xref: /openbmc/linux/fs/eventpoll.c (revision 63dc02bd)
1 /*
2  *  fs/eventpoll.c (Efficient event retrieval implementation)
3  *  Copyright (C) 2001,...,2009	 Davide Libenzi
4  *
5  *  This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation; either version 2 of the License, or
8  *  (at your option) any later version.
9  *
10  *  Davide Libenzi <davidel@xmailserver.org>
11  *
12  */
13 
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <asm/uaccess.h>
37 #include <asm/io.h>
38 #include <asm/mman.h>
39 #include <linux/atomic.h>
40 
41 /*
42  * LOCKING:
43  * There are three level of locking required by epoll :
44  *
45  * 1) epmutex (mutex)
46  * 2) ep->mtx (mutex)
47  * 3) ep->lock (spinlock)
48  *
49  * The acquire order is the one listed above, from 1 to 3.
50  * We need a spinlock (ep->lock) because we manipulate objects
51  * from inside the poll callback, that might be triggered from
52  * a wake_up() that in turn might be called from IRQ context.
53  * So we can't sleep inside the poll callback and hence we need
54  * a spinlock. During the event transfer loop (from kernel to
55  * user space) we could end up sleeping due a copy_to_user(), so
56  * we need a lock that will allow us to sleep. This lock is a
57  * mutex (ep->mtx). It is acquired during the event transfer loop,
58  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
59  * Then we also need a global mutex to serialize eventpoll_release_file()
60  * and ep_free().
61  * This mutex is acquired by ep_free() during the epoll file
62  * cleanup path and it is also acquired by eventpoll_release_file()
63  * if a file has been pushed inside an epoll set and it is then
64  * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
65  * It is also acquired when inserting an epoll fd onto another epoll
66  * fd. We do this so that we walk the epoll tree and ensure that this
67  * insertion does not create a cycle of epoll file descriptors, which
68  * could lead to deadlock. We need a global mutex to prevent two
69  * simultaneous inserts (A into B and B into A) from racing and
70  * constructing a cycle without either insert observing that it is
71  * going to.
72  * It is necessary to acquire multiple "ep->mtx"es at once in the
73  * case when one epoll fd is added to another. In this case, we
74  * always acquire the locks in the order of nesting (i.e. after
75  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
76  * before e2->mtx). Since we disallow cycles of epoll file
77  * descriptors, this ensures that the mutexes are well-ordered. In
78  * order to communicate this nesting to lockdep, when walking a tree
79  * of epoll file descriptors, we use the current recursion depth as
80  * the lockdep subkey.
81  * It is possible to drop the "ep->mtx" and to use the global
82  * mutex "epmutex" (together with "ep->lock") to have it working,
83  * but having "ep->mtx" will make the interface more scalable.
84  * Events that require holding "epmutex" are very rare, while for
85  * normal operations the epoll private "ep->mtx" will guarantee
86  * a better scalability.
87  */
88 
89 /* Epoll private bits inside the event mask */
90 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET)
91 
92 /* Maximum number of nesting allowed inside epoll sets */
93 #define EP_MAX_NESTS 4
94 
95 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
96 
97 #define EP_UNACTIVE_PTR ((void *) -1L)
98 
99 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
100 
101 struct epoll_filefd {
102 	struct file *file;
103 	int fd;
104 };
105 
106 /*
107  * Structure used to track possible nested calls, for too deep recursions
108  * and loop cycles.
109  */
110 struct nested_call_node {
111 	struct list_head llink;
112 	void *cookie;
113 	void *ctx;
114 };
115 
116 /*
117  * This structure is used as collector for nested calls, to check for
118  * maximum recursion dept and loop cycles.
119  */
120 struct nested_calls {
121 	struct list_head tasks_call_list;
122 	spinlock_t lock;
123 };
124 
125 /*
126  * Each file descriptor added to the eventpoll interface will
127  * have an entry of this type linked to the "rbr" RB tree.
128  */
129 struct epitem {
130 	/* RB tree node used to link this structure to the eventpoll RB tree */
131 	struct rb_node rbn;
132 
133 	/* List header used to link this structure to the eventpoll ready list */
134 	struct list_head rdllink;
135 
136 	/*
137 	 * Works together "struct eventpoll"->ovflist in keeping the
138 	 * single linked chain of items.
139 	 */
140 	struct epitem *next;
141 
142 	/* The file descriptor information this item refers to */
143 	struct epoll_filefd ffd;
144 
145 	/* Number of active wait queue attached to poll operations */
146 	int nwait;
147 
148 	/* List containing poll wait queues */
149 	struct list_head pwqlist;
150 
151 	/* The "container" of this item */
152 	struct eventpoll *ep;
153 
154 	/* List header used to link this item to the "struct file" items list */
155 	struct list_head fllink;
156 
157 	/* The structure that describe the interested events and the source fd */
158 	struct epoll_event event;
159 };
160 
161 /*
162  * This structure is stored inside the "private_data" member of the file
163  * structure and represents the main data structure for the eventpoll
164  * interface.
165  */
166 struct eventpoll {
167 	/* Protect the access to this structure */
168 	spinlock_t lock;
169 
170 	/*
171 	 * This mutex is used to ensure that files are not removed
172 	 * while epoll is using them. This is held during the event
173 	 * collection loop, the file cleanup path, the epoll file exit
174 	 * code and the ctl operations.
175 	 */
176 	struct mutex mtx;
177 
178 	/* Wait queue used by sys_epoll_wait() */
179 	wait_queue_head_t wq;
180 
181 	/* Wait queue used by file->poll() */
182 	wait_queue_head_t poll_wait;
183 
184 	/* List of ready file descriptors */
185 	struct list_head rdllist;
186 
187 	/* RB tree root used to store monitored fd structs */
188 	struct rb_root rbr;
189 
190 	/*
191 	 * This is a single linked list that chains all the "struct epitem" that
192 	 * happened while transferring ready events to userspace w/out
193 	 * holding ->lock.
194 	 */
195 	struct epitem *ovflist;
196 
197 	/* The user that created the eventpoll descriptor */
198 	struct user_struct *user;
199 
200 	struct file *file;
201 
202 	/* used to optimize loop detection check */
203 	int visited;
204 	struct list_head visited_list_link;
205 };
206 
207 /* Wait structure used by the poll hooks */
208 struct eppoll_entry {
209 	/* List header used to link this structure to the "struct epitem" */
210 	struct list_head llink;
211 
212 	/* The "base" pointer is set to the container "struct epitem" */
213 	struct epitem *base;
214 
215 	/*
216 	 * Wait queue item that will be linked to the target file wait
217 	 * queue head.
218 	 */
219 	wait_queue_t wait;
220 
221 	/* The wait queue head that linked the "wait" wait queue item */
222 	wait_queue_head_t *whead;
223 };
224 
225 /* Wrapper struct used by poll queueing */
226 struct ep_pqueue {
227 	poll_table pt;
228 	struct epitem *epi;
229 };
230 
231 /* Used by the ep_send_events() function as callback private data */
232 struct ep_send_events_data {
233 	int maxevents;
234 	struct epoll_event __user *events;
235 };
236 
237 /*
238  * Configuration options available inside /proc/sys/fs/epoll/
239  */
240 /* Maximum number of epoll watched descriptors, per user */
241 static long max_user_watches __read_mostly;
242 
243 /*
244  * This mutex is used to serialize ep_free() and eventpoll_release_file().
245  */
246 static DEFINE_MUTEX(epmutex);
247 
248 /* Used to check for epoll file descriptor inclusion loops */
249 static struct nested_calls poll_loop_ncalls;
250 
251 /* Used for safe wake up implementation */
252 static struct nested_calls poll_safewake_ncalls;
253 
254 /* Used to call file's f_op->poll() under the nested calls boundaries */
255 static struct nested_calls poll_readywalk_ncalls;
256 
257 /* Slab cache used to allocate "struct epitem" */
258 static struct kmem_cache *epi_cache __read_mostly;
259 
260 /* Slab cache used to allocate "struct eppoll_entry" */
261 static struct kmem_cache *pwq_cache __read_mostly;
262 
263 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
264 static LIST_HEAD(visited_list);
265 
266 /*
267  * List of files with newly added links, where we may need to limit the number
268  * of emanating paths. Protected by the epmutex.
269  */
270 static LIST_HEAD(tfile_check_list);
271 
272 #ifdef CONFIG_SYSCTL
273 
274 #include <linux/sysctl.h>
275 
276 static long zero;
277 static long long_max = LONG_MAX;
278 
279 ctl_table epoll_table[] = {
280 	{
281 		.procname	= "max_user_watches",
282 		.data		= &max_user_watches,
283 		.maxlen		= sizeof(max_user_watches),
284 		.mode		= 0644,
285 		.proc_handler	= proc_doulongvec_minmax,
286 		.extra1		= &zero,
287 		.extra2		= &long_max,
288 	},
289 	{ }
290 };
291 #endif /* CONFIG_SYSCTL */
292 
293 static const struct file_operations eventpoll_fops;
294 
295 static inline int is_file_epoll(struct file *f)
296 {
297 	return f->f_op == &eventpoll_fops;
298 }
299 
300 /* Setup the structure that is used as key for the RB tree */
301 static inline void ep_set_ffd(struct epoll_filefd *ffd,
302 			      struct file *file, int fd)
303 {
304 	ffd->file = file;
305 	ffd->fd = fd;
306 }
307 
308 /* Compare RB tree keys */
309 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
310 			     struct epoll_filefd *p2)
311 {
312 	return (p1->file > p2->file ? +1:
313 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
314 }
315 
316 /* Tells us if the item is currently linked */
317 static inline int ep_is_linked(struct list_head *p)
318 {
319 	return !list_empty(p);
320 }
321 
322 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_t *p)
323 {
324 	return container_of(p, struct eppoll_entry, wait);
325 }
326 
327 /* Get the "struct epitem" from a wait queue pointer */
328 static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
329 {
330 	return container_of(p, struct eppoll_entry, wait)->base;
331 }
332 
333 /* Get the "struct epitem" from an epoll queue wrapper */
334 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
335 {
336 	return container_of(p, struct ep_pqueue, pt)->epi;
337 }
338 
339 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
340 static inline int ep_op_has_event(int op)
341 {
342 	return op != EPOLL_CTL_DEL;
343 }
344 
345 /* Initialize the poll safe wake up structure */
346 static void ep_nested_calls_init(struct nested_calls *ncalls)
347 {
348 	INIT_LIST_HEAD(&ncalls->tasks_call_list);
349 	spin_lock_init(&ncalls->lock);
350 }
351 
352 /**
353  * ep_events_available - Checks if ready events might be available.
354  *
355  * @ep: Pointer to the eventpoll context.
356  *
357  * Returns: Returns a value different than zero if ready events are available,
358  *          or zero otherwise.
359  */
360 static inline int ep_events_available(struct eventpoll *ep)
361 {
362 	return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
363 }
364 
365 /**
366  * ep_call_nested - Perform a bound (possibly) nested call, by checking
367  *                  that the recursion limit is not exceeded, and that
368  *                  the same nested call (by the meaning of same cookie) is
369  *                  no re-entered.
370  *
371  * @ncalls: Pointer to the nested_calls structure to be used for this call.
372  * @max_nests: Maximum number of allowed nesting calls.
373  * @nproc: Nested call core function pointer.
374  * @priv: Opaque data to be passed to the @nproc callback.
375  * @cookie: Cookie to be used to identify this nested call.
376  * @ctx: This instance context.
377  *
378  * Returns: Returns the code returned by the @nproc callback, or -1 if
379  *          the maximum recursion limit has been exceeded.
380  */
381 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
382 			  int (*nproc)(void *, void *, int), void *priv,
383 			  void *cookie, void *ctx)
384 {
385 	int error, call_nests = 0;
386 	unsigned long flags;
387 	struct list_head *lsthead = &ncalls->tasks_call_list;
388 	struct nested_call_node *tncur;
389 	struct nested_call_node tnode;
390 
391 	spin_lock_irqsave(&ncalls->lock, flags);
392 
393 	/*
394 	 * Try to see if the current task is already inside this wakeup call.
395 	 * We use a list here, since the population inside this set is always
396 	 * very much limited.
397 	 */
398 	list_for_each_entry(tncur, lsthead, llink) {
399 		if (tncur->ctx == ctx &&
400 		    (tncur->cookie == cookie || ++call_nests > max_nests)) {
401 			/*
402 			 * Ops ... loop detected or maximum nest level reached.
403 			 * We abort this wake by breaking the cycle itself.
404 			 */
405 			error = -1;
406 			goto out_unlock;
407 		}
408 	}
409 
410 	/* Add the current task and cookie to the list */
411 	tnode.ctx = ctx;
412 	tnode.cookie = cookie;
413 	list_add(&tnode.llink, lsthead);
414 
415 	spin_unlock_irqrestore(&ncalls->lock, flags);
416 
417 	/* Call the nested function */
418 	error = (*nproc)(priv, cookie, call_nests);
419 
420 	/* Remove the current task from the list */
421 	spin_lock_irqsave(&ncalls->lock, flags);
422 	list_del(&tnode.llink);
423 out_unlock:
424 	spin_unlock_irqrestore(&ncalls->lock, flags);
425 
426 	return error;
427 }
428 
429 /*
430  * As described in commit 0ccf831cb lockdep: annotate epoll
431  * the use of wait queues used by epoll is done in a very controlled
432  * manner. Wake ups can nest inside each other, but are never done
433  * with the same locking. For example:
434  *
435  *   dfd = socket(...);
436  *   efd1 = epoll_create();
437  *   efd2 = epoll_create();
438  *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
439  *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
440  *
441  * When a packet arrives to the device underneath "dfd", the net code will
442  * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
443  * callback wakeup entry on that queue, and the wake_up() performed by the
444  * "dfd" net code will end up in ep_poll_callback(). At this point epoll
445  * (efd1) notices that it may have some event ready, so it needs to wake up
446  * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
447  * that ends up in another wake_up(), after having checked about the
448  * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
449  * avoid stack blasting.
450  *
451  * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
452  * this special case of epoll.
453  */
454 #ifdef CONFIG_DEBUG_LOCK_ALLOC
455 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
456 				     unsigned long events, int subclass)
457 {
458 	unsigned long flags;
459 
460 	spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
461 	wake_up_locked_poll(wqueue, events);
462 	spin_unlock_irqrestore(&wqueue->lock, flags);
463 }
464 #else
465 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
466 				     unsigned long events, int subclass)
467 {
468 	wake_up_poll(wqueue, events);
469 }
470 #endif
471 
472 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
473 {
474 	ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
475 			  1 + call_nests);
476 	return 0;
477 }
478 
479 /*
480  * Perform a safe wake up of the poll wait list. The problem is that
481  * with the new callback'd wake up system, it is possible that the
482  * poll callback is reentered from inside the call to wake_up() done
483  * on the poll wait queue head. The rule is that we cannot reenter the
484  * wake up code from the same task more than EP_MAX_NESTS times,
485  * and we cannot reenter the same wait queue head at all. This will
486  * enable to have a hierarchy of epoll file descriptor of no more than
487  * EP_MAX_NESTS deep.
488  */
489 static void ep_poll_safewake(wait_queue_head_t *wq)
490 {
491 	int this_cpu = get_cpu();
492 
493 	ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
494 		       ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
495 
496 	put_cpu();
497 }
498 
499 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
500 {
501 	wait_queue_head_t *whead;
502 
503 	rcu_read_lock();
504 	/* If it is cleared by POLLFREE, it should be rcu-safe */
505 	whead = rcu_dereference(pwq->whead);
506 	if (whead)
507 		remove_wait_queue(whead, &pwq->wait);
508 	rcu_read_unlock();
509 }
510 
511 /*
512  * This function unregisters poll callbacks from the associated file
513  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
514  * ep_free).
515  */
516 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
517 {
518 	struct list_head *lsthead = &epi->pwqlist;
519 	struct eppoll_entry *pwq;
520 
521 	while (!list_empty(lsthead)) {
522 		pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
523 
524 		list_del(&pwq->llink);
525 		ep_remove_wait_queue(pwq);
526 		kmem_cache_free(pwq_cache, pwq);
527 	}
528 }
529 
530 /**
531  * ep_scan_ready_list - Scans the ready list in a way that makes possible for
532  *                      the scan code, to call f_op->poll(). Also allows for
533  *                      O(NumReady) performance.
534  *
535  * @ep: Pointer to the epoll private data structure.
536  * @sproc: Pointer to the scan callback.
537  * @priv: Private opaque data passed to the @sproc callback.
538  * @depth: The current depth of recursive f_op->poll calls.
539  *
540  * Returns: The same integer error code returned by the @sproc callback.
541  */
542 static int ep_scan_ready_list(struct eventpoll *ep,
543 			      int (*sproc)(struct eventpoll *,
544 					   struct list_head *, void *),
545 			      void *priv,
546 			      int depth)
547 {
548 	int error, pwake = 0;
549 	unsigned long flags;
550 	struct epitem *epi, *nepi;
551 	LIST_HEAD(txlist);
552 
553 	/*
554 	 * We need to lock this because we could be hit by
555 	 * eventpoll_release_file() and epoll_ctl().
556 	 */
557 	mutex_lock_nested(&ep->mtx, depth);
558 
559 	/*
560 	 * Steal the ready list, and re-init the original one to the
561 	 * empty list. Also, set ep->ovflist to NULL so that events
562 	 * happening while looping w/out locks, are not lost. We cannot
563 	 * have the poll callback to queue directly on ep->rdllist,
564 	 * because we want the "sproc" callback to be able to do it
565 	 * in a lockless way.
566 	 */
567 	spin_lock_irqsave(&ep->lock, flags);
568 	list_splice_init(&ep->rdllist, &txlist);
569 	ep->ovflist = NULL;
570 	spin_unlock_irqrestore(&ep->lock, flags);
571 
572 	/*
573 	 * Now call the callback function.
574 	 */
575 	error = (*sproc)(ep, &txlist, priv);
576 
577 	spin_lock_irqsave(&ep->lock, flags);
578 	/*
579 	 * During the time we spent inside the "sproc" callback, some
580 	 * other events might have been queued by the poll callback.
581 	 * We re-insert them inside the main ready-list here.
582 	 */
583 	for (nepi = ep->ovflist; (epi = nepi) != NULL;
584 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
585 		/*
586 		 * We need to check if the item is already in the list.
587 		 * During the "sproc" callback execution time, items are
588 		 * queued into ->ovflist but the "txlist" might already
589 		 * contain them, and the list_splice() below takes care of them.
590 		 */
591 		if (!ep_is_linked(&epi->rdllink))
592 			list_add_tail(&epi->rdllink, &ep->rdllist);
593 	}
594 	/*
595 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
596 	 * releasing the lock, events will be queued in the normal way inside
597 	 * ep->rdllist.
598 	 */
599 	ep->ovflist = EP_UNACTIVE_PTR;
600 
601 	/*
602 	 * Quickly re-inject items left on "txlist".
603 	 */
604 	list_splice(&txlist, &ep->rdllist);
605 
606 	if (!list_empty(&ep->rdllist)) {
607 		/*
608 		 * Wake up (if active) both the eventpoll wait list and
609 		 * the ->poll() wait list (delayed after we release the lock).
610 		 */
611 		if (waitqueue_active(&ep->wq))
612 			wake_up_locked(&ep->wq);
613 		if (waitqueue_active(&ep->poll_wait))
614 			pwake++;
615 	}
616 	spin_unlock_irqrestore(&ep->lock, flags);
617 
618 	mutex_unlock(&ep->mtx);
619 
620 	/* We have to call this outside the lock */
621 	if (pwake)
622 		ep_poll_safewake(&ep->poll_wait);
623 
624 	return error;
625 }
626 
627 /*
628  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
629  * all the associated resources. Must be called with "mtx" held.
630  */
631 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
632 {
633 	unsigned long flags;
634 	struct file *file = epi->ffd.file;
635 
636 	/*
637 	 * Removes poll wait queue hooks. We _have_ to do this without holding
638 	 * the "ep->lock" otherwise a deadlock might occur. This because of the
639 	 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
640 	 * queue head lock when unregistering the wait queue. The wakeup callback
641 	 * will run by holding the wait queue head lock and will call our callback
642 	 * that will try to get "ep->lock".
643 	 */
644 	ep_unregister_pollwait(ep, epi);
645 
646 	/* Remove the current item from the list of epoll hooks */
647 	spin_lock(&file->f_lock);
648 	if (ep_is_linked(&epi->fllink))
649 		list_del_init(&epi->fllink);
650 	spin_unlock(&file->f_lock);
651 
652 	rb_erase(&epi->rbn, &ep->rbr);
653 
654 	spin_lock_irqsave(&ep->lock, flags);
655 	if (ep_is_linked(&epi->rdllink))
656 		list_del_init(&epi->rdllink);
657 	spin_unlock_irqrestore(&ep->lock, flags);
658 
659 	/* At this point it is safe to free the eventpoll item */
660 	kmem_cache_free(epi_cache, epi);
661 
662 	atomic_long_dec(&ep->user->epoll_watches);
663 
664 	return 0;
665 }
666 
667 static void ep_free(struct eventpoll *ep)
668 {
669 	struct rb_node *rbp;
670 	struct epitem *epi;
671 
672 	/* We need to release all tasks waiting for these file */
673 	if (waitqueue_active(&ep->poll_wait))
674 		ep_poll_safewake(&ep->poll_wait);
675 
676 	/*
677 	 * We need to lock this because we could be hit by
678 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
679 	 * We do not need to hold "ep->mtx" here because the epoll file
680 	 * is on the way to be removed and no one has references to it
681 	 * anymore. The only hit might come from eventpoll_release_file() but
682 	 * holding "epmutex" is sufficient here.
683 	 */
684 	mutex_lock(&epmutex);
685 
686 	/*
687 	 * Walks through the whole tree by unregistering poll callbacks.
688 	 */
689 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
690 		epi = rb_entry(rbp, struct epitem, rbn);
691 
692 		ep_unregister_pollwait(ep, epi);
693 	}
694 
695 	/*
696 	 * Walks through the whole tree by freeing each "struct epitem". At this
697 	 * point we are sure no poll callbacks will be lingering around, and also by
698 	 * holding "epmutex" we can be sure that no file cleanup code will hit
699 	 * us during this operation. So we can avoid the lock on "ep->lock".
700 	 */
701 	while ((rbp = rb_first(&ep->rbr)) != NULL) {
702 		epi = rb_entry(rbp, struct epitem, rbn);
703 		ep_remove(ep, epi);
704 	}
705 
706 	mutex_unlock(&epmutex);
707 	mutex_destroy(&ep->mtx);
708 	free_uid(ep->user);
709 	kfree(ep);
710 }
711 
712 static int ep_eventpoll_release(struct inode *inode, struct file *file)
713 {
714 	struct eventpoll *ep = file->private_data;
715 
716 	if (ep)
717 		ep_free(ep);
718 
719 	return 0;
720 }
721 
722 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
723 			       void *priv)
724 {
725 	struct epitem *epi, *tmp;
726 	poll_table pt;
727 
728 	init_poll_funcptr(&pt, NULL);
729 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
730 		pt._key = epi->event.events;
731 		if (epi->ffd.file->f_op->poll(epi->ffd.file, &pt) &
732 		    epi->event.events)
733 			return POLLIN | POLLRDNORM;
734 		else {
735 			/*
736 			 * Item has been dropped into the ready list by the poll
737 			 * callback, but it's not actually ready, as far as
738 			 * caller requested events goes. We can remove it here.
739 			 */
740 			list_del_init(&epi->rdllink);
741 		}
742 	}
743 
744 	return 0;
745 }
746 
747 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
748 {
749 	return ep_scan_ready_list(priv, ep_read_events_proc, NULL, call_nests + 1);
750 }
751 
752 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
753 {
754 	int pollflags;
755 	struct eventpoll *ep = file->private_data;
756 
757 	/* Insert inside our poll wait queue */
758 	poll_wait(file, &ep->poll_wait, wait);
759 
760 	/*
761 	 * Proceed to find out if wanted events are really available inside
762 	 * the ready list. This need to be done under ep_call_nested()
763 	 * supervision, since the call to f_op->poll() done on listed files
764 	 * could re-enter here.
765 	 */
766 	pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
767 				   ep_poll_readyevents_proc, ep, ep, current);
768 
769 	return pollflags != -1 ? pollflags : 0;
770 }
771 
772 /* File callbacks that implement the eventpoll file behaviour */
773 static const struct file_operations eventpoll_fops = {
774 	.release	= ep_eventpoll_release,
775 	.poll		= ep_eventpoll_poll,
776 	.llseek		= noop_llseek,
777 };
778 
779 /*
780  * This is called from eventpoll_release() to unlink files from the eventpoll
781  * interface. We need to have this facility to cleanup correctly files that are
782  * closed without being removed from the eventpoll interface.
783  */
784 void eventpoll_release_file(struct file *file)
785 {
786 	struct list_head *lsthead = &file->f_ep_links;
787 	struct eventpoll *ep;
788 	struct epitem *epi;
789 
790 	/*
791 	 * We don't want to get "file->f_lock" because it is not
792 	 * necessary. It is not necessary because we're in the "struct file"
793 	 * cleanup path, and this means that no one is using this file anymore.
794 	 * So, for example, epoll_ctl() cannot hit here since if we reach this
795 	 * point, the file counter already went to zero and fget() would fail.
796 	 * The only hit might come from ep_free() but by holding the mutex
797 	 * will correctly serialize the operation. We do need to acquire
798 	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
799 	 * from anywhere but ep_free().
800 	 *
801 	 * Besides, ep_remove() acquires the lock, so we can't hold it here.
802 	 */
803 	mutex_lock(&epmutex);
804 
805 	while (!list_empty(lsthead)) {
806 		epi = list_first_entry(lsthead, struct epitem, fllink);
807 
808 		ep = epi->ep;
809 		list_del_init(&epi->fllink);
810 		mutex_lock_nested(&ep->mtx, 0);
811 		ep_remove(ep, epi);
812 		mutex_unlock(&ep->mtx);
813 	}
814 
815 	mutex_unlock(&epmutex);
816 }
817 
818 static int ep_alloc(struct eventpoll **pep)
819 {
820 	int error;
821 	struct user_struct *user;
822 	struct eventpoll *ep;
823 
824 	user = get_current_user();
825 	error = -ENOMEM;
826 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
827 	if (unlikely(!ep))
828 		goto free_uid;
829 
830 	spin_lock_init(&ep->lock);
831 	mutex_init(&ep->mtx);
832 	init_waitqueue_head(&ep->wq);
833 	init_waitqueue_head(&ep->poll_wait);
834 	INIT_LIST_HEAD(&ep->rdllist);
835 	ep->rbr = RB_ROOT;
836 	ep->ovflist = EP_UNACTIVE_PTR;
837 	ep->user = user;
838 
839 	*pep = ep;
840 
841 	return 0;
842 
843 free_uid:
844 	free_uid(user);
845 	return error;
846 }
847 
848 /*
849  * Search the file inside the eventpoll tree. The RB tree operations
850  * are protected by the "mtx" mutex, and ep_find() must be called with
851  * "mtx" held.
852  */
853 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
854 {
855 	int kcmp;
856 	struct rb_node *rbp;
857 	struct epitem *epi, *epir = NULL;
858 	struct epoll_filefd ffd;
859 
860 	ep_set_ffd(&ffd, file, fd);
861 	for (rbp = ep->rbr.rb_node; rbp; ) {
862 		epi = rb_entry(rbp, struct epitem, rbn);
863 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
864 		if (kcmp > 0)
865 			rbp = rbp->rb_right;
866 		else if (kcmp < 0)
867 			rbp = rbp->rb_left;
868 		else {
869 			epir = epi;
870 			break;
871 		}
872 	}
873 
874 	return epir;
875 }
876 
877 /*
878  * This is the callback that is passed to the wait queue wakeup
879  * mechanism. It is called by the stored file descriptors when they
880  * have events to report.
881  */
882 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
883 {
884 	int pwake = 0;
885 	unsigned long flags;
886 	struct epitem *epi = ep_item_from_wait(wait);
887 	struct eventpoll *ep = epi->ep;
888 
889 	if ((unsigned long)key & POLLFREE) {
890 		ep_pwq_from_wait(wait)->whead = NULL;
891 		/*
892 		 * whead = NULL above can race with ep_remove_wait_queue()
893 		 * which can do another remove_wait_queue() after us, so we
894 		 * can't use __remove_wait_queue(). whead->lock is held by
895 		 * the caller.
896 		 */
897 		list_del_init(&wait->task_list);
898 	}
899 
900 	spin_lock_irqsave(&ep->lock, flags);
901 
902 	/*
903 	 * If the event mask does not contain any poll(2) event, we consider the
904 	 * descriptor to be disabled. This condition is likely the effect of the
905 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
906 	 * until the next EPOLL_CTL_MOD will be issued.
907 	 */
908 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
909 		goto out_unlock;
910 
911 	/*
912 	 * Check the events coming with the callback. At this stage, not
913 	 * every device reports the events in the "key" parameter of the
914 	 * callback. We need to be able to handle both cases here, hence the
915 	 * test for "key" != NULL before the event match test.
916 	 */
917 	if (key && !((unsigned long) key & epi->event.events))
918 		goto out_unlock;
919 
920 	/*
921 	 * If we are transferring events to userspace, we can hold no locks
922 	 * (because we're accessing user memory, and because of linux f_op->poll()
923 	 * semantics). All the events that happen during that period of time are
924 	 * chained in ep->ovflist and requeued later on.
925 	 */
926 	if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
927 		if (epi->next == EP_UNACTIVE_PTR) {
928 			epi->next = ep->ovflist;
929 			ep->ovflist = epi;
930 		}
931 		goto out_unlock;
932 	}
933 
934 	/* If this file is already in the ready list we exit soon */
935 	if (!ep_is_linked(&epi->rdllink))
936 		list_add_tail(&epi->rdllink, &ep->rdllist);
937 
938 	/*
939 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
940 	 * wait list.
941 	 */
942 	if (waitqueue_active(&ep->wq))
943 		wake_up_locked(&ep->wq);
944 	if (waitqueue_active(&ep->poll_wait))
945 		pwake++;
946 
947 out_unlock:
948 	spin_unlock_irqrestore(&ep->lock, flags);
949 
950 	/* We have to call this outside the lock */
951 	if (pwake)
952 		ep_poll_safewake(&ep->poll_wait);
953 
954 	return 1;
955 }
956 
957 /*
958  * This is the callback that is used to add our wait queue to the
959  * target file wakeup lists.
960  */
961 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
962 				 poll_table *pt)
963 {
964 	struct epitem *epi = ep_item_from_epqueue(pt);
965 	struct eppoll_entry *pwq;
966 
967 	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
968 		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
969 		pwq->whead = whead;
970 		pwq->base = epi;
971 		add_wait_queue(whead, &pwq->wait);
972 		list_add_tail(&pwq->llink, &epi->pwqlist);
973 		epi->nwait++;
974 	} else {
975 		/* We have to signal that an error occurred */
976 		epi->nwait = -1;
977 	}
978 }
979 
980 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
981 {
982 	int kcmp;
983 	struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
984 	struct epitem *epic;
985 
986 	while (*p) {
987 		parent = *p;
988 		epic = rb_entry(parent, struct epitem, rbn);
989 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
990 		if (kcmp > 0)
991 			p = &parent->rb_right;
992 		else
993 			p = &parent->rb_left;
994 	}
995 	rb_link_node(&epi->rbn, parent, p);
996 	rb_insert_color(&epi->rbn, &ep->rbr);
997 }
998 
999 
1000 
1001 #define PATH_ARR_SIZE 5
1002 /*
1003  * These are the number paths of length 1 to 5, that we are allowing to emanate
1004  * from a single file of interest. For example, we allow 1000 paths of length
1005  * 1, to emanate from each file of interest. This essentially represents the
1006  * potential wakeup paths, which need to be limited in order to avoid massive
1007  * uncontrolled wakeup storms. The common use case should be a single ep which
1008  * is connected to n file sources. In this case each file source has 1 path
1009  * of length 1. Thus, the numbers below should be more than sufficient. These
1010  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1011  * and delete can't add additional paths. Protected by the epmutex.
1012  */
1013 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1014 static int path_count[PATH_ARR_SIZE];
1015 
1016 static int path_count_inc(int nests)
1017 {
1018 	/* Allow an arbitrary number of depth 1 paths */
1019 	if (nests == 0)
1020 		return 0;
1021 
1022 	if (++path_count[nests] > path_limits[nests])
1023 		return -1;
1024 	return 0;
1025 }
1026 
1027 static void path_count_init(void)
1028 {
1029 	int i;
1030 
1031 	for (i = 0; i < PATH_ARR_SIZE; i++)
1032 		path_count[i] = 0;
1033 }
1034 
1035 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1036 {
1037 	int error = 0;
1038 	struct file *file = priv;
1039 	struct file *child_file;
1040 	struct epitem *epi;
1041 
1042 	list_for_each_entry(epi, &file->f_ep_links, fllink) {
1043 		child_file = epi->ep->file;
1044 		if (is_file_epoll(child_file)) {
1045 			if (list_empty(&child_file->f_ep_links)) {
1046 				if (path_count_inc(call_nests)) {
1047 					error = -1;
1048 					break;
1049 				}
1050 			} else {
1051 				error = ep_call_nested(&poll_loop_ncalls,
1052 							EP_MAX_NESTS,
1053 							reverse_path_check_proc,
1054 							child_file, child_file,
1055 							current);
1056 			}
1057 			if (error != 0)
1058 				break;
1059 		} else {
1060 			printk(KERN_ERR "reverse_path_check_proc: "
1061 				"file is not an ep!\n");
1062 		}
1063 	}
1064 	return error;
1065 }
1066 
1067 /**
1068  * reverse_path_check - The tfile_check_list is list of file *, which have
1069  *                      links that are proposed to be newly added. We need to
1070  *                      make sure that those added links don't add too many
1071  *                      paths such that we will spend all our time waking up
1072  *                      eventpoll objects.
1073  *
1074  * Returns: Returns zero if the proposed links don't create too many paths,
1075  *	    -1 otherwise.
1076  */
1077 static int reverse_path_check(void)
1078 {
1079 	int error = 0;
1080 	struct file *current_file;
1081 
1082 	/* let's call this for all tfiles */
1083 	list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1084 		path_count_init();
1085 		error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1086 					reverse_path_check_proc, current_file,
1087 					current_file, current);
1088 		if (error)
1089 			break;
1090 	}
1091 	return error;
1092 }
1093 
1094 /*
1095  * Must be called with "mtx" held.
1096  */
1097 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
1098 		     struct file *tfile, int fd)
1099 {
1100 	int error, revents, pwake = 0;
1101 	unsigned long flags;
1102 	long user_watches;
1103 	struct epitem *epi;
1104 	struct ep_pqueue epq;
1105 
1106 	user_watches = atomic_long_read(&ep->user->epoll_watches);
1107 	if (unlikely(user_watches >= max_user_watches))
1108 		return -ENOSPC;
1109 	if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1110 		return -ENOMEM;
1111 
1112 	/* Item initialization follow here ... */
1113 	INIT_LIST_HEAD(&epi->rdllink);
1114 	INIT_LIST_HEAD(&epi->fllink);
1115 	INIT_LIST_HEAD(&epi->pwqlist);
1116 	epi->ep = ep;
1117 	ep_set_ffd(&epi->ffd, tfile, fd);
1118 	epi->event = *event;
1119 	epi->nwait = 0;
1120 	epi->next = EP_UNACTIVE_PTR;
1121 
1122 	/* Initialize the poll table using the queue callback */
1123 	epq.epi = epi;
1124 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1125 	epq.pt._key = event->events;
1126 
1127 	/*
1128 	 * Attach the item to the poll hooks and get current event bits.
1129 	 * We can safely use the file* here because its usage count has
1130 	 * been increased by the caller of this function. Note that after
1131 	 * this operation completes, the poll callback can start hitting
1132 	 * the new item.
1133 	 */
1134 	revents = tfile->f_op->poll(tfile, &epq.pt);
1135 
1136 	/*
1137 	 * We have to check if something went wrong during the poll wait queue
1138 	 * install process. Namely an allocation for a wait queue failed due
1139 	 * high memory pressure.
1140 	 */
1141 	error = -ENOMEM;
1142 	if (epi->nwait < 0)
1143 		goto error_unregister;
1144 
1145 	/* Add the current item to the list of active epoll hook for this file */
1146 	spin_lock(&tfile->f_lock);
1147 	list_add_tail(&epi->fllink, &tfile->f_ep_links);
1148 	spin_unlock(&tfile->f_lock);
1149 
1150 	/*
1151 	 * Add the current item to the RB tree. All RB tree operations are
1152 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1153 	 */
1154 	ep_rbtree_insert(ep, epi);
1155 
1156 	/* now check if we've created too many backpaths */
1157 	error = -EINVAL;
1158 	if (reverse_path_check())
1159 		goto error_remove_epi;
1160 
1161 	/* We have to drop the new item inside our item list to keep track of it */
1162 	spin_lock_irqsave(&ep->lock, flags);
1163 
1164 	/* If the file is already "ready" we drop it inside the ready list */
1165 	if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
1166 		list_add_tail(&epi->rdllink, &ep->rdllist);
1167 
1168 		/* Notify waiting tasks that events are available */
1169 		if (waitqueue_active(&ep->wq))
1170 			wake_up_locked(&ep->wq);
1171 		if (waitqueue_active(&ep->poll_wait))
1172 			pwake++;
1173 	}
1174 
1175 	spin_unlock_irqrestore(&ep->lock, flags);
1176 
1177 	atomic_long_inc(&ep->user->epoll_watches);
1178 
1179 	/* We have to call this outside the lock */
1180 	if (pwake)
1181 		ep_poll_safewake(&ep->poll_wait);
1182 
1183 	return 0;
1184 
1185 error_remove_epi:
1186 	spin_lock(&tfile->f_lock);
1187 	if (ep_is_linked(&epi->fllink))
1188 		list_del_init(&epi->fllink);
1189 	spin_unlock(&tfile->f_lock);
1190 
1191 	rb_erase(&epi->rbn, &ep->rbr);
1192 
1193 error_unregister:
1194 	ep_unregister_pollwait(ep, epi);
1195 
1196 	/*
1197 	 * We need to do this because an event could have been arrived on some
1198 	 * allocated wait queue. Note that we don't care about the ep->ovflist
1199 	 * list, since that is used/cleaned only inside a section bound by "mtx".
1200 	 * And ep_insert() is called with "mtx" held.
1201 	 */
1202 	spin_lock_irqsave(&ep->lock, flags);
1203 	if (ep_is_linked(&epi->rdllink))
1204 		list_del_init(&epi->rdllink);
1205 	spin_unlock_irqrestore(&ep->lock, flags);
1206 
1207 	kmem_cache_free(epi_cache, epi);
1208 
1209 	return error;
1210 }
1211 
1212 /*
1213  * Modify the interest event mask by dropping an event if the new mask
1214  * has a match in the current file status. Must be called with "mtx" held.
1215  */
1216 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1217 {
1218 	int pwake = 0;
1219 	unsigned int revents;
1220 	poll_table pt;
1221 
1222 	init_poll_funcptr(&pt, NULL);
1223 
1224 	/*
1225 	 * Set the new event interest mask before calling f_op->poll();
1226 	 * otherwise we might miss an event that happens between the
1227 	 * f_op->poll() call and the new event set registering.
1228 	 */
1229 	epi->event.events = event->events;
1230 	pt._key = event->events;
1231 	epi->event.data = event->data; /* protected by mtx */
1232 
1233 	/*
1234 	 * Get current event bits. We can safely use the file* here because
1235 	 * its usage count has been increased by the caller of this function.
1236 	 */
1237 	revents = epi->ffd.file->f_op->poll(epi->ffd.file, &pt);
1238 
1239 	/*
1240 	 * If the item is "hot" and it is not registered inside the ready
1241 	 * list, push it inside.
1242 	 */
1243 	if (revents & event->events) {
1244 		spin_lock_irq(&ep->lock);
1245 		if (!ep_is_linked(&epi->rdllink)) {
1246 			list_add_tail(&epi->rdllink, &ep->rdllist);
1247 
1248 			/* Notify waiting tasks that events are available */
1249 			if (waitqueue_active(&ep->wq))
1250 				wake_up_locked(&ep->wq);
1251 			if (waitqueue_active(&ep->poll_wait))
1252 				pwake++;
1253 		}
1254 		spin_unlock_irq(&ep->lock);
1255 	}
1256 
1257 	/* We have to call this outside the lock */
1258 	if (pwake)
1259 		ep_poll_safewake(&ep->poll_wait);
1260 
1261 	return 0;
1262 }
1263 
1264 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1265 			       void *priv)
1266 {
1267 	struct ep_send_events_data *esed = priv;
1268 	int eventcnt;
1269 	unsigned int revents;
1270 	struct epitem *epi;
1271 	struct epoll_event __user *uevent;
1272 	poll_table pt;
1273 
1274 	init_poll_funcptr(&pt, NULL);
1275 
1276 	/*
1277 	 * We can loop without lock because we are passed a task private list.
1278 	 * Items cannot vanish during the loop because ep_scan_ready_list() is
1279 	 * holding "mtx" during this call.
1280 	 */
1281 	for (eventcnt = 0, uevent = esed->events;
1282 	     !list_empty(head) && eventcnt < esed->maxevents;) {
1283 		epi = list_first_entry(head, struct epitem, rdllink);
1284 
1285 		list_del_init(&epi->rdllink);
1286 
1287 		pt._key = epi->event.events;
1288 		revents = epi->ffd.file->f_op->poll(epi->ffd.file, &pt) &
1289 			epi->event.events;
1290 
1291 		/*
1292 		 * If the event mask intersect the caller-requested one,
1293 		 * deliver the event to userspace. Again, ep_scan_ready_list()
1294 		 * is holding "mtx", so no operations coming from userspace
1295 		 * can change the item.
1296 		 */
1297 		if (revents) {
1298 			if (__put_user(revents, &uevent->events) ||
1299 			    __put_user(epi->event.data, &uevent->data)) {
1300 				list_add(&epi->rdllink, head);
1301 				return eventcnt ? eventcnt : -EFAULT;
1302 			}
1303 			eventcnt++;
1304 			uevent++;
1305 			if (epi->event.events & EPOLLONESHOT)
1306 				epi->event.events &= EP_PRIVATE_BITS;
1307 			else if (!(epi->event.events & EPOLLET)) {
1308 				/*
1309 				 * If this file has been added with Level
1310 				 * Trigger mode, we need to insert back inside
1311 				 * the ready list, so that the next call to
1312 				 * epoll_wait() will check again the events
1313 				 * availability. At this point, no one can insert
1314 				 * into ep->rdllist besides us. The epoll_ctl()
1315 				 * callers are locked out by
1316 				 * ep_scan_ready_list() holding "mtx" and the
1317 				 * poll callback will queue them in ep->ovflist.
1318 				 */
1319 				list_add_tail(&epi->rdllink, &ep->rdllist);
1320 			}
1321 		}
1322 	}
1323 
1324 	return eventcnt;
1325 }
1326 
1327 static int ep_send_events(struct eventpoll *ep,
1328 			  struct epoll_event __user *events, int maxevents)
1329 {
1330 	struct ep_send_events_data esed;
1331 
1332 	esed.maxevents = maxevents;
1333 	esed.events = events;
1334 
1335 	return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0);
1336 }
1337 
1338 static inline struct timespec ep_set_mstimeout(long ms)
1339 {
1340 	struct timespec now, ts = {
1341 		.tv_sec = ms / MSEC_PER_SEC,
1342 		.tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1343 	};
1344 
1345 	ktime_get_ts(&now);
1346 	return timespec_add_safe(now, ts);
1347 }
1348 
1349 /**
1350  * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1351  *           event buffer.
1352  *
1353  * @ep: Pointer to the eventpoll context.
1354  * @events: Pointer to the userspace buffer where the ready events should be
1355  *          stored.
1356  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1357  * @timeout: Maximum timeout for the ready events fetch operation, in
1358  *           milliseconds. If the @timeout is zero, the function will not block,
1359  *           while if the @timeout is less than zero, the function will block
1360  *           until at least one event has been retrieved (or an error
1361  *           occurred).
1362  *
1363  * Returns: Returns the number of ready events which have been fetched, or an
1364  *          error code, in case of error.
1365  */
1366 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1367 		   int maxevents, long timeout)
1368 {
1369 	int res = 0, eavail, timed_out = 0;
1370 	unsigned long flags;
1371 	long slack = 0;
1372 	wait_queue_t wait;
1373 	ktime_t expires, *to = NULL;
1374 
1375 	if (timeout > 0) {
1376 		struct timespec end_time = ep_set_mstimeout(timeout);
1377 
1378 		slack = select_estimate_accuracy(&end_time);
1379 		to = &expires;
1380 		*to = timespec_to_ktime(end_time);
1381 	} else if (timeout == 0) {
1382 		/*
1383 		 * Avoid the unnecessary trip to the wait queue loop, if the
1384 		 * caller specified a non blocking operation.
1385 		 */
1386 		timed_out = 1;
1387 		spin_lock_irqsave(&ep->lock, flags);
1388 		goto check_events;
1389 	}
1390 
1391 fetch_events:
1392 	spin_lock_irqsave(&ep->lock, flags);
1393 
1394 	if (!ep_events_available(ep)) {
1395 		/*
1396 		 * We don't have any available event to return to the caller.
1397 		 * We need to sleep here, and we will be wake up by
1398 		 * ep_poll_callback() when events will become available.
1399 		 */
1400 		init_waitqueue_entry(&wait, current);
1401 		__add_wait_queue_exclusive(&ep->wq, &wait);
1402 
1403 		for (;;) {
1404 			/*
1405 			 * We don't want to sleep if the ep_poll_callback() sends us
1406 			 * a wakeup in between. That's why we set the task state
1407 			 * to TASK_INTERRUPTIBLE before doing the checks.
1408 			 */
1409 			set_current_state(TASK_INTERRUPTIBLE);
1410 			if (ep_events_available(ep) || timed_out)
1411 				break;
1412 			if (signal_pending(current)) {
1413 				res = -EINTR;
1414 				break;
1415 			}
1416 
1417 			spin_unlock_irqrestore(&ep->lock, flags);
1418 			if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1419 				timed_out = 1;
1420 
1421 			spin_lock_irqsave(&ep->lock, flags);
1422 		}
1423 		__remove_wait_queue(&ep->wq, &wait);
1424 
1425 		set_current_state(TASK_RUNNING);
1426 	}
1427 check_events:
1428 	/* Is it worth to try to dig for events ? */
1429 	eavail = ep_events_available(ep);
1430 
1431 	spin_unlock_irqrestore(&ep->lock, flags);
1432 
1433 	/*
1434 	 * Try to transfer events to user space. In case we get 0 events and
1435 	 * there's still timeout left over, we go trying again in search of
1436 	 * more luck.
1437 	 */
1438 	if (!res && eavail &&
1439 	    !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1440 		goto fetch_events;
1441 
1442 	return res;
1443 }
1444 
1445 /**
1446  * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1447  *                      API, to verify that adding an epoll file inside another
1448  *                      epoll structure, does not violate the constraints, in
1449  *                      terms of closed loops, or too deep chains (which can
1450  *                      result in excessive stack usage).
1451  *
1452  * @priv: Pointer to the epoll file to be currently checked.
1453  * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1454  *          data structure pointer.
1455  * @call_nests: Current dept of the @ep_call_nested() call stack.
1456  *
1457  * Returns: Returns zero if adding the epoll @file inside current epoll
1458  *          structure @ep does not violate the constraints, or -1 otherwise.
1459  */
1460 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1461 {
1462 	int error = 0;
1463 	struct file *file = priv;
1464 	struct eventpoll *ep = file->private_data;
1465 	struct eventpoll *ep_tovisit;
1466 	struct rb_node *rbp;
1467 	struct epitem *epi;
1468 
1469 	mutex_lock_nested(&ep->mtx, call_nests + 1);
1470 	ep->visited = 1;
1471 	list_add(&ep->visited_list_link, &visited_list);
1472 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1473 		epi = rb_entry(rbp, struct epitem, rbn);
1474 		if (unlikely(is_file_epoll(epi->ffd.file))) {
1475 			ep_tovisit = epi->ffd.file->private_data;
1476 			if (ep_tovisit->visited)
1477 				continue;
1478 			error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1479 					ep_loop_check_proc, epi->ffd.file,
1480 					ep_tovisit, current);
1481 			if (error != 0)
1482 				break;
1483 		} else {
1484 			/*
1485 			 * If we've reached a file that is not associated with
1486 			 * an ep, then we need to check if the newly added
1487 			 * links are going to add too many wakeup paths. We do
1488 			 * this by adding it to the tfile_check_list, if it's
1489 			 * not already there, and calling reverse_path_check()
1490 			 * during ep_insert().
1491 			 */
1492 			if (list_empty(&epi->ffd.file->f_tfile_llink))
1493 				list_add(&epi->ffd.file->f_tfile_llink,
1494 					 &tfile_check_list);
1495 		}
1496 	}
1497 	mutex_unlock(&ep->mtx);
1498 
1499 	return error;
1500 }
1501 
1502 /**
1503  * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1504  *                 another epoll file (represented by @ep) does not create
1505  *                 closed loops or too deep chains.
1506  *
1507  * @ep: Pointer to the epoll private data structure.
1508  * @file: Pointer to the epoll file to be checked.
1509  *
1510  * Returns: Returns zero if adding the epoll @file inside current epoll
1511  *          structure @ep does not violate the constraints, or -1 otherwise.
1512  */
1513 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1514 {
1515 	int ret;
1516 	struct eventpoll *ep_cur, *ep_next;
1517 
1518 	ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1519 			      ep_loop_check_proc, file, ep, current);
1520 	/* clear visited list */
1521 	list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
1522 							visited_list_link) {
1523 		ep_cur->visited = 0;
1524 		list_del(&ep_cur->visited_list_link);
1525 	}
1526 	return ret;
1527 }
1528 
1529 static void clear_tfile_check_list(void)
1530 {
1531 	struct file *file;
1532 
1533 	/* first clear the tfile_check_list */
1534 	while (!list_empty(&tfile_check_list)) {
1535 		file = list_first_entry(&tfile_check_list, struct file,
1536 					f_tfile_llink);
1537 		list_del_init(&file->f_tfile_llink);
1538 	}
1539 	INIT_LIST_HEAD(&tfile_check_list);
1540 }
1541 
1542 /*
1543  * Open an eventpoll file descriptor.
1544  */
1545 SYSCALL_DEFINE1(epoll_create1, int, flags)
1546 {
1547 	int error, fd;
1548 	struct eventpoll *ep = NULL;
1549 	struct file *file;
1550 
1551 	/* Check the EPOLL_* constant for consistency.  */
1552 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1553 
1554 	if (flags & ~EPOLL_CLOEXEC)
1555 		return -EINVAL;
1556 	/*
1557 	 * Create the internal data structure ("struct eventpoll").
1558 	 */
1559 	error = ep_alloc(&ep);
1560 	if (error < 0)
1561 		return error;
1562 	/*
1563 	 * Creates all the items needed to setup an eventpoll file. That is,
1564 	 * a file structure and a free file descriptor.
1565 	 */
1566 	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1567 	if (fd < 0) {
1568 		error = fd;
1569 		goto out_free_ep;
1570 	}
1571 	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1572 				 O_RDWR | (flags & O_CLOEXEC));
1573 	if (IS_ERR(file)) {
1574 		error = PTR_ERR(file);
1575 		goto out_free_fd;
1576 	}
1577 	fd_install(fd, file);
1578 	ep->file = file;
1579 	return fd;
1580 
1581 out_free_fd:
1582 	put_unused_fd(fd);
1583 out_free_ep:
1584 	ep_free(ep);
1585 	return error;
1586 }
1587 
1588 SYSCALL_DEFINE1(epoll_create, int, size)
1589 {
1590 	if (size <= 0)
1591 		return -EINVAL;
1592 
1593 	return sys_epoll_create1(0);
1594 }
1595 
1596 /*
1597  * The following function implements the controller interface for
1598  * the eventpoll file that enables the insertion/removal/change of
1599  * file descriptors inside the interest set.
1600  */
1601 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1602 		struct epoll_event __user *, event)
1603 {
1604 	int error;
1605 	int did_lock_epmutex = 0;
1606 	struct file *file, *tfile;
1607 	struct eventpoll *ep;
1608 	struct epitem *epi;
1609 	struct epoll_event epds;
1610 
1611 	error = -EFAULT;
1612 	if (ep_op_has_event(op) &&
1613 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
1614 		goto error_return;
1615 
1616 	/* Get the "struct file *" for the eventpoll file */
1617 	error = -EBADF;
1618 	file = fget(epfd);
1619 	if (!file)
1620 		goto error_return;
1621 
1622 	/* Get the "struct file *" for the target file */
1623 	tfile = fget(fd);
1624 	if (!tfile)
1625 		goto error_fput;
1626 
1627 	/* The target file descriptor must support poll */
1628 	error = -EPERM;
1629 	if (!tfile->f_op || !tfile->f_op->poll)
1630 		goto error_tgt_fput;
1631 
1632 	/*
1633 	 * We have to check that the file structure underneath the file descriptor
1634 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
1635 	 * adding an epoll file descriptor inside itself.
1636 	 */
1637 	error = -EINVAL;
1638 	if (file == tfile || !is_file_epoll(file))
1639 		goto error_tgt_fput;
1640 
1641 	/*
1642 	 * At this point it is safe to assume that the "private_data" contains
1643 	 * our own data structure.
1644 	 */
1645 	ep = file->private_data;
1646 
1647 	/*
1648 	 * When we insert an epoll file descriptor, inside another epoll file
1649 	 * descriptor, there is the change of creating closed loops, which are
1650 	 * better be handled here, than in more critical paths. While we are
1651 	 * checking for loops we also determine the list of files reachable
1652 	 * and hang them on the tfile_check_list, so we can check that we
1653 	 * haven't created too many possible wakeup paths.
1654 	 *
1655 	 * We need to hold the epmutex across both ep_insert and ep_remove
1656 	 * b/c we want to make sure we are looking at a coherent view of
1657 	 * epoll network.
1658 	 */
1659 	if (op == EPOLL_CTL_ADD || op == EPOLL_CTL_DEL) {
1660 		mutex_lock(&epmutex);
1661 		did_lock_epmutex = 1;
1662 	}
1663 	if (op == EPOLL_CTL_ADD) {
1664 		if (is_file_epoll(tfile)) {
1665 			error = -ELOOP;
1666 			if (ep_loop_check(ep, tfile) != 0) {
1667 				clear_tfile_check_list();
1668 				goto error_tgt_fput;
1669 			}
1670 		} else
1671 			list_add(&tfile->f_tfile_llink, &tfile_check_list);
1672 	}
1673 
1674 	mutex_lock_nested(&ep->mtx, 0);
1675 
1676 	/*
1677 	 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1678 	 * above, we can be sure to be able to use the item looked up by
1679 	 * ep_find() till we release the mutex.
1680 	 */
1681 	epi = ep_find(ep, tfile, fd);
1682 
1683 	error = -EINVAL;
1684 	switch (op) {
1685 	case EPOLL_CTL_ADD:
1686 		if (!epi) {
1687 			epds.events |= POLLERR | POLLHUP;
1688 			error = ep_insert(ep, &epds, tfile, fd);
1689 		} else
1690 			error = -EEXIST;
1691 		clear_tfile_check_list();
1692 		break;
1693 	case EPOLL_CTL_DEL:
1694 		if (epi)
1695 			error = ep_remove(ep, epi);
1696 		else
1697 			error = -ENOENT;
1698 		break;
1699 	case EPOLL_CTL_MOD:
1700 		if (epi) {
1701 			epds.events |= POLLERR | POLLHUP;
1702 			error = ep_modify(ep, epi, &epds);
1703 		} else
1704 			error = -ENOENT;
1705 		break;
1706 	}
1707 	mutex_unlock(&ep->mtx);
1708 
1709 error_tgt_fput:
1710 	if (did_lock_epmutex)
1711 		mutex_unlock(&epmutex);
1712 
1713 	fput(tfile);
1714 error_fput:
1715 	fput(file);
1716 error_return:
1717 
1718 	return error;
1719 }
1720 
1721 /*
1722  * Implement the event wait interface for the eventpoll file. It is the kernel
1723  * part of the user space epoll_wait(2).
1724  */
1725 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
1726 		int, maxevents, int, timeout)
1727 {
1728 	int error;
1729 	struct file *file;
1730 	struct eventpoll *ep;
1731 
1732 	/* The maximum number of event must be greater than zero */
1733 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1734 		return -EINVAL;
1735 
1736 	/* Verify that the area passed by the user is writeable */
1737 	if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) {
1738 		error = -EFAULT;
1739 		goto error_return;
1740 	}
1741 
1742 	/* Get the "struct file *" for the eventpoll file */
1743 	error = -EBADF;
1744 	file = fget(epfd);
1745 	if (!file)
1746 		goto error_return;
1747 
1748 	/*
1749 	 * We have to check that the file structure underneath the fd
1750 	 * the user passed to us _is_ an eventpoll file.
1751 	 */
1752 	error = -EINVAL;
1753 	if (!is_file_epoll(file))
1754 		goto error_fput;
1755 
1756 	/*
1757 	 * At this point it is safe to assume that the "private_data" contains
1758 	 * our own data structure.
1759 	 */
1760 	ep = file->private_data;
1761 
1762 	/* Time to fish for events ... */
1763 	error = ep_poll(ep, events, maxevents, timeout);
1764 
1765 error_fput:
1766 	fput(file);
1767 error_return:
1768 
1769 	return error;
1770 }
1771 
1772 #ifdef HAVE_SET_RESTORE_SIGMASK
1773 
1774 /*
1775  * Implement the event wait interface for the eventpoll file. It is the kernel
1776  * part of the user space epoll_pwait(2).
1777  */
1778 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
1779 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
1780 		size_t, sigsetsize)
1781 {
1782 	int error;
1783 	sigset_t ksigmask, sigsaved;
1784 
1785 	/*
1786 	 * If the caller wants a certain signal mask to be set during the wait,
1787 	 * we apply it here.
1788 	 */
1789 	if (sigmask) {
1790 		if (sigsetsize != sizeof(sigset_t))
1791 			return -EINVAL;
1792 		if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
1793 			return -EFAULT;
1794 		sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
1795 		sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1796 	}
1797 
1798 	error = sys_epoll_wait(epfd, events, maxevents, timeout);
1799 
1800 	/*
1801 	 * If we changed the signal mask, we need to restore the original one.
1802 	 * In case we've got a signal while waiting, we do not restore the
1803 	 * signal mask yet, and we allow do_signal() to deliver the signal on
1804 	 * the way back to userspace, before the signal mask is restored.
1805 	 */
1806 	if (sigmask) {
1807 		if (error == -EINTR) {
1808 			memcpy(&current->saved_sigmask, &sigsaved,
1809 			       sizeof(sigsaved));
1810 			set_restore_sigmask();
1811 		} else
1812 			sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1813 	}
1814 
1815 	return error;
1816 }
1817 
1818 #endif /* HAVE_SET_RESTORE_SIGMASK */
1819 
1820 static int __init eventpoll_init(void)
1821 {
1822 	struct sysinfo si;
1823 
1824 	si_meminfo(&si);
1825 	/*
1826 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
1827 	 */
1828 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
1829 		EP_ITEM_COST;
1830 	BUG_ON(max_user_watches < 0);
1831 
1832 	/*
1833 	 * Initialize the structure used to perform epoll file descriptor
1834 	 * inclusion loops checks.
1835 	 */
1836 	ep_nested_calls_init(&poll_loop_ncalls);
1837 
1838 	/* Initialize the structure used to perform safe poll wait head wake ups */
1839 	ep_nested_calls_init(&poll_safewake_ncalls);
1840 
1841 	/* Initialize the structure used to perform file's f_op->poll() calls */
1842 	ep_nested_calls_init(&poll_readywalk_ncalls);
1843 
1844 	/* Allocates slab cache used to allocate "struct epitem" items */
1845 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
1846 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1847 
1848 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
1849 	pwq_cache = kmem_cache_create("eventpoll_pwq",
1850 			sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
1851 
1852 	return 0;
1853 }
1854 fs_initcall(eventpoll_init);
1855