1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * fs/eventpoll.c (Efficient event retrieval implementation) 4 * Copyright (C) 2001,...,2009 Davide Libenzi 5 * 6 * Davide Libenzi <davidel@xmailserver.org> 7 */ 8 9 #include <linux/init.h> 10 #include <linux/kernel.h> 11 #include <linux/sched/signal.h> 12 #include <linux/fs.h> 13 #include <linux/file.h> 14 #include <linux/signal.h> 15 #include <linux/errno.h> 16 #include <linux/mm.h> 17 #include <linux/slab.h> 18 #include <linux/poll.h> 19 #include <linux/string.h> 20 #include <linux/list.h> 21 #include <linux/hash.h> 22 #include <linux/spinlock.h> 23 #include <linux/syscalls.h> 24 #include <linux/rbtree.h> 25 #include <linux/wait.h> 26 #include <linux/eventpoll.h> 27 #include <linux/mount.h> 28 #include <linux/bitops.h> 29 #include <linux/mutex.h> 30 #include <linux/anon_inodes.h> 31 #include <linux/device.h> 32 #include <linux/uaccess.h> 33 #include <asm/io.h> 34 #include <asm/mman.h> 35 #include <linux/atomic.h> 36 #include <linux/proc_fs.h> 37 #include <linux/seq_file.h> 38 #include <linux/compat.h> 39 #include <linux/rculist.h> 40 #include <net/busy_poll.h> 41 42 /* 43 * LOCKING: 44 * There are three level of locking required by epoll : 45 * 46 * 1) epmutex (mutex) 47 * 2) ep->mtx (mutex) 48 * 3) ep->lock (rwlock) 49 * 50 * The acquire order is the one listed above, from 1 to 3. 51 * We need a rwlock (ep->lock) because we manipulate objects 52 * from inside the poll callback, that might be triggered from 53 * a wake_up() that in turn might be called from IRQ context. 54 * So we can't sleep inside the poll callback and hence we need 55 * a spinlock. During the event transfer loop (from kernel to 56 * user space) we could end up sleeping due a copy_to_user(), so 57 * we need a lock that will allow us to sleep. This lock is a 58 * mutex (ep->mtx). It is acquired during the event transfer loop, 59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 60 * Then we also need a global mutex to serialize eventpoll_release_file() 61 * and ep_free(). 62 * This mutex is acquired by ep_free() during the epoll file 63 * cleanup path and it is also acquired by eventpoll_release_file() 64 * if a file has been pushed inside an epoll set and it is then 65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL). 66 * It is also acquired when inserting an epoll fd onto another epoll 67 * fd. We do this so that we walk the epoll tree and ensure that this 68 * insertion does not create a cycle of epoll file descriptors, which 69 * could lead to deadlock. We need a global mutex to prevent two 70 * simultaneous inserts (A into B and B into A) from racing and 71 * constructing a cycle without either insert observing that it is 72 * going to. 73 * It is necessary to acquire multiple "ep->mtx"es at once in the 74 * case when one epoll fd is added to another. In this case, we 75 * always acquire the locks in the order of nesting (i.e. after 76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 77 * before e2->mtx). Since we disallow cycles of epoll file 78 * descriptors, this ensures that the mutexes are well-ordered. In 79 * order to communicate this nesting to lockdep, when walking a tree 80 * of epoll file descriptors, we use the current recursion depth as 81 * the lockdep subkey. 82 * It is possible to drop the "ep->mtx" and to use the global 83 * mutex "epmutex" (together with "ep->lock") to have it working, 84 * but having "ep->mtx" will make the interface more scalable. 85 * Events that require holding "epmutex" are very rare, while for 86 * normal operations the epoll private "ep->mtx" will guarantee 87 * a better scalability. 88 */ 89 90 /* Epoll private bits inside the event mask */ 91 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE) 92 93 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT) 94 95 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \ 96 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE) 97 98 /* Maximum number of nesting allowed inside epoll sets */ 99 #define EP_MAX_NESTS 4 100 101 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 102 103 #define EP_UNACTIVE_PTR ((void *) -1L) 104 105 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 106 107 struct epoll_filefd { 108 struct file *file; 109 int fd; 110 } __packed; 111 112 /* Wait structure used by the poll hooks */ 113 struct eppoll_entry { 114 /* List header used to link this structure to the "struct epitem" */ 115 struct eppoll_entry *next; 116 117 /* The "base" pointer is set to the container "struct epitem" */ 118 struct epitem *base; 119 120 /* 121 * Wait queue item that will be linked to the target file wait 122 * queue head. 123 */ 124 wait_queue_entry_t wait; 125 126 /* The wait queue head that linked the "wait" wait queue item */ 127 wait_queue_head_t *whead; 128 }; 129 130 /* 131 * Each file descriptor added to the eventpoll interface will 132 * have an entry of this type linked to the "rbr" RB tree. 133 * Avoid increasing the size of this struct, there can be many thousands 134 * of these on a server and we do not want this to take another cache line. 135 */ 136 struct epitem { 137 union { 138 /* RB tree node links this structure to the eventpoll RB tree */ 139 struct rb_node rbn; 140 /* Used to free the struct epitem */ 141 struct rcu_head rcu; 142 }; 143 144 /* List header used to link this structure to the eventpoll ready list */ 145 struct list_head rdllink; 146 147 /* 148 * Works together "struct eventpoll"->ovflist in keeping the 149 * single linked chain of items. 150 */ 151 struct epitem *next; 152 153 /* The file descriptor information this item refers to */ 154 struct epoll_filefd ffd; 155 156 /* List containing poll wait queues */ 157 struct eppoll_entry *pwqlist; 158 159 /* The "container" of this item */ 160 struct eventpoll *ep; 161 162 /* List header used to link this item to the "struct file" items list */ 163 struct hlist_node fllink; 164 165 /* wakeup_source used when EPOLLWAKEUP is set */ 166 struct wakeup_source __rcu *ws; 167 168 /* The structure that describe the interested events and the source fd */ 169 struct epoll_event event; 170 }; 171 172 /* 173 * This structure is stored inside the "private_data" member of the file 174 * structure and represents the main data structure for the eventpoll 175 * interface. 176 */ 177 struct eventpoll { 178 /* 179 * This mutex is used to ensure that files are not removed 180 * while epoll is using them. This is held during the event 181 * collection loop, the file cleanup path, the epoll file exit 182 * code and the ctl operations. 183 */ 184 struct mutex mtx; 185 186 /* Wait queue used by sys_epoll_wait() */ 187 wait_queue_head_t wq; 188 189 /* Wait queue used by file->poll() */ 190 wait_queue_head_t poll_wait; 191 192 /* List of ready file descriptors */ 193 struct list_head rdllist; 194 195 /* Lock which protects rdllist and ovflist */ 196 rwlock_t lock; 197 198 /* RB tree root used to store monitored fd structs */ 199 struct rb_root_cached rbr; 200 201 /* 202 * This is a single linked list that chains all the "struct epitem" that 203 * happened while transferring ready events to userspace w/out 204 * holding ->lock. 205 */ 206 struct epitem *ovflist; 207 208 /* wakeup_source used when ep_scan_ready_list is running */ 209 struct wakeup_source *ws; 210 211 /* The user that created the eventpoll descriptor */ 212 struct user_struct *user; 213 214 struct file *file; 215 216 /* used to optimize loop detection check */ 217 u64 gen; 218 struct hlist_head refs; 219 220 #ifdef CONFIG_NET_RX_BUSY_POLL 221 /* used to track busy poll napi_id */ 222 unsigned int napi_id; 223 #endif 224 225 #ifdef CONFIG_DEBUG_LOCK_ALLOC 226 /* tracks wakeup nests for lockdep validation */ 227 u8 nests; 228 #endif 229 }; 230 231 /* Wrapper struct used by poll queueing */ 232 struct ep_pqueue { 233 poll_table pt; 234 struct epitem *epi; 235 }; 236 237 /* 238 * Configuration options available inside /proc/sys/fs/epoll/ 239 */ 240 /* Maximum number of epoll watched descriptors, per user */ 241 static long max_user_watches __read_mostly; 242 243 /* 244 * This mutex is used to serialize ep_free() and eventpoll_release_file(). 245 */ 246 static DEFINE_MUTEX(epmutex); 247 248 static u64 loop_check_gen = 0; 249 250 /* Used to check for epoll file descriptor inclusion loops */ 251 static struct eventpoll *inserting_into; 252 253 /* Slab cache used to allocate "struct epitem" */ 254 static struct kmem_cache *epi_cache __read_mostly; 255 256 /* Slab cache used to allocate "struct eppoll_entry" */ 257 static struct kmem_cache *pwq_cache __read_mostly; 258 259 /* 260 * List of files with newly added links, where we may need to limit the number 261 * of emanating paths. Protected by the epmutex. 262 */ 263 struct epitems_head { 264 struct hlist_head epitems; 265 struct epitems_head *next; 266 }; 267 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR; 268 269 static struct kmem_cache *ephead_cache __read_mostly; 270 271 static inline void free_ephead(struct epitems_head *head) 272 { 273 if (head) 274 kmem_cache_free(ephead_cache, head); 275 } 276 277 static void list_file(struct file *file) 278 { 279 struct epitems_head *head; 280 281 head = container_of(file->f_ep, struct epitems_head, epitems); 282 if (!head->next) { 283 head->next = tfile_check_list; 284 tfile_check_list = head; 285 } 286 } 287 288 static void unlist_file(struct epitems_head *head) 289 { 290 struct epitems_head *to_free = head; 291 struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems)); 292 if (p) { 293 struct epitem *epi= container_of(p, struct epitem, fllink); 294 spin_lock(&epi->ffd.file->f_lock); 295 if (!hlist_empty(&head->epitems)) 296 to_free = NULL; 297 head->next = NULL; 298 spin_unlock(&epi->ffd.file->f_lock); 299 } 300 free_ephead(to_free); 301 } 302 303 #ifdef CONFIG_SYSCTL 304 305 #include <linux/sysctl.h> 306 307 static long long_zero; 308 static long long_max = LONG_MAX; 309 310 struct ctl_table epoll_table[] = { 311 { 312 .procname = "max_user_watches", 313 .data = &max_user_watches, 314 .maxlen = sizeof(max_user_watches), 315 .mode = 0644, 316 .proc_handler = proc_doulongvec_minmax, 317 .extra1 = &long_zero, 318 .extra2 = &long_max, 319 }, 320 { } 321 }; 322 #endif /* CONFIG_SYSCTL */ 323 324 static const struct file_operations eventpoll_fops; 325 326 static inline int is_file_epoll(struct file *f) 327 { 328 return f->f_op == &eventpoll_fops; 329 } 330 331 /* Setup the structure that is used as key for the RB tree */ 332 static inline void ep_set_ffd(struct epoll_filefd *ffd, 333 struct file *file, int fd) 334 { 335 ffd->file = file; 336 ffd->fd = fd; 337 } 338 339 /* Compare RB tree keys */ 340 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 341 struct epoll_filefd *p2) 342 { 343 return (p1->file > p2->file ? +1: 344 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 345 } 346 347 /* Tells us if the item is currently linked */ 348 static inline int ep_is_linked(struct epitem *epi) 349 { 350 return !list_empty(&epi->rdllink); 351 } 352 353 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p) 354 { 355 return container_of(p, struct eppoll_entry, wait); 356 } 357 358 /* Get the "struct epitem" from a wait queue pointer */ 359 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p) 360 { 361 return container_of(p, struct eppoll_entry, wait)->base; 362 } 363 364 /** 365 * ep_events_available - Checks if ready events might be available. 366 * 367 * @ep: Pointer to the eventpoll context. 368 * 369 * Return: a value different than %zero if ready events are available, 370 * or %zero otherwise. 371 */ 372 static inline int ep_events_available(struct eventpoll *ep) 373 { 374 return !list_empty_careful(&ep->rdllist) || 375 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR; 376 } 377 378 #ifdef CONFIG_NET_RX_BUSY_POLL 379 static bool ep_busy_loop_end(void *p, unsigned long start_time) 380 { 381 struct eventpoll *ep = p; 382 383 return ep_events_available(ep) || busy_loop_timeout(start_time); 384 } 385 386 /* 387 * Busy poll if globally on and supporting sockets found && no events, 388 * busy loop will return if need_resched or ep_events_available. 389 * 390 * we must do our busy polling with irqs enabled 391 */ 392 static bool ep_busy_loop(struct eventpoll *ep, int nonblock) 393 { 394 unsigned int napi_id = READ_ONCE(ep->napi_id); 395 396 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) { 397 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, false, 398 BUSY_POLL_BUDGET); 399 if (ep_events_available(ep)) 400 return true; 401 /* 402 * Busy poll timed out. Drop NAPI ID for now, we can add 403 * it back in when we have moved a socket with a valid NAPI 404 * ID onto the ready list. 405 */ 406 ep->napi_id = 0; 407 return false; 408 } 409 return false; 410 } 411 412 /* 413 * Set epoll busy poll NAPI ID from sk. 414 */ 415 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 416 { 417 struct eventpoll *ep; 418 unsigned int napi_id; 419 struct socket *sock; 420 struct sock *sk; 421 422 if (!net_busy_loop_on()) 423 return; 424 425 sock = sock_from_file(epi->ffd.file); 426 if (!sock) 427 return; 428 429 sk = sock->sk; 430 if (!sk) 431 return; 432 433 napi_id = READ_ONCE(sk->sk_napi_id); 434 ep = epi->ep; 435 436 /* Non-NAPI IDs can be rejected 437 * or 438 * Nothing to do if we already have this ID 439 */ 440 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id) 441 return; 442 443 /* record NAPI ID for use in next busy poll */ 444 ep->napi_id = napi_id; 445 } 446 447 #else 448 449 static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock) 450 { 451 return false; 452 } 453 454 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 455 { 456 } 457 458 #endif /* CONFIG_NET_RX_BUSY_POLL */ 459 460 /* 461 * As described in commit 0ccf831cb lockdep: annotate epoll 462 * the use of wait queues used by epoll is done in a very controlled 463 * manner. Wake ups can nest inside each other, but are never done 464 * with the same locking. For example: 465 * 466 * dfd = socket(...); 467 * efd1 = epoll_create(); 468 * efd2 = epoll_create(); 469 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 470 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 471 * 472 * When a packet arrives to the device underneath "dfd", the net code will 473 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 474 * callback wakeup entry on that queue, and the wake_up() performed by the 475 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 476 * (efd1) notices that it may have some event ready, so it needs to wake up 477 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 478 * that ends up in another wake_up(), after having checked about the 479 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to 480 * avoid stack blasting. 481 * 482 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 483 * this special case of epoll. 484 */ 485 #ifdef CONFIG_DEBUG_LOCK_ALLOC 486 487 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi) 488 { 489 struct eventpoll *ep_src; 490 unsigned long flags; 491 u8 nests = 0; 492 493 /* 494 * To set the subclass or nesting level for spin_lock_irqsave_nested() 495 * it might be natural to create a per-cpu nest count. However, since 496 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can 497 * schedule() in the -rt kernel, the per-cpu variable are no longer 498 * protected. Thus, we are introducing a per eventpoll nest field. 499 * If we are not being call from ep_poll_callback(), epi is NULL and 500 * we are at the first level of nesting, 0. Otherwise, we are being 501 * called from ep_poll_callback() and if a previous wakeup source is 502 * not an epoll file itself, we are at depth 1 since the wakeup source 503 * is depth 0. If the wakeup source is a previous epoll file in the 504 * wakeup chain then we use its nests value and record ours as 505 * nests + 1. The previous epoll file nests value is stable since its 506 * already holding its own poll_wait.lock. 507 */ 508 if (epi) { 509 if ((is_file_epoll(epi->ffd.file))) { 510 ep_src = epi->ffd.file->private_data; 511 nests = ep_src->nests; 512 } else { 513 nests = 1; 514 } 515 } 516 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests); 517 ep->nests = nests + 1; 518 wake_up_locked_poll(&ep->poll_wait, EPOLLIN); 519 ep->nests = 0; 520 spin_unlock_irqrestore(&ep->poll_wait.lock, flags); 521 } 522 523 #else 524 525 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi) 526 { 527 wake_up_poll(&ep->poll_wait, EPOLLIN); 528 } 529 530 #endif 531 532 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 533 { 534 wait_queue_head_t *whead; 535 536 rcu_read_lock(); 537 /* 538 * If it is cleared by POLLFREE, it should be rcu-safe. 539 * If we read NULL we need a barrier paired with 540 * smp_store_release() in ep_poll_callback(), otherwise 541 * we rely on whead->lock. 542 */ 543 whead = smp_load_acquire(&pwq->whead); 544 if (whead) 545 remove_wait_queue(whead, &pwq->wait); 546 rcu_read_unlock(); 547 } 548 549 /* 550 * This function unregisters poll callbacks from the associated file 551 * descriptor. Must be called with "mtx" held (or "epmutex" if called from 552 * ep_free). 553 */ 554 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 555 { 556 struct eppoll_entry **p = &epi->pwqlist; 557 struct eppoll_entry *pwq; 558 559 while ((pwq = *p) != NULL) { 560 *p = pwq->next; 561 ep_remove_wait_queue(pwq); 562 kmem_cache_free(pwq_cache, pwq); 563 } 564 } 565 566 /* call only when ep->mtx is held */ 567 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) 568 { 569 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); 570 } 571 572 /* call only when ep->mtx is held */ 573 static inline void ep_pm_stay_awake(struct epitem *epi) 574 { 575 struct wakeup_source *ws = ep_wakeup_source(epi); 576 577 if (ws) 578 __pm_stay_awake(ws); 579 } 580 581 static inline bool ep_has_wakeup_source(struct epitem *epi) 582 { 583 return rcu_access_pointer(epi->ws) ? true : false; 584 } 585 586 /* call when ep->mtx cannot be held (ep_poll_callback) */ 587 static inline void ep_pm_stay_awake_rcu(struct epitem *epi) 588 { 589 struct wakeup_source *ws; 590 591 rcu_read_lock(); 592 ws = rcu_dereference(epi->ws); 593 if (ws) 594 __pm_stay_awake(ws); 595 rcu_read_unlock(); 596 } 597 598 599 /* 600 * ep->mutex needs to be held because we could be hit by 601 * eventpoll_release_file() and epoll_ctl(). 602 */ 603 static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist) 604 { 605 /* 606 * Steal the ready list, and re-init the original one to the 607 * empty list. Also, set ep->ovflist to NULL so that events 608 * happening while looping w/out locks, are not lost. We cannot 609 * have the poll callback to queue directly on ep->rdllist, 610 * because we want the "sproc" callback to be able to do it 611 * in a lockless way. 612 */ 613 lockdep_assert_irqs_enabled(); 614 write_lock_irq(&ep->lock); 615 list_splice_init(&ep->rdllist, txlist); 616 WRITE_ONCE(ep->ovflist, NULL); 617 write_unlock_irq(&ep->lock); 618 } 619 620 static void ep_done_scan(struct eventpoll *ep, 621 struct list_head *txlist) 622 { 623 struct epitem *epi, *nepi; 624 625 write_lock_irq(&ep->lock); 626 /* 627 * During the time we spent inside the "sproc" callback, some 628 * other events might have been queued by the poll callback. 629 * We re-insert them inside the main ready-list here. 630 */ 631 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL; 632 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 633 /* 634 * We need to check if the item is already in the list. 635 * During the "sproc" callback execution time, items are 636 * queued into ->ovflist but the "txlist" might already 637 * contain them, and the list_splice() below takes care of them. 638 */ 639 if (!ep_is_linked(epi)) { 640 /* 641 * ->ovflist is LIFO, so we have to reverse it in order 642 * to keep in FIFO. 643 */ 644 list_add(&epi->rdllink, &ep->rdllist); 645 ep_pm_stay_awake(epi); 646 } 647 } 648 /* 649 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 650 * releasing the lock, events will be queued in the normal way inside 651 * ep->rdllist. 652 */ 653 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR); 654 655 /* 656 * Quickly re-inject items left on "txlist". 657 */ 658 list_splice(txlist, &ep->rdllist); 659 __pm_relax(ep->ws); 660 661 if (!list_empty(&ep->rdllist)) { 662 if (waitqueue_active(&ep->wq)) 663 wake_up(&ep->wq); 664 } 665 666 write_unlock_irq(&ep->lock); 667 } 668 669 static void epi_rcu_free(struct rcu_head *head) 670 { 671 struct epitem *epi = container_of(head, struct epitem, rcu); 672 kmem_cache_free(epi_cache, epi); 673 } 674 675 /* 676 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 677 * all the associated resources. Must be called with "mtx" held. 678 */ 679 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 680 { 681 struct file *file = epi->ffd.file; 682 struct epitems_head *to_free; 683 struct hlist_head *head; 684 685 lockdep_assert_irqs_enabled(); 686 687 /* 688 * Removes poll wait queue hooks. 689 */ 690 ep_unregister_pollwait(ep, epi); 691 692 /* Remove the current item from the list of epoll hooks */ 693 spin_lock(&file->f_lock); 694 to_free = NULL; 695 head = file->f_ep; 696 if (head->first == &epi->fllink && !epi->fllink.next) { 697 file->f_ep = NULL; 698 if (!is_file_epoll(file)) { 699 struct epitems_head *v; 700 v = container_of(head, struct epitems_head, epitems); 701 if (!smp_load_acquire(&v->next)) 702 to_free = v; 703 } 704 } 705 hlist_del_rcu(&epi->fllink); 706 spin_unlock(&file->f_lock); 707 free_ephead(to_free); 708 709 rb_erase_cached(&epi->rbn, &ep->rbr); 710 711 write_lock_irq(&ep->lock); 712 if (ep_is_linked(epi)) 713 list_del_init(&epi->rdllink); 714 write_unlock_irq(&ep->lock); 715 716 wakeup_source_unregister(ep_wakeup_source(epi)); 717 /* 718 * At this point it is safe to free the eventpoll item. Use the union 719 * field epi->rcu, since we are trying to minimize the size of 720 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by 721 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make 722 * use of the rbn field. 723 */ 724 call_rcu(&epi->rcu, epi_rcu_free); 725 726 percpu_counter_dec(&ep->user->epoll_watches); 727 728 return 0; 729 } 730 731 static void ep_free(struct eventpoll *ep) 732 { 733 struct rb_node *rbp; 734 struct epitem *epi; 735 736 /* We need to release all tasks waiting for these file */ 737 if (waitqueue_active(&ep->poll_wait)) 738 ep_poll_safewake(ep, NULL); 739 740 /* 741 * We need to lock this because we could be hit by 742 * eventpoll_release_file() while we're freeing the "struct eventpoll". 743 * We do not need to hold "ep->mtx" here because the epoll file 744 * is on the way to be removed and no one has references to it 745 * anymore. The only hit might come from eventpoll_release_file() but 746 * holding "epmutex" is sufficient here. 747 */ 748 mutex_lock(&epmutex); 749 750 /* 751 * Walks through the whole tree by unregistering poll callbacks. 752 */ 753 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 754 epi = rb_entry(rbp, struct epitem, rbn); 755 756 ep_unregister_pollwait(ep, epi); 757 cond_resched(); 758 } 759 760 /* 761 * Walks through the whole tree by freeing each "struct epitem". At this 762 * point we are sure no poll callbacks will be lingering around, and also by 763 * holding "epmutex" we can be sure that no file cleanup code will hit 764 * us during this operation. So we can avoid the lock on "ep->lock". 765 * We do not need to lock ep->mtx, either, we only do it to prevent 766 * a lockdep warning. 767 */ 768 mutex_lock(&ep->mtx); 769 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) { 770 epi = rb_entry(rbp, struct epitem, rbn); 771 ep_remove(ep, epi); 772 cond_resched(); 773 } 774 mutex_unlock(&ep->mtx); 775 776 mutex_unlock(&epmutex); 777 mutex_destroy(&ep->mtx); 778 free_uid(ep->user); 779 wakeup_source_unregister(ep->ws); 780 kfree(ep); 781 } 782 783 static int ep_eventpoll_release(struct inode *inode, struct file *file) 784 { 785 struct eventpoll *ep = file->private_data; 786 787 if (ep) 788 ep_free(ep); 789 790 return 0; 791 } 792 793 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth); 794 795 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth) 796 { 797 struct eventpoll *ep = file->private_data; 798 LIST_HEAD(txlist); 799 struct epitem *epi, *tmp; 800 poll_table pt; 801 __poll_t res = 0; 802 803 init_poll_funcptr(&pt, NULL); 804 805 /* Insert inside our poll wait queue */ 806 poll_wait(file, &ep->poll_wait, wait); 807 808 /* 809 * Proceed to find out if wanted events are really available inside 810 * the ready list. 811 */ 812 mutex_lock_nested(&ep->mtx, depth); 813 ep_start_scan(ep, &txlist); 814 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { 815 if (ep_item_poll(epi, &pt, depth + 1)) { 816 res = EPOLLIN | EPOLLRDNORM; 817 break; 818 } else { 819 /* 820 * Item has been dropped into the ready list by the poll 821 * callback, but it's not actually ready, as far as 822 * caller requested events goes. We can remove it here. 823 */ 824 __pm_relax(ep_wakeup_source(epi)); 825 list_del_init(&epi->rdllink); 826 } 827 } 828 ep_done_scan(ep, &txlist); 829 mutex_unlock(&ep->mtx); 830 return res; 831 } 832 833 /* 834 * Differs from ep_eventpoll_poll() in that internal callers already have 835 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested() 836 * is correctly annotated. 837 */ 838 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, 839 int depth) 840 { 841 struct file *file = epi->ffd.file; 842 __poll_t res; 843 844 pt->_key = epi->event.events; 845 if (!is_file_epoll(file)) 846 res = vfs_poll(file, pt); 847 else 848 res = __ep_eventpoll_poll(file, pt, depth); 849 return res & epi->event.events; 850 } 851 852 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait) 853 { 854 return __ep_eventpoll_poll(file, wait, 0); 855 } 856 857 #ifdef CONFIG_PROC_FS 858 static void ep_show_fdinfo(struct seq_file *m, struct file *f) 859 { 860 struct eventpoll *ep = f->private_data; 861 struct rb_node *rbp; 862 863 mutex_lock(&ep->mtx); 864 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 865 struct epitem *epi = rb_entry(rbp, struct epitem, rbn); 866 struct inode *inode = file_inode(epi->ffd.file); 867 868 seq_printf(m, "tfd: %8d events: %8x data: %16llx " 869 " pos:%lli ino:%lx sdev:%x\n", 870 epi->ffd.fd, epi->event.events, 871 (long long)epi->event.data, 872 (long long)epi->ffd.file->f_pos, 873 inode->i_ino, inode->i_sb->s_dev); 874 if (seq_has_overflowed(m)) 875 break; 876 } 877 mutex_unlock(&ep->mtx); 878 } 879 #endif 880 881 /* File callbacks that implement the eventpoll file behaviour */ 882 static const struct file_operations eventpoll_fops = { 883 #ifdef CONFIG_PROC_FS 884 .show_fdinfo = ep_show_fdinfo, 885 #endif 886 .release = ep_eventpoll_release, 887 .poll = ep_eventpoll_poll, 888 .llseek = noop_llseek, 889 }; 890 891 /* 892 * This is called from eventpoll_release() to unlink files from the eventpoll 893 * interface. We need to have this facility to cleanup correctly files that are 894 * closed without being removed from the eventpoll interface. 895 */ 896 void eventpoll_release_file(struct file *file) 897 { 898 struct eventpoll *ep; 899 struct epitem *epi; 900 struct hlist_node *next; 901 902 /* 903 * We don't want to get "file->f_lock" because it is not 904 * necessary. It is not necessary because we're in the "struct file" 905 * cleanup path, and this means that no one is using this file anymore. 906 * So, for example, epoll_ctl() cannot hit here since if we reach this 907 * point, the file counter already went to zero and fget() would fail. 908 * The only hit might come from ep_free() but by holding the mutex 909 * will correctly serialize the operation. We do need to acquire 910 * "ep->mtx" after "epmutex" because ep_remove() requires it when called 911 * from anywhere but ep_free(). 912 * 913 * Besides, ep_remove() acquires the lock, so we can't hold it here. 914 */ 915 mutex_lock(&epmutex); 916 if (unlikely(!file->f_ep)) { 917 mutex_unlock(&epmutex); 918 return; 919 } 920 hlist_for_each_entry_safe(epi, next, file->f_ep, fllink) { 921 ep = epi->ep; 922 mutex_lock_nested(&ep->mtx, 0); 923 ep_remove(ep, epi); 924 mutex_unlock(&ep->mtx); 925 } 926 mutex_unlock(&epmutex); 927 } 928 929 static int ep_alloc(struct eventpoll **pep) 930 { 931 int error; 932 struct user_struct *user; 933 struct eventpoll *ep; 934 935 user = get_current_user(); 936 error = -ENOMEM; 937 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 938 if (unlikely(!ep)) 939 goto free_uid; 940 941 mutex_init(&ep->mtx); 942 rwlock_init(&ep->lock); 943 init_waitqueue_head(&ep->wq); 944 init_waitqueue_head(&ep->poll_wait); 945 INIT_LIST_HEAD(&ep->rdllist); 946 ep->rbr = RB_ROOT_CACHED; 947 ep->ovflist = EP_UNACTIVE_PTR; 948 ep->user = user; 949 950 *pep = ep; 951 952 return 0; 953 954 free_uid: 955 free_uid(user); 956 return error; 957 } 958 959 /* 960 * Search the file inside the eventpoll tree. The RB tree operations 961 * are protected by the "mtx" mutex, and ep_find() must be called with 962 * "mtx" held. 963 */ 964 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 965 { 966 int kcmp; 967 struct rb_node *rbp; 968 struct epitem *epi, *epir = NULL; 969 struct epoll_filefd ffd; 970 971 ep_set_ffd(&ffd, file, fd); 972 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) { 973 epi = rb_entry(rbp, struct epitem, rbn); 974 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 975 if (kcmp > 0) 976 rbp = rbp->rb_right; 977 else if (kcmp < 0) 978 rbp = rbp->rb_left; 979 else { 980 epir = epi; 981 break; 982 } 983 } 984 985 return epir; 986 } 987 988 #ifdef CONFIG_KCMP 989 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff) 990 { 991 struct rb_node *rbp; 992 struct epitem *epi; 993 994 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 995 epi = rb_entry(rbp, struct epitem, rbn); 996 if (epi->ffd.fd == tfd) { 997 if (toff == 0) 998 return epi; 999 else 1000 toff--; 1001 } 1002 cond_resched(); 1003 } 1004 1005 return NULL; 1006 } 1007 1008 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, 1009 unsigned long toff) 1010 { 1011 struct file *file_raw; 1012 struct eventpoll *ep; 1013 struct epitem *epi; 1014 1015 if (!is_file_epoll(file)) 1016 return ERR_PTR(-EINVAL); 1017 1018 ep = file->private_data; 1019 1020 mutex_lock(&ep->mtx); 1021 epi = ep_find_tfd(ep, tfd, toff); 1022 if (epi) 1023 file_raw = epi->ffd.file; 1024 else 1025 file_raw = ERR_PTR(-ENOENT); 1026 mutex_unlock(&ep->mtx); 1027 1028 return file_raw; 1029 } 1030 #endif /* CONFIG_KCMP */ 1031 1032 /* 1033 * Adds a new entry to the tail of the list in a lockless way, i.e. 1034 * multiple CPUs are allowed to call this function concurrently. 1035 * 1036 * Beware: it is necessary to prevent any other modifications of the 1037 * existing list until all changes are completed, in other words 1038 * concurrent list_add_tail_lockless() calls should be protected 1039 * with a read lock, where write lock acts as a barrier which 1040 * makes sure all list_add_tail_lockless() calls are fully 1041 * completed. 1042 * 1043 * Also an element can be locklessly added to the list only in one 1044 * direction i.e. either to the tail or to the head, otherwise 1045 * concurrent access will corrupt the list. 1046 * 1047 * Return: %false if element has been already added to the list, %true 1048 * otherwise. 1049 */ 1050 static inline bool list_add_tail_lockless(struct list_head *new, 1051 struct list_head *head) 1052 { 1053 struct list_head *prev; 1054 1055 /* 1056 * This is simple 'new->next = head' operation, but cmpxchg() 1057 * is used in order to detect that same element has been just 1058 * added to the list from another CPU: the winner observes 1059 * new->next == new. 1060 */ 1061 if (cmpxchg(&new->next, new, head) != new) 1062 return false; 1063 1064 /* 1065 * Initially ->next of a new element must be updated with the head 1066 * (we are inserting to the tail) and only then pointers are atomically 1067 * exchanged. XCHG guarantees memory ordering, thus ->next should be 1068 * updated before pointers are actually swapped and pointers are 1069 * swapped before prev->next is updated. 1070 */ 1071 1072 prev = xchg(&head->prev, new); 1073 1074 /* 1075 * It is safe to modify prev->next and new->prev, because a new element 1076 * is added only to the tail and new->next is updated before XCHG. 1077 */ 1078 1079 prev->next = new; 1080 new->prev = prev; 1081 1082 return true; 1083 } 1084 1085 /* 1086 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way, 1087 * i.e. multiple CPUs are allowed to call this function concurrently. 1088 * 1089 * Return: %false if epi element has been already chained, %true otherwise. 1090 */ 1091 static inline bool chain_epi_lockless(struct epitem *epi) 1092 { 1093 struct eventpoll *ep = epi->ep; 1094 1095 /* Fast preliminary check */ 1096 if (epi->next != EP_UNACTIVE_PTR) 1097 return false; 1098 1099 /* Check that the same epi has not been just chained from another CPU */ 1100 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR) 1101 return false; 1102 1103 /* Atomically exchange tail */ 1104 epi->next = xchg(&ep->ovflist, epi); 1105 1106 return true; 1107 } 1108 1109 /* 1110 * This is the callback that is passed to the wait queue wakeup 1111 * mechanism. It is called by the stored file descriptors when they 1112 * have events to report. 1113 * 1114 * This callback takes a read lock in order not to contend with concurrent 1115 * events from another file descriptor, thus all modifications to ->rdllist 1116 * or ->ovflist are lockless. Read lock is paired with the write lock from 1117 * ep_scan_ready_list(), which stops all list modifications and guarantees 1118 * that lists state is seen correctly. 1119 * 1120 * Another thing worth to mention is that ep_poll_callback() can be called 1121 * concurrently for the same @epi from different CPUs if poll table was inited 1122 * with several wait queues entries. Plural wakeup from different CPUs of a 1123 * single wait queue is serialized by wq.lock, but the case when multiple wait 1124 * queues are used should be detected accordingly. This is detected using 1125 * cmpxchg() operation. 1126 */ 1127 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1128 { 1129 int pwake = 0; 1130 struct epitem *epi = ep_item_from_wait(wait); 1131 struct eventpoll *ep = epi->ep; 1132 __poll_t pollflags = key_to_poll(key); 1133 unsigned long flags; 1134 int ewake = 0; 1135 1136 read_lock_irqsave(&ep->lock, flags); 1137 1138 ep_set_busy_poll_napi_id(epi); 1139 1140 /* 1141 * If the event mask does not contain any poll(2) event, we consider the 1142 * descriptor to be disabled. This condition is likely the effect of the 1143 * EPOLLONESHOT bit that disables the descriptor when an event is received, 1144 * until the next EPOLL_CTL_MOD will be issued. 1145 */ 1146 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 1147 goto out_unlock; 1148 1149 /* 1150 * Check the events coming with the callback. At this stage, not 1151 * every device reports the events in the "key" parameter of the 1152 * callback. We need to be able to handle both cases here, hence the 1153 * test for "key" != NULL before the event match test. 1154 */ 1155 if (pollflags && !(pollflags & epi->event.events)) 1156 goto out_unlock; 1157 1158 /* 1159 * If we are transferring events to userspace, we can hold no locks 1160 * (because we're accessing user memory, and because of linux f_op->poll() 1161 * semantics). All the events that happen during that period of time are 1162 * chained in ep->ovflist and requeued later on. 1163 */ 1164 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) { 1165 if (chain_epi_lockless(epi)) 1166 ep_pm_stay_awake_rcu(epi); 1167 } else if (!ep_is_linked(epi)) { 1168 /* In the usual case, add event to ready list. */ 1169 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist)) 1170 ep_pm_stay_awake_rcu(epi); 1171 } 1172 1173 /* 1174 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1175 * wait list. 1176 */ 1177 if (waitqueue_active(&ep->wq)) { 1178 if ((epi->event.events & EPOLLEXCLUSIVE) && 1179 !(pollflags & POLLFREE)) { 1180 switch (pollflags & EPOLLINOUT_BITS) { 1181 case EPOLLIN: 1182 if (epi->event.events & EPOLLIN) 1183 ewake = 1; 1184 break; 1185 case EPOLLOUT: 1186 if (epi->event.events & EPOLLOUT) 1187 ewake = 1; 1188 break; 1189 case 0: 1190 ewake = 1; 1191 break; 1192 } 1193 } 1194 wake_up(&ep->wq); 1195 } 1196 if (waitqueue_active(&ep->poll_wait)) 1197 pwake++; 1198 1199 out_unlock: 1200 read_unlock_irqrestore(&ep->lock, flags); 1201 1202 /* We have to call this outside the lock */ 1203 if (pwake) 1204 ep_poll_safewake(ep, epi); 1205 1206 if (!(epi->event.events & EPOLLEXCLUSIVE)) 1207 ewake = 1; 1208 1209 if (pollflags & POLLFREE) { 1210 /* 1211 * If we race with ep_remove_wait_queue() it can miss 1212 * ->whead = NULL and do another remove_wait_queue() after 1213 * us, so we can't use __remove_wait_queue(). 1214 */ 1215 list_del_init(&wait->entry); 1216 /* 1217 * ->whead != NULL protects us from the race with ep_free() 1218 * or ep_remove(), ep_remove_wait_queue() takes whead->lock 1219 * held by the caller. Once we nullify it, nothing protects 1220 * ep/epi or even wait. 1221 */ 1222 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL); 1223 } 1224 1225 return ewake; 1226 } 1227 1228 /* 1229 * This is the callback that is used to add our wait queue to the 1230 * target file wakeup lists. 1231 */ 1232 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 1233 poll_table *pt) 1234 { 1235 struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt); 1236 struct epitem *epi = epq->epi; 1237 struct eppoll_entry *pwq; 1238 1239 if (unlikely(!epi)) // an earlier allocation has failed 1240 return; 1241 1242 pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL); 1243 if (unlikely(!pwq)) { 1244 epq->epi = NULL; 1245 return; 1246 } 1247 1248 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 1249 pwq->whead = whead; 1250 pwq->base = epi; 1251 if (epi->event.events & EPOLLEXCLUSIVE) 1252 add_wait_queue_exclusive(whead, &pwq->wait); 1253 else 1254 add_wait_queue(whead, &pwq->wait); 1255 pwq->next = epi->pwqlist; 1256 epi->pwqlist = pwq; 1257 } 1258 1259 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1260 { 1261 int kcmp; 1262 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL; 1263 struct epitem *epic; 1264 bool leftmost = true; 1265 1266 while (*p) { 1267 parent = *p; 1268 epic = rb_entry(parent, struct epitem, rbn); 1269 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1270 if (kcmp > 0) { 1271 p = &parent->rb_right; 1272 leftmost = false; 1273 } else 1274 p = &parent->rb_left; 1275 } 1276 rb_link_node(&epi->rbn, parent, p); 1277 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost); 1278 } 1279 1280 1281 1282 #define PATH_ARR_SIZE 5 1283 /* 1284 * These are the number paths of length 1 to 5, that we are allowing to emanate 1285 * from a single file of interest. For example, we allow 1000 paths of length 1286 * 1, to emanate from each file of interest. This essentially represents the 1287 * potential wakeup paths, which need to be limited in order to avoid massive 1288 * uncontrolled wakeup storms. The common use case should be a single ep which 1289 * is connected to n file sources. In this case each file source has 1 path 1290 * of length 1. Thus, the numbers below should be more than sufficient. These 1291 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1292 * and delete can't add additional paths. Protected by the epmutex. 1293 */ 1294 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1295 static int path_count[PATH_ARR_SIZE]; 1296 1297 static int path_count_inc(int nests) 1298 { 1299 /* Allow an arbitrary number of depth 1 paths */ 1300 if (nests == 0) 1301 return 0; 1302 1303 if (++path_count[nests] > path_limits[nests]) 1304 return -1; 1305 return 0; 1306 } 1307 1308 static void path_count_init(void) 1309 { 1310 int i; 1311 1312 for (i = 0; i < PATH_ARR_SIZE; i++) 1313 path_count[i] = 0; 1314 } 1315 1316 static int reverse_path_check_proc(struct hlist_head *refs, int depth) 1317 { 1318 int error = 0; 1319 struct epitem *epi; 1320 1321 if (depth > EP_MAX_NESTS) /* too deep nesting */ 1322 return -1; 1323 1324 /* CTL_DEL can remove links here, but that can't increase our count */ 1325 hlist_for_each_entry_rcu(epi, refs, fllink) { 1326 struct hlist_head *refs = &epi->ep->refs; 1327 if (hlist_empty(refs)) 1328 error = path_count_inc(depth); 1329 else 1330 error = reverse_path_check_proc(refs, depth + 1); 1331 if (error != 0) 1332 break; 1333 } 1334 return error; 1335 } 1336 1337 /** 1338 * reverse_path_check - The tfile_check_list is list of epitem_head, which have 1339 * links that are proposed to be newly added. We need to 1340 * make sure that those added links don't add too many 1341 * paths such that we will spend all our time waking up 1342 * eventpoll objects. 1343 * 1344 * Return: %zero if the proposed links don't create too many paths, 1345 * %-1 otherwise. 1346 */ 1347 static int reverse_path_check(void) 1348 { 1349 struct epitems_head *p; 1350 1351 for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) { 1352 int error; 1353 path_count_init(); 1354 rcu_read_lock(); 1355 error = reverse_path_check_proc(&p->epitems, 0); 1356 rcu_read_unlock(); 1357 if (error) 1358 return error; 1359 } 1360 return 0; 1361 } 1362 1363 static int ep_create_wakeup_source(struct epitem *epi) 1364 { 1365 struct name_snapshot n; 1366 struct wakeup_source *ws; 1367 1368 if (!epi->ep->ws) { 1369 epi->ep->ws = wakeup_source_register(NULL, "eventpoll"); 1370 if (!epi->ep->ws) 1371 return -ENOMEM; 1372 } 1373 1374 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry); 1375 ws = wakeup_source_register(NULL, n.name.name); 1376 release_dentry_name_snapshot(&n); 1377 1378 if (!ws) 1379 return -ENOMEM; 1380 rcu_assign_pointer(epi->ws, ws); 1381 1382 return 0; 1383 } 1384 1385 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ 1386 static noinline void ep_destroy_wakeup_source(struct epitem *epi) 1387 { 1388 struct wakeup_source *ws = ep_wakeup_source(epi); 1389 1390 RCU_INIT_POINTER(epi->ws, NULL); 1391 1392 /* 1393 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is 1394 * used internally by wakeup_source_remove, too (called by 1395 * wakeup_source_unregister), so we cannot use call_rcu 1396 */ 1397 synchronize_rcu(); 1398 wakeup_source_unregister(ws); 1399 } 1400 1401 static int attach_epitem(struct file *file, struct epitem *epi) 1402 { 1403 struct epitems_head *to_free = NULL; 1404 struct hlist_head *head = NULL; 1405 struct eventpoll *ep = NULL; 1406 1407 if (is_file_epoll(file)) 1408 ep = file->private_data; 1409 1410 if (ep) { 1411 head = &ep->refs; 1412 } else if (!READ_ONCE(file->f_ep)) { 1413 allocate: 1414 to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL); 1415 if (!to_free) 1416 return -ENOMEM; 1417 head = &to_free->epitems; 1418 } 1419 spin_lock(&file->f_lock); 1420 if (!file->f_ep) { 1421 if (unlikely(!head)) { 1422 spin_unlock(&file->f_lock); 1423 goto allocate; 1424 } 1425 file->f_ep = head; 1426 to_free = NULL; 1427 } 1428 hlist_add_head_rcu(&epi->fllink, file->f_ep); 1429 spin_unlock(&file->f_lock); 1430 free_ephead(to_free); 1431 return 0; 1432 } 1433 1434 /* 1435 * Must be called with "mtx" held. 1436 */ 1437 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event, 1438 struct file *tfile, int fd, int full_check) 1439 { 1440 int error, pwake = 0; 1441 __poll_t revents; 1442 struct epitem *epi; 1443 struct ep_pqueue epq; 1444 struct eventpoll *tep = NULL; 1445 1446 if (is_file_epoll(tfile)) 1447 tep = tfile->private_data; 1448 1449 lockdep_assert_irqs_enabled(); 1450 1451 if (unlikely(percpu_counter_compare(&ep->user->epoll_watches, 1452 max_user_watches) >= 0)) 1453 return -ENOSPC; 1454 percpu_counter_inc(&ep->user->epoll_watches); 1455 1456 if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) { 1457 percpu_counter_dec(&ep->user->epoll_watches); 1458 return -ENOMEM; 1459 } 1460 1461 /* Item initialization follow here ... */ 1462 INIT_LIST_HEAD(&epi->rdllink); 1463 epi->ep = ep; 1464 ep_set_ffd(&epi->ffd, tfile, fd); 1465 epi->event = *event; 1466 epi->next = EP_UNACTIVE_PTR; 1467 1468 if (tep) 1469 mutex_lock_nested(&tep->mtx, 1); 1470 /* Add the current item to the list of active epoll hook for this file */ 1471 if (unlikely(attach_epitem(tfile, epi) < 0)) { 1472 if (tep) 1473 mutex_unlock(&tep->mtx); 1474 kmem_cache_free(epi_cache, epi); 1475 percpu_counter_dec(&ep->user->epoll_watches); 1476 return -ENOMEM; 1477 } 1478 1479 if (full_check && !tep) 1480 list_file(tfile); 1481 1482 /* 1483 * Add the current item to the RB tree. All RB tree operations are 1484 * protected by "mtx", and ep_insert() is called with "mtx" held. 1485 */ 1486 ep_rbtree_insert(ep, epi); 1487 if (tep) 1488 mutex_unlock(&tep->mtx); 1489 1490 /* now check if we've created too many backpaths */ 1491 if (unlikely(full_check && reverse_path_check())) { 1492 ep_remove(ep, epi); 1493 return -EINVAL; 1494 } 1495 1496 if (epi->event.events & EPOLLWAKEUP) { 1497 error = ep_create_wakeup_source(epi); 1498 if (error) { 1499 ep_remove(ep, epi); 1500 return error; 1501 } 1502 } 1503 1504 /* Initialize the poll table using the queue callback */ 1505 epq.epi = epi; 1506 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1507 1508 /* 1509 * Attach the item to the poll hooks and get current event bits. 1510 * We can safely use the file* here because its usage count has 1511 * been increased by the caller of this function. Note that after 1512 * this operation completes, the poll callback can start hitting 1513 * the new item. 1514 */ 1515 revents = ep_item_poll(epi, &epq.pt, 1); 1516 1517 /* 1518 * We have to check if something went wrong during the poll wait queue 1519 * install process. Namely an allocation for a wait queue failed due 1520 * high memory pressure. 1521 */ 1522 if (unlikely(!epq.epi)) { 1523 ep_remove(ep, epi); 1524 return -ENOMEM; 1525 } 1526 1527 /* We have to drop the new item inside our item list to keep track of it */ 1528 write_lock_irq(&ep->lock); 1529 1530 /* record NAPI ID of new item if present */ 1531 ep_set_busy_poll_napi_id(epi); 1532 1533 /* If the file is already "ready" we drop it inside the ready list */ 1534 if (revents && !ep_is_linked(epi)) { 1535 list_add_tail(&epi->rdllink, &ep->rdllist); 1536 ep_pm_stay_awake(epi); 1537 1538 /* Notify waiting tasks that events are available */ 1539 if (waitqueue_active(&ep->wq)) 1540 wake_up(&ep->wq); 1541 if (waitqueue_active(&ep->poll_wait)) 1542 pwake++; 1543 } 1544 1545 write_unlock_irq(&ep->lock); 1546 1547 /* We have to call this outside the lock */ 1548 if (pwake) 1549 ep_poll_safewake(ep, NULL); 1550 1551 return 0; 1552 } 1553 1554 /* 1555 * Modify the interest event mask by dropping an event if the new mask 1556 * has a match in the current file status. Must be called with "mtx" held. 1557 */ 1558 static int ep_modify(struct eventpoll *ep, struct epitem *epi, 1559 const struct epoll_event *event) 1560 { 1561 int pwake = 0; 1562 poll_table pt; 1563 1564 lockdep_assert_irqs_enabled(); 1565 1566 init_poll_funcptr(&pt, NULL); 1567 1568 /* 1569 * Set the new event interest mask before calling f_op->poll(); 1570 * otherwise we might miss an event that happens between the 1571 * f_op->poll() call and the new event set registering. 1572 */ 1573 epi->event.events = event->events; /* need barrier below */ 1574 epi->event.data = event->data; /* protected by mtx */ 1575 if (epi->event.events & EPOLLWAKEUP) { 1576 if (!ep_has_wakeup_source(epi)) 1577 ep_create_wakeup_source(epi); 1578 } else if (ep_has_wakeup_source(epi)) { 1579 ep_destroy_wakeup_source(epi); 1580 } 1581 1582 /* 1583 * The following barrier has two effects: 1584 * 1585 * 1) Flush epi changes above to other CPUs. This ensures 1586 * we do not miss events from ep_poll_callback if an 1587 * event occurs immediately after we call f_op->poll(). 1588 * We need this because we did not take ep->lock while 1589 * changing epi above (but ep_poll_callback does take 1590 * ep->lock). 1591 * 1592 * 2) We also need to ensure we do not miss _past_ events 1593 * when calling f_op->poll(). This barrier also 1594 * pairs with the barrier in wq_has_sleeper (see 1595 * comments for wq_has_sleeper). 1596 * 1597 * This barrier will now guarantee ep_poll_callback or f_op->poll 1598 * (or both) will notice the readiness of an item. 1599 */ 1600 smp_mb(); 1601 1602 /* 1603 * Get current event bits. We can safely use the file* here because 1604 * its usage count has been increased by the caller of this function. 1605 * If the item is "hot" and it is not registered inside the ready 1606 * list, push it inside. 1607 */ 1608 if (ep_item_poll(epi, &pt, 1)) { 1609 write_lock_irq(&ep->lock); 1610 if (!ep_is_linked(epi)) { 1611 list_add_tail(&epi->rdllink, &ep->rdllist); 1612 ep_pm_stay_awake(epi); 1613 1614 /* Notify waiting tasks that events are available */ 1615 if (waitqueue_active(&ep->wq)) 1616 wake_up(&ep->wq); 1617 if (waitqueue_active(&ep->poll_wait)) 1618 pwake++; 1619 } 1620 write_unlock_irq(&ep->lock); 1621 } 1622 1623 /* We have to call this outside the lock */ 1624 if (pwake) 1625 ep_poll_safewake(ep, NULL); 1626 1627 return 0; 1628 } 1629 1630 static int ep_send_events(struct eventpoll *ep, 1631 struct epoll_event __user *events, int maxevents) 1632 { 1633 struct epitem *epi, *tmp; 1634 LIST_HEAD(txlist); 1635 poll_table pt; 1636 int res = 0; 1637 1638 /* 1639 * Always short-circuit for fatal signals to allow threads to make a 1640 * timely exit without the chance of finding more events available and 1641 * fetching repeatedly. 1642 */ 1643 if (fatal_signal_pending(current)) 1644 return -EINTR; 1645 1646 init_poll_funcptr(&pt, NULL); 1647 1648 mutex_lock(&ep->mtx); 1649 ep_start_scan(ep, &txlist); 1650 1651 /* 1652 * We can loop without lock because we are passed a task private list. 1653 * Items cannot vanish during the loop we are holding ep->mtx. 1654 */ 1655 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { 1656 struct wakeup_source *ws; 1657 __poll_t revents; 1658 1659 if (res >= maxevents) 1660 break; 1661 1662 /* 1663 * Activate ep->ws before deactivating epi->ws to prevent 1664 * triggering auto-suspend here (in case we reactive epi->ws 1665 * below). 1666 * 1667 * This could be rearranged to delay the deactivation of epi->ws 1668 * instead, but then epi->ws would temporarily be out of sync 1669 * with ep_is_linked(). 1670 */ 1671 ws = ep_wakeup_source(epi); 1672 if (ws) { 1673 if (ws->active) 1674 __pm_stay_awake(ep->ws); 1675 __pm_relax(ws); 1676 } 1677 1678 list_del_init(&epi->rdllink); 1679 1680 /* 1681 * If the event mask intersect the caller-requested one, 1682 * deliver the event to userspace. Again, we are holding ep->mtx, 1683 * so no operations coming from userspace can change the item. 1684 */ 1685 revents = ep_item_poll(epi, &pt, 1); 1686 if (!revents) 1687 continue; 1688 1689 events = epoll_put_uevent(revents, epi->event.data, events); 1690 if (!events) { 1691 list_add(&epi->rdllink, &txlist); 1692 ep_pm_stay_awake(epi); 1693 if (!res) 1694 res = -EFAULT; 1695 break; 1696 } 1697 res++; 1698 if (epi->event.events & EPOLLONESHOT) 1699 epi->event.events &= EP_PRIVATE_BITS; 1700 else if (!(epi->event.events & EPOLLET)) { 1701 /* 1702 * If this file has been added with Level 1703 * Trigger mode, we need to insert back inside 1704 * the ready list, so that the next call to 1705 * epoll_wait() will check again the events 1706 * availability. At this point, no one can insert 1707 * into ep->rdllist besides us. The epoll_ctl() 1708 * callers are locked out by 1709 * ep_scan_ready_list() holding "mtx" and the 1710 * poll callback will queue them in ep->ovflist. 1711 */ 1712 list_add_tail(&epi->rdllink, &ep->rdllist); 1713 ep_pm_stay_awake(epi); 1714 } 1715 } 1716 ep_done_scan(ep, &txlist); 1717 mutex_unlock(&ep->mtx); 1718 1719 return res; 1720 } 1721 1722 static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms) 1723 { 1724 struct timespec64 now; 1725 1726 if (ms < 0) 1727 return NULL; 1728 1729 if (!ms) { 1730 to->tv_sec = 0; 1731 to->tv_nsec = 0; 1732 return to; 1733 } 1734 1735 to->tv_sec = ms / MSEC_PER_SEC; 1736 to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC); 1737 1738 ktime_get_ts64(&now); 1739 *to = timespec64_add_safe(now, *to); 1740 return to; 1741 } 1742 1743 /** 1744 * ep_poll - Retrieves ready events, and delivers them to the caller-supplied 1745 * event buffer. 1746 * 1747 * @ep: Pointer to the eventpoll context. 1748 * @events: Pointer to the userspace buffer where the ready events should be 1749 * stored. 1750 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1751 * @timeout: Maximum timeout for the ready events fetch operation, in 1752 * timespec. If the timeout is zero, the function will not block, 1753 * while if the @timeout ptr is NULL, the function will block 1754 * until at least one event has been retrieved (or an error 1755 * occurred). 1756 * 1757 * Return: the number of ready events which have been fetched, or an 1758 * error code, in case of error. 1759 */ 1760 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1761 int maxevents, struct timespec64 *timeout) 1762 { 1763 int res, eavail, timed_out = 0; 1764 u64 slack = 0; 1765 wait_queue_entry_t wait; 1766 ktime_t expires, *to = NULL; 1767 1768 lockdep_assert_irqs_enabled(); 1769 1770 if (timeout && (timeout->tv_sec | timeout->tv_nsec)) { 1771 slack = select_estimate_accuracy(timeout); 1772 to = &expires; 1773 *to = timespec64_to_ktime(*timeout); 1774 } else if (timeout) { 1775 /* 1776 * Avoid the unnecessary trip to the wait queue loop, if the 1777 * caller specified a non blocking operation. 1778 */ 1779 timed_out = 1; 1780 } 1781 1782 /* 1783 * This call is racy: We may or may not see events that are being added 1784 * to the ready list under the lock (e.g., in IRQ callbacks). For cases 1785 * with a non-zero timeout, this thread will check the ready list under 1786 * lock and will add to the wait queue. For cases with a zero 1787 * timeout, the user by definition should not care and will have to 1788 * recheck again. 1789 */ 1790 eavail = ep_events_available(ep); 1791 1792 while (1) { 1793 if (eavail) { 1794 /* 1795 * Try to transfer events to user space. In case we get 1796 * 0 events and there's still timeout left over, we go 1797 * trying again in search of more luck. 1798 */ 1799 res = ep_send_events(ep, events, maxevents); 1800 if (res) 1801 return res; 1802 } 1803 1804 if (timed_out) 1805 return 0; 1806 1807 eavail = ep_busy_loop(ep, timed_out); 1808 if (eavail) 1809 continue; 1810 1811 if (signal_pending(current)) 1812 return -EINTR; 1813 1814 /* 1815 * Internally init_wait() uses autoremove_wake_function(), 1816 * thus wait entry is removed from the wait queue on each 1817 * wakeup. Why it is important? In case of several waiters 1818 * each new wakeup will hit the next waiter, giving it the 1819 * chance to harvest new event. Otherwise wakeup can be 1820 * lost. This is also good performance-wise, because on 1821 * normal wakeup path no need to call __remove_wait_queue() 1822 * explicitly, thus ep->lock is not taken, which halts the 1823 * event delivery. 1824 */ 1825 init_wait(&wait); 1826 1827 write_lock_irq(&ep->lock); 1828 /* 1829 * Barrierless variant, waitqueue_active() is called under 1830 * the same lock on wakeup ep_poll_callback() side, so it 1831 * is safe to avoid an explicit barrier. 1832 */ 1833 __set_current_state(TASK_INTERRUPTIBLE); 1834 1835 /* 1836 * Do the final check under the lock. ep_scan_ready_list() 1837 * plays with two lists (->rdllist and ->ovflist) and there 1838 * is always a race when both lists are empty for short 1839 * period of time although events are pending, so lock is 1840 * important. 1841 */ 1842 eavail = ep_events_available(ep); 1843 if (!eavail) 1844 __add_wait_queue_exclusive(&ep->wq, &wait); 1845 1846 write_unlock_irq(&ep->lock); 1847 1848 if (!eavail) 1849 timed_out = !schedule_hrtimeout_range(to, slack, 1850 HRTIMER_MODE_ABS); 1851 __set_current_state(TASK_RUNNING); 1852 1853 /* 1854 * We were woken up, thus go and try to harvest some events. 1855 * If timed out and still on the wait queue, recheck eavail 1856 * carefully under lock, below. 1857 */ 1858 eavail = 1; 1859 1860 if (!list_empty_careful(&wait.entry)) { 1861 write_lock_irq(&ep->lock); 1862 /* 1863 * If the thread timed out and is not on the wait queue, 1864 * it means that the thread was woken up after its 1865 * timeout expired before it could reacquire the lock. 1866 * Thus, when wait.entry is empty, it needs to harvest 1867 * events. 1868 */ 1869 if (timed_out) 1870 eavail = list_empty(&wait.entry); 1871 __remove_wait_queue(&ep->wq, &wait); 1872 write_unlock_irq(&ep->lock); 1873 } 1874 } 1875 } 1876 1877 /** 1878 * ep_loop_check_proc - verify that adding an epoll file inside another 1879 * epoll structure does not violate the constraints, in 1880 * terms of closed loops, or too deep chains (which can 1881 * result in excessive stack usage). 1882 * 1883 * @ep: the &struct eventpoll to be currently checked. 1884 * @depth: Current depth of the path being checked. 1885 * 1886 * Return: %zero if adding the epoll @file inside current epoll 1887 * structure @ep does not violate the constraints, or %-1 otherwise. 1888 */ 1889 static int ep_loop_check_proc(struct eventpoll *ep, int depth) 1890 { 1891 int error = 0; 1892 struct rb_node *rbp; 1893 struct epitem *epi; 1894 1895 mutex_lock_nested(&ep->mtx, depth + 1); 1896 ep->gen = loop_check_gen; 1897 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1898 epi = rb_entry(rbp, struct epitem, rbn); 1899 if (unlikely(is_file_epoll(epi->ffd.file))) { 1900 struct eventpoll *ep_tovisit; 1901 ep_tovisit = epi->ffd.file->private_data; 1902 if (ep_tovisit->gen == loop_check_gen) 1903 continue; 1904 if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS) 1905 error = -1; 1906 else 1907 error = ep_loop_check_proc(ep_tovisit, depth + 1); 1908 if (error != 0) 1909 break; 1910 } else { 1911 /* 1912 * If we've reached a file that is not associated with 1913 * an ep, then we need to check if the newly added 1914 * links are going to add too many wakeup paths. We do 1915 * this by adding it to the tfile_check_list, if it's 1916 * not already there, and calling reverse_path_check() 1917 * during ep_insert(). 1918 */ 1919 list_file(epi->ffd.file); 1920 } 1921 } 1922 mutex_unlock(&ep->mtx); 1923 1924 return error; 1925 } 1926 1927 /** 1928 * ep_loop_check - Performs a check to verify that adding an epoll file (@to) 1929 * into another epoll file (represented by @ep) does not create 1930 * closed loops or too deep chains. 1931 * 1932 * @ep: Pointer to the epoll we are inserting into. 1933 * @to: Pointer to the epoll to be inserted. 1934 * 1935 * Return: %zero if adding the epoll @to inside the epoll @from 1936 * does not violate the constraints, or %-1 otherwise. 1937 */ 1938 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to) 1939 { 1940 inserting_into = ep; 1941 return ep_loop_check_proc(to, 0); 1942 } 1943 1944 static void clear_tfile_check_list(void) 1945 { 1946 rcu_read_lock(); 1947 while (tfile_check_list != EP_UNACTIVE_PTR) { 1948 struct epitems_head *head = tfile_check_list; 1949 tfile_check_list = head->next; 1950 unlist_file(head); 1951 } 1952 rcu_read_unlock(); 1953 } 1954 1955 /* 1956 * Open an eventpoll file descriptor. 1957 */ 1958 static int do_epoll_create(int flags) 1959 { 1960 int error, fd; 1961 struct eventpoll *ep = NULL; 1962 struct file *file; 1963 1964 /* Check the EPOLL_* constant for consistency. */ 1965 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 1966 1967 if (flags & ~EPOLL_CLOEXEC) 1968 return -EINVAL; 1969 /* 1970 * Create the internal data structure ("struct eventpoll"). 1971 */ 1972 error = ep_alloc(&ep); 1973 if (error < 0) 1974 return error; 1975 /* 1976 * Creates all the items needed to setup an eventpoll file. That is, 1977 * a file structure and a free file descriptor. 1978 */ 1979 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 1980 if (fd < 0) { 1981 error = fd; 1982 goto out_free_ep; 1983 } 1984 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 1985 O_RDWR | (flags & O_CLOEXEC)); 1986 if (IS_ERR(file)) { 1987 error = PTR_ERR(file); 1988 goto out_free_fd; 1989 } 1990 ep->file = file; 1991 fd_install(fd, file); 1992 return fd; 1993 1994 out_free_fd: 1995 put_unused_fd(fd); 1996 out_free_ep: 1997 ep_free(ep); 1998 return error; 1999 } 2000 2001 SYSCALL_DEFINE1(epoll_create1, int, flags) 2002 { 2003 return do_epoll_create(flags); 2004 } 2005 2006 SYSCALL_DEFINE1(epoll_create, int, size) 2007 { 2008 if (size <= 0) 2009 return -EINVAL; 2010 2011 return do_epoll_create(0); 2012 } 2013 2014 static inline int epoll_mutex_lock(struct mutex *mutex, int depth, 2015 bool nonblock) 2016 { 2017 if (!nonblock) { 2018 mutex_lock_nested(mutex, depth); 2019 return 0; 2020 } 2021 if (mutex_trylock(mutex)) 2022 return 0; 2023 return -EAGAIN; 2024 } 2025 2026 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds, 2027 bool nonblock) 2028 { 2029 int error; 2030 int full_check = 0; 2031 struct fd f, tf; 2032 struct eventpoll *ep; 2033 struct epitem *epi; 2034 struct eventpoll *tep = NULL; 2035 2036 error = -EBADF; 2037 f = fdget(epfd); 2038 if (!f.file) 2039 goto error_return; 2040 2041 /* Get the "struct file *" for the target file */ 2042 tf = fdget(fd); 2043 if (!tf.file) 2044 goto error_fput; 2045 2046 /* The target file descriptor must support poll */ 2047 error = -EPERM; 2048 if (!file_can_poll(tf.file)) 2049 goto error_tgt_fput; 2050 2051 /* Check if EPOLLWAKEUP is allowed */ 2052 if (ep_op_has_event(op)) 2053 ep_take_care_of_epollwakeup(epds); 2054 2055 /* 2056 * We have to check that the file structure underneath the file descriptor 2057 * the user passed to us _is_ an eventpoll file. And also we do not permit 2058 * adding an epoll file descriptor inside itself. 2059 */ 2060 error = -EINVAL; 2061 if (f.file == tf.file || !is_file_epoll(f.file)) 2062 goto error_tgt_fput; 2063 2064 /* 2065 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only, 2066 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation. 2067 * Also, we do not currently supported nested exclusive wakeups. 2068 */ 2069 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) { 2070 if (op == EPOLL_CTL_MOD) 2071 goto error_tgt_fput; 2072 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) || 2073 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS))) 2074 goto error_tgt_fput; 2075 } 2076 2077 /* 2078 * At this point it is safe to assume that the "private_data" contains 2079 * our own data structure. 2080 */ 2081 ep = f.file->private_data; 2082 2083 /* 2084 * When we insert an epoll file descriptor inside another epoll file 2085 * descriptor, there is the chance of creating closed loops, which are 2086 * better be handled here, than in more critical paths. While we are 2087 * checking for loops we also determine the list of files reachable 2088 * and hang them on the tfile_check_list, so we can check that we 2089 * haven't created too many possible wakeup paths. 2090 * 2091 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when 2092 * the epoll file descriptor is attaching directly to a wakeup source, 2093 * unless the epoll file descriptor is nested. The purpose of taking the 2094 * 'epmutex' on add is to prevent complex toplogies such as loops and 2095 * deep wakeup paths from forming in parallel through multiple 2096 * EPOLL_CTL_ADD operations. 2097 */ 2098 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2099 if (error) 2100 goto error_tgt_fput; 2101 if (op == EPOLL_CTL_ADD) { 2102 if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen || 2103 is_file_epoll(tf.file)) { 2104 mutex_unlock(&ep->mtx); 2105 error = epoll_mutex_lock(&epmutex, 0, nonblock); 2106 if (error) 2107 goto error_tgt_fput; 2108 loop_check_gen++; 2109 full_check = 1; 2110 if (is_file_epoll(tf.file)) { 2111 tep = tf.file->private_data; 2112 error = -ELOOP; 2113 if (ep_loop_check(ep, tep) != 0) 2114 goto error_tgt_fput; 2115 } 2116 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2117 if (error) 2118 goto error_tgt_fput; 2119 } 2120 } 2121 2122 /* 2123 * Try to lookup the file inside our RB tree. Since we grabbed "mtx" 2124 * above, we can be sure to be able to use the item looked up by 2125 * ep_find() till we release the mutex. 2126 */ 2127 epi = ep_find(ep, tf.file, fd); 2128 2129 error = -EINVAL; 2130 switch (op) { 2131 case EPOLL_CTL_ADD: 2132 if (!epi) { 2133 epds->events |= EPOLLERR | EPOLLHUP; 2134 error = ep_insert(ep, epds, tf.file, fd, full_check); 2135 } else 2136 error = -EEXIST; 2137 break; 2138 case EPOLL_CTL_DEL: 2139 if (epi) 2140 error = ep_remove(ep, epi); 2141 else 2142 error = -ENOENT; 2143 break; 2144 case EPOLL_CTL_MOD: 2145 if (epi) { 2146 if (!(epi->event.events & EPOLLEXCLUSIVE)) { 2147 epds->events |= EPOLLERR | EPOLLHUP; 2148 error = ep_modify(ep, epi, epds); 2149 } 2150 } else 2151 error = -ENOENT; 2152 break; 2153 } 2154 mutex_unlock(&ep->mtx); 2155 2156 error_tgt_fput: 2157 if (full_check) { 2158 clear_tfile_check_list(); 2159 loop_check_gen++; 2160 mutex_unlock(&epmutex); 2161 } 2162 2163 fdput(tf); 2164 error_fput: 2165 fdput(f); 2166 error_return: 2167 2168 return error; 2169 } 2170 2171 /* 2172 * The following function implements the controller interface for 2173 * the eventpoll file that enables the insertion/removal/change of 2174 * file descriptors inside the interest set. 2175 */ 2176 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 2177 struct epoll_event __user *, event) 2178 { 2179 struct epoll_event epds; 2180 2181 if (ep_op_has_event(op) && 2182 copy_from_user(&epds, event, sizeof(struct epoll_event))) 2183 return -EFAULT; 2184 2185 return do_epoll_ctl(epfd, op, fd, &epds, false); 2186 } 2187 2188 /* 2189 * Implement the event wait interface for the eventpoll file. It is the kernel 2190 * part of the user space epoll_wait(2). 2191 */ 2192 static int do_epoll_wait(int epfd, struct epoll_event __user *events, 2193 int maxevents, struct timespec64 *to) 2194 { 2195 int error; 2196 struct fd f; 2197 struct eventpoll *ep; 2198 2199 /* The maximum number of event must be greater than zero */ 2200 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 2201 return -EINVAL; 2202 2203 /* Verify that the area passed by the user is writeable */ 2204 if (!access_ok(events, maxevents * sizeof(struct epoll_event))) 2205 return -EFAULT; 2206 2207 /* Get the "struct file *" for the eventpoll file */ 2208 f = fdget(epfd); 2209 if (!f.file) 2210 return -EBADF; 2211 2212 /* 2213 * We have to check that the file structure underneath the fd 2214 * the user passed to us _is_ an eventpoll file. 2215 */ 2216 error = -EINVAL; 2217 if (!is_file_epoll(f.file)) 2218 goto error_fput; 2219 2220 /* 2221 * At this point it is safe to assume that the "private_data" contains 2222 * our own data structure. 2223 */ 2224 ep = f.file->private_data; 2225 2226 /* Time to fish for events ... */ 2227 error = ep_poll(ep, events, maxevents, to); 2228 2229 error_fput: 2230 fdput(f); 2231 return error; 2232 } 2233 2234 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 2235 int, maxevents, int, timeout) 2236 { 2237 struct timespec64 to; 2238 2239 return do_epoll_wait(epfd, events, maxevents, 2240 ep_timeout_to_timespec(&to, timeout)); 2241 } 2242 2243 /* 2244 * Implement the event wait interface for the eventpoll file. It is the kernel 2245 * part of the user space epoll_pwait(2). 2246 */ 2247 static int do_epoll_pwait(int epfd, struct epoll_event __user *events, 2248 int maxevents, struct timespec64 *to, 2249 const sigset_t __user *sigmask, size_t sigsetsize) 2250 { 2251 int error; 2252 2253 /* 2254 * If the caller wants a certain signal mask to be set during the wait, 2255 * we apply it here. 2256 */ 2257 error = set_user_sigmask(sigmask, sigsetsize); 2258 if (error) 2259 return error; 2260 2261 error = do_epoll_wait(epfd, events, maxevents, to); 2262 2263 restore_saved_sigmask_unless(error == -EINTR); 2264 2265 return error; 2266 } 2267 2268 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 2269 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 2270 size_t, sigsetsize) 2271 { 2272 struct timespec64 to; 2273 2274 return do_epoll_pwait(epfd, events, maxevents, 2275 ep_timeout_to_timespec(&to, timeout), 2276 sigmask, sigsetsize); 2277 } 2278 2279 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events, 2280 int, maxevents, const struct __kernel_timespec __user *, timeout, 2281 const sigset_t __user *, sigmask, size_t, sigsetsize) 2282 { 2283 struct timespec64 ts, *to = NULL; 2284 2285 if (timeout) { 2286 if (get_timespec64(&ts, timeout)) 2287 return -EFAULT; 2288 to = &ts; 2289 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) 2290 return -EINVAL; 2291 } 2292 2293 return do_epoll_pwait(epfd, events, maxevents, to, 2294 sigmask, sigsetsize); 2295 } 2296 2297 #ifdef CONFIG_COMPAT 2298 static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events, 2299 int maxevents, struct timespec64 *timeout, 2300 const compat_sigset_t __user *sigmask, 2301 compat_size_t sigsetsize) 2302 { 2303 long err; 2304 2305 /* 2306 * If the caller wants a certain signal mask to be set during the wait, 2307 * we apply it here. 2308 */ 2309 err = set_compat_user_sigmask(sigmask, sigsetsize); 2310 if (err) 2311 return err; 2312 2313 err = do_epoll_wait(epfd, events, maxevents, timeout); 2314 2315 restore_saved_sigmask_unless(err == -EINTR); 2316 2317 return err; 2318 } 2319 2320 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, 2321 struct epoll_event __user *, events, 2322 int, maxevents, int, timeout, 2323 const compat_sigset_t __user *, sigmask, 2324 compat_size_t, sigsetsize) 2325 { 2326 struct timespec64 to; 2327 2328 return do_compat_epoll_pwait(epfd, events, maxevents, 2329 ep_timeout_to_timespec(&to, timeout), 2330 sigmask, sigsetsize); 2331 } 2332 2333 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd, 2334 struct epoll_event __user *, events, 2335 int, maxevents, 2336 const struct __kernel_timespec __user *, timeout, 2337 const compat_sigset_t __user *, sigmask, 2338 compat_size_t, sigsetsize) 2339 { 2340 struct timespec64 ts, *to = NULL; 2341 2342 if (timeout) { 2343 if (get_timespec64(&ts, timeout)) 2344 return -EFAULT; 2345 to = &ts; 2346 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) 2347 return -EINVAL; 2348 } 2349 2350 return do_compat_epoll_pwait(epfd, events, maxevents, to, 2351 sigmask, sigsetsize); 2352 } 2353 2354 #endif 2355 2356 static int __init eventpoll_init(void) 2357 { 2358 struct sysinfo si; 2359 2360 si_meminfo(&si); 2361 /* 2362 * Allows top 4% of lomem to be allocated for epoll watches (per user). 2363 */ 2364 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 2365 EP_ITEM_COST; 2366 BUG_ON(max_user_watches < 0); 2367 2368 /* 2369 * We can have many thousands of epitems, so prevent this from 2370 * using an extra cache line on 64-bit (and smaller) CPUs 2371 */ 2372 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); 2373 2374 /* Allocates slab cache used to allocate "struct epitem" items */ 2375 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 2376 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 2377 2378 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 2379 pwq_cache = kmem_cache_create("eventpoll_pwq", 2380 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2381 2382 ephead_cache = kmem_cache_create("ep_head", 2383 sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2384 2385 return 0; 2386 } 2387 fs_initcall(eventpoll_init); 2388