1 /* 2 * fs/eventpoll.c (Efficient event retrieval implementation) 3 * Copyright (C) 2001,...,2009 Davide Libenzi 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * Davide Libenzi <davidel@xmailserver.org> 11 * 12 */ 13 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/file.h> 19 #include <linux/signal.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/slab.h> 23 #include <linux/poll.h> 24 #include <linux/string.h> 25 #include <linux/list.h> 26 #include <linux/hash.h> 27 #include <linux/spinlock.h> 28 #include <linux/syscalls.h> 29 #include <linux/rbtree.h> 30 #include <linux/wait.h> 31 #include <linux/eventpoll.h> 32 #include <linux/mount.h> 33 #include <linux/bitops.h> 34 #include <linux/mutex.h> 35 #include <linux/anon_inodes.h> 36 #include <asm/uaccess.h> 37 #include <asm/io.h> 38 #include <asm/mman.h> 39 #include <linux/atomic.h> 40 41 /* 42 * LOCKING: 43 * There are three level of locking required by epoll : 44 * 45 * 1) epmutex (mutex) 46 * 2) ep->mtx (mutex) 47 * 3) ep->lock (spinlock) 48 * 49 * The acquire order is the one listed above, from 1 to 3. 50 * We need a spinlock (ep->lock) because we manipulate objects 51 * from inside the poll callback, that might be triggered from 52 * a wake_up() that in turn might be called from IRQ context. 53 * So we can't sleep inside the poll callback and hence we need 54 * a spinlock. During the event transfer loop (from kernel to 55 * user space) we could end up sleeping due a copy_to_user(), so 56 * we need a lock that will allow us to sleep. This lock is a 57 * mutex (ep->mtx). It is acquired during the event transfer loop, 58 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 59 * Then we also need a global mutex to serialize eventpoll_release_file() 60 * and ep_free(). 61 * This mutex is acquired by ep_free() during the epoll file 62 * cleanup path and it is also acquired by eventpoll_release_file() 63 * if a file has been pushed inside an epoll set and it is then 64 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL). 65 * It is also acquired when inserting an epoll fd onto another epoll 66 * fd. We do this so that we walk the epoll tree and ensure that this 67 * insertion does not create a cycle of epoll file descriptors, which 68 * could lead to deadlock. We need a global mutex to prevent two 69 * simultaneous inserts (A into B and B into A) from racing and 70 * constructing a cycle without either insert observing that it is 71 * going to. 72 * It is necessary to acquire multiple "ep->mtx"es at once in the 73 * case when one epoll fd is added to another. In this case, we 74 * always acquire the locks in the order of nesting (i.e. after 75 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 76 * before e2->mtx). Since we disallow cycles of epoll file 77 * descriptors, this ensures that the mutexes are well-ordered. In 78 * order to communicate this nesting to lockdep, when walking a tree 79 * of epoll file descriptors, we use the current recursion depth as 80 * the lockdep subkey. 81 * It is possible to drop the "ep->mtx" and to use the global 82 * mutex "epmutex" (together with "ep->lock") to have it working, 83 * but having "ep->mtx" will make the interface more scalable. 84 * Events that require holding "epmutex" are very rare, while for 85 * normal operations the epoll private "ep->mtx" will guarantee 86 * a better scalability. 87 */ 88 89 /* Epoll private bits inside the event mask */ 90 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET) 91 92 /* Maximum number of nesting allowed inside epoll sets */ 93 #define EP_MAX_NESTS 4 94 95 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 96 97 #define EP_UNACTIVE_PTR ((void *) -1L) 98 99 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 100 101 struct epoll_filefd { 102 struct file *file; 103 int fd; 104 }; 105 106 /* 107 * Structure used to track possible nested calls, for too deep recursions 108 * and loop cycles. 109 */ 110 struct nested_call_node { 111 struct list_head llink; 112 void *cookie; 113 void *ctx; 114 }; 115 116 /* 117 * This structure is used as collector for nested calls, to check for 118 * maximum recursion dept and loop cycles. 119 */ 120 struct nested_calls { 121 struct list_head tasks_call_list; 122 spinlock_t lock; 123 }; 124 125 /* 126 * Each file descriptor added to the eventpoll interface will 127 * have an entry of this type linked to the "rbr" RB tree. 128 */ 129 struct epitem { 130 /* RB tree node used to link this structure to the eventpoll RB tree */ 131 struct rb_node rbn; 132 133 /* List header used to link this structure to the eventpoll ready list */ 134 struct list_head rdllink; 135 136 /* 137 * Works together "struct eventpoll"->ovflist in keeping the 138 * single linked chain of items. 139 */ 140 struct epitem *next; 141 142 /* The file descriptor information this item refers to */ 143 struct epoll_filefd ffd; 144 145 /* Number of active wait queue attached to poll operations */ 146 int nwait; 147 148 /* List containing poll wait queues */ 149 struct list_head pwqlist; 150 151 /* The "container" of this item */ 152 struct eventpoll *ep; 153 154 /* List header used to link this item to the "struct file" items list */ 155 struct list_head fllink; 156 157 /* The structure that describe the interested events and the source fd */ 158 struct epoll_event event; 159 }; 160 161 /* 162 * This structure is stored inside the "private_data" member of the file 163 * structure and represents the main data structure for the eventpoll 164 * interface. 165 */ 166 struct eventpoll { 167 /* Protect the access to this structure */ 168 spinlock_t lock; 169 170 /* 171 * This mutex is used to ensure that files are not removed 172 * while epoll is using them. This is held during the event 173 * collection loop, the file cleanup path, the epoll file exit 174 * code and the ctl operations. 175 */ 176 struct mutex mtx; 177 178 /* Wait queue used by sys_epoll_wait() */ 179 wait_queue_head_t wq; 180 181 /* Wait queue used by file->poll() */ 182 wait_queue_head_t poll_wait; 183 184 /* List of ready file descriptors */ 185 struct list_head rdllist; 186 187 /* RB tree root used to store monitored fd structs */ 188 struct rb_root rbr; 189 190 /* 191 * This is a single linked list that chains all the "struct epitem" that 192 * happened while transferring ready events to userspace w/out 193 * holding ->lock. 194 */ 195 struct epitem *ovflist; 196 197 /* The user that created the eventpoll descriptor */ 198 struct user_struct *user; 199 200 struct file *file; 201 202 /* used to optimize loop detection check */ 203 int visited; 204 struct list_head visited_list_link; 205 }; 206 207 /* Wait structure used by the poll hooks */ 208 struct eppoll_entry { 209 /* List header used to link this structure to the "struct epitem" */ 210 struct list_head llink; 211 212 /* The "base" pointer is set to the container "struct epitem" */ 213 struct epitem *base; 214 215 /* 216 * Wait queue item that will be linked to the target file wait 217 * queue head. 218 */ 219 wait_queue_t wait; 220 221 /* The wait queue head that linked the "wait" wait queue item */ 222 wait_queue_head_t *whead; 223 }; 224 225 /* Wrapper struct used by poll queueing */ 226 struct ep_pqueue { 227 poll_table pt; 228 struct epitem *epi; 229 }; 230 231 /* Used by the ep_send_events() function as callback private data */ 232 struct ep_send_events_data { 233 int maxevents; 234 struct epoll_event __user *events; 235 }; 236 237 /* 238 * Configuration options available inside /proc/sys/fs/epoll/ 239 */ 240 /* Maximum number of epoll watched descriptors, per user */ 241 static long max_user_watches __read_mostly; 242 243 /* 244 * This mutex is used to serialize ep_free() and eventpoll_release_file(). 245 */ 246 static DEFINE_MUTEX(epmutex); 247 248 /* Used to check for epoll file descriptor inclusion loops */ 249 static struct nested_calls poll_loop_ncalls; 250 251 /* Used for safe wake up implementation */ 252 static struct nested_calls poll_safewake_ncalls; 253 254 /* Used to call file's f_op->poll() under the nested calls boundaries */ 255 static struct nested_calls poll_readywalk_ncalls; 256 257 /* Slab cache used to allocate "struct epitem" */ 258 static struct kmem_cache *epi_cache __read_mostly; 259 260 /* Slab cache used to allocate "struct eppoll_entry" */ 261 static struct kmem_cache *pwq_cache __read_mostly; 262 263 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */ 264 static LIST_HEAD(visited_list); 265 266 /* 267 * List of files with newly added links, where we may need to limit the number 268 * of emanating paths. Protected by the epmutex. 269 */ 270 static LIST_HEAD(tfile_check_list); 271 272 #ifdef CONFIG_SYSCTL 273 274 #include <linux/sysctl.h> 275 276 static long zero; 277 static long long_max = LONG_MAX; 278 279 ctl_table epoll_table[] = { 280 { 281 .procname = "max_user_watches", 282 .data = &max_user_watches, 283 .maxlen = sizeof(max_user_watches), 284 .mode = 0644, 285 .proc_handler = proc_doulongvec_minmax, 286 .extra1 = &zero, 287 .extra2 = &long_max, 288 }, 289 { } 290 }; 291 #endif /* CONFIG_SYSCTL */ 292 293 static const struct file_operations eventpoll_fops; 294 295 static inline int is_file_epoll(struct file *f) 296 { 297 return f->f_op == &eventpoll_fops; 298 } 299 300 /* Setup the structure that is used as key for the RB tree */ 301 static inline void ep_set_ffd(struct epoll_filefd *ffd, 302 struct file *file, int fd) 303 { 304 ffd->file = file; 305 ffd->fd = fd; 306 } 307 308 /* Compare RB tree keys */ 309 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 310 struct epoll_filefd *p2) 311 { 312 return (p1->file > p2->file ? +1: 313 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 314 } 315 316 /* Tells us if the item is currently linked */ 317 static inline int ep_is_linked(struct list_head *p) 318 { 319 return !list_empty(p); 320 } 321 322 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_t *p) 323 { 324 return container_of(p, struct eppoll_entry, wait); 325 } 326 327 /* Get the "struct epitem" from a wait queue pointer */ 328 static inline struct epitem *ep_item_from_wait(wait_queue_t *p) 329 { 330 return container_of(p, struct eppoll_entry, wait)->base; 331 } 332 333 /* Get the "struct epitem" from an epoll queue wrapper */ 334 static inline struct epitem *ep_item_from_epqueue(poll_table *p) 335 { 336 return container_of(p, struct ep_pqueue, pt)->epi; 337 } 338 339 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ 340 static inline int ep_op_has_event(int op) 341 { 342 return op != EPOLL_CTL_DEL; 343 } 344 345 /* Initialize the poll safe wake up structure */ 346 static void ep_nested_calls_init(struct nested_calls *ncalls) 347 { 348 INIT_LIST_HEAD(&ncalls->tasks_call_list); 349 spin_lock_init(&ncalls->lock); 350 } 351 352 /** 353 * ep_events_available - Checks if ready events might be available. 354 * 355 * @ep: Pointer to the eventpoll context. 356 * 357 * Returns: Returns a value different than zero if ready events are available, 358 * or zero otherwise. 359 */ 360 static inline int ep_events_available(struct eventpoll *ep) 361 { 362 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR; 363 } 364 365 /** 366 * ep_call_nested - Perform a bound (possibly) nested call, by checking 367 * that the recursion limit is not exceeded, and that 368 * the same nested call (by the meaning of same cookie) is 369 * no re-entered. 370 * 371 * @ncalls: Pointer to the nested_calls structure to be used for this call. 372 * @max_nests: Maximum number of allowed nesting calls. 373 * @nproc: Nested call core function pointer. 374 * @priv: Opaque data to be passed to the @nproc callback. 375 * @cookie: Cookie to be used to identify this nested call. 376 * @ctx: This instance context. 377 * 378 * Returns: Returns the code returned by the @nproc callback, or -1 if 379 * the maximum recursion limit has been exceeded. 380 */ 381 static int ep_call_nested(struct nested_calls *ncalls, int max_nests, 382 int (*nproc)(void *, void *, int), void *priv, 383 void *cookie, void *ctx) 384 { 385 int error, call_nests = 0; 386 unsigned long flags; 387 struct list_head *lsthead = &ncalls->tasks_call_list; 388 struct nested_call_node *tncur; 389 struct nested_call_node tnode; 390 391 spin_lock_irqsave(&ncalls->lock, flags); 392 393 /* 394 * Try to see if the current task is already inside this wakeup call. 395 * We use a list here, since the population inside this set is always 396 * very much limited. 397 */ 398 list_for_each_entry(tncur, lsthead, llink) { 399 if (tncur->ctx == ctx && 400 (tncur->cookie == cookie || ++call_nests > max_nests)) { 401 /* 402 * Ops ... loop detected or maximum nest level reached. 403 * We abort this wake by breaking the cycle itself. 404 */ 405 error = -1; 406 goto out_unlock; 407 } 408 } 409 410 /* Add the current task and cookie to the list */ 411 tnode.ctx = ctx; 412 tnode.cookie = cookie; 413 list_add(&tnode.llink, lsthead); 414 415 spin_unlock_irqrestore(&ncalls->lock, flags); 416 417 /* Call the nested function */ 418 error = (*nproc)(priv, cookie, call_nests); 419 420 /* Remove the current task from the list */ 421 spin_lock_irqsave(&ncalls->lock, flags); 422 list_del(&tnode.llink); 423 out_unlock: 424 spin_unlock_irqrestore(&ncalls->lock, flags); 425 426 return error; 427 } 428 429 /* 430 * As described in commit 0ccf831cb lockdep: annotate epoll 431 * the use of wait queues used by epoll is done in a very controlled 432 * manner. Wake ups can nest inside each other, but are never done 433 * with the same locking. For example: 434 * 435 * dfd = socket(...); 436 * efd1 = epoll_create(); 437 * efd2 = epoll_create(); 438 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 439 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 440 * 441 * When a packet arrives to the device underneath "dfd", the net code will 442 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 443 * callback wakeup entry on that queue, and the wake_up() performed by the 444 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 445 * (efd1) notices that it may have some event ready, so it needs to wake up 446 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 447 * that ends up in another wake_up(), after having checked about the 448 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to 449 * avoid stack blasting. 450 * 451 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 452 * this special case of epoll. 453 */ 454 #ifdef CONFIG_DEBUG_LOCK_ALLOC 455 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, 456 unsigned long events, int subclass) 457 { 458 unsigned long flags; 459 460 spin_lock_irqsave_nested(&wqueue->lock, flags, subclass); 461 wake_up_locked_poll(wqueue, events); 462 spin_unlock_irqrestore(&wqueue->lock, flags); 463 } 464 #else 465 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, 466 unsigned long events, int subclass) 467 { 468 wake_up_poll(wqueue, events); 469 } 470 #endif 471 472 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests) 473 { 474 ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN, 475 1 + call_nests); 476 return 0; 477 } 478 479 /* 480 * Perform a safe wake up of the poll wait list. The problem is that 481 * with the new callback'd wake up system, it is possible that the 482 * poll callback is reentered from inside the call to wake_up() done 483 * on the poll wait queue head. The rule is that we cannot reenter the 484 * wake up code from the same task more than EP_MAX_NESTS times, 485 * and we cannot reenter the same wait queue head at all. This will 486 * enable to have a hierarchy of epoll file descriptor of no more than 487 * EP_MAX_NESTS deep. 488 */ 489 static void ep_poll_safewake(wait_queue_head_t *wq) 490 { 491 int this_cpu = get_cpu(); 492 493 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS, 494 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu); 495 496 put_cpu(); 497 } 498 499 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 500 { 501 wait_queue_head_t *whead; 502 503 rcu_read_lock(); 504 /* If it is cleared by POLLFREE, it should be rcu-safe */ 505 whead = rcu_dereference(pwq->whead); 506 if (whead) 507 remove_wait_queue(whead, &pwq->wait); 508 rcu_read_unlock(); 509 } 510 511 /* 512 * This function unregisters poll callbacks from the associated file 513 * descriptor. Must be called with "mtx" held (or "epmutex" if called from 514 * ep_free). 515 */ 516 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 517 { 518 struct list_head *lsthead = &epi->pwqlist; 519 struct eppoll_entry *pwq; 520 521 while (!list_empty(lsthead)) { 522 pwq = list_first_entry(lsthead, struct eppoll_entry, llink); 523 524 list_del(&pwq->llink); 525 ep_remove_wait_queue(pwq); 526 kmem_cache_free(pwq_cache, pwq); 527 } 528 } 529 530 /** 531 * ep_scan_ready_list - Scans the ready list in a way that makes possible for 532 * the scan code, to call f_op->poll(). Also allows for 533 * O(NumReady) performance. 534 * 535 * @ep: Pointer to the epoll private data structure. 536 * @sproc: Pointer to the scan callback. 537 * @priv: Private opaque data passed to the @sproc callback. 538 * @depth: The current depth of recursive f_op->poll calls. 539 * 540 * Returns: The same integer error code returned by the @sproc callback. 541 */ 542 static int ep_scan_ready_list(struct eventpoll *ep, 543 int (*sproc)(struct eventpoll *, 544 struct list_head *, void *), 545 void *priv, 546 int depth) 547 { 548 int error, pwake = 0; 549 unsigned long flags; 550 struct epitem *epi, *nepi; 551 LIST_HEAD(txlist); 552 553 /* 554 * We need to lock this because we could be hit by 555 * eventpoll_release_file() and epoll_ctl(). 556 */ 557 mutex_lock_nested(&ep->mtx, depth); 558 559 /* 560 * Steal the ready list, and re-init the original one to the 561 * empty list. Also, set ep->ovflist to NULL so that events 562 * happening while looping w/out locks, are not lost. We cannot 563 * have the poll callback to queue directly on ep->rdllist, 564 * because we want the "sproc" callback to be able to do it 565 * in a lockless way. 566 */ 567 spin_lock_irqsave(&ep->lock, flags); 568 list_splice_init(&ep->rdllist, &txlist); 569 ep->ovflist = NULL; 570 spin_unlock_irqrestore(&ep->lock, flags); 571 572 /* 573 * Now call the callback function. 574 */ 575 error = (*sproc)(ep, &txlist, priv); 576 577 spin_lock_irqsave(&ep->lock, flags); 578 /* 579 * During the time we spent inside the "sproc" callback, some 580 * other events might have been queued by the poll callback. 581 * We re-insert them inside the main ready-list here. 582 */ 583 for (nepi = ep->ovflist; (epi = nepi) != NULL; 584 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 585 /* 586 * We need to check if the item is already in the list. 587 * During the "sproc" callback execution time, items are 588 * queued into ->ovflist but the "txlist" might already 589 * contain them, and the list_splice() below takes care of them. 590 */ 591 if (!ep_is_linked(&epi->rdllink)) 592 list_add_tail(&epi->rdllink, &ep->rdllist); 593 } 594 /* 595 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 596 * releasing the lock, events will be queued in the normal way inside 597 * ep->rdllist. 598 */ 599 ep->ovflist = EP_UNACTIVE_PTR; 600 601 /* 602 * Quickly re-inject items left on "txlist". 603 */ 604 list_splice(&txlist, &ep->rdllist); 605 606 if (!list_empty(&ep->rdllist)) { 607 /* 608 * Wake up (if active) both the eventpoll wait list and 609 * the ->poll() wait list (delayed after we release the lock). 610 */ 611 if (waitqueue_active(&ep->wq)) 612 wake_up_locked(&ep->wq); 613 if (waitqueue_active(&ep->poll_wait)) 614 pwake++; 615 } 616 spin_unlock_irqrestore(&ep->lock, flags); 617 618 mutex_unlock(&ep->mtx); 619 620 /* We have to call this outside the lock */ 621 if (pwake) 622 ep_poll_safewake(&ep->poll_wait); 623 624 return error; 625 } 626 627 /* 628 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 629 * all the associated resources. Must be called with "mtx" held. 630 */ 631 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 632 { 633 unsigned long flags; 634 struct file *file = epi->ffd.file; 635 636 /* 637 * Removes poll wait queue hooks. We _have_ to do this without holding 638 * the "ep->lock" otherwise a deadlock might occur. This because of the 639 * sequence of the lock acquisition. Here we do "ep->lock" then the wait 640 * queue head lock when unregistering the wait queue. The wakeup callback 641 * will run by holding the wait queue head lock and will call our callback 642 * that will try to get "ep->lock". 643 */ 644 ep_unregister_pollwait(ep, epi); 645 646 /* Remove the current item from the list of epoll hooks */ 647 spin_lock(&file->f_lock); 648 if (ep_is_linked(&epi->fllink)) 649 list_del_init(&epi->fllink); 650 spin_unlock(&file->f_lock); 651 652 rb_erase(&epi->rbn, &ep->rbr); 653 654 spin_lock_irqsave(&ep->lock, flags); 655 if (ep_is_linked(&epi->rdllink)) 656 list_del_init(&epi->rdllink); 657 spin_unlock_irqrestore(&ep->lock, flags); 658 659 /* At this point it is safe to free the eventpoll item */ 660 kmem_cache_free(epi_cache, epi); 661 662 atomic_long_dec(&ep->user->epoll_watches); 663 664 return 0; 665 } 666 667 static void ep_free(struct eventpoll *ep) 668 { 669 struct rb_node *rbp; 670 struct epitem *epi; 671 672 /* We need to release all tasks waiting for these file */ 673 if (waitqueue_active(&ep->poll_wait)) 674 ep_poll_safewake(&ep->poll_wait); 675 676 /* 677 * We need to lock this because we could be hit by 678 * eventpoll_release_file() while we're freeing the "struct eventpoll". 679 * We do not need to hold "ep->mtx" here because the epoll file 680 * is on the way to be removed and no one has references to it 681 * anymore. The only hit might come from eventpoll_release_file() but 682 * holding "epmutex" is sufficient here. 683 */ 684 mutex_lock(&epmutex); 685 686 /* 687 * Walks through the whole tree by unregistering poll callbacks. 688 */ 689 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 690 epi = rb_entry(rbp, struct epitem, rbn); 691 692 ep_unregister_pollwait(ep, epi); 693 } 694 695 /* 696 * Walks through the whole tree by freeing each "struct epitem". At this 697 * point we are sure no poll callbacks will be lingering around, and also by 698 * holding "epmutex" we can be sure that no file cleanup code will hit 699 * us during this operation. So we can avoid the lock on "ep->lock". 700 */ 701 while ((rbp = rb_first(&ep->rbr)) != NULL) { 702 epi = rb_entry(rbp, struct epitem, rbn); 703 ep_remove(ep, epi); 704 } 705 706 mutex_unlock(&epmutex); 707 mutex_destroy(&ep->mtx); 708 free_uid(ep->user); 709 kfree(ep); 710 } 711 712 static int ep_eventpoll_release(struct inode *inode, struct file *file) 713 { 714 struct eventpoll *ep = file->private_data; 715 716 if (ep) 717 ep_free(ep); 718 719 return 0; 720 } 721 722 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head, 723 void *priv) 724 { 725 struct epitem *epi, *tmp; 726 poll_table pt; 727 728 init_poll_funcptr(&pt, NULL); 729 list_for_each_entry_safe(epi, tmp, head, rdllink) { 730 pt._key = epi->event.events; 731 if (epi->ffd.file->f_op->poll(epi->ffd.file, &pt) & 732 epi->event.events) 733 return POLLIN | POLLRDNORM; 734 else { 735 /* 736 * Item has been dropped into the ready list by the poll 737 * callback, but it's not actually ready, as far as 738 * caller requested events goes. We can remove it here. 739 */ 740 list_del_init(&epi->rdllink); 741 } 742 } 743 744 return 0; 745 } 746 747 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests) 748 { 749 return ep_scan_ready_list(priv, ep_read_events_proc, NULL, call_nests + 1); 750 } 751 752 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait) 753 { 754 int pollflags; 755 struct eventpoll *ep = file->private_data; 756 757 /* Insert inside our poll wait queue */ 758 poll_wait(file, &ep->poll_wait, wait); 759 760 /* 761 * Proceed to find out if wanted events are really available inside 762 * the ready list. This need to be done under ep_call_nested() 763 * supervision, since the call to f_op->poll() done on listed files 764 * could re-enter here. 765 */ 766 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS, 767 ep_poll_readyevents_proc, ep, ep, current); 768 769 return pollflags != -1 ? pollflags : 0; 770 } 771 772 /* File callbacks that implement the eventpoll file behaviour */ 773 static const struct file_operations eventpoll_fops = { 774 .release = ep_eventpoll_release, 775 .poll = ep_eventpoll_poll, 776 .llseek = noop_llseek, 777 }; 778 779 /* 780 * This is called from eventpoll_release() to unlink files from the eventpoll 781 * interface. We need to have this facility to cleanup correctly files that are 782 * closed without being removed from the eventpoll interface. 783 */ 784 void eventpoll_release_file(struct file *file) 785 { 786 struct list_head *lsthead = &file->f_ep_links; 787 struct eventpoll *ep; 788 struct epitem *epi; 789 790 /* 791 * We don't want to get "file->f_lock" because it is not 792 * necessary. It is not necessary because we're in the "struct file" 793 * cleanup path, and this means that no one is using this file anymore. 794 * So, for example, epoll_ctl() cannot hit here since if we reach this 795 * point, the file counter already went to zero and fget() would fail. 796 * The only hit might come from ep_free() but by holding the mutex 797 * will correctly serialize the operation. We do need to acquire 798 * "ep->mtx" after "epmutex" because ep_remove() requires it when called 799 * from anywhere but ep_free(). 800 * 801 * Besides, ep_remove() acquires the lock, so we can't hold it here. 802 */ 803 mutex_lock(&epmutex); 804 805 while (!list_empty(lsthead)) { 806 epi = list_first_entry(lsthead, struct epitem, fllink); 807 808 ep = epi->ep; 809 list_del_init(&epi->fllink); 810 mutex_lock_nested(&ep->mtx, 0); 811 ep_remove(ep, epi); 812 mutex_unlock(&ep->mtx); 813 } 814 815 mutex_unlock(&epmutex); 816 } 817 818 static int ep_alloc(struct eventpoll **pep) 819 { 820 int error; 821 struct user_struct *user; 822 struct eventpoll *ep; 823 824 user = get_current_user(); 825 error = -ENOMEM; 826 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 827 if (unlikely(!ep)) 828 goto free_uid; 829 830 spin_lock_init(&ep->lock); 831 mutex_init(&ep->mtx); 832 init_waitqueue_head(&ep->wq); 833 init_waitqueue_head(&ep->poll_wait); 834 INIT_LIST_HEAD(&ep->rdllist); 835 ep->rbr = RB_ROOT; 836 ep->ovflist = EP_UNACTIVE_PTR; 837 ep->user = user; 838 839 *pep = ep; 840 841 return 0; 842 843 free_uid: 844 free_uid(user); 845 return error; 846 } 847 848 /* 849 * Search the file inside the eventpoll tree. The RB tree operations 850 * are protected by the "mtx" mutex, and ep_find() must be called with 851 * "mtx" held. 852 */ 853 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 854 { 855 int kcmp; 856 struct rb_node *rbp; 857 struct epitem *epi, *epir = NULL; 858 struct epoll_filefd ffd; 859 860 ep_set_ffd(&ffd, file, fd); 861 for (rbp = ep->rbr.rb_node; rbp; ) { 862 epi = rb_entry(rbp, struct epitem, rbn); 863 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 864 if (kcmp > 0) 865 rbp = rbp->rb_right; 866 else if (kcmp < 0) 867 rbp = rbp->rb_left; 868 else { 869 epir = epi; 870 break; 871 } 872 } 873 874 return epir; 875 } 876 877 /* 878 * This is the callback that is passed to the wait queue wakeup 879 * mechanism. It is called by the stored file descriptors when they 880 * have events to report. 881 */ 882 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key) 883 { 884 int pwake = 0; 885 unsigned long flags; 886 struct epitem *epi = ep_item_from_wait(wait); 887 struct eventpoll *ep = epi->ep; 888 889 if ((unsigned long)key & POLLFREE) { 890 ep_pwq_from_wait(wait)->whead = NULL; 891 /* 892 * whead = NULL above can race with ep_remove_wait_queue() 893 * which can do another remove_wait_queue() after us, so we 894 * can't use __remove_wait_queue(). whead->lock is held by 895 * the caller. 896 */ 897 list_del_init(&wait->task_list); 898 } 899 900 spin_lock_irqsave(&ep->lock, flags); 901 902 /* 903 * If the event mask does not contain any poll(2) event, we consider the 904 * descriptor to be disabled. This condition is likely the effect of the 905 * EPOLLONESHOT bit that disables the descriptor when an event is received, 906 * until the next EPOLL_CTL_MOD will be issued. 907 */ 908 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 909 goto out_unlock; 910 911 /* 912 * Check the events coming with the callback. At this stage, not 913 * every device reports the events in the "key" parameter of the 914 * callback. We need to be able to handle both cases here, hence the 915 * test for "key" != NULL before the event match test. 916 */ 917 if (key && !((unsigned long) key & epi->event.events)) 918 goto out_unlock; 919 920 /* 921 * If we are transferring events to userspace, we can hold no locks 922 * (because we're accessing user memory, and because of linux f_op->poll() 923 * semantics). All the events that happen during that period of time are 924 * chained in ep->ovflist and requeued later on. 925 */ 926 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) { 927 if (epi->next == EP_UNACTIVE_PTR) { 928 epi->next = ep->ovflist; 929 ep->ovflist = epi; 930 } 931 goto out_unlock; 932 } 933 934 /* If this file is already in the ready list we exit soon */ 935 if (!ep_is_linked(&epi->rdllink)) 936 list_add_tail(&epi->rdllink, &ep->rdllist); 937 938 /* 939 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 940 * wait list. 941 */ 942 if (waitqueue_active(&ep->wq)) 943 wake_up_locked(&ep->wq); 944 if (waitqueue_active(&ep->poll_wait)) 945 pwake++; 946 947 out_unlock: 948 spin_unlock_irqrestore(&ep->lock, flags); 949 950 /* We have to call this outside the lock */ 951 if (pwake) 952 ep_poll_safewake(&ep->poll_wait); 953 954 return 1; 955 } 956 957 /* 958 * This is the callback that is used to add our wait queue to the 959 * target file wakeup lists. 960 */ 961 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 962 poll_table *pt) 963 { 964 struct epitem *epi = ep_item_from_epqueue(pt); 965 struct eppoll_entry *pwq; 966 967 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { 968 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 969 pwq->whead = whead; 970 pwq->base = epi; 971 add_wait_queue(whead, &pwq->wait); 972 list_add_tail(&pwq->llink, &epi->pwqlist); 973 epi->nwait++; 974 } else { 975 /* We have to signal that an error occurred */ 976 epi->nwait = -1; 977 } 978 } 979 980 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 981 { 982 int kcmp; 983 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL; 984 struct epitem *epic; 985 986 while (*p) { 987 parent = *p; 988 epic = rb_entry(parent, struct epitem, rbn); 989 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 990 if (kcmp > 0) 991 p = &parent->rb_right; 992 else 993 p = &parent->rb_left; 994 } 995 rb_link_node(&epi->rbn, parent, p); 996 rb_insert_color(&epi->rbn, &ep->rbr); 997 } 998 999 1000 1001 #define PATH_ARR_SIZE 5 1002 /* 1003 * These are the number paths of length 1 to 5, that we are allowing to emanate 1004 * from a single file of interest. For example, we allow 1000 paths of length 1005 * 1, to emanate from each file of interest. This essentially represents the 1006 * potential wakeup paths, which need to be limited in order to avoid massive 1007 * uncontrolled wakeup storms. The common use case should be a single ep which 1008 * is connected to n file sources. In this case each file source has 1 path 1009 * of length 1. Thus, the numbers below should be more than sufficient. These 1010 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1011 * and delete can't add additional paths. Protected by the epmutex. 1012 */ 1013 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1014 static int path_count[PATH_ARR_SIZE]; 1015 1016 static int path_count_inc(int nests) 1017 { 1018 /* Allow an arbitrary number of depth 1 paths */ 1019 if (nests == 0) 1020 return 0; 1021 1022 if (++path_count[nests] > path_limits[nests]) 1023 return -1; 1024 return 0; 1025 } 1026 1027 static void path_count_init(void) 1028 { 1029 int i; 1030 1031 for (i = 0; i < PATH_ARR_SIZE; i++) 1032 path_count[i] = 0; 1033 } 1034 1035 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests) 1036 { 1037 int error = 0; 1038 struct file *file = priv; 1039 struct file *child_file; 1040 struct epitem *epi; 1041 1042 list_for_each_entry(epi, &file->f_ep_links, fllink) { 1043 child_file = epi->ep->file; 1044 if (is_file_epoll(child_file)) { 1045 if (list_empty(&child_file->f_ep_links)) { 1046 if (path_count_inc(call_nests)) { 1047 error = -1; 1048 break; 1049 } 1050 } else { 1051 error = ep_call_nested(&poll_loop_ncalls, 1052 EP_MAX_NESTS, 1053 reverse_path_check_proc, 1054 child_file, child_file, 1055 current); 1056 } 1057 if (error != 0) 1058 break; 1059 } else { 1060 printk(KERN_ERR "reverse_path_check_proc: " 1061 "file is not an ep!\n"); 1062 } 1063 } 1064 return error; 1065 } 1066 1067 /** 1068 * reverse_path_check - The tfile_check_list is list of file *, which have 1069 * links that are proposed to be newly added. We need to 1070 * make sure that those added links don't add too many 1071 * paths such that we will spend all our time waking up 1072 * eventpoll objects. 1073 * 1074 * Returns: Returns zero if the proposed links don't create too many paths, 1075 * -1 otherwise. 1076 */ 1077 static int reverse_path_check(void) 1078 { 1079 int error = 0; 1080 struct file *current_file; 1081 1082 /* let's call this for all tfiles */ 1083 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) { 1084 path_count_init(); 1085 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1086 reverse_path_check_proc, current_file, 1087 current_file, current); 1088 if (error) 1089 break; 1090 } 1091 return error; 1092 } 1093 1094 /* 1095 * Must be called with "mtx" held. 1096 */ 1097 static int ep_insert(struct eventpoll *ep, struct epoll_event *event, 1098 struct file *tfile, int fd) 1099 { 1100 int error, revents, pwake = 0; 1101 unsigned long flags; 1102 long user_watches; 1103 struct epitem *epi; 1104 struct ep_pqueue epq; 1105 1106 user_watches = atomic_long_read(&ep->user->epoll_watches); 1107 if (unlikely(user_watches >= max_user_watches)) 1108 return -ENOSPC; 1109 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) 1110 return -ENOMEM; 1111 1112 /* Item initialization follow here ... */ 1113 INIT_LIST_HEAD(&epi->rdllink); 1114 INIT_LIST_HEAD(&epi->fllink); 1115 INIT_LIST_HEAD(&epi->pwqlist); 1116 epi->ep = ep; 1117 ep_set_ffd(&epi->ffd, tfile, fd); 1118 epi->event = *event; 1119 epi->nwait = 0; 1120 epi->next = EP_UNACTIVE_PTR; 1121 1122 /* Initialize the poll table using the queue callback */ 1123 epq.epi = epi; 1124 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1125 epq.pt._key = event->events; 1126 1127 /* 1128 * Attach the item to the poll hooks and get current event bits. 1129 * We can safely use the file* here because its usage count has 1130 * been increased by the caller of this function. Note that after 1131 * this operation completes, the poll callback can start hitting 1132 * the new item. 1133 */ 1134 revents = tfile->f_op->poll(tfile, &epq.pt); 1135 1136 /* 1137 * We have to check if something went wrong during the poll wait queue 1138 * install process. Namely an allocation for a wait queue failed due 1139 * high memory pressure. 1140 */ 1141 error = -ENOMEM; 1142 if (epi->nwait < 0) 1143 goto error_unregister; 1144 1145 /* Add the current item to the list of active epoll hook for this file */ 1146 spin_lock(&tfile->f_lock); 1147 list_add_tail(&epi->fllink, &tfile->f_ep_links); 1148 spin_unlock(&tfile->f_lock); 1149 1150 /* 1151 * Add the current item to the RB tree. All RB tree operations are 1152 * protected by "mtx", and ep_insert() is called with "mtx" held. 1153 */ 1154 ep_rbtree_insert(ep, epi); 1155 1156 /* now check if we've created too many backpaths */ 1157 error = -EINVAL; 1158 if (reverse_path_check()) 1159 goto error_remove_epi; 1160 1161 /* We have to drop the new item inside our item list to keep track of it */ 1162 spin_lock_irqsave(&ep->lock, flags); 1163 1164 /* If the file is already "ready" we drop it inside the ready list */ 1165 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) { 1166 list_add_tail(&epi->rdllink, &ep->rdllist); 1167 1168 /* Notify waiting tasks that events are available */ 1169 if (waitqueue_active(&ep->wq)) 1170 wake_up_locked(&ep->wq); 1171 if (waitqueue_active(&ep->poll_wait)) 1172 pwake++; 1173 } 1174 1175 spin_unlock_irqrestore(&ep->lock, flags); 1176 1177 atomic_long_inc(&ep->user->epoll_watches); 1178 1179 /* We have to call this outside the lock */ 1180 if (pwake) 1181 ep_poll_safewake(&ep->poll_wait); 1182 1183 return 0; 1184 1185 error_remove_epi: 1186 spin_lock(&tfile->f_lock); 1187 if (ep_is_linked(&epi->fllink)) 1188 list_del_init(&epi->fllink); 1189 spin_unlock(&tfile->f_lock); 1190 1191 rb_erase(&epi->rbn, &ep->rbr); 1192 1193 error_unregister: 1194 ep_unregister_pollwait(ep, epi); 1195 1196 /* 1197 * We need to do this because an event could have been arrived on some 1198 * allocated wait queue. Note that we don't care about the ep->ovflist 1199 * list, since that is used/cleaned only inside a section bound by "mtx". 1200 * And ep_insert() is called with "mtx" held. 1201 */ 1202 spin_lock_irqsave(&ep->lock, flags); 1203 if (ep_is_linked(&epi->rdllink)) 1204 list_del_init(&epi->rdllink); 1205 spin_unlock_irqrestore(&ep->lock, flags); 1206 1207 kmem_cache_free(epi_cache, epi); 1208 1209 return error; 1210 } 1211 1212 /* 1213 * Modify the interest event mask by dropping an event if the new mask 1214 * has a match in the current file status. Must be called with "mtx" held. 1215 */ 1216 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event) 1217 { 1218 int pwake = 0; 1219 unsigned int revents; 1220 poll_table pt; 1221 1222 init_poll_funcptr(&pt, NULL); 1223 1224 /* 1225 * Set the new event interest mask before calling f_op->poll(); 1226 * otherwise we might miss an event that happens between the 1227 * f_op->poll() call and the new event set registering. 1228 */ 1229 epi->event.events = event->events; 1230 pt._key = event->events; 1231 epi->event.data = event->data; /* protected by mtx */ 1232 1233 /* 1234 * Get current event bits. We can safely use the file* here because 1235 * its usage count has been increased by the caller of this function. 1236 */ 1237 revents = epi->ffd.file->f_op->poll(epi->ffd.file, &pt); 1238 1239 /* 1240 * If the item is "hot" and it is not registered inside the ready 1241 * list, push it inside. 1242 */ 1243 if (revents & event->events) { 1244 spin_lock_irq(&ep->lock); 1245 if (!ep_is_linked(&epi->rdllink)) { 1246 list_add_tail(&epi->rdllink, &ep->rdllist); 1247 1248 /* Notify waiting tasks that events are available */ 1249 if (waitqueue_active(&ep->wq)) 1250 wake_up_locked(&ep->wq); 1251 if (waitqueue_active(&ep->poll_wait)) 1252 pwake++; 1253 } 1254 spin_unlock_irq(&ep->lock); 1255 } 1256 1257 /* We have to call this outside the lock */ 1258 if (pwake) 1259 ep_poll_safewake(&ep->poll_wait); 1260 1261 return 0; 1262 } 1263 1264 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head, 1265 void *priv) 1266 { 1267 struct ep_send_events_data *esed = priv; 1268 int eventcnt; 1269 unsigned int revents; 1270 struct epitem *epi; 1271 struct epoll_event __user *uevent; 1272 poll_table pt; 1273 1274 init_poll_funcptr(&pt, NULL); 1275 1276 /* 1277 * We can loop without lock because we are passed a task private list. 1278 * Items cannot vanish during the loop because ep_scan_ready_list() is 1279 * holding "mtx" during this call. 1280 */ 1281 for (eventcnt = 0, uevent = esed->events; 1282 !list_empty(head) && eventcnt < esed->maxevents;) { 1283 epi = list_first_entry(head, struct epitem, rdllink); 1284 1285 list_del_init(&epi->rdllink); 1286 1287 pt._key = epi->event.events; 1288 revents = epi->ffd.file->f_op->poll(epi->ffd.file, &pt) & 1289 epi->event.events; 1290 1291 /* 1292 * If the event mask intersect the caller-requested one, 1293 * deliver the event to userspace. Again, ep_scan_ready_list() 1294 * is holding "mtx", so no operations coming from userspace 1295 * can change the item. 1296 */ 1297 if (revents) { 1298 if (__put_user(revents, &uevent->events) || 1299 __put_user(epi->event.data, &uevent->data)) { 1300 list_add(&epi->rdllink, head); 1301 return eventcnt ? eventcnt : -EFAULT; 1302 } 1303 eventcnt++; 1304 uevent++; 1305 if (epi->event.events & EPOLLONESHOT) 1306 epi->event.events &= EP_PRIVATE_BITS; 1307 else if (!(epi->event.events & EPOLLET)) { 1308 /* 1309 * If this file has been added with Level 1310 * Trigger mode, we need to insert back inside 1311 * the ready list, so that the next call to 1312 * epoll_wait() will check again the events 1313 * availability. At this point, no one can insert 1314 * into ep->rdllist besides us. The epoll_ctl() 1315 * callers are locked out by 1316 * ep_scan_ready_list() holding "mtx" and the 1317 * poll callback will queue them in ep->ovflist. 1318 */ 1319 list_add_tail(&epi->rdllink, &ep->rdllist); 1320 } 1321 } 1322 } 1323 1324 return eventcnt; 1325 } 1326 1327 static int ep_send_events(struct eventpoll *ep, 1328 struct epoll_event __user *events, int maxevents) 1329 { 1330 struct ep_send_events_data esed; 1331 1332 esed.maxevents = maxevents; 1333 esed.events = events; 1334 1335 return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0); 1336 } 1337 1338 static inline struct timespec ep_set_mstimeout(long ms) 1339 { 1340 struct timespec now, ts = { 1341 .tv_sec = ms / MSEC_PER_SEC, 1342 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC), 1343 }; 1344 1345 ktime_get_ts(&now); 1346 return timespec_add_safe(now, ts); 1347 } 1348 1349 /** 1350 * ep_poll - Retrieves ready events, and delivers them to the caller supplied 1351 * event buffer. 1352 * 1353 * @ep: Pointer to the eventpoll context. 1354 * @events: Pointer to the userspace buffer where the ready events should be 1355 * stored. 1356 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1357 * @timeout: Maximum timeout for the ready events fetch operation, in 1358 * milliseconds. If the @timeout is zero, the function will not block, 1359 * while if the @timeout is less than zero, the function will block 1360 * until at least one event has been retrieved (or an error 1361 * occurred). 1362 * 1363 * Returns: Returns the number of ready events which have been fetched, or an 1364 * error code, in case of error. 1365 */ 1366 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1367 int maxevents, long timeout) 1368 { 1369 int res = 0, eavail, timed_out = 0; 1370 unsigned long flags; 1371 long slack = 0; 1372 wait_queue_t wait; 1373 ktime_t expires, *to = NULL; 1374 1375 if (timeout > 0) { 1376 struct timespec end_time = ep_set_mstimeout(timeout); 1377 1378 slack = select_estimate_accuracy(&end_time); 1379 to = &expires; 1380 *to = timespec_to_ktime(end_time); 1381 } else if (timeout == 0) { 1382 /* 1383 * Avoid the unnecessary trip to the wait queue loop, if the 1384 * caller specified a non blocking operation. 1385 */ 1386 timed_out = 1; 1387 spin_lock_irqsave(&ep->lock, flags); 1388 goto check_events; 1389 } 1390 1391 fetch_events: 1392 spin_lock_irqsave(&ep->lock, flags); 1393 1394 if (!ep_events_available(ep)) { 1395 /* 1396 * We don't have any available event to return to the caller. 1397 * We need to sleep here, and we will be wake up by 1398 * ep_poll_callback() when events will become available. 1399 */ 1400 init_waitqueue_entry(&wait, current); 1401 __add_wait_queue_exclusive(&ep->wq, &wait); 1402 1403 for (;;) { 1404 /* 1405 * We don't want to sleep if the ep_poll_callback() sends us 1406 * a wakeup in between. That's why we set the task state 1407 * to TASK_INTERRUPTIBLE before doing the checks. 1408 */ 1409 set_current_state(TASK_INTERRUPTIBLE); 1410 if (ep_events_available(ep) || timed_out) 1411 break; 1412 if (signal_pending(current)) { 1413 res = -EINTR; 1414 break; 1415 } 1416 1417 spin_unlock_irqrestore(&ep->lock, flags); 1418 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) 1419 timed_out = 1; 1420 1421 spin_lock_irqsave(&ep->lock, flags); 1422 } 1423 __remove_wait_queue(&ep->wq, &wait); 1424 1425 set_current_state(TASK_RUNNING); 1426 } 1427 check_events: 1428 /* Is it worth to try to dig for events ? */ 1429 eavail = ep_events_available(ep); 1430 1431 spin_unlock_irqrestore(&ep->lock, flags); 1432 1433 /* 1434 * Try to transfer events to user space. In case we get 0 events and 1435 * there's still timeout left over, we go trying again in search of 1436 * more luck. 1437 */ 1438 if (!res && eavail && 1439 !(res = ep_send_events(ep, events, maxevents)) && !timed_out) 1440 goto fetch_events; 1441 1442 return res; 1443 } 1444 1445 /** 1446 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested() 1447 * API, to verify that adding an epoll file inside another 1448 * epoll structure, does not violate the constraints, in 1449 * terms of closed loops, or too deep chains (which can 1450 * result in excessive stack usage). 1451 * 1452 * @priv: Pointer to the epoll file to be currently checked. 1453 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll 1454 * data structure pointer. 1455 * @call_nests: Current dept of the @ep_call_nested() call stack. 1456 * 1457 * Returns: Returns zero if adding the epoll @file inside current epoll 1458 * structure @ep does not violate the constraints, or -1 otherwise. 1459 */ 1460 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests) 1461 { 1462 int error = 0; 1463 struct file *file = priv; 1464 struct eventpoll *ep = file->private_data; 1465 struct eventpoll *ep_tovisit; 1466 struct rb_node *rbp; 1467 struct epitem *epi; 1468 1469 mutex_lock_nested(&ep->mtx, call_nests + 1); 1470 ep->visited = 1; 1471 list_add(&ep->visited_list_link, &visited_list); 1472 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1473 epi = rb_entry(rbp, struct epitem, rbn); 1474 if (unlikely(is_file_epoll(epi->ffd.file))) { 1475 ep_tovisit = epi->ffd.file->private_data; 1476 if (ep_tovisit->visited) 1477 continue; 1478 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1479 ep_loop_check_proc, epi->ffd.file, 1480 ep_tovisit, current); 1481 if (error != 0) 1482 break; 1483 } else { 1484 /* 1485 * If we've reached a file that is not associated with 1486 * an ep, then we need to check if the newly added 1487 * links are going to add too many wakeup paths. We do 1488 * this by adding it to the tfile_check_list, if it's 1489 * not already there, and calling reverse_path_check() 1490 * during ep_insert(). 1491 */ 1492 if (list_empty(&epi->ffd.file->f_tfile_llink)) 1493 list_add(&epi->ffd.file->f_tfile_llink, 1494 &tfile_check_list); 1495 } 1496 } 1497 mutex_unlock(&ep->mtx); 1498 1499 return error; 1500 } 1501 1502 /** 1503 * ep_loop_check - Performs a check to verify that adding an epoll file (@file) 1504 * another epoll file (represented by @ep) does not create 1505 * closed loops or too deep chains. 1506 * 1507 * @ep: Pointer to the epoll private data structure. 1508 * @file: Pointer to the epoll file to be checked. 1509 * 1510 * Returns: Returns zero if adding the epoll @file inside current epoll 1511 * structure @ep does not violate the constraints, or -1 otherwise. 1512 */ 1513 static int ep_loop_check(struct eventpoll *ep, struct file *file) 1514 { 1515 int ret; 1516 struct eventpoll *ep_cur, *ep_next; 1517 1518 ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1519 ep_loop_check_proc, file, ep, current); 1520 /* clear visited list */ 1521 list_for_each_entry_safe(ep_cur, ep_next, &visited_list, 1522 visited_list_link) { 1523 ep_cur->visited = 0; 1524 list_del(&ep_cur->visited_list_link); 1525 } 1526 return ret; 1527 } 1528 1529 static void clear_tfile_check_list(void) 1530 { 1531 struct file *file; 1532 1533 /* first clear the tfile_check_list */ 1534 while (!list_empty(&tfile_check_list)) { 1535 file = list_first_entry(&tfile_check_list, struct file, 1536 f_tfile_llink); 1537 list_del_init(&file->f_tfile_llink); 1538 } 1539 INIT_LIST_HEAD(&tfile_check_list); 1540 } 1541 1542 /* 1543 * Open an eventpoll file descriptor. 1544 */ 1545 SYSCALL_DEFINE1(epoll_create1, int, flags) 1546 { 1547 int error, fd; 1548 struct eventpoll *ep = NULL; 1549 struct file *file; 1550 1551 /* Check the EPOLL_* constant for consistency. */ 1552 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 1553 1554 if (flags & ~EPOLL_CLOEXEC) 1555 return -EINVAL; 1556 /* 1557 * Create the internal data structure ("struct eventpoll"). 1558 */ 1559 error = ep_alloc(&ep); 1560 if (error < 0) 1561 return error; 1562 /* 1563 * Creates all the items needed to setup an eventpoll file. That is, 1564 * a file structure and a free file descriptor. 1565 */ 1566 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 1567 if (fd < 0) { 1568 error = fd; 1569 goto out_free_ep; 1570 } 1571 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 1572 O_RDWR | (flags & O_CLOEXEC)); 1573 if (IS_ERR(file)) { 1574 error = PTR_ERR(file); 1575 goto out_free_fd; 1576 } 1577 fd_install(fd, file); 1578 ep->file = file; 1579 return fd; 1580 1581 out_free_fd: 1582 put_unused_fd(fd); 1583 out_free_ep: 1584 ep_free(ep); 1585 return error; 1586 } 1587 1588 SYSCALL_DEFINE1(epoll_create, int, size) 1589 { 1590 if (size <= 0) 1591 return -EINVAL; 1592 1593 return sys_epoll_create1(0); 1594 } 1595 1596 /* 1597 * The following function implements the controller interface for 1598 * the eventpoll file that enables the insertion/removal/change of 1599 * file descriptors inside the interest set. 1600 */ 1601 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 1602 struct epoll_event __user *, event) 1603 { 1604 int error; 1605 int did_lock_epmutex = 0; 1606 struct file *file, *tfile; 1607 struct eventpoll *ep; 1608 struct epitem *epi; 1609 struct epoll_event epds; 1610 1611 error = -EFAULT; 1612 if (ep_op_has_event(op) && 1613 copy_from_user(&epds, event, sizeof(struct epoll_event))) 1614 goto error_return; 1615 1616 /* Get the "struct file *" for the eventpoll file */ 1617 error = -EBADF; 1618 file = fget(epfd); 1619 if (!file) 1620 goto error_return; 1621 1622 /* Get the "struct file *" for the target file */ 1623 tfile = fget(fd); 1624 if (!tfile) 1625 goto error_fput; 1626 1627 /* The target file descriptor must support poll */ 1628 error = -EPERM; 1629 if (!tfile->f_op || !tfile->f_op->poll) 1630 goto error_tgt_fput; 1631 1632 /* 1633 * We have to check that the file structure underneath the file descriptor 1634 * the user passed to us _is_ an eventpoll file. And also we do not permit 1635 * adding an epoll file descriptor inside itself. 1636 */ 1637 error = -EINVAL; 1638 if (file == tfile || !is_file_epoll(file)) 1639 goto error_tgt_fput; 1640 1641 /* 1642 * At this point it is safe to assume that the "private_data" contains 1643 * our own data structure. 1644 */ 1645 ep = file->private_data; 1646 1647 /* 1648 * When we insert an epoll file descriptor, inside another epoll file 1649 * descriptor, there is the change of creating closed loops, which are 1650 * better be handled here, than in more critical paths. While we are 1651 * checking for loops we also determine the list of files reachable 1652 * and hang them on the tfile_check_list, so we can check that we 1653 * haven't created too many possible wakeup paths. 1654 * 1655 * We need to hold the epmutex across both ep_insert and ep_remove 1656 * b/c we want to make sure we are looking at a coherent view of 1657 * epoll network. 1658 */ 1659 if (op == EPOLL_CTL_ADD || op == EPOLL_CTL_DEL) { 1660 mutex_lock(&epmutex); 1661 did_lock_epmutex = 1; 1662 } 1663 if (op == EPOLL_CTL_ADD) { 1664 if (is_file_epoll(tfile)) { 1665 error = -ELOOP; 1666 if (ep_loop_check(ep, tfile) != 0) { 1667 clear_tfile_check_list(); 1668 goto error_tgt_fput; 1669 } 1670 } else 1671 list_add(&tfile->f_tfile_llink, &tfile_check_list); 1672 } 1673 1674 mutex_lock_nested(&ep->mtx, 0); 1675 1676 /* 1677 * Try to lookup the file inside our RB tree, Since we grabbed "mtx" 1678 * above, we can be sure to be able to use the item looked up by 1679 * ep_find() till we release the mutex. 1680 */ 1681 epi = ep_find(ep, tfile, fd); 1682 1683 error = -EINVAL; 1684 switch (op) { 1685 case EPOLL_CTL_ADD: 1686 if (!epi) { 1687 epds.events |= POLLERR | POLLHUP; 1688 error = ep_insert(ep, &epds, tfile, fd); 1689 } else 1690 error = -EEXIST; 1691 clear_tfile_check_list(); 1692 break; 1693 case EPOLL_CTL_DEL: 1694 if (epi) 1695 error = ep_remove(ep, epi); 1696 else 1697 error = -ENOENT; 1698 break; 1699 case EPOLL_CTL_MOD: 1700 if (epi) { 1701 epds.events |= POLLERR | POLLHUP; 1702 error = ep_modify(ep, epi, &epds); 1703 } else 1704 error = -ENOENT; 1705 break; 1706 } 1707 mutex_unlock(&ep->mtx); 1708 1709 error_tgt_fput: 1710 if (did_lock_epmutex) 1711 mutex_unlock(&epmutex); 1712 1713 fput(tfile); 1714 error_fput: 1715 fput(file); 1716 error_return: 1717 1718 return error; 1719 } 1720 1721 /* 1722 * Implement the event wait interface for the eventpoll file. It is the kernel 1723 * part of the user space epoll_wait(2). 1724 */ 1725 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 1726 int, maxevents, int, timeout) 1727 { 1728 int error; 1729 struct file *file; 1730 struct eventpoll *ep; 1731 1732 /* The maximum number of event must be greater than zero */ 1733 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 1734 return -EINVAL; 1735 1736 /* Verify that the area passed by the user is writeable */ 1737 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) { 1738 error = -EFAULT; 1739 goto error_return; 1740 } 1741 1742 /* Get the "struct file *" for the eventpoll file */ 1743 error = -EBADF; 1744 file = fget(epfd); 1745 if (!file) 1746 goto error_return; 1747 1748 /* 1749 * We have to check that the file structure underneath the fd 1750 * the user passed to us _is_ an eventpoll file. 1751 */ 1752 error = -EINVAL; 1753 if (!is_file_epoll(file)) 1754 goto error_fput; 1755 1756 /* 1757 * At this point it is safe to assume that the "private_data" contains 1758 * our own data structure. 1759 */ 1760 ep = file->private_data; 1761 1762 /* Time to fish for events ... */ 1763 error = ep_poll(ep, events, maxevents, timeout); 1764 1765 error_fput: 1766 fput(file); 1767 error_return: 1768 1769 return error; 1770 } 1771 1772 #ifdef HAVE_SET_RESTORE_SIGMASK 1773 1774 /* 1775 * Implement the event wait interface for the eventpoll file. It is the kernel 1776 * part of the user space epoll_pwait(2). 1777 */ 1778 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 1779 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 1780 size_t, sigsetsize) 1781 { 1782 int error; 1783 sigset_t ksigmask, sigsaved; 1784 1785 /* 1786 * If the caller wants a certain signal mask to be set during the wait, 1787 * we apply it here. 1788 */ 1789 if (sigmask) { 1790 if (sigsetsize != sizeof(sigset_t)) 1791 return -EINVAL; 1792 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask))) 1793 return -EFAULT; 1794 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 1795 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved); 1796 } 1797 1798 error = sys_epoll_wait(epfd, events, maxevents, timeout); 1799 1800 /* 1801 * If we changed the signal mask, we need to restore the original one. 1802 * In case we've got a signal while waiting, we do not restore the 1803 * signal mask yet, and we allow do_signal() to deliver the signal on 1804 * the way back to userspace, before the signal mask is restored. 1805 */ 1806 if (sigmask) { 1807 if (error == -EINTR) { 1808 memcpy(¤t->saved_sigmask, &sigsaved, 1809 sizeof(sigsaved)); 1810 set_restore_sigmask(); 1811 } else 1812 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 1813 } 1814 1815 return error; 1816 } 1817 1818 #endif /* HAVE_SET_RESTORE_SIGMASK */ 1819 1820 static int __init eventpoll_init(void) 1821 { 1822 struct sysinfo si; 1823 1824 si_meminfo(&si); 1825 /* 1826 * Allows top 4% of lomem to be allocated for epoll watches (per user). 1827 */ 1828 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 1829 EP_ITEM_COST; 1830 BUG_ON(max_user_watches < 0); 1831 1832 /* 1833 * Initialize the structure used to perform epoll file descriptor 1834 * inclusion loops checks. 1835 */ 1836 ep_nested_calls_init(&poll_loop_ncalls); 1837 1838 /* Initialize the structure used to perform safe poll wait head wake ups */ 1839 ep_nested_calls_init(&poll_safewake_ncalls); 1840 1841 /* Initialize the structure used to perform file's f_op->poll() calls */ 1842 ep_nested_calls_init(&poll_readywalk_ncalls); 1843 1844 /* Allocates slab cache used to allocate "struct epitem" items */ 1845 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 1846 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 1847 1848 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 1849 pwq_cache = kmem_cache_create("eventpoll_pwq", 1850 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL); 1851 1852 return 0; 1853 } 1854 fs_initcall(eventpoll_init); 1855