the eventpoll RB tree */ 138 struct rb_node rbn; 139 140 /* List header used to link this structure to the eventpoll ready list */ 141 struct list_head rdllink; 142 143 /* 144 * Works together "struct eventpoll"->ovflist in keeping the 145 * single linked chain of items. 146 */ 147 struct epitem *next; 148 149 /* The file descriptor information this item refers to */ 150 struct epoll_filefd ffd; 151 152 /* Number of active wait queue attached to poll operations */ 153 int nwait; 154 155 /* List containing poll wait queues */ 156 struct list_head pwqlist; 157 158 /* The "container" of this item */ 159 struct eventpoll *ep; 160 161 /* List header used to link this item to the "struct file" items list */ 162 struct list_head fllink; 163 164 /* The structure that describe the interested events and the source fd */ 165 struct epoll_event event; 166 }; 167 168 /* 169 * This structure is stored inside the "private_data" member of the file 170 * structure and rapresent the main data sructure for the eventpoll 171 * interface. 172 */ 173 struct eventpoll { 174 /* Protect the this structure access */ 175 spinlock_t lock; 176 177 /* 178 * This mutex is used to ensure that files are not removed 179 * while epoll is using them. This is held during the event 180 * collection loop, the file cleanup path, the epoll file exit 181 * code and the ctl operations. 182 */ 183 struct mutex mtx; 184 185 /* Wait queue used by sys_epoll_wait() */ 186 wait_queue_head_t wq; 187 188 /* Wait queue used by file->poll() */ 189 wait_queue_head_t poll_wait; 190 191 /* List of ready file descriptors */ 192 struct list_head rdllist; 193 194 /* RB tree root used to store monitored fd structs */ 195 struct rb_root rbr; 196 197 /* 198 * This is a single linked list that chains all the "struct epitem" that 199 * happened while transfering ready events to userspace w/out 200 * holding ->lock. 201 */ 202 struct epitem *ovflist; 203 }; 204 205 /* Wait structure used by the poll hooks */ 206 struct eppoll_entry { 207 /* List header used to link this structure to the "struct epitem" */ 208 struct list_head llink; 209 210 /* The "base" pointer is set to the container "struct epitem" */ 211 void *base; 212 213 /* 214 * Wait queue item that will be linked to the target file wait 215 * queue head. 216 */ 217 wait_queue_t wait; 218 219 /* The wait queue head that linked the "wait" wait queue item */ 220 wait_queue_head_t *whead; 221 }; 222 223 /* Wrapper struct used by poll queueing */ 224 struct ep_pqueue { 225 poll_table pt; 226 struct epitem *epi; 227 }; 228 229 /* 230 * This mutex is used to serialize ep_free() and eventpoll_release_file(). 231 */ 232 static struct mutex epmutex; 233 234 /* Safe wake up implementation */ 235 static struct poll_safewake psw; 236 237 /* Slab cache used to allocate "struct epitem" */ 238 static struct kmem_cache *epi_cache __read_mostly; 239 240 /* Slab cache used to allocate "struct eppoll_entry" */ 241 static struct kmem_cache *pwq_cache __read_mostly; 242 243 244 /* Setup the structure that is used as key for the RB tree */ 245 static inline void ep_set_ffd(struct epoll_filefd *ffd, 246 struct file *file, int fd) 247 { 248 ffd->file = file; 249 ffd->fd = fd; 250 } 251 252 /* Compare RB tree keys */ 253 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 254 struct epoll_filefd *p2) 255 { 256 return (p1->file > p2->file ? +1: 257 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 258 } 259 260 /* Special initialization for the RB tree node to detect linkage */ 261 static inline void ep_rb_initnode(struct rb_node *n) 262 { 263 rb_set_parent(n, n); 264 } 265 266 /* Removes a node from the RB tree and marks it for a fast is-linked check */ 267 static inline void ep_rb_erase(struct rb_node *n, struct rb_root *r) 268 { 269 rb_erase(n, r); 270 rb_set_parent(n, n); 271 } 272 273 /* Fast check to verify that the item is linked to the main RB tree */ 274 static inline int ep_rb_linked(struct rb_node *n) 275 { 276 return rb_parent(n) != n; 277 } 278 279 /* Tells us if the item is currently linked */ 280 static inline int ep_is_linked(struct list_head *p) 281 { 282 return !list_empty(p); 283 } 284 285 /* Get the "struct epitem" from a wait queue pointer */ 286 static inline struct epitem * ep_item_from_wait(wait_queue_t *p) 287 { 288 return container_of(p, struct eppoll_entry, wait)->base; 289 } 290 291 /* Get the "struct epitem" from an epoll queue wrapper */ 292 static inline struct epitem * ep_item_from_epqueue(poll_table *p) 293 { 294 return container_of(p, struct ep_pqueue, pt)->epi; 295 } 296 297 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ 298 static inline int ep_op_has_event(int op) 299 { 300 return op != EPOLL_CTL_DEL; 301 } 302 303 /* Initialize the poll safe wake up structure */ 304 static void ep_poll_safewake_init(struct poll_safewake *psw) 305 { 306 307 INIT_LIST_HEAD(&psw->wake_task_list); 308 spin_lock_init(&psw->lock); 309 } 310 311 /* 312 * Perform a safe wake up of the poll wait list. The problem is that 313 * with the new callback'd wake up system, it is possible that the 314 * poll callback is reentered from inside the call to wake_up() done 315 * on the poll wait queue head. The rule is that we cannot reenter the 316 * wake up code from the same task more than EP_MAX_POLLWAKE_NESTS times, 317 * and we cannot reenter the same wait queue head at all. This will 318 * enable to have a hierarchy of epoll file descriptor of no more than 319 * EP_MAX_POLLWAKE_NESTS deep. We need the irq version of the spin lock 320 * because this one gets called by the poll callback, that in turn is called 321 * from inside a wake_up(), that might be called from irq context. 322 */ 323 static void ep_poll_safewake(struct poll_safewake *psw, wait_queue_head_t *wq) 324 { 325 int wake_nests = 0; 326 unsigned long flags; 327 struct task_struct *this_task = current; 328 struct list_head *lsthead = &psw->wake_task_list, *lnk; 329 struct wake_task_node *tncur; 330 struct wake_task_node tnode; 331 332 spin_lock_irqsave(&psw->lock, flags); 333 334 /* Try to see if the current task is already inside this wakeup call */ 335 list_for_each(lnk, lsthead) { 336 tncur = list_entry(lnk, struct wake_task_node, llink); 337 338 if (tncur->wq == wq || 339 (tncur->task == this_task && ++wake_nests > EP_MAX_POLLWAKE_NESTS)) { 340 /* 341 * Ops ... loop detected or maximum nest level reached. 342 * We abort this wake by breaking the cycle itself. 343 */ 344 spin_unlock_irqrestore(&psw->lock, flags); 345 return; 346 } 347 } 348 349 /* Add the current task to the list */ 350 tnode.task = this_task; 351 tnode.wq = wq; 352 list_add(&tnode.llink, lsthead); 353 354 spin_unlock_irqrestore(&psw->lock, flags); 355 356 /* Do really wake up now */ 357 wake_up(wq); 358 359 /* Remove the current task from the list */ 360 spin_lock_irqsave(&psw->lock, flags); 361 list_del(&tnode.llink); 362 spin_unlock_irqrestore(&psw->lock, flags); 363 } 364 365 /* 366 * This function unregister poll callbacks from the associated file descriptor. 367 * Since this must be called without holding "ep->lock" the atomic exchange trick 368 * will protect us from multiple unregister. 369 */ 370 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 371 { 372 int nwait; 373 struct list_head *lsthead = &epi->pwqlist; 374 struct eppoll_entry *pwq; 375 376 /* This is called without locks, so we need the atomic exchange */ 377 nwait = xchg(&epi->nwait, 0); 378 379 if (nwait) { 380 while (!list_empty(lsthead)) { 381 pwq = list_first_entry(lsthead, struct eppoll_entry, llink); 382 383 list_del_init(&pwq->llink); 384 remove_wait_queue(pwq->whead, &pwq->wait); 385 kmem_cache_free(pwq_cache, pwq); 386 } 387 } 388 } 389 390 /* 391 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 392 * all the associated resources. Must be called with "mtx" held. 393 */ 394 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 395 { 396 unsigned long flags; 397 struct file *file = epi->ffd.file; 398 399 /* 400 * Removes poll wait queue hooks. We _have_ to do this without holding 401 * the "ep->lock" otherwise a deadlock might occur. This because of the 402 * sequence of the lock acquisition. Here we do "ep->lock" then the wait 403 * queue head lock when unregistering the wait queue. The wakeup callback 404 * will run by holding the wait queue head lock and will call our callback 405 * that will try to get "ep->lock". 406 */ 407 ep_unregister_pollwait(ep, epi); 408 409 /* Remove the current item from the list of epoll hooks */ 410 spin_lock(&file->f_ep_lock); 411 if (ep_is_linked(&epi->fllink)) 412 list_del_init(&epi->fllink); 413 spin_unlock(&file->f_ep_lock); 414 415 if (ep_rb_linked(&epi->rbn)) 416 ep_rb_erase(&epi->rbn, &ep->rbr); 417 418 spin_lock_irqsave(&ep->lock, flags); 419 if (ep_is_linked(&epi->rdllink)) 420 list_del_init(&epi->rdllink); 421 spin_unlock_irqrestore(&ep->lock, flags); 422 423 /* At this point it is safe to free the eventpoll item */ 424 kmem_cache_free(epi_cache, epi); 425 426 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_remove(%p, %p)\n", 427 current, ep, file)); 428 429 return 0; 430 } 431 432 static void ep_free(struct eventpoll *ep) 433 { 434 struct rb_node *rbp; 435 struct epitem *epi; 436 437 /* We need to release all tasks waiting for these file */ 438 if (waitqueue_active(&ep->poll_wait)) 439 ep_poll_safewake(&psw, &ep->poll_wait); 440 441 /* 442 * We need to lock this because we could be hit by 443 * eventpoll_release_file() while we're freeing the "struct eventpoll". 444 * We do not need to hold "ep->mtx" here because the epoll file 445 * is on the way to be removed and no one has references to it 446 * anymore. The only hit might come from eventpoll_release_file() but 447 * holding "epmutex" is sufficent here. 448 */ 449 mutex_lock(&epmutex); 450 451 /* 452 * Walks through the whole tree by unregistering poll callbacks. 453 */ 454 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 455 epi = rb_entry(rbp, struct epitem, rbn); 456 457 ep_unregister_pollwait(ep, epi); 458 } 459 460 /* 461 * Walks through the whole tree by freeing each "struct epitem". At this 462 * point we are sure no poll callbacks will be lingering around, and also by 463 * holding "epmutex" we can be sure that no file cleanup code will hit 464 * us during this operation. So we can avoid the lock on "ep->lock". 465 */ 466 while ((rbp = rb_first(&ep->rbr)) != 0) { 467 epi = rb_entry(rbp, struct epitem, rbn); 468 ep_remove(ep, epi); 469 } 470 471 mutex_unlock(&epmutex); 472 mutex_destroy(&ep->mtx); 473 kfree(ep); 474 } 475 476 static int ep_eventpoll_release(struct inode *inode, struct file *file) 477 { 478 struct eventpoll *ep = file->private_data; 479 480 if (ep) 481 ep_free(ep); 482 483 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: close() ep=%p\n", current, ep)); 484 return 0; 485 } 486 487 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait) 488 { 489 unsigned int pollflags = 0; 490 unsigned long flags; 491 struct eventpoll *ep = file->private_data; 492 493 /* Insert inside our poll wait queue */ 494 poll_wait(file, &ep->poll_wait, wait); 495 496 /* Check our condition */ 497 spin_lock_irqsave(&ep->lock, flags); 498 if (!list_empty(&ep->rdllist)) 499 pollflags = POLLIN | POLLRDNORM; 500 spin_unlock_irqrestore(&ep->lock, flags); 501 502 return pollflags; 503 } 504 505 /* File callbacks that implement the eventpoll file behaviour */ 506 static const struct file_operations eventpoll_fops = { 507 .release = ep_eventpoll_release, 508 .poll = ep_eventpoll_poll 509 }; 510 511 /* Fast test to see if the file is an evenpoll file */ 512 static inline int is_file_epoll(struct file *f) 513 { 514 return f->f_op == &eventpoll_fops; 515 } 516 517 /* 518 * This is called from eventpoll_release() to unlink files from the eventpoll 519 * interface. We need to have this facility to cleanup correctly files that are 520 * closed without being removed from the eventpoll interface. 521 */ 522 void eventpoll_release_file(struct file *file) 523 { 524 struct list_head *lsthead = &file->f_ep_links; 525 struct eventpoll *ep; 526 struct epitem *epi; 527 528 /* 529 * We don't want to get "file->f_ep_lock" because it is not 530 * necessary. It is not necessary because we're in the "struct file" 531 * cleanup path, and this means that noone is using this file anymore. 532 * So, for example, epoll_ctl() cannot hit here sicne if we reach this 533 * point, the file counter already went to zero and fget() would fail. 534 * The only hit might come from ep_free() but by holding the mutex 535 * will correctly serialize the operation. We do need to acquire 536 * "ep->mtx" after "epmutex" because ep_remove() requires it when called 537 * from anywhere but ep_free(). 538 */ 539 mutex_lock(&epmutex); 540 541 while (!list_empty(lsthead)) { 542 epi = list_first_entry(lsthead, struct epitem, fllink); 543 544 ep = epi->ep; 545 list_del_init(&epi->fllink); 546 mutex_lock(&ep->mtx); 547 ep_remove(ep, epi); 548 mutex_unlock(&ep->mtx); 549 } 550 551 mutex_unlock(&epmutex); 552 } 553 554 static int ep_alloc(struct eventpoll **pep) 555 { 556 struct eventpoll *ep = kzalloc(sizeof(*ep), GFP_KERNEL); 557 558 if (!ep) 559 return -ENOMEM; 560 561 spin_lock_init(&ep->lock); 562 mutex_init(&ep->mtx); 563 init_waitqueue_head(&ep->wq); 564 init_waitqueue_head(&ep->poll_wait); 565 INIT_LIST_HEAD(&ep->rdllist); 566 ep->rbr = RB_ROOT; 567 ep->ovflist = EP_UNACTIVE_PTR; 568 569 *pep = ep; 570 571 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_alloc() ep=%p\n", 572 current, ep)); 573 return 0; 574 } 575 576 /* 577 * Search the file inside the eventpoll tree. The RB tree operations 578 * are protected by the "mtx" mutex, and ep_find() must be called with 579 * "mtx" held. 580 */ 581 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 582 { 583 int kcmp; 584 struct rb_node *rbp; 585 struct epitem *epi, *epir = NULL; 586 struct epoll_filefd ffd; 587 588 ep_set_ffd(&ffd, file, fd); 589 for (rbp = ep->rbr.rb_node; rbp; ) { 590 epi = rb_entry(rbp, struct epitem, rbn); 591 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 592 if (kcmp > 0) 593 rbp = rbp->rb_right; 594 else if (kcmp < 0) 595 rbp = rbp->rb_left; 596 else { 597 epir = epi; 598 break; 599 } 600 } 601 602 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_find(%p) -> %p\n", 603 current, file, epir)); 604 605 return epir; 606 } 607 608 /* 609 * This is the callback that is passed to the wait queue wakeup 610 * machanism. It is called by the stored file descriptors when they 611 * have events to report. 612 */ 613 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key) 614 { 615 int pwake = 0; 616 unsigned long flags; 617 struct epitem *epi = ep_item_from_wait(wait); 618 struct eventpoll *ep = epi->ep; 619 620 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: poll_callback(%p) epi=%p ep=%p\n", 621 current, epi->ffd.file, epi, ep)); 622 623 spin_lock_irqsave(&ep->lock, flags); 624 625 /* 626 * If the event mask does not contain any poll(2) event, we consider the 627 * descriptor to be disabled. This condition is likely the effect of the 628 * EPOLLONESHOT bit that disables the descriptor when an event is received, 629 * until the next EPOLL_CTL_MOD will be issued. 630 */ 631 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 632 goto out_unlock; 633 634 /* 635 * If we are trasfering events to userspace, we can hold no locks 636 * (because we're accessing user memory, and because of linux f_op->poll() 637 * semantics). All the events that happens during that period of time are 638 * chained in ep->ovflist and requeued later on. 639 */ 640 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) { 641 if (epi->next == EP_UNACTIVE_PTR) { 642 epi->next = ep->ovflist; 643 ep->ovflist = epi; 644 } 645 goto out_unlock; 646 } 647 648 /* If this file is already in the ready list we exit soon */ 649 if (ep_is_linked(&epi->rdllink)) 650 goto is_linked; 651 652 list_add_tail(&epi->rdllink, &ep->rdllist); 653 654 is_linked: 655 /* 656 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 657 * wait list. 658 */ 659 if (waitqueue_active(&ep->wq)) 660 __wake_up_locked(&ep->wq, TASK_UNINTERRUPTIBLE | 661 TASK_INTERRUPTIBLE); 662 if (waitqueue_active(&ep->poll_wait)) 663 pwake++; 664 665 out_unlock: 666 spin_unlock_irqrestore(&ep->lock, flags); 667 668 /* We have to call this outside the lock */ 669 if (pwake) 670 ep_poll_safewake(&psw, &ep->poll_wait); 671 672 return 1; 673 } 674 675 /* 676 * This is the callback that is used to add our wait queue to the 677 * target file wakeup lists. 678 */ 679 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 680 poll_table *pt) 681 { 682 struct epitem *epi = ep_item_from_epqueue(pt); 683 struct eppoll_entry *pwq; 684 685 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { 686 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 687 pwq->whead = whead; 688 pwq->base = epi; 689 add_wait_queue(whead, &pwq->wait); 690 list_add_tail(&pwq->llink, &epi->pwqlist); 691 epi->nwait++; 692 } else { 693 /* We have to signal that an error occurred */ 694 epi->nwait = -1; 695 } 696 } 697 698 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 699 { 700 int kcmp; 701 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL; 702 struct epitem *epic; 703 704 while (*p) { 705 parent = *p; 706 epic = rb_entry(parent, struct epitem, rbn); 707 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 708 if (kcmp > 0) 709 p = &parent->rb_right; 710 else 711 p = &parent->rb_left; 712 } 713 rb_link_node(&epi->rbn, parent, p); 714 rb_insert_color(&epi->rbn, &ep->rbr); 715 } 716 717 /* 718 * Must be called with "mtx" held. 719 */ 720 static int ep_insert(struct eventpoll *ep, struct epoll_event *event, 721 struct file *tfile, int fd) 722 { 723 int error, revents, pwake = 0; 724 unsigned long flags; 725 struct epitem *epi; 726 struct ep_pqueue epq; 727 728 error = -ENOMEM; 729 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) 730 goto error_return; 731 732 /* Item initialization follow here ... */ 733 ep_rb_initnode(&epi->rbn); 734 INIT_LIST_HEAD(&epi->rdllink); 735 INIT_LIST_HEAD(&epi->fllink); 736 INIT_LIST_HEAD(&epi->pwqlist); 737 epi->ep = ep; 738 ep_set_ffd(&epi->ffd, tfile, fd); 739 epi->event = *event; 740 epi->nwait = 0; 741 epi->next = EP_UNACTIVE_PTR; 742 743 /* Initialize the poll table using the queue callback */ 744 epq.epi = epi; 745 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 746 747 /* 748 * Attach the item to the poll hooks and get current event bits. 749 * We can safely use the file* here because its usage count has 750 * been increased by the caller of this function. Note that after 751 * this operation completes, the poll callback can start hitting 752 * the new item. 753 */ 754 revents = tfile->f_op->poll(tfile, &epq.pt); 755 756 /* 757 * We have to check if something went wrong during the poll wait queue 758 * install process. Namely an allocation for a wait queue failed due 759 * high memory pressure. 760 */ 761 if (epi->nwait < 0) 762 goto error_unregister; 763 764 /* Add the current item to the list of active epoll hook for this file */ 765 spin_lock(&tfile->f_ep_lock); 766 list_add_tail(&epi->fllink, &tfile->f_ep_links); 767 spin_unlock(&tfile->f_ep_lock); 768 769 /* 770 * Add the current item to the RB tree. All RB tree operations are 771 * protected by "mtx", and ep_insert() is called with "mtx" held. 772 */ 773 ep_rbtree_insert(ep, epi); 774 775 /* We have to drop the new item inside our item list to keep track of it */ 776 spin_lock_irqsave(&ep->lock, flags); 777 778 /* If the file is already "ready" we drop it inside the ready list */ 779 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) { 780 list_add_tail(&epi->rdllink, &ep->rdllist); 781 782 /* Notify waiting tasks that events are available */ 783 if (waitqueue_active(&ep->wq)) 784 __wake_up_locked(&ep->wq, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE); 785 if (waitqueue_active(&ep->poll_wait)) 786 pwake++; 787 } 788 789 spin_unlock_irqrestore(&ep->lock, flags); 790 791 /* We have to call this outside the lock */ 792 if (pwake) 793 ep_poll_safewake(&psw, &ep->poll_wait); 794 795 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_insert(%p, %p, %d)\n", 796 current, ep, tfile, fd)); 797 798 return 0; 799 800 error_unregister: 801 ep_unregister_pollwait(ep, epi); 802 803 /* 804 * We need to do this because an event could have been arrived on some 805 * allocated wait queue. Note that we don't care about the ep->ovflist 806 * list, since that is used/cleaned only inside a section bound by "mtx". 807 * And ep_insert() is called with "mtx" held. 808 */ 809 spin_lock_irqsave(&ep->lock, flags); 810 if (ep_is_linked(&epi->rdllink)) 811 list_del_init(&epi->rdllink); 812 spin_unlock_irqrestore(&ep->lock, flags); 813 814 kmem_cache_free(epi_cache, epi); 815 error_return: 816 return error; 817 } 818 819 /* 820 * Modify the interest event mask by dropping an event if the new mask 821 * has a match in the current file status. Must be called with "mtx" held. 822 */ 823 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event) 824 { 825 int pwake = 0; 826 unsigned int revents; 827 unsigned long flags; 828 829 /* 830 * Set the new event interest mask before calling f_op->poll(), otherwise 831 * a potential race might occur. In fact if we do this operation inside 832 * the lock, an event might happen between the f_op->poll() call and the 833 * new event set registering. 834 */ 835 epi->event.events = event->events; 836 837 /* 838 * Get current event bits. We can safely use the file* here because 839 * its usage count has been increased by the caller of this function. 840 */ 841 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL); 842 843 spin_lock_irqsave(&ep->lock, flags); 844 845 /* Copy the data member from inside the lock */ 846 epi->event.data = event->data; 847 848 /* 849 * If the item is "hot" and it is not registered inside the ready 850 * list, push it inside. 851 */ 852 if (revents & event->events) { 853 if (!ep_is_linked(&epi->rdllink)) { 854 list_add_tail(&epi->rdllink, &ep->rdllist); 855 856 /* Notify waiting tasks that events are available */ 857 if (waitqueue_active(&ep->wq)) 858 __wake_up_locked(&ep->wq, TASK_UNINTERRUPTIBLE | 859 TASK_INTERRUPTIBLE); 860 if (waitqueue_active(&ep->poll_wait)) 861 pwake++; 862 } 863 } 864 spin_unlock_irqrestore(&ep->lock, flags); 865 866 /* We have to call this outside the lock */ 867 if (pwake) 868 ep_poll_safewake(&psw, &ep->poll_wait); 869 870 return 0; 871 } 872 873 static int ep_send_events(struct eventpoll *ep, struct epoll_event __user *events, 874 int maxevents) 875 { 876 int eventcnt, error = -EFAULT, pwake = 0; 877 unsigned int revents; 878 unsigned long flags; 879 struct epitem *epi, *nepi; 880 struct list_head txlist; 881 882 INIT_LIST_HEAD(&txlist); 883 884 /* 885 * We need to lock this because we could be hit by 886 * eventpoll_release_file() and epoll_ctl(EPOLL_CTL_DEL). 887 */ 888 mutex_lock(&ep->mtx); 889 890 /* 891 * Steal the ready list, and re-init the original one to the 892 * empty list. Also, set ep->ovflist to NULL so that events 893 * happening while looping w/out locks, are not lost. We cannot 894 * have the poll callback to queue directly on ep->rdllist, 895 * because we are doing it in the loop below, in a lockless way. 896 */ 897 spin_lock_irqsave(&ep->lock, flags); 898 list_splice(&ep->rdllist, &txlist); 899 INIT_LIST_HEAD(&ep->rdllist); 900 ep->ovflist = NULL; 901 spin_unlock_irqrestore(&ep->lock, flags); 902 903 /* 904 * We can loop without lock because this is a task private list. 905 * We just splice'd out the ep->rdllist in ep_collect_ready_items(). 906 * Items cannot vanish during the loop because we are holding "mtx". 907 */ 908 for (eventcnt = 0; !list_empty(&txlist) && eventcnt < maxevents;) { 909 epi = list_first_entry(&txlist, struct epitem, rdllink); 910 911 list_del_init(&epi->rdllink); 912 913 /* 914 * Get the ready file event set. We can safely use the file 915 * because we are holding the "mtx" and this will guarantee 916 * that both the file and the item will not vanish. 917 */ 918 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL); 919 revents &= epi->event.events; 920 921 /* 922 * Is the event mask intersect the caller-requested one, 923 * deliver the event to userspace. Again, we are holding 924 * "mtx", so no operations coming from userspace can change 925 * the item. 926 */ 927 if (revents) { 928 if (__put_user(revents, 929 &events[eventcnt].events) || 930 __put_user(epi->event.data, 931 &events[eventcnt].data)) 932 goto errxit; 933 if (epi->event.events & EPOLLONESHOT) 934 epi->event.events &= EP_PRIVATE_BITS; 935 eventcnt++; 936 } 937 /* 938 * At this point, noone can insert into ep->rdllist besides 939 * us. The epoll_ctl() callers are locked out by us holding 940 * "mtx" and the poll callback will queue them in ep->ovflist. 941 */ 942 if (!(epi->event.events & EPOLLET) && 943 (revents & epi->event.events)) 944 list_add_tail(&epi->rdllink, &ep->rdllist); 945 } 946 error = 0; 947 948 errxit: 949 950 spin_lock_irqsave(&ep->lock, flags); 951 /* 952 * During the time we spent in the loop above, some other events 953 * might have been queued by the poll callback. We re-insert them 954 * here (in case they are not already queued, or they're one-shot). 955 */ 956 for (nepi = ep->ovflist; (epi = nepi) != NULL; 957 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 958 if (!ep_is_linked(&epi->rdllink) && 959 (epi->event.events & ~EP_PRIVATE_BITS)) 960 list_add_tail(&epi->rdllink, &ep->rdllist); 961 } 962 /* 963 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 964 * releasing the lock, events will be queued in the normal way inside 965 * ep->rdllist. 966 */ 967 ep->ovflist = EP_UNACTIVE_PTR; 968 969 /* 970 * In case of error in the event-send loop, or in case the number of 971 * ready events exceeds the userspace limit, we need to splice the 972 * "txlist" back inside ep->rdllist. 973 */ 974 list_splice(&txlist, &ep->rdllist); 975 976 if (!list_empty(&ep->rdllist)) { 977 /* 978 * Wake up (if active) both the eventpoll wait list and the ->poll() 979 * wait list (delayed after we release the lock). 980 */ 981 if (waitqueue_active(&ep->wq)) 982 __wake_up_locked(&ep->wq, TASK_UNINTERRUPTIBLE | 983 TASK_INTERRUPTIBLE); 984 if (waitqueue_active(&ep->poll_wait)) 985 pwake++; 986 } 987 spin_unlock_irqrestore(&ep->lock, flags); 988 989 mutex_unlock(&ep->mtx); 990 991 /* We have to call this outside the lock */ 992 if (pwake) 993 ep_poll_safewake(&psw, &ep->poll_wait); 994 995 return eventcnt == 0 ? error: eventcnt; 996 } 997 998 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 999 int maxevents, long timeout) 1000 { 1001 int res, eavail; 1002 unsigned long flags; 1003 long jtimeout; 1004 wait_queue_t wait; 1005 1006 /* 1007 * Calculate the timeout by checking for the "infinite" value ( -1 ) 1008 * and the overflow condition. The passed timeout is in milliseconds, 1009 * that why (t * HZ) / 1000. 1010 */ 1011 jtimeout = (timeout < 0 || timeout >= EP_MAX_MSTIMEO) ? 1012 MAX_SCHEDULE_TIMEOUT : (timeout * HZ + 999) / 1000; 1013 1014 retry: 1015 spin_lock_irqsave(&ep->lock, flags); 1016 1017 res = 0; 1018 if (list_empty(&ep->rdllist)) { 1019 /* 1020 * We don't have any available event to return to the caller. 1021 * We need to sleep here, and we will be wake up by 1022 * ep_poll_callback() when events will become available. 1023 */ 1024 init_waitqueue_entry(&wait, current); 1025 wait.flags |= WQ_FLAG_EXCLUSIVE; 1026 __add_wait_queue(&ep->wq, &wait); 1027 1028 for (;;) { 1029 /* 1030 * We don't want to sleep if the ep_poll_callback() sends us 1031 * a wakeup in between. That's why we set the task state 1032 * to TASK_INTERRUPTIBLE before doing the checks. 1033 */ 1034 set_current_state(TASK_INTERRUPTIBLE); 1035 if (!list_empty(&ep->rdllist) || !jtimeout) 1036 break; 1037 if (signal_pending(current)) { 1038 res = -EINTR; 1039 break; 1040 } 1041 1042 spin_unlock_irqrestore(&ep->lock, flags); 1043 jtimeout = schedule_timeout(jtimeout); 1044 spin_lock_irqsave(&ep->lock, flags); 1045 } 1046 __remove_wait_queue(&ep->wq, &wait); 1047 1048 set_current_state(TASK_RUNNING); 1049 } 1050 1051 /* Is it worth to try to dig for events ? */ 1052 eavail = !list_empty(&ep->rdllist); 1053 1054 spin_unlock_irqrestore(&ep->lock, flags); 1055 1056 /* 1057 * Try to transfer events to user space. In case we get 0 events and 1058 * there's still timeout left over, we go trying again in search of 1059 * more luck. 1060 */ 1061 if (!res && eavail && 1062 !(res = ep_send_events(ep, events, maxevents)) && jtimeout) 1063 goto retry; 1064 1065 return res; 1066 } 1067 1068 /* 1069 * It opens an eventpoll file descriptor. The "size" parameter is there 1070 * for historical reasons, when epoll was using an hash instead of an 1071 * RB tree. With the current implementation, the "size" parameter is ignored 1072 * (besides sanity checks). 1073 */ 1074 asmlinkage long sys_epoll_create(int size) 1075 { 1076 int error, fd = -1; 1077 struct eventpoll *ep; 1078 struct inode *inode; 1079 struct file *file; 1080 1081 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d)\n", 1082 current, size)); 1083 1084 /* 1085 * Sanity check on the size parameter, and create the internal data 1086 * structure ( "struct eventpoll" ). 1087 */ 1088 error = -EINVAL; 1089 if (size <= 0 || (error = ep_alloc(&ep)) != 0) 1090 goto error_return; 1091 1092 /* 1093 * Creates all the items needed to setup an eventpoll file. That is, 1094 * a file structure, and inode and a free file descriptor. 1095 */ 1096 error = anon_inode_getfd(&fd, &inode, &file, "[eventpoll]", 1097 &eventpoll_fops, ep); 1098 if (error) 1099 goto error_free; 1100 1101 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d) = %d\n", 1102 current, size, fd)); 1103 1104 return fd; 1105 1106 error_free: 1107 ep_free(ep); 1108 error_return: 1109 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d) = %d\n", 1110 current, size, error)); 1111 return error; 1112 } 1113 1114 /* 1115 * The following function implements the controller interface for 1116 * the eventpoll file that enables the insertion/removal/change of 1117 * file descriptors inside the interest set. 1118 */ 1119 asmlinkage long sys_epoll_ctl(int epfd, int op, int fd, 1120 struct epoll_event __user *event) 1121 { 1122 int error; 1123 struct file *file, *tfile; 1124 struct eventpoll *ep; 1125 struct epitem *epi; 1126 struct epoll_event epds; 1127 1128 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_ctl(%d, %d, %d, %p)\n", 1129 current, epfd, op, fd, event)); 1130 1131 error = -EFAULT; 1132 if (ep_op_has_event(op) && 1133 copy_from_user(&epds, event, sizeof(struct epoll_event))) 1134 goto error_return; 1135 1136 /* Get the "struct file *" for the eventpoll file */ 1137 error = -EBADF; 1138 file = fget(epfd); 1139 if (!file) 1140 goto error_return; 1141 1142 /* Get the "struct file *" for the target file */ 1143 tfile = fget(fd); 1144 if (!tfile) 1145 goto error_fput; 1146 1147 /* The target file descriptor must support poll */ 1148 error = -EPERM; 1149 if (!tfile->f_op || !tfile->f_op->poll) 1150 goto error_tgt_fput; 1151 1152 /* 1153 * We have to check that the file structure underneath the file descriptor 1154 * the user passed to us _is_ an eventpoll file. And also we do not permit 1155 * adding an epoll file descriptor inside itself. 1156 */ 1157 error = -EINVAL; 1158 if (file == tfile || !is_file_epoll(file)) 1159 goto error_tgt_fput; 1160 1161 /* 1162 * At this point it is safe to assume that the "private_data" contains 1163 * our own data structure. 1164 */ 1165 ep = file->private_data; 1166 1167 mutex_lock(&ep->mtx); 1168 1169 /* 1170 * Try to lookup the file inside our RB tree, Since we grabbed "mtx" 1171 * above, we can be sure to be able to use the item looked up by 1172 * ep_find() till we release the mutex. 1173 */ 1174 epi = ep_find(ep, tfile, fd); 1175 1176 error = -EINVAL; 1177 switch (op) { 1178 case EPOLL_CTL_ADD: 1179 if (!epi) { 1180 epds.events |= POLLERR | POLLHUP; 1181 1182 error = ep_insert(ep, &epds, tfile, fd); 1183 } else 1184 error = -EEXIST; 1185 break; 1186 case EPOLL_CTL_DEL: 1187 if (epi) 1188 error = ep_remove(ep, epi); 1189 else 1190 error = -ENOENT; 1191 break; 1192 case EPOLL_CTL_MOD: 1193 if (epi) { 1194 epds.events |= POLLERR | POLLHUP; 1195 error = ep_modify(ep, epi, &epds); 1196 } else 1197 error = -ENOENT; 1198 break; 1199 } 1200 mutex_unlock(&ep->mtx); 1201 1202 error_tgt_fput: 1203 fput(tfile); 1204 error_fput: 1205 fput(file); 1206 error_return: 1207 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_ctl(%d, %d, %d, %p) = %d\n", 1208 current, epfd, op, fd, event, error)); 1209 1210 return error; 1211 } 1212 1213 /* 1214 * Implement the event wait interface for the eventpoll file. It is the kernel 1215 * part of the user space epoll_wait(2). 1216 */ 1217 asmlinkage long sys_epoll_wait(int epfd, struct epoll_event __user *events, 1218 int maxevents, int timeout) 1219 { 1220 int error; 1221 struct file *file; 1222 struct eventpoll *ep; 1223 1224 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_wait(%d, %p, %d, %d)\n", 1225 current, epfd, events, maxevents, timeout)); 1226 1227 /* The maximum number of event must be greater than zero */ 1228 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 1229 return -EINVAL; 1230 1231 /* Verify that the area passed by the user is writeable */ 1232 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) { 1233 error = -EFAULT; 1234 goto error_return; 1235 } 1236 1237 /* Get the "struct file *" for the eventpoll file */ 1238 error = -EBADF; 1239 file = fget(epfd); 1240 if (!file) 1241 goto error_return; 1242 1243 /* 1244 * We have to check that the file structure underneath the fd 1245 * the user passed to us _is_ an eventpoll file. 1246 */ 1247 error = -EINVAL; 1248 if (!is_file_epoll(file)) 1249 goto error_fput; 1250 1251 /* 1252 * At this point it is safe to assume that the "private_data" contains 1253 * our own data structure. 1254 */ 1255 ep = file->private_data; 1256 1257 /* Time to fish for events ... */ 1258 error = ep_poll(ep, events, maxevents, timeout); 1259 1260 error_fput: 1261 fput(file); 1262 error_return: 1263 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_wait(%d, %p, %d, %d) = %d\n", 1264 current, epfd, events, maxevents, timeout, error)); 1265 1266 return error; 1267 } 1268 1269 #ifdef TIF_RESTORE_SIGMASK 1270 1271 /* 1272 * Implement the event wait interface for the eventpoll file. It is the kernel 1273 * part of the user space epoll_pwait(2). 1274 */ 1275 asmlinkage long sys_epoll_pwait(int epfd, struct epoll_event __user *events, 1276 int maxevents, int timeout, const sigset_t __user *sigmask, 1277 size_t sigsetsize) 1278 { 1279 int error; 1280 sigset_t ksigmask, sigsaved; 1281 1282 /* 1283 * If the caller wants a certain signal mask to be set during the wait, 1284 * we apply it here. 1285 */ 1286 if (sigmask) { 1287 if (sigsetsize != sizeof(sigset_t)) 1288 return -EINVAL; 1289 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask))) 1290 return -EFAULT; 1291 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 1292 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved); 1293 } 1294 1295 error = sys_epoll_wait(epfd, events, maxevents, timeout); 1296 1297 /* 1298 * If we changed the signal mask, we need to restore the original one. 1299 * In case we've got a signal while waiting, we do not restore the 1300 * signal mask yet, and we allow do_signal() to deliver the signal on 1301 * the way back to userspace, before the signal mask is restored. 1302 */ 1303 if (sigmask) { 1304 if (error == -EINTR) { 1305 memcpy(¤t->saved_sigmask, &sigsaved, 1306 sizeof(sigsaved)); 1307 set_thread_flag(TIF_RESTORE_SIGMASK); 1308 } else 1309 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 1310 } 1311 1312 return error; 1313 } 1314 1315 #endif /* #ifdef TIF_RESTORE_SIGMASK */ 1316 1317 static int __init eventpoll_init(void) 1318 { 1319 mutex_init(&epmutex); 1320 1321 /* Initialize the structure used to perform safe poll wait head wake ups */ 1322 ep_poll_safewake_init(&psw); 1323 1324 /* Allocates slab cache used to allocate "struct epitem" items */ 1325 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 1326 0, SLAB_HWCACHE_ALIGN|EPI_SLAB_DEBUG|SLAB_PANIC, 1327 NULL, NULL); 1328 1329 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 1330 pwq_cache = kmem_cache_create("eventpoll_pwq", 1331 sizeof(struct eppoll_entry), 0, 1332 EPI_SLAB_DEBUG|SLAB_PANIC, NULL, NULL); 1333 1334 return 0; 1335 } 1336 fs_initcall(eventpoll_init); 1337 1338