1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * fs/eventpoll.c (Efficient event retrieval implementation) 4 * Copyright (C) 2001,...,2009 Davide Libenzi 5 * 6 * Davide Libenzi <davidel@xmailserver.org> 7 */ 8 9 #include <linux/init.h> 10 #include <linux/kernel.h> 11 #include <linux/sched/signal.h> 12 #include <linux/fs.h> 13 #include <linux/file.h> 14 #include <linux/signal.h> 15 #include <linux/errno.h> 16 #include <linux/mm.h> 17 #include <linux/slab.h> 18 #include <linux/poll.h> 19 #include <linux/string.h> 20 #include <linux/list.h> 21 #include <linux/hash.h> 22 #include <linux/spinlock.h> 23 #include <linux/syscalls.h> 24 #include <linux/rbtree.h> 25 #include <linux/wait.h> 26 #include <linux/eventpoll.h> 27 #include <linux/mount.h> 28 #include <linux/bitops.h> 29 #include <linux/mutex.h> 30 #include <linux/anon_inodes.h> 31 #include <linux/device.h> 32 #include <linux/uaccess.h> 33 #include <asm/io.h> 34 #include <asm/mman.h> 35 #include <linux/atomic.h> 36 #include <linux/proc_fs.h> 37 #include <linux/seq_file.h> 38 #include <linux/compat.h> 39 #include <linux/rculist.h> 40 #include <net/busy_poll.h> 41 42 /* 43 * LOCKING: 44 * There are three level of locking required by epoll : 45 * 46 * 1) epnested_mutex (mutex) 47 * 2) ep->mtx (mutex) 48 * 3) ep->lock (rwlock) 49 * 50 * The acquire order is the one listed above, from 1 to 3. 51 * We need a rwlock (ep->lock) because we manipulate objects 52 * from inside the poll callback, that might be triggered from 53 * a wake_up() that in turn might be called from IRQ context. 54 * So we can't sleep inside the poll callback and hence we need 55 * a spinlock. During the event transfer loop (from kernel to 56 * user space) we could end up sleeping due a copy_to_user(), so 57 * we need a lock that will allow us to sleep. This lock is a 58 * mutex (ep->mtx). It is acquired during the event transfer loop, 59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 60 * The epnested_mutex is acquired when inserting an epoll fd onto another 61 * epoll fd. We do this so that we walk the epoll tree and ensure that this 62 * insertion does not create a cycle of epoll file descriptors, which 63 * could lead to deadlock. We need a global mutex to prevent two 64 * simultaneous inserts (A into B and B into A) from racing and 65 * constructing a cycle without either insert observing that it is 66 * going to. 67 * It is necessary to acquire multiple "ep->mtx"es at once in the 68 * case when one epoll fd is added to another. In this case, we 69 * always acquire the locks in the order of nesting (i.e. after 70 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 71 * before e2->mtx). Since we disallow cycles of epoll file 72 * descriptors, this ensures that the mutexes are well-ordered. In 73 * order to communicate this nesting to lockdep, when walking a tree 74 * of epoll file descriptors, we use the current recursion depth as 75 * the lockdep subkey. 76 * It is possible to drop the "ep->mtx" and to use the global 77 * mutex "epnested_mutex" (together with "ep->lock") to have it working, 78 * but having "ep->mtx" will make the interface more scalable. 79 * Events that require holding "epnested_mutex" are very rare, while for 80 * normal operations the epoll private "ep->mtx" will guarantee 81 * a better scalability. 82 */ 83 84 /* Epoll private bits inside the event mask */ 85 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE) 86 87 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT) 88 89 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \ 90 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE) 91 92 /* Maximum number of nesting allowed inside epoll sets */ 93 #define EP_MAX_NESTS 4 94 95 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 96 97 #define EP_UNACTIVE_PTR ((void *) -1L) 98 99 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 100 101 struct epoll_filefd { 102 struct file *file; 103 int fd; 104 } __packed; 105 106 /* Wait structure used by the poll hooks */ 107 struct eppoll_entry { 108 /* List header used to link this structure to the "struct epitem" */ 109 struct eppoll_entry *next; 110 111 /* The "base" pointer is set to the container "struct epitem" */ 112 struct epitem *base; 113 114 /* 115 * Wait queue item that will be linked to the target file wait 116 * queue head. 117 */ 118 wait_queue_entry_t wait; 119 120 /* The wait queue head that linked the "wait" wait queue item */ 121 wait_queue_head_t *whead; 122 }; 123 124 /* 125 * Each file descriptor added to the eventpoll interface will 126 * have an entry of this type linked to the "rbr" RB tree. 127 * Avoid increasing the size of this struct, there can be many thousands 128 * of these on a server and we do not want this to take another cache line. 129 */ 130 struct epitem { 131 union { 132 /* RB tree node links this structure to the eventpoll RB tree */ 133 struct rb_node rbn; 134 /* Used to free the struct epitem */ 135 struct rcu_head rcu; 136 }; 137 138 /* List header used to link this structure to the eventpoll ready list */ 139 struct list_head rdllink; 140 141 /* 142 * Works together "struct eventpoll"->ovflist in keeping the 143 * single linked chain of items. 144 */ 145 struct epitem *next; 146 147 /* The file descriptor information this item refers to */ 148 struct epoll_filefd ffd; 149 150 /* 151 * Protected by file->f_lock, true for to-be-released epitem already 152 * removed from the "struct file" items list; together with 153 * eventpoll->refcount orchestrates "struct eventpoll" disposal 154 */ 155 bool dying; 156 157 /* List containing poll wait queues */ 158 struct eppoll_entry *pwqlist; 159 160 /* The "container" of this item */ 161 struct eventpoll *ep; 162 163 /* List header used to link this item to the "struct file" items list */ 164 struct hlist_node fllink; 165 166 /* wakeup_source used when EPOLLWAKEUP is set */ 167 struct wakeup_source __rcu *ws; 168 169 /* The structure that describe the interested events and the source fd */ 170 struct epoll_event event; 171 }; 172 173 /* 174 * This structure is stored inside the "private_data" member of the file 175 * structure and represents the main data structure for the eventpoll 176 * interface. 177 */ 178 struct eventpoll { 179 /* 180 * This mutex is used to ensure that files are not removed 181 * while epoll is using them. This is held during the event 182 * collection loop, the file cleanup path, the epoll file exit 183 * code and the ctl operations. 184 */ 185 struct mutex mtx; 186 187 /* Wait queue used by sys_epoll_wait() */ 188 wait_queue_head_t wq; 189 190 /* Wait queue used by file->poll() */ 191 wait_queue_head_t poll_wait; 192 193 /* List of ready file descriptors */ 194 struct list_head rdllist; 195 196 /* Lock which protects rdllist and ovflist */ 197 rwlock_t lock; 198 199 /* RB tree root used to store monitored fd structs */ 200 struct rb_root_cached rbr; 201 202 /* 203 * This is a single linked list that chains all the "struct epitem" that 204 * happened while transferring ready events to userspace w/out 205 * holding ->lock. 206 */ 207 struct epitem *ovflist; 208 209 /* wakeup_source used when ep_scan_ready_list is running */ 210 struct wakeup_source *ws; 211 212 /* The user that created the eventpoll descriptor */ 213 struct user_struct *user; 214 215 struct file *file; 216 217 /* used to optimize loop detection check */ 218 u64 gen; 219 struct hlist_head refs; 220 221 /* 222 * usage count, used together with epitem->dying to 223 * orchestrate the disposal of this struct 224 */ 225 refcount_t refcount; 226 227 #ifdef CONFIG_NET_RX_BUSY_POLL 228 /* used to track busy poll napi_id */ 229 unsigned int napi_id; 230 #endif 231 232 #ifdef CONFIG_DEBUG_LOCK_ALLOC 233 /* tracks wakeup nests for lockdep validation */ 234 u8 nests; 235 #endif 236 }; 237 238 /* Wrapper struct used by poll queueing */ 239 struct ep_pqueue { 240 poll_table pt; 241 struct epitem *epi; 242 }; 243 244 /* 245 * Configuration options available inside /proc/sys/fs/epoll/ 246 */ 247 /* Maximum number of epoll watched descriptors, per user */ 248 static long max_user_watches __read_mostly; 249 250 /* Used for cycles detection */ 251 static DEFINE_MUTEX(epnested_mutex); 252 253 static u64 loop_check_gen = 0; 254 255 /* Used to check for epoll file descriptor inclusion loops */ 256 static struct eventpoll *inserting_into; 257 258 /* Slab cache used to allocate "struct epitem" */ 259 static struct kmem_cache *epi_cache __read_mostly; 260 261 /* Slab cache used to allocate "struct eppoll_entry" */ 262 static struct kmem_cache *pwq_cache __read_mostly; 263 264 /* 265 * List of files with newly added links, where we may need to limit the number 266 * of emanating paths. Protected by the epnested_mutex. 267 */ 268 struct epitems_head { 269 struct hlist_head epitems; 270 struct epitems_head *next; 271 }; 272 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR; 273 274 static struct kmem_cache *ephead_cache __read_mostly; 275 276 static inline void free_ephead(struct epitems_head *head) 277 { 278 if (head) 279 kmem_cache_free(ephead_cache, head); 280 } 281 282 static void list_file(struct file *file) 283 { 284 struct epitems_head *head; 285 286 head = container_of(file->f_ep, struct epitems_head, epitems); 287 if (!head->next) { 288 head->next = tfile_check_list; 289 tfile_check_list = head; 290 } 291 } 292 293 static void unlist_file(struct epitems_head *head) 294 { 295 struct epitems_head *to_free = head; 296 struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems)); 297 if (p) { 298 struct epitem *epi= container_of(p, struct epitem, fllink); 299 spin_lock(&epi->ffd.file->f_lock); 300 if (!hlist_empty(&head->epitems)) 301 to_free = NULL; 302 head->next = NULL; 303 spin_unlock(&epi->ffd.file->f_lock); 304 } 305 free_ephead(to_free); 306 } 307 308 #ifdef CONFIG_SYSCTL 309 310 #include <linux/sysctl.h> 311 312 static long long_zero; 313 static long long_max = LONG_MAX; 314 315 static struct ctl_table epoll_table[] = { 316 { 317 .procname = "max_user_watches", 318 .data = &max_user_watches, 319 .maxlen = sizeof(max_user_watches), 320 .mode = 0644, 321 .proc_handler = proc_doulongvec_minmax, 322 .extra1 = &long_zero, 323 .extra2 = &long_max, 324 }, 325 { } 326 }; 327 328 static void __init epoll_sysctls_init(void) 329 { 330 register_sysctl("fs/epoll", epoll_table); 331 } 332 #else 333 #define epoll_sysctls_init() do { } while (0) 334 #endif /* CONFIG_SYSCTL */ 335 336 static const struct file_operations eventpoll_fops; 337 338 static inline int is_file_epoll(struct file *f) 339 { 340 return f->f_op == &eventpoll_fops; 341 } 342 343 /* Setup the structure that is used as key for the RB tree */ 344 static inline void ep_set_ffd(struct epoll_filefd *ffd, 345 struct file *file, int fd) 346 { 347 ffd->file = file; 348 ffd->fd = fd; 349 } 350 351 /* Compare RB tree keys */ 352 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 353 struct epoll_filefd *p2) 354 { 355 return (p1->file > p2->file ? +1: 356 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 357 } 358 359 /* Tells us if the item is currently linked */ 360 static inline int ep_is_linked(struct epitem *epi) 361 { 362 return !list_empty(&epi->rdllink); 363 } 364 365 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p) 366 { 367 return container_of(p, struct eppoll_entry, wait); 368 } 369 370 /* Get the "struct epitem" from a wait queue pointer */ 371 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p) 372 { 373 return container_of(p, struct eppoll_entry, wait)->base; 374 } 375 376 /** 377 * ep_events_available - Checks if ready events might be available. 378 * 379 * @ep: Pointer to the eventpoll context. 380 * 381 * Return: a value different than %zero if ready events are available, 382 * or %zero otherwise. 383 */ 384 static inline int ep_events_available(struct eventpoll *ep) 385 { 386 return !list_empty_careful(&ep->rdllist) || 387 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR; 388 } 389 390 #ifdef CONFIG_NET_RX_BUSY_POLL 391 static bool ep_busy_loop_end(void *p, unsigned long start_time) 392 { 393 struct eventpoll *ep = p; 394 395 return ep_events_available(ep) || busy_loop_timeout(start_time); 396 } 397 398 /* 399 * Busy poll if globally on and supporting sockets found && no events, 400 * busy loop will return if need_resched or ep_events_available. 401 * 402 * we must do our busy polling with irqs enabled 403 */ 404 static bool ep_busy_loop(struct eventpoll *ep, int nonblock) 405 { 406 unsigned int napi_id = READ_ONCE(ep->napi_id); 407 408 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) { 409 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, false, 410 BUSY_POLL_BUDGET); 411 if (ep_events_available(ep)) 412 return true; 413 /* 414 * Busy poll timed out. Drop NAPI ID for now, we can add 415 * it back in when we have moved a socket with a valid NAPI 416 * ID onto the ready list. 417 */ 418 ep->napi_id = 0; 419 return false; 420 } 421 return false; 422 } 423 424 /* 425 * Set epoll busy poll NAPI ID from sk. 426 */ 427 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 428 { 429 struct eventpoll *ep; 430 unsigned int napi_id; 431 struct socket *sock; 432 struct sock *sk; 433 434 if (!net_busy_loop_on()) 435 return; 436 437 sock = sock_from_file(epi->ffd.file); 438 if (!sock) 439 return; 440 441 sk = sock->sk; 442 if (!sk) 443 return; 444 445 napi_id = READ_ONCE(sk->sk_napi_id); 446 ep = epi->ep; 447 448 /* Non-NAPI IDs can be rejected 449 * or 450 * Nothing to do if we already have this ID 451 */ 452 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id) 453 return; 454 455 /* record NAPI ID for use in next busy poll */ 456 ep->napi_id = napi_id; 457 } 458 459 #else 460 461 static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock) 462 { 463 return false; 464 } 465 466 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 467 { 468 } 469 470 #endif /* CONFIG_NET_RX_BUSY_POLL */ 471 472 /* 473 * As described in commit 0ccf831cb lockdep: annotate epoll 474 * the use of wait queues used by epoll is done in a very controlled 475 * manner. Wake ups can nest inside each other, but are never done 476 * with the same locking. For example: 477 * 478 * dfd = socket(...); 479 * efd1 = epoll_create(); 480 * efd2 = epoll_create(); 481 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 482 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 483 * 484 * When a packet arrives to the device underneath "dfd", the net code will 485 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 486 * callback wakeup entry on that queue, and the wake_up() performed by the 487 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 488 * (efd1) notices that it may have some event ready, so it needs to wake up 489 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 490 * that ends up in another wake_up(), after having checked about the 491 * recursion constraints. That are, no more than EP_MAX_NESTS, to avoid 492 * stack blasting. 493 * 494 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 495 * this special case of epoll. 496 */ 497 #ifdef CONFIG_DEBUG_LOCK_ALLOC 498 499 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi, 500 unsigned pollflags) 501 { 502 struct eventpoll *ep_src; 503 unsigned long flags; 504 u8 nests = 0; 505 506 /* 507 * To set the subclass or nesting level for spin_lock_irqsave_nested() 508 * it might be natural to create a per-cpu nest count. However, since 509 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can 510 * schedule() in the -rt kernel, the per-cpu variable are no longer 511 * protected. Thus, we are introducing a per eventpoll nest field. 512 * If we are not being call from ep_poll_callback(), epi is NULL and 513 * we are at the first level of nesting, 0. Otherwise, we are being 514 * called from ep_poll_callback() and if a previous wakeup source is 515 * not an epoll file itself, we are at depth 1 since the wakeup source 516 * is depth 0. If the wakeup source is a previous epoll file in the 517 * wakeup chain then we use its nests value and record ours as 518 * nests + 1. The previous epoll file nests value is stable since its 519 * already holding its own poll_wait.lock. 520 */ 521 if (epi) { 522 if ((is_file_epoll(epi->ffd.file))) { 523 ep_src = epi->ffd.file->private_data; 524 nests = ep_src->nests; 525 } else { 526 nests = 1; 527 } 528 } 529 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests); 530 ep->nests = nests + 1; 531 wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags); 532 ep->nests = 0; 533 spin_unlock_irqrestore(&ep->poll_wait.lock, flags); 534 } 535 536 #else 537 538 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi, 539 unsigned pollflags) 540 { 541 wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags); 542 } 543 544 #endif 545 546 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 547 { 548 wait_queue_head_t *whead; 549 550 rcu_read_lock(); 551 /* 552 * If it is cleared by POLLFREE, it should be rcu-safe. 553 * If we read NULL we need a barrier paired with 554 * smp_store_release() in ep_poll_callback(), otherwise 555 * we rely on whead->lock. 556 */ 557 whead = smp_load_acquire(&pwq->whead); 558 if (whead) 559 remove_wait_queue(whead, &pwq->wait); 560 rcu_read_unlock(); 561 } 562 563 /* 564 * This function unregisters poll callbacks from the associated file 565 * descriptor. Must be called with "mtx" held. 566 */ 567 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 568 { 569 struct eppoll_entry **p = &epi->pwqlist; 570 struct eppoll_entry *pwq; 571 572 while ((pwq = *p) != NULL) { 573 *p = pwq->next; 574 ep_remove_wait_queue(pwq); 575 kmem_cache_free(pwq_cache, pwq); 576 } 577 } 578 579 /* call only when ep->mtx is held */ 580 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) 581 { 582 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); 583 } 584 585 /* call only when ep->mtx is held */ 586 static inline void ep_pm_stay_awake(struct epitem *epi) 587 { 588 struct wakeup_source *ws = ep_wakeup_source(epi); 589 590 if (ws) 591 __pm_stay_awake(ws); 592 } 593 594 static inline bool ep_has_wakeup_source(struct epitem *epi) 595 { 596 return rcu_access_pointer(epi->ws) ? true : false; 597 } 598 599 /* call when ep->mtx cannot be held (ep_poll_callback) */ 600 static inline void ep_pm_stay_awake_rcu(struct epitem *epi) 601 { 602 struct wakeup_source *ws; 603 604 rcu_read_lock(); 605 ws = rcu_dereference(epi->ws); 606 if (ws) 607 __pm_stay_awake(ws); 608 rcu_read_unlock(); 609 } 610 611 612 /* 613 * ep->mutex needs to be held because we could be hit by 614 * eventpoll_release_file() and epoll_ctl(). 615 */ 616 static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist) 617 { 618 /* 619 * Steal the ready list, and re-init the original one to the 620 * empty list. Also, set ep->ovflist to NULL so that events 621 * happening while looping w/out locks, are not lost. We cannot 622 * have the poll callback to queue directly on ep->rdllist, 623 * because we want the "sproc" callback to be able to do it 624 * in a lockless way. 625 */ 626 lockdep_assert_irqs_enabled(); 627 write_lock_irq(&ep->lock); 628 list_splice_init(&ep->rdllist, txlist); 629 WRITE_ONCE(ep->ovflist, NULL); 630 write_unlock_irq(&ep->lock); 631 } 632 633 static void ep_done_scan(struct eventpoll *ep, 634 struct list_head *txlist) 635 { 636 struct epitem *epi, *nepi; 637 638 write_lock_irq(&ep->lock); 639 /* 640 * During the time we spent inside the "sproc" callback, some 641 * other events might have been queued by the poll callback. 642 * We re-insert them inside the main ready-list here. 643 */ 644 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL; 645 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 646 /* 647 * We need to check if the item is already in the list. 648 * During the "sproc" callback execution time, items are 649 * queued into ->ovflist but the "txlist" might already 650 * contain them, and the list_splice() below takes care of them. 651 */ 652 if (!ep_is_linked(epi)) { 653 /* 654 * ->ovflist is LIFO, so we have to reverse it in order 655 * to keep in FIFO. 656 */ 657 list_add(&epi->rdllink, &ep->rdllist); 658 ep_pm_stay_awake(epi); 659 } 660 } 661 /* 662 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 663 * releasing the lock, events will be queued in the normal way inside 664 * ep->rdllist. 665 */ 666 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR); 667 668 /* 669 * Quickly re-inject items left on "txlist". 670 */ 671 list_splice(txlist, &ep->rdllist); 672 __pm_relax(ep->ws); 673 674 if (!list_empty(&ep->rdllist)) { 675 if (waitqueue_active(&ep->wq)) 676 wake_up(&ep->wq); 677 } 678 679 write_unlock_irq(&ep->lock); 680 } 681 682 static void epi_rcu_free(struct rcu_head *head) 683 { 684 struct epitem *epi = container_of(head, struct epitem, rcu); 685 kmem_cache_free(epi_cache, epi); 686 } 687 688 static void ep_get(struct eventpoll *ep) 689 { 690 refcount_inc(&ep->refcount); 691 } 692 693 /* 694 * Returns true if the event poll can be disposed 695 */ 696 static bool ep_refcount_dec_and_test(struct eventpoll *ep) 697 { 698 if (!refcount_dec_and_test(&ep->refcount)) 699 return false; 700 701 WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.rb_root)); 702 return true; 703 } 704 705 static void ep_free(struct eventpoll *ep) 706 { 707 mutex_destroy(&ep->mtx); 708 free_uid(ep->user); 709 wakeup_source_unregister(ep->ws); 710 kfree(ep); 711 } 712 713 /* 714 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 715 * all the associated resources. Must be called with "mtx" held. 716 * If the dying flag is set, do the removal only if force is true. 717 * This prevents ep_clear_and_put() from dropping all the ep references 718 * while running concurrently with eventpoll_release_file(). 719 * Returns true if the eventpoll can be disposed. 720 */ 721 static bool __ep_remove(struct eventpoll *ep, struct epitem *epi, bool force) 722 { 723 struct file *file = epi->ffd.file; 724 struct epitems_head *to_free; 725 struct hlist_head *head; 726 727 lockdep_assert_irqs_enabled(); 728 729 /* 730 * Removes poll wait queue hooks. 731 */ 732 ep_unregister_pollwait(ep, epi); 733 734 /* Remove the current item from the list of epoll hooks */ 735 spin_lock(&file->f_lock); 736 if (epi->dying && !force) { 737 spin_unlock(&file->f_lock); 738 return false; 739 } 740 741 to_free = NULL; 742 head = file->f_ep; 743 if (head->first == &epi->fllink && !epi->fllink.next) { 744 file->f_ep = NULL; 745 if (!is_file_epoll(file)) { 746 struct epitems_head *v; 747 v = container_of(head, struct epitems_head, epitems); 748 if (!smp_load_acquire(&v->next)) 749 to_free = v; 750 } 751 } 752 hlist_del_rcu(&epi->fllink); 753 spin_unlock(&file->f_lock); 754 free_ephead(to_free); 755 756 rb_erase_cached(&epi->rbn, &ep->rbr); 757 758 write_lock_irq(&ep->lock); 759 if (ep_is_linked(epi)) 760 list_del_init(&epi->rdllink); 761 write_unlock_irq(&ep->lock); 762 763 wakeup_source_unregister(ep_wakeup_source(epi)); 764 /* 765 * At this point it is safe to free the eventpoll item. Use the union 766 * field epi->rcu, since we are trying to minimize the size of 767 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by 768 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make 769 * use of the rbn field. 770 */ 771 call_rcu(&epi->rcu, epi_rcu_free); 772 773 percpu_counter_dec(&ep->user->epoll_watches); 774 return ep_refcount_dec_and_test(ep); 775 } 776 777 /* 778 * ep_remove variant for callers owing an additional reference to the ep 779 */ 780 static void ep_remove_safe(struct eventpoll *ep, struct epitem *epi) 781 { 782 WARN_ON_ONCE(__ep_remove(ep, epi, false)); 783 } 784 785 static void ep_clear_and_put(struct eventpoll *ep) 786 { 787 struct rb_node *rbp, *next; 788 struct epitem *epi; 789 bool dispose; 790 791 /* We need to release all tasks waiting for these file */ 792 if (waitqueue_active(&ep->poll_wait)) 793 ep_poll_safewake(ep, NULL, 0); 794 795 mutex_lock(&ep->mtx); 796 797 /* 798 * Walks through the whole tree by unregistering poll callbacks. 799 */ 800 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 801 epi = rb_entry(rbp, struct epitem, rbn); 802 803 ep_unregister_pollwait(ep, epi); 804 cond_resched(); 805 } 806 807 /* 808 * Walks through the whole tree and try to free each "struct epitem". 809 * Note that ep_remove_safe() will not remove the epitem in case of a 810 * racing eventpoll_release_file(); the latter will do the removal. 811 * At this point we are sure no poll callbacks will be lingering around. 812 * Since we still own a reference to the eventpoll struct, the loop can't 813 * dispose it. 814 */ 815 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = next) { 816 next = rb_next(rbp); 817 epi = rb_entry(rbp, struct epitem, rbn); 818 ep_remove_safe(ep, epi); 819 cond_resched(); 820 } 821 822 dispose = ep_refcount_dec_and_test(ep); 823 mutex_unlock(&ep->mtx); 824 825 if (dispose) 826 ep_free(ep); 827 } 828 829 static int ep_eventpoll_release(struct inode *inode, struct file *file) 830 { 831 struct eventpoll *ep = file->private_data; 832 833 if (ep) 834 ep_clear_and_put(ep); 835 836 return 0; 837 } 838 839 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth); 840 841 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth) 842 { 843 struct eventpoll *ep = file->private_data; 844 LIST_HEAD(txlist); 845 struct epitem *epi, *tmp; 846 poll_table pt; 847 __poll_t res = 0; 848 849 init_poll_funcptr(&pt, NULL); 850 851 /* Insert inside our poll wait queue */ 852 poll_wait(file, &ep->poll_wait, wait); 853 854 /* 855 * Proceed to find out if wanted events are really available inside 856 * the ready list. 857 */ 858 mutex_lock_nested(&ep->mtx, depth); 859 ep_start_scan(ep, &txlist); 860 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { 861 if (ep_item_poll(epi, &pt, depth + 1)) { 862 res = EPOLLIN | EPOLLRDNORM; 863 break; 864 } else { 865 /* 866 * Item has been dropped into the ready list by the poll 867 * callback, but it's not actually ready, as far as 868 * caller requested events goes. We can remove it here. 869 */ 870 __pm_relax(ep_wakeup_source(epi)); 871 list_del_init(&epi->rdllink); 872 } 873 } 874 ep_done_scan(ep, &txlist); 875 mutex_unlock(&ep->mtx); 876 return res; 877 } 878 879 /* 880 * Differs from ep_eventpoll_poll() in that internal callers already have 881 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested() 882 * is correctly annotated. 883 */ 884 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, 885 int depth) 886 { 887 struct file *file = epi->ffd.file; 888 __poll_t res; 889 890 pt->_key = epi->event.events; 891 if (!is_file_epoll(file)) 892 res = vfs_poll(file, pt); 893 else 894 res = __ep_eventpoll_poll(file, pt, depth); 895 return res & epi->event.events; 896 } 897 898 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait) 899 { 900 return __ep_eventpoll_poll(file, wait, 0); 901 } 902 903 #ifdef CONFIG_PROC_FS 904 static void ep_show_fdinfo(struct seq_file *m, struct file *f) 905 { 906 struct eventpoll *ep = f->private_data; 907 struct rb_node *rbp; 908 909 mutex_lock(&ep->mtx); 910 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 911 struct epitem *epi = rb_entry(rbp, struct epitem, rbn); 912 struct inode *inode = file_inode(epi->ffd.file); 913 914 seq_printf(m, "tfd: %8d events: %8x data: %16llx " 915 " pos:%lli ino:%lx sdev:%x\n", 916 epi->ffd.fd, epi->event.events, 917 (long long)epi->event.data, 918 (long long)epi->ffd.file->f_pos, 919 inode->i_ino, inode->i_sb->s_dev); 920 if (seq_has_overflowed(m)) 921 break; 922 } 923 mutex_unlock(&ep->mtx); 924 } 925 #endif 926 927 /* File callbacks that implement the eventpoll file behaviour */ 928 static const struct file_operations eventpoll_fops = { 929 #ifdef CONFIG_PROC_FS 930 .show_fdinfo = ep_show_fdinfo, 931 #endif 932 .release = ep_eventpoll_release, 933 .poll = ep_eventpoll_poll, 934 .llseek = noop_llseek, 935 }; 936 937 /* 938 * This is called from eventpoll_release() to unlink files from the eventpoll 939 * interface. We need to have this facility to cleanup correctly files that are 940 * closed without being removed from the eventpoll interface. 941 */ 942 void eventpoll_release_file(struct file *file) 943 { 944 struct eventpoll *ep; 945 struct epitem *epi; 946 bool dispose; 947 948 /* 949 * Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from 950 * touching the epitems list before eventpoll_release_file() can access 951 * the ep->mtx. 952 */ 953 again: 954 spin_lock(&file->f_lock); 955 if (file->f_ep && file->f_ep->first) { 956 epi = hlist_entry(file->f_ep->first, struct epitem, fllink); 957 epi->dying = true; 958 spin_unlock(&file->f_lock); 959 960 /* 961 * ep access is safe as we still own a reference to the ep 962 * struct 963 */ 964 ep = epi->ep; 965 mutex_lock(&ep->mtx); 966 dispose = __ep_remove(ep, epi, true); 967 mutex_unlock(&ep->mtx); 968 969 if (dispose) 970 ep_free(ep); 971 goto again; 972 } 973 spin_unlock(&file->f_lock); 974 } 975 976 static int ep_alloc(struct eventpoll **pep) 977 { 978 int error; 979 struct user_struct *user; 980 struct eventpoll *ep; 981 982 user = get_current_user(); 983 error = -ENOMEM; 984 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 985 if (unlikely(!ep)) 986 goto free_uid; 987 988 mutex_init(&ep->mtx); 989 rwlock_init(&ep->lock); 990 init_waitqueue_head(&ep->wq); 991 init_waitqueue_head(&ep->poll_wait); 992 INIT_LIST_HEAD(&ep->rdllist); 993 ep->rbr = RB_ROOT_CACHED; 994 ep->ovflist = EP_UNACTIVE_PTR; 995 ep->user = user; 996 refcount_set(&ep->refcount, 1); 997 998 *pep = ep; 999 1000 return 0; 1001 1002 free_uid: 1003 free_uid(user); 1004 return error; 1005 } 1006 1007 /* 1008 * Search the file inside the eventpoll tree. The RB tree operations 1009 * are protected by the "mtx" mutex, and ep_find() must be called with 1010 * "mtx" held. 1011 */ 1012 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 1013 { 1014 int kcmp; 1015 struct rb_node *rbp; 1016 struct epitem *epi, *epir = NULL; 1017 struct epoll_filefd ffd; 1018 1019 ep_set_ffd(&ffd, file, fd); 1020 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) { 1021 epi = rb_entry(rbp, struct epitem, rbn); 1022 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 1023 if (kcmp > 0) 1024 rbp = rbp->rb_right; 1025 else if (kcmp < 0) 1026 rbp = rbp->rb_left; 1027 else { 1028 epir = epi; 1029 break; 1030 } 1031 } 1032 1033 return epir; 1034 } 1035 1036 #ifdef CONFIG_KCMP 1037 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff) 1038 { 1039 struct rb_node *rbp; 1040 struct epitem *epi; 1041 1042 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1043 epi = rb_entry(rbp, struct epitem, rbn); 1044 if (epi->ffd.fd == tfd) { 1045 if (toff == 0) 1046 return epi; 1047 else 1048 toff--; 1049 } 1050 cond_resched(); 1051 } 1052 1053 return NULL; 1054 } 1055 1056 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, 1057 unsigned long toff) 1058 { 1059 struct file *file_raw; 1060 struct eventpoll *ep; 1061 struct epitem *epi; 1062 1063 if (!is_file_epoll(file)) 1064 return ERR_PTR(-EINVAL); 1065 1066 ep = file->private_data; 1067 1068 mutex_lock(&ep->mtx); 1069 epi = ep_find_tfd(ep, tfd, toff); 1070 if (epi) 1071 file_raw = epi->ffd.file; 1072 else 1073 file_raw = ERR_PTR(-ENOENT); 1074 mutex_unlock(&ep->mtx); 1075 1076 return file_raw; 1077 } 1078 #endif /* CONFIG_KCMP */ 1079 1080 /* 1081 * Adds a new entry to the tail of the list in a lockless way, i.e. 1082 * multiple CPUs are allowed to call this function concurrently. 1083 * 1084 * Beware: it is necessary to prevent any other modifications of the 1085 * existing list until all changes are completed, in other words 1086 * concurrent list_add_tail_lockless() calls should be protected 1087 * with a read lock, where write lock acts as a barrier which 1088 * makes sure all list_add_tail_lockless() calls are fully 1089 * completed. 1090 * 1091 * Also an element can be locklessly added to the list only in one 1092 * direction i.e. either to the tail or to the head, otherwise 1093 * concurrent access will corrupt the list. 1094 * 1095 * Return: %false if element has been already added to the list, %true 1096 * otherwise. 1097 */ 1098 static inline bool list_add_tail_lockless(struct list_head *new, 1099 struct list_head *head) 1100 { 1101 struct list_head *prev; 1102 1103 /* 1104 * This is simple 'new->next = head' operation, but cmpxchg() 1105 * is used in order to detect that same element has been just 1106 * added to the list from another CPU: the winner observes 1107 * new->next == new. 1108 */ 1109 if (!try_cmpxchg(&new->next, &new, head)) 1110 return false; 1111 1112 /* 1113 * Initially ->next of a new element must be updated with the head 1114 * (we are inserting to the tail) and only then pointers are atomically 1115 * exchanged. XCHG guarantees memory ordering, thus ->next should be 1116 * updated before pointers are actually swapped and pointers are 1117 * swapped before prev->next is updated. 1118 */ 1119 1120 prev = xchg(&head->prev, new); 1121 1122 /* 1123 * It is safe to modify prev->next and new->prev, because a new element 1124 * is added only to the tail and new->next is updated before XCHG. 1125 */ 1126 1127 prev->next = new; 1128 new->prev = prev; 1129 1130 return true; 1131 } 1132 1133 /* 1134 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way, 1135 * i.e. multiple CPUs are allowed to call this function concurrently. 1136 * 1137 * Return: %false if epi element has been already chained, %true otherwise. 1138 */ 1139 static inline bool chain_epi_lockless(struct epitem *epi) 1140 { 1141 struct eventpoll *ep = epi->ep; 1142 1143 /* Fast preliminary check */ 1144 if (epi->next != EP_UNACTIVE_PTR) 1145 return false; 1146 1147 /* Check that the same epi has not been just chained from another CPU */ 1148 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR) 1149 return false; 1150 1151 /* Atomically exchange tail */ 1152 epi->next = xchg(&ep->ovflist, epi); 1153 1154 return true; 1155 } 1156 1157 /* 1158 * This is the callback that is passed to the wait queue wakeup 1159 * mechanism. It is called by the stored file descriptors when they 1160 * have events to report. 1161 * 1162 * This callback takes a read lock in order not to contend with concurrent 1163 * events from another file descriptor, thus all modifications to ->rdllist 1164 * or ->ovflist are lockless. Read lock is paired with the write lock from 1165 * ep_scan_ready_list(), which stops all list modifications and guarantees 1166 * that lists state is seen correctly. 1167 * 1168 * Another thing worth to mention is that ep_poll_callback() can be called 1169 * concurrently for the same @epi from different CPUs if poll table was inited 1170 * with several wait queues entries. Plural wakeup from different CPUs of a 1171 * single wait queue is serialized by wq.lock, but the case when multiple wait 1172 * queues are used should be detected accordingly. This is detected using 1173 * cmpxchg() operation. 1174 */ 1175 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1176 { 1177 int pwake = 0; 1178 struct epitem *epi = ep_item_from_wait(wait); 1179 struct eventpoll *ep = epi->ep; 1180 __poll_t pollflags = key_to_poll(key); 1181 unsigned long flags; 1182 int ewake = 0; 1183 1184 read_lock_irqsave(&ep->lock, flags); 1185 1186 ep_set_busy_poll_napi_id(epi); 1187 1188 /* 1189 * If the event mask does not contain any poll(2) event, we consider the 1190 * descriptor to be disabled. This condition is likely the effect of the 1191 * EPOLLONESHOT bit that disables the descriptor when an event is received, 1192 * until the next EPOLL_CTL_MOD will be issued. 1193 */ 1194 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 1195 goto out_unlock; 1196 1197 /* 1198 * Check the events coming with the callback. At this stage, not 1199 * every device reports the events in the "key" parameter of the 1200 * callback. We need to be able to handle both cases here, hence the 1201 * test for "key" != NULL before the event match test. 1202 */ 1203 if (pollflags && !(pollflags & epi->event.events)) 1204 goto out_unlock; 1205 1206 /* 1207 * If we are transferring events to userspace, we can hold no locks 1208 * (because we're accessing user memory, and because of linux f_op->poll() 1209 * semantics). All the events that happen during that period of time are 1210 * chained in ep->ovflist and requeued later on. 1211 */ 1212 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) { 1213 if (chain_epi_lockless(epi)) 1214 ep_pm_stay_awake_rcu(epi); 1215 } else if (!ep_is_linked(epi)) { 1216 /* In the usual case, add event to ready list. */ 1217 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist)) 1218 ep_pm_stay_awake_rcu(epi); 1219 } 1220 1221 /* 1222 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1223 * wait list. 1224 */ 1225 if (waitqueue_active(&ep->wq)) { 1226 if ((epi->event.events & EPOLLEXCLUSIVE) && 1227 !(pollflags & POLLFREE)) { 1228 switch (pollflags & EPOLLINOUT_BITS) { 1229 case EPOLLIN: 1230 if (epi->event.events & EPOLLIN) 1231 ewake = 1; 1232 break; 1233 case EPOLLOUT: 1234 if (epi->event.events & EPOLLOUT) 1235 ewake = 1; 1236 break; 1237 case 0: 1238 ewake = 1; 1239 break; 1240 } 1241 } 1242 wake_up(&ep->wq); 1243 } 1244 if (waitqueue_active(&ep->poll_wait)) 1245 pwake++; 1246 1247 out_unlock: 1248 read_unlock_irqrestore(&ep->lock, flags); 1249 1250 /* We have to call this outside the lock */ 1251 if (pwake) 1252 ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE); 1253 1254 if (!(epi->event.events & EPOLLEXCLUSIVE)) 1255 ewake = 1; 1256 1257 if (pollflags & POLLFREE) { 1258 /* 1259 * If we race with ep_remove_wait_queue() it can miss 1260 * ->whead = NULL and do another remove_wait_queue() after 1261 * us, so we can't use __remove_wait_queue(). 1262 */ 1263 list_del_init(&wait->entry); 1264 /* 1265 * ->whead != NULL protects us from the race with 1266 * ep_clear_and_put() or ep_remove(), ep_remove_wait_queue() 1267 * takes whead->lock held by the caller. Once we nullify it, 1268 * nothing protects ep/epi or even wait. 1269 */ 1270 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL); 1271 } 1272 1273 return ewake; 1274 } 1275 1276 /* 1277 * This is the callback that is used to add our wait queue to the 1278 * target file wakeup lists. 1279 */ 1280 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 1281 poll_table *pt) 1282 { 1283 struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt); 1284 struct epitem *epi = epq->epi; 1285 struct eppoll_entry *pwq; 1286 1287 if (unlikely(!epi)) // an earlier allocation has failed 1288 return; 1289 1290 pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL); 1291 if (unlikely(!pwq)) { 1292 epq->epi = NULL; 1293 return; 1294 } 1295 1296 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 1297 pwq->whead = whead; 1298 pwq->base = epi; 1299 if (epi->event.events & EPOLLEXCLUSIVE) 1300 add_wait_queue_exclusive(whead, &pwq->wait); 1301 else 1302 add_wait_queue(whead, &pwq->wait); 1303 pwq->next = epi->pwqlist; 1304 epi->pwqlist = pwq; 1305 } 1306 1307 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1308 { 1309 int kcmp; 1310 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL; 1311 struct epitem *epic; 1312 bool leftmost = true; 1313 1314 while (*p) { 1315 parent = *p; 1316 epic = rb_entry(parent, struct epitem, rbn); 1317 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1318 if (kcmp > 0) { 1319 p = &parent->rb_right; 1320 leftmost = false; 1321 } else 1322 p = &parent->rb_left; 1323 } 1324 rb_link_node(&epi->rbn, parent, p); 1325 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost); 1326 } 1327 1328 1329 1330 #define PATH_ARR_SIZE 5 1331 /* 1332 * These are the number paths of length 1 to 5, that we are allowing to emanate 1333 * from a single file of interest. For example, we allow 1000 paths of length 1334 * 1, to emanate from each file of interest. This essentially represents the 1335 * potential wakeup paths, which need to be limited in order to avoid massive 1336 * uncontrolled wakeup storms. The common use case should be a single ep which 1337 * is connected to n file sources. In this case each file source has 1 path 1338 * of length 1. Thus, the numbers below should be more than sufficient. These 1339 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1340 * and delete can't add additional paths. Protected by the epnested_mutex. 1341 */ 1342 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1343 static int path_count[PATH_ARR_SIZE]; 1344 1345 static int path_count_inc(int nests) 1346 { 1347 /* Allow an arbitrary number of depth 1 paths */ 1348 if (nests == 0) 1349 return 0; 1350 1351 if (++path_count[nests] > path_limits[nests]) 1352 return -1; 1353 return 0; 1354 } 1355 1356 static void path_count_init(void) 1357 { 1358 int i; 1359 1360 for (i = 0; i < PATH_ARR_SIZE; i++) 1361 path_count[i] = 0; 1362 } 1363 1364 static int reverse_path_check_proc(struct hlist_head *refs, int depth) 1365 { 1366 int error = 0; 1367 struct epitem *epi; 1368 1369 if (depth > EP_MAX_NESTS) /* too deep nesting */ 1370 return -1; 1371 1372 /* CTL_DEL can remove links here, but that can't increase our count */ 1373 hlist_for_each_entry_rcu(epi, refs, fllink) { 1374 struct hlist_head *refs = &epi->ep->refs; 1375 if (hlist_empty(refs)) 1376 error = path_count_inc(depth); 1377 else 1378 error = reverse_path_check_proc(refs, depth + 1); 1379 if (error != 0) 1380 break; 1381 } 1382 return error; 1383 } 1384 1385 /** 1386 * reverse_path_check - The tfile_check_list is list of epitem_head, which have 1387 * links that are proposed to be newly added. We need to 1388 * make sure that those added links don't add too many 1389 * paths such that we will spend all our time waking up 1390 * eventpoll objects. 1391 * 1392 * Return: %zero if the proposed links don't create too many paths, 1393 * %-1 otherwise. 1394 */ 1395 static int reverse_path_check(void) 1396 { 1397 struct epitems_head *p; 1398 1399 for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) { 1400 int error; 1401 path_count_init(); 1402 rcu_read_lock(); 1403 error = reverse_path_check_proc(&p->epitems, 0); 1404 rcu_read_unlock(); 1405 if (error) 1406 return error; 1407 } 1408 return 0; 1409 } 1410 1411 static int ep_create_wakeup_source(struct epitem *epi) 1412 { 1413 struct name_snapshot n; 1414 struct wakeup_source *ws; 1415 1416 if (!epi->ep->ws) { 1417 epi->ep->ws = wakeup_source_register(NULL, "eventpoll"); 1418 if (!epi->ep->ws) 1419 return -ENOMEM; 1420 } 1421 1422 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry); 1423 ws = wakeup_source_register(NULL, n.name.name); 1424 release_dentry_name_snapshot(&n); 1425 1426 if (!ws) 1427 return -ENOMEM; 1428 rcu_assign_pointer(epi->ws, ws); 1429 1430 return 0; 1431 } 1432 1433 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ 1434 static noinline void ep_destroy_wakeup_source(struct epitem *epi) 1435 { 1436 struct wakeup_source *ws = ep_wakeup_source(epi); 1437 1438 RCU_INIT_POINTER(epi->ws, NULL); 1439 1440 /* 1441 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is 1442 * used internally by wakeup_source_remove, too (called by 1443 * wakeup_source_unregister), so we cannot use call_rcu 1444 */ 1445 synchronize_rcu(); 1446 wakeup_source_unregister(ws); 1447 } 1448 1449 static int attach_epitem(struct file *file, struct epitem *epi) 1450 { 1451 struct epitems_head *to_free = NULL; 1452 struct hlist_head *head = NULL; 1453 struct eventpoll *ep = NULL; 1454 1455 if (is_file_epoll(file)) 1456 ep = file->private_data; 1457 1458 if (ep) { 1459 head = &ep->refs; 1460 } else if (!READ_ONCE(file->f_ep)) { 1461 allocate: 1462 to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL); 1463 if (!to_free) 1464 return -ENOMEM; 1465 head = &to_free->epitems; 1466 } 1467 spin_lock(&file->f_lock); 1468 if (!file->f_ep) { 1469 if (unlikely(!head)) { 1470 spin_unlock(&file->f_lock); 1471 goto allocate; 1472 } 1473 file->f_ep = head; 1474 to_free = NULL; 1475 } 1476 hlist_add_head_rcu(&epi->fllink, file->f_ep); 1477 spin_unlock(&file->f_lock); 1478 free_ephead(to_free); 1479 return 0; 1480 } 1481 1482 /* 1483 * Must be called with "mtx" held. 1484 */ 1485 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event, 1486 struct file *tfile, int fd, int full_check) 1487 { 1488 int error, pwake = 0; 1489 __poll_t revents; 1490 struct epitem *epi; 1491 struct ep_pqueue epq; 1492 struct eventpoll *tep = NULL; 1493 1494 if (is_file_epoll(tfile)) 1495 tep = tfile->private_data; 1496 1497 lockdep_assert_irqs_enabled(); 1498 1499 if (unlikely(percpu_counter_compare(&ep->user->epoll_watches, 1500 max_user_watches) >= 0)) 1501 return -ENOSPC; 1502 percpu_counter_inc(&ep->user->epoll_watches); 1503 1504 if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) { 1505 percpu_counter_dec(&ep->user->epoll_watches); 1506 return -ENOMEM; 1507 } 1508 1509 /* Item initialization follow here ... */ 1510 INIT_LIST_HEAD(&epi->rdllink); 1511 epi->ep = ep; 1512 ep_set_ffd(&epi->ffd, tfile, fd); 1513 epi->event = *event; 1514 epi->next = EP_UNACTIVE_PTR; 1515 1516 if (tep) 1517 mutex_lock_nested(&tep->mtx, 1); 1518 /* Add the current item to the list of active epoll hook for this file */ 1519 if (unlikely(attach_epitem(tfile, epi) < 0)) { 1520 if (tep) 1521 mutex_unlock(&tep->mtx); 1522 kmem_cache_free(epi_cache, epi); 1523 percpu_counter_dec(&ep->user->epoll_watches); 1524 return -ENOMEM; 1525 } 1526 1527 if (full_check && !tep) 1528 list_file(tfile); 1529 1530 /* 1531 * Add the current item to the RB tree. All RB tree operations are 1532 * protected by "mtx", and ep_insert() is called with "mtx" held. 1533 */ 1534 ep_rbtree_insert(ep, epi); 1535 if (tep) 1536 mutex_unlock(&tep->mtx); 1537 1538 /* 1539 * ep_remove_safe() calls in the later error paths can't lead to 1540 * ep_free() as the ep file itself still holds an ep reference. 1541 */ 1542 ep_get(ep); 1543 1544 /* now check if we've created too many backpaths */ 1545 if (unlikely(full_check && reverse_path_check())) { 1546 ep_remove_safe(ep, epi); 1547 return -EINVAL; 1548 } 1549 1550 if (epi->event.events & EPOLLWAKEUP) { 1551 error = ep_create_wakeup_source(epi); 1552 if (error) { 1553 ep_remove_safe(ep, epi); 1554 return error; 1555 } 1556 } 1557 1558 /* Initialize the poll table using the queue callback */ 1559 epq.epi = epi; 1560 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1561 1562 /* 1563 * Attach the item to the poll hooks and get current event bits. 1564 * We can safely use the file* here because its usage count has 1565 * been increased by the caller of this function. Note that after 1566 * this operation completes, the poll callback can start hitting 1567 * the new item. 1568 */ 1569 revents = ep_item_poll(epi, &epq.pt, 1); 1570 1571 /* 1572 * We have to check if something went wrong during the poll wait queue 1573 * install process. Namely an allocation for a wait queue failed due 1574 * high memory pressure. 1575 */ 1576 if (unlikely(!epq.epi)) { 1577 ep_remove_safe(ep, epi); 1578 return -ENOMEM; 1579 } 1580 1581 /* We have to drop the new item inside our item list to keep track of it */ 1582 write_lock_irq(&ep->lock); 1583 1584 /* record NAPI ID of new item if present */ 1585 ep_set_busy_poll_napi_id(epi); 1586 1587 /* If the file is already "ready" we drop it inside the ready list */ 1588 if (revents && !ep_is_linked(epi)) { 1589 list_add_tail(&epi->rdllink, &ep->rdllist); 1590 ep_pm_stay_awake(epi); 1591 1592 /* Notify waiting tasks that events are available */ 1593 if (waitqueue_active(&ep->wq)) 1594 wake_up(&ep->wq); 1595 if (waitqueue_active(&ep->poll_wait)) 1596 pwake++; 1597 } 1598 1599 write_unlock_irq(&ep->lock); 1600 1601 /* We have to call this outside the lock */ 1602 if (pwake) 1603 ep_poll_safewake(ep, NULL, 0); 1604 1605 return 0; 1606 } 1607 1608 /* 1609 * Modify the interest event mask by dropping an event if the new mask 1610 * has a match in the current file status. Must be called with "mtx" held. 1611 */ 1612 static int ep_modify(struct eventpoll *ep, struct epitem *epi, 1613 const struct epoll_event *event) 1614 { 1615 int pwake = 0; 1616 poll_table pt; 1617 1618 lockdep_assert_irqs_enabled(); 1619 1620 init_poll_funcptr(&pt, NULL); 1621 1622 /* 1623 * Set the new event interest mask before calling f_op->poll(); 1624 * otherwise we might miss an event that happens between the 1625 * f_op->poll() call and the new event set registering. 1626 */ 1627 epi->event.events = event->events; /* need barrier below */ 1628 epi->event.data = event->data; /* protected by mtx */ 1629 if (epi->event.events & EPOLLWAKEUP) { 1630 if (!ep_has_wakeup_source(epi)) 1631 ep_create_wakeup_source(epi); 1632 } else if (ep_has_wakeup_source(epi)) { 1633 ep_destroy_wakeup_source(epi); 1634 } 1635 1636 /* 1637 * The following barrier has two effects: 1638 * 1639 * 1) Flush epi changes above to other CPUs. This ensures 1640 * we do not miss events from ep_poll_callback if an 1641 * event occurs immediately after we call f_op->poll(). 1642 * We need this because we did not take ep->lock while 1643 * changing epi above (but ep_poll_callback does take 1644 * ep->lock). 1645 * 1646 * 2) We also need to ensure we do not miss _past_ events 1647 * when calling f_op->poll(). This barrier also 1648 * pairs with the barrier in wq_has_sleeper (see 1649 * comments for wq_has_sleeper). 1650 * 1651 * This barrier will now guarantee ep_poll_callback or f_op->poll 1652 * (or both) will notice the readiness of an item. 1653 */ 1654 smp_mb(); 1655 1656 /* 1657 * Get current event bits. We can safely use the file* here because 1658 * its usage count has been increased by the caller of this function. 1659 * If the item is "hot" and it is not registered inside the ready 1660 * list, push it inside. 1661 */ 1662 if (ep_item_poll(epi, &pt, 1)) { 1663 write_lock_irq(&ep->lock); 1664 if (!ep_is_linked(epi)) { 1665 list_add_tail(&epi->rdllink, &ep->rdllist); 1666 ep_pm_stay_awake(epi); 1667 1668 /* Notify waiting tasks that events are available */ 1669 if (waitqueue_active(&ep->wq)) 1670 wake_up(&ep->wq); 1671 if (waitqueue_active(&ep->poll_wait)) 1672 pwake++; 1673 } 1674 write_unlock_irq(&ep->lock); 1675 } 1676 1677 /* We have to call this outside the lock */ 1678 if (pwake) 1679 ep_poll_safewake(ep, NULL, 0); 1680 1681 return 0; 1682 } 1683 1684 static int ep_send_events(struct eventpoll *ep, 1685 struct epoll_event __user *events, int maxevents) 1686 { 1687 struct epitem *epi, *tmp; 1688 LIST_HEAD(txlist); 1689 poll_table pt; 1690 int res = 0; 1691 1692 /* 1693 * Always short-circuit for fatal signals to allow threads to make a 1694 * timely exit without the chance of finding more events available and 1695 * fetching repeatedly. 1696 */ 1697 if (fatal_signal_pending(current)) 1698 return -EINTR; 1699 1700 init_poll_funcptr(&pt, NULL); 1701 1702 mutex_lock(&ep->mtx); 1703 ep_start_scan(ep, &txlist); 1704 1705 /* 1706 * We can loop without lock because we are passed a task private list. 1707 * Items cannot vanish during the loop we are holding ep->mtx. 1708 */ 1709 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { 1710 struct wakeup_source *ws; 1711 __poll_t revents; 1712 1713 if (res >= maxevents) 1714 break; 1715 1716 /* 1717 * Activate ep->ws before deactivating epi->ws to prevent 1718 * triggering auto-suspend here (in case we reactive epi->ws 1719 * below). 1720 * 1721 * This could be rearranged to delay the deactivation of epi->ws 1722 * instead, but then epi->ws would temporarily be out of sync 1723 * with ep_is_linked(). 1724 */ 1725 ws = ep_wakeup_source(epi); 1726 if (ws) { 1727 if (ws->active) 1728 __pm_stay_awake(ep->ws); 1729 __pm_relax(ws); 1730 } 1731 1732 list_del_init(&epi->rdllink); 1733 1734 /* 1735 * If the event mask intersect the caller-requested one, 1736 * deliver the event to userspace. Again, we are holding ep->mtx, 1737 * so no operations coming from userspace can change the item. 1738 */ 1739 revents = ep_item_poll(epi, &pt, 1); 1740 if (!revents) 1741 continue; 1742 1743 events = epoll_put_uevent(revents, epi->event.data, events); 1744 if (!events) { 1745 list_add(&epi->rdllink, &txlist); 1746 ep_pm_stay_awake(epi); 1747 if (!res) 1748 res = -EFAULT; 1749 break; 1750 } 1751 res++; 1752 if (epi->event.events & EPOLLONESHOT) 1753 epi->event.events &= EP_PRIVATE_BITS; 1754 else if (!(epi->event.events & EPOLLET)) { 1755 /* 1756 * If this file has been added with Level 1757 * Trigger mode, we need to insert back inside 1758 * the ready list, so that the next call to 1759 * epoll_wait() will check again the events 1760 * availability. At this point, no one can insert 1761 * into ep->rdllist besides us. The epoll_ctl() 1762 * callers are locked out by 1763 * ep_scan_ready_list() holding "mtx" and the 1764 * poll callback will queue them in ep->ovflist. 1765 */ 1766 list_add_tail(&epi->rdllink, &ep->rdllist); 1767 ep_pm_stay_awake(epi); 1768 } 1769 } 1770 ep_done_scan(ep, &txlist); 1771 mutex_unlock(&ep->mtx); 1772 1773 return res; 1774 } 1775 1776 static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms) 1777 { 1778 struct timespec64 now; 1779 1780 if (ms < 0) 1781 return NULL; 1782 1783 if (!ms) { 1784 to->tv_sec = 0; 1785 to->tv_nsec = 0; 1786 return to; 1787 } 1788 1789 to->tv_sec = ms / MSEC_PER_SEC; 1790 to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC); 1791 1792 ktime_get_ts64(&now); 1793 *to = timespec64_add_safe(now, *to); 1794 return to; 1795 } 1796 1797 /* 1798 * autoremove_wake_function, but remove even on failure to wake up, because we 1799 * know that default_wake_function/ttwu will only fail if the thread is already 1800 * woken, and in that case the ep_poll loop will remove the entry anyways, not 1801 * try to reuse it. 1802 */ 1803 static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry, 1804 unsigned int mode, int sync, void *key) 1805 { 1806 int ret = default_wake_function(wq_entry, mode, sync, key); 1807 1808 /* 1809 * Pairs with list_empty_careful in ep_poll, and ensures future loop 1810 * iterations see the cause of this wakeup. 1811 */ 1812 list_del_init_careful(&wq_entry->entry); 1813 return ret; 1814 } 1815 1816 /** 1817 * ep_poll - Retrieves ready events, and delivers them to the caller-supplied 1818 * event buffer. 1819 * 1820 * @ep: Pointer to the eventpoll context. 1821 * @events: Pointer to the userspace buffer where the ready events should be 1822 * stored. 1823 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1824 * @timeout: Maximum timeout for the ready events fetch operation, in 1825 * timespec. If the timeout is zero, the function will not block, 1826 * while if the @timeout ptr is NULL, the function will block 1827 * until at least one event has been retrieved (or an error 1828 * occurred). 1829 * 1830 * Return: the number of ready events which have been fetched, or an 1831 * error code, in case of error. 1832 */ 1833 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1834 int maxevents, struct timespec64 *timeout) 1835 { 1836 int res, eavail, timed_out = 0; 1837 u64 slack = 0; 1838 wait_queue_entry_t wait; 1839 ktime_t expires, *to = NULL; 1840 1841 lockdep_assert_irqs_enabled(); 1842 1843 if (timeout && (timeout->tv_sec | timeout->tv_nsec)) { 1844 slack = select_estimate_accuracy(timeout); 1845 to = &expires; 1846 *to = timespec64_to_ktime(*timeout); 1847 } else if (timeout) { 1848 /* 1849 * Avoid the unnecessary trip to the wait queue loop, if the 1850 * caller specified a non blocking operation. 1851 */ 1852 timed_out = 1; 1853 } 1854 1855 /* 1856 * This call is racy: We may or may not see events that are being added 1857 * to the ready list under the lock (e.g., in IRQ callbacks). For cases 1858 * with a non-zero timeout, this thread will check the ready list under 1859 * lock and will add to the wait queue. For cases with a zero 1860 * timeout, the user by definition should not care and will have to 1861 * recheck again. 1862 */ 1863 eavail = ep_events_available(ep); 1864 1865 while (1) { 1866 if (eavail) { 1867 /* 1868 * Try to transfer events to user space. In case we get 1869 * 0 events and there's still timeout left over, we go 1870 * trying again in search of more luck. 1871 */ 1872 res = ep_send_events(ep, events, maxevents); 1873 if (res) 1874 return res; 1875 } 1876 1877 if (timed_out) 1878 return 0; 1879 1880 eavail = ep_busy_loop(ep, timed_out); 1881 if (eavail) 1882 continue; 1883 1884 if (signal_pending(current)) 1885 return -EINTR; 1886 1887 /* 1888 * Internally init_wait() uses autoremove_wake_function(), 1889 * thus wait entry is removed from the wait queue on each 1890 * wakeup. Why it is important? In case of several waiters 1891 * each new wakeup will hit the next waiter, giving it the 1892 * chance to harvest new event. Otherwise wakeup can be 1893 * lost. This is also good performance-wise, because on 1894 * normal wakeup path no need to call __remove_wait_queue() 1895 * explicitly, thus ep->lock is not taken, which halts the 1896 * event delivery. 1897 * 1898 * In fact, we now use an even more aggressive function that 1899 * unconditionally removes, because we don't reuse the wait 1900 * entry between loop iterations. This lets us also avoid the 1901 * performance issue if a process is killed, causing all of its 1902 * threads to wake up without being removed normally. 1903 */ 1904 init_wait(&wait); 1905 wait.func = ep_autoremove_wake_function; 1906 1907 write_lock_irq(&ep->lock); 1908 /* 1909 * Barrierless variant, waitqueue_active() is called under 1910 * the same lock on wakeup ep_poll_callback() side, so it 1911 * is safe to avoid an explicit barrier. 1912 */ 1913 __set_current_state(TASK_INTERRUPTIBLE); 1914 1915 /* 1916 * Do the final check under the lock. ep_scan_ready_list() 1917 * plays with two lists (->rdllist and ->ovflist) and there 1918 * is always a race when both lists are empty for short 1919 * period of time although events are pending, so lock is 1920 * important. 1921 */ 1922 eavail = ep_events_available(ep); 1923 if (!eavail) 1924 __add_wait_queue_exclusive(&ep->wq, &wait); 1925 1926 write_unlock_irq(&ep->lock); 1927 1928 if (!eavail) 1929 timed_out = !schedule_hrtimeout_range(to, slack, 1930 HRTIMER_MODE_ABS); 1931 __set_current_state(TASK_RUNNING); 1932 1933 /* 1934 * We were woken up, thus go and try to harvest some events. 1935 * If timed out and still on the wait queue, recheck eavail 1936 * carefully under lock, below. 1937 */ 1938 eavail = 1; 1939 1940 if (!list_empty_careful(&wait.entry)) { 1941 write_lock_irq(&ep->lock); 1942 /* 1943 * If the thread timed out and is not on the wait queue, 1944 * it means that the thread was woken up after its 1945 * timeout expired before it could reacquire the lock. 1946 * Thus, when wait.entry is empty, it needs to harvest 1947 * events. 1948 */ 1949 if (timed_out) 1950 eavail = list_empty(&wait.entry); 1951 __remove_wait_queue(&ep->wq, &wait); 1952 write_unlock_irq(&ep->lock); 1953 } 1954 } 1955 } 1956 1957 /** 1958 * ep_loop_check_proc - verify that adding an epoll file inside another 1959 * epoll structure does not violate the constraints, in 1960 * terms of closed loops, or too deep chains (which can 1961 * result in excessive stack usage). 1962 * 1963 * @ep: the &struct eventpoll to be currently checked. 1964 * @depth: Current depth of the path being checked. 1965 * 1966 * Return: %zero if adding the epoll @file inside current epoll 1967 * structure @ep does not violate the constraints, or %-1 otherwise. 1968 */ 1969 static int ep_loop_check_proc(struct eventpoll *ep, int depth) 1970 { 1971 int error = 0; 1972 struct rb_node *rbp; 1973 struct epitem *epi; 1974 1975 mutex_lock_nested(&ep->mtx, depth + 1); 1976 ep->gen = loop_check_gen; 1977 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1978 epi = rb_entry(rbp, struct epitem, rbn); 1979 if (unlikely(is_file_epoll(epi->ffd.file))) { 1980 struct eventpoll *ep_tovisit; 1981 ep_tovisit = epi->ffd.file->private_data; 1982 if (ep_tovisit->gen == loop_check_gen) 1983 continue; 1984 if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS) 1985 error = -1; 1986 else 1987 error = ep_loop_check_proc(ep_tovisit, depth + 1); 1988 if (error != 0) 1989 break; 1990 } else { 1991 /* 1992 * If we've reached a file that is not associated with 1993 * an ep, then we need to check if the newly added 1994 * links are going to add too many wakeup paths. We do 1995 * this by adding it to the tfile_check_list, if it's 1996 * not already there, and calling reverse_path_check() 1997 * during ep_insert(). 1998 */ 1999 list_file(epi->ffd.file); 2000 } 2001 } 2002 mutex_unlock(&ep->mtx); 2003 2004 return error; 2005 } 2006 2007 /** 2008 * ep_loop_check - Performs a check to verify that adding an epoll file (@to) 2009 * into another epoll file (represented by @ep) does not create 2010 * closed loops or too deep chains. 2011 * 2012 * @ep: Pointer to the epoll we are inserting into. 2013 * @to: Pointer to the epoll to be inserted. 2014 * 2015 * Return: %zero if adding the epoll @to inside the epoll @from 2016 * does not violate the constraints, or %-1 otherwise. 2017 */ 2018 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to) 2019 { 2020 inserting_into = ep; 2021 return ep_loop_check_proc(to, 0); 2022 } 2023 2024 static void clear_tfile_check_list(void) 2025 { 2026 rcu_read_lock(); 2027 while (tfile_check_list != EP_UNACTIVE_PTR) { 2028 struct epitems_head *head = tfile_check_list; 2029 tfile_check_list = head->next; 2030 unlist_file(head); 2031 } 2032 rcu_read_unlock(); 2033 } 2034 2035 /* 2036 * Open an eventpoll file descriptor. 2037 */ 2038 static int do_epoll_create(int flags) 2039 { 2040 int error, fd; 2041 struct eventpoll *ep = NULL; 2042 struct file *file; 2043 2044 /* Check the EPOLL_* constant for consistency. */ 2045 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 2046 2047 if (flags & ~EPOLL_CLOEXEC) 2048 return -EINVAL; 2049 /* 2050 * Create the internal data structure ("struct eventpoll"). 2051 */ 2052 error = ep_alloc(&ep); 2053 if (error < 0) 2054 return error; 2055 /* 2056 * Creates all the items needed to setup an eventpoll file. That is, 2057 * a file structure and a free file descriptor. 2058 */ 2059 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 2060 if (fd < 0) { 2061 error = fd; 2062 goto out_free_ep; 2063 } 2064 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 2065 O_RDWR | (flags & O_CLOEXEC)); 2066 if (IS_ERR(file)) { 2067 error = PTR_ERR(file); 2068 goto out_free_fd; 2069 } 2070 ep->file = file; 2071 fd_install(fd, file); 2072 return fd; 2073 2074 out_free_fd: 2075 put_unused_fd(fd); 2076 out_free_ep: 2077 ep_clear_and_put(ep); 2078 return error; 2079 } 2080 2081 SYSCALL_DEFINE1(epoll_create1, int, flags) 2082 { 2083 return do_epoll_create(flags); 2084 } 2085 2086 SYSCALL_DEFINE1(epoll_create, int, size) 2087 { 2088 if (size <= 0) 2089 return -EINVAL; 2090 2091 return do_epoll_create(0); 2092 } 2093 2094 #ifdef CONFIG_PM_SLEEP 2095 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev) 2096 { 2097 if ((epev->events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND)) 2098 epev->events &= ~EPOLLWAKEUP; 2099 } 2100 #else 2101 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev) 2102 { 2103 epev->events &= ~EPOLLWAKEUP; 2104 } 2105 #endif 2106 2107 static inline int epoll_mutex_lock(struct mutex *mutex, int depth, 2108 bool nonblock) 2109 { 2110 if (!nonblock) { 2111 mutex_lock_nested(mutex, depth); 2112 return 0; 2113 } 2114 if (mutex_trylock(mutex)) 2115 return 0; 2116 return -EAGAIN; 2117 } 2118 2119 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds, 2120 bool nonblock) 2121 { 2122 int error; 2123 int full_check = 0; 2124 struct fd f, tf; 2125 struct eventpoll *ep; 2126 struct epitem *epi; 2127 struct eventpoll *tep = NULL; 2128 2129 error = -EBADF; 2130 f = fdget(epfd); 2131 if (!f.file) 2132 goto error_return; 2133 2134 /* Get the "struct file *" for the target file */ 2135 tf = fdget(fd); 2136 if (!tf.file) 2137 goto error_fput; 2138 2139 /* The target file descriptor must support poll */ 2140 error = -EPERM; 2141 if (!file_can_poll(tf.file)) 2142 goto error_tgt_fput; 2143 2144 /* Check if EPOLLWAKEUP is allowed */ 2145 if (ep_op_has_event(op)) 2146 ep_take_care_of_epollwakeup(epds); 2147 2148 /* 2149 * We have to check that the file structure underneath the file descriptor 2150 * the user passed to us _is_ an eventpoll file. And also we do not permit 2151 * adding an epoll file descriptor inside itself. 2152 */ 2153 error = -EINVAL; 2154 if (f.file == tf.file || !is_file_epoll(f.file)) 2155 goto error_tgt_fput; 2156 2157 /* 2158 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only, 2159 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation. 2160 * Also, we do not currently supported nested exclusive wakeups. 2161 */ 2162 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) { 2163 if (op == EPOLL_CTL_MOD) 2164 goto error_tgt_fput; 2165 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) || 2166 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS))) 2167 goto error_tgt_fput; 2168 } 2169 2170 /* 2171 * At this point it is safe to assume that the "private_data" contains 2172 * our own data structure. 2173 */ 2174 ep = f.file->private_data; 2175 2176 /* 2177 * When we insert an epoll file descriptor inside another epoll file 2178 * descriptor, there is the chance of creating closed loops, which are 2179 * better be handled here, than in more critical paths. While we are 2180 * checking for loops we also determine the list of files reachable 2181 * and hang them on the tfile_check_list, so we can check that we 2182 * haven't created too many possible wakeup paths. 2183 * 2184 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when 2185 * the epoll file descriptor is attaching directly to a wakeup source, 2186 * unless the epoll file descriptor is nested. The purpose of taking the 2187 * 'epnested_mutex' on add is to prevent complex toplogies such as loops and 2188 * deep wakeup paths from forming in parallel through multiple 2189 * EPOLL_CTL_ADD operations. 2190 */ 2191 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2192 if (error) 2193 goto error_tgt_fput; 2194 if (op == EPOLL_CTL_ADD) { 2195 if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen || 2196 is_file_epoll(tf.file)) { 2197 mutex_unlock(&ep->mtx); 2198 error = epoll_mutex_lock(&epnested_mutex, 0, nonblock); 2199 if (error) 2200 goto error_tgt_fput; 2201 loop_check_gen++; 2202 full_check = 1; 2203 if (is_file_epoll(tf.file)) { 2204 tep = tf.file->private_data; 2205 error = -ELOOP; 2206 if (ep_loop_check(ep, tep) != 0) 2207 goto error_tgt_fput; 2208 } 2209 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2210 if (error) 2211 goto error_tgt_fput; 2212 } 2213 } 2214 2215 /* 2216 * Try to lookup the file inside our RB tree. Since we grabbed "mtx" 2217 * above, we can be sure to be able to use the item looked up by 2218 * ep_find() till we release the mutex. 2219 */ 2220 epi = ep_find(ep, tf.file, fd); 2221 2222 error = -EINVAL; 2223 switch (op) { 2224 case EPOLL_CTL_ADD: 2225 if (!epi) { 2226 epds->events |= EPOLLERR | EPOLLHUP; 2227 error = ep_insert(ep, epds, tf.file, fd, full_check); 2228 } else 2229 error = -EEXIST; 2230 break; 2231 case EPOLL_CTL_DEL: 2232 if (epi) { 2233 /* 2234 * The eventpoll itself is still alive: the refcount 2235 * can't go to zero here. 2236 */ 2237 ep_remove_safe(ep, epi); 2238 error = 0; 2239 } else { 2240 error = -ENOENT; 2241 } 2242 break; 2243 case EPOLL_CTL_MOD: 2244 if (epi) { 2245 if (!(epi->event.events & EPOLLEXCLUSIVE)) { 2246 epds->events |= EPOLLERR | EPOLLHUP; 2247 error = ep_modify(ep, epi, epds); 2248 } 2249 } else 2250 error = -ENOENT; 2251 break; 2252 } 2253 mutex_unlock(&ep->mtx); 2254 2255 error_tgt_fput: 2256 if (full_check) { 2257 clear_tfile_check_list(); 2258 loop_check_gen++; 2259 mutex_unlock(&epnested_mutex); 2260 } 2261 2262 fdput(tf); 2263 error_fput: 2264 fdput(f); 2265 error_return: 2266 2267 return error; 2268 } 2269 2270 /* 2271 * The following function implements the controller interface for 2272 * the eventpoll file that enables the insertion/removal/change of 2273 * file descriptors inside the interest set. 2274 */ 2275 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 2276 struct epoll_event __user *, event) 2277 { 2278 struct epoll_event epds; 2279 2280 if (ep_op_has_event(op) && 2281 copy_from_user(&epds, event, sizeof(struct epoll_event))) 2282 return -EFAULT; 2283 2284 return do_epoll_ctl(epfd, op, fd, &epds, false); 2285 } 2286 2287 /* 2288 * Implement the event wait interface for the eventpoll file. It is the kernel 2289 * part of the user space epoll_wait(2). 2290 */ 2291 static int do_epoll_wait(int epfd, struct epoll_event __user *events, 2292 int maxevents, struct timespec64 *to) 2293 { 2294 int error; 2295 struct fd f; 2296 struct eventpoll *ep; 2297 2298 /* The maximum number of event must be greater than zero */ 2299 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 2300 return -EINVAL; 2301 2302 /* Verify that the area passed by the user is writeable */ 2303 if (!access_ok(events, maxevents * sizeof(struct epoll_event))) 2304 return -EFAULT; 2305 2306 /* Get the "struct file *" for the eventpoll file */ 2307 f = fdget(epfd); 2308 if (!f.file) 2309 return -EBADF; 2310 2311 /* 2312 * We have to check that the file structure underneath the fd 2313 * the user passed to us _is_ an eventpoll file. 2314 */ 2315 error = -EINVAL; 2316 if (!is_file_epoll(f.file)) 2317 goto error_fput; 2318 2319 /* 2320 * At this point it is safe to assume that the "private_data" contains 2321 * our own data structure. 2322 */ 2323 ep = f.file->private_data; 2324 2325 /* Time to fish for events ... */ 2326 error = ep_poll(ep, events, maxevents, to); 2327 2328 error_fput: 2329 fdput(f); 2330 return error; 2331 } 2332 2333 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 2334 int, maxevents, int, timeout) 2335 { 2336 struct timespec64 to; 2337 2338 return do_epoll_wait(epfd, events, maxevents, 2339 ep_timeout_to_timespec(&to, timeout)); 2340 } 2341 2342 /* 2343 * Implement the event wait interface for the eventpoll file. It is the kernel 2344 * part of the user space epoll_pwait(2). 2345 */ 2346 static int do_epoll_pwait(int epfd, struct epoll_event __user *events, 2347 int maxevents, struct timespec64 *to, 2348 const sigset_t __user *sigmask, size_t sigsetsize) 2349 { 2350 int error; 2351 2352 /* 2353 * If the caller wants a certain signal mask to be set during the wait, 2354 * we apply it here. 2355 */ 2356 error = set_user_sigmask(sigmask, sigsetsize); 2357 if (error) 2358 return error; 2359 2360 error = do_epoll_wait(epfd, events, maxevents, to); 2361 2362 restore_saved_sigmask_unless(error == -EINTR); 2363 2364 return error; 2365 } 2366 2367 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 2368 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 2369 size_t, sigsetsize) 2370 { 2371 struct timespec64 to; 2372 2373 return do_epoll_pwait(epfd, events, maxevents, 2374 ep_timeout_to_timespec(&to, timeout), 2375 sigmask, sigsetsize); 2376 } 2377 2378 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events, 2379 int, maxevents, const struct __kernel_timespec __user *, timeout, 2380 const sigset_t __user *, sigmask, size_t, sigsetsize) 2381 { 2382 struct timespec64 ts, *to = NULL; 2383 2384 if (timeout) { 2385 if (get_timespec64(&ts, timeout)) 2386 return -EFAULT; 2387 to = &ts; 2388 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) 2389 return -EINVAL; 2390 } 2391 2392 return do_epoll_pwait(epfd, events, maxevents, to, 2393 sigmask, sigsetsize); 2394 } 2395 2396 #ifdef CONFIG_COMPAT 2397 static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events, 2398 int maxevents, struct timespec64 *timeout, 2399 const compat_sigset_t __user *sigmask, 2400 compat_size_t sigsetsize) 2401 { 2402 long err; 2403 2404 /* 2405 * If the caller wants a certain signal mask to be set during the wait, 2406 * we apply it here. 2407 */ 2408 err = set_compat_user_sigmask(sigmask, sigsetsize); 2409 if (err) 2410 return err; 2411 2412 err = do_epoll_wait(epfd, events, maxevents, timeout); 2413 2414 restore_saved_sigmask_unless(err == -EINTR); 2415 2416 return err; 2417 } 2418 2419 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, 2420 struct epoll_event __user *, events, 2421 int, maxevents, int, timeout, 2422 const compat_sigset_t __user *, sigmask, 2423 compat_size_t, sigsetsize) 2424 { 2425 struct timespec64 to; 2426 2427 return do_compat_epoll_pwait(epfd, events, maxevents, 2428 ep_timeout_to_timespec(&to, timeout), 2429 sigmask, sigsetsize); 2430 } 2431 2432 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd, 2433 struct epoll_event __user *, events, 2434 int, maxevents, 2435 const struct __kernel_timespec __user *, timeout, 2436 const compat_sigset_t __user *, sigmask, 2437 compat_size_t, sigsetsize) 2438 { 2439 struct timespec64 ts, *to = NULL; 2440 2441 if (timeout) { 2442 if (get_timespec64(&ts, timeout)) 2443 return -EFAULT; 2444 to = &ts; 2445 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) 2446 return -EINVAL; 2447 } 2448 2449 return do_compat_epoll_pwait(epfd, events, maxevents, to, 2450 sigmask, sigsetsize); 2451 } 2452 2453 #endif 2454 2455 static int __init eventpoll_init(void) 2456 { 2457 struct sysinfo si; 2458 2459 si_meminfo(&si); 2460 /* 2461 * Allows top 4% of lomem to be allocated for epoll watches (per user). 2462 */ 2463 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 2464 EP_ITEM_COST; 2465 BUG_ON(max_user_watches < 0); 2466 2467 /* 2468 * We can have many thousands of epitems, so prevent this from 2469 * using an extra cache line on 64-bit (and smaller) CPUs 2470 */ 2471 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); 2472 2473 /* Allocates slab cache used to allocate "struct epitem" items */ 2474 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 2475 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 2476 2477 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 2478 pwq_cache = kmem_cache_create("eventpoll_pwq", 2479 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2480 epoll_sysctls_init(); 2481 2482 ephead_cache = kmem_cache_create("ep_head", 2483 sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2484 2485 return 0; 2486 } 2487 fs_initcall(eventpoll_init); 2488