xref: /openbmc/linux/fs/eventpoll.c (revision 55567218)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  fs/eventpoll.c (Efficient event retrieval implementation)
4  *  Copyright (C) 2001,...,2009	 Davide Libenzi
5  *
6  *  Davide Libenzi <davidel@xmailserver.org>
7  */
8 
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/uaccess.h>
33 #include <asm/io.h>
34 #include <asm/mman.h>
35 #include <linux/atomic.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/compat.h>
39 #include <linux/rculist.h>
40 #include <net/busy_poll.h>
41 
42 /*
43  * LOCKING:
44  * There are three level of locking required by epoll :
45  *
46  * 1) epnested_mutex (mutex)
47  * 2) ep->mtx (mutex)
48  * 3) ep->lock (rwlock)
49  *
50  * The acquire order is the one listed above, from 1 to 3.
51  * We need a rwlock (ep->lock) because we manipulate objects
52  * from inside the poll callback, that might be triggered from
53  * a wake_up() that in turn might be called from IRQ context.
54  * So we can't sleep inside the poll callback and hence we need
55  * a spinlock. During the event transfer loop (from kernel to
56  * user space) we could end up sleeping due a copy_to_user(), so
57  * we need a lock that will allow us to sleep. This lock is a
58  * mutex (ep->mtx). It is acquired during the event transfer loop,
59  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60  * The epnested_mutex is acquired when inserting an epoll fd onto another
61  * epoll fd. We do this so that we walk the epoll tree and ensure that this
62  * insertion does not create a cycle of epoll file descriptors, which
63  * could lead to deadlock. We need a global mutex to prevent two
64  * simultaneous inserts (A into B and B into A) from racing and
65  * constructing a cycle without either insert observing that it is
66  * going to.
67  * It is necessary to acquire multiple "ep->mtx"es at once in the
68  * case when one epoll fd is added to another. In this case, we
69  * always acquire the locks in the order of nesting (i.e. after
70  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
71  * before e2->mtx). Since we disallow cycles of epoll file
72  * descriptors, this ensures that the mutexes are well-ordered. In
73  * order to communicate this nesting to lockdep, when walking a tree
74  * of epoll file descriptors, we use the current recursion depth as
75  * the lockdep subkey.
76  * It is possible to drop the "ep->mtx" and to use the global
77  * mutex "epnested_mutex" (together with "ep->lock") to have it working,
78  * but having "ep->mtx" will make the interface more scalable.
79  * Events that require holding "epnested_mutex" are very rare, while for
80  * normal operations the epoll private "ep->mtx" will guarantee
81  * a better scalability.
82  */
83 
84 /* Epoll private bits inside the event mask */
85 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
86 
87 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
88 
89 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
90 				EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
91 
92 /* Maximum number of nesting allowed inside epoll sets */
93 #define EP_MAX_NESTS 4
94 
95 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
96 
97 #define EP_UNACTIVE_PTR ((void *) -1L)
98 
99 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
100 
101 struct epoll_filefd {
102 	struct file *file;
103 	int fd;
104 } __packed;
105 
106 /* Wait structure used by the poll hooks */
107 struct eppoll_entry {
108 	/* List header used to link this structure to the "struct epitem" */
109 	struct eppoll_entry *next;
110 
111 	/* The "base" pointer is set to the container "struct epitem" */
112 	struct epitem *base;
113 
114 	/*
115 	 * Wait queue item that will be linked to the target file wait
116 	 * queue head.
117 	 */
118 	wait_queue_entry_t wait;
119 
120 	/* The wait queue head that linked the "wait" wait queue item */
121 	wait_queue_head_t *whead;
122 };
123 
124 /*
125  * Each file descriptor added to the eventpoll interface will
126  * have an entry of this type linked to the "rbr" RB tree.
127  * Avoid increasing the size of this struct, there can be many thousands
128  * of these on a server and we do not want this to take another cache line.
129  */
130 struct epitem {
131 	union {
132 		/* RB tree node links this structure to the eventpoll RB tree */
133 		struct rb_node rbn;
134 		/* Used to free the struct epitem */
135 		struct rcu_head rcu;
136 	};
137 
138 	/* List header used to link this structure to the eventpoll ready list */
139 	struct list_head rdllink;
140 
141 	/*
142 	 * Works together "struct eventpoll"->ovflist in keeping the
143 	 * single linked chain of items.
144 	 */
145 	struct epitem *next;
146 
147 	/* The file descriptor information this item refers to */
148 	struct epoll_filefd ffd;
149 
150 	/*
151 	 * Protected by file->f_lock, true for to-be-released epitem already
152 	 * removed from the "struct file" items list; together with
153 	 * eventpoll->refcount orchestrates "struct eventpoll" disposal
154 	 */
155 	bool dying;
156 
157 	/* List containing poll wait queues */
158 	struct eppoll_entry *pwqlist;
159 
160 	/* The "container" of this item */
161 	struct eventpoll *ep;
162 
163 	/* List header used to link this item to the "struct file" items list */
164 	struct hlist_node fllink;
165 
166 	/* wakeup_source used when EPOLLWAKEUP is set */
167 	struct wakeup_source __rcu *ws;
168 
169 	/* The structure that describe the interested events and the source fd */
170 	struct epoll_event event;
171 };
172 
173 /*
174  * This structure is stored inside the "private_data" member of the file
175  * structure and represents the main data structure for the eventpoll
176  * interface.
177  */
178 struct eventpoll {
179 	/*
180 	 * This mutex is used to ensure that files are not removed
181 	 * while epoll is using them. This is held during the event
182 	 * collection loop, the file cleanup path, the epoll file exit
183 	 * code and the ctl operations.
184 	 */
185 	struct mutex mtx;
186 
187 	/* Wait queue used by sys_epoll_wait() */
188 	wait_queue_head_t wq;
189 
190 	/* Wait queue used by file->poll() */
191 	wait_queue_head_t poll_wait;
192 
193 	/* List of ready file descriptors */
194 	struct list_head rdllist;
195 
196 	/* Lock which protects rdllist and ovflist */
197 	rwlock_t lock;
198 
199 	/* RB tree root used to store monitored fd structs */
200 	struct rb_root_cached rbr;
201 
202 	/*
203 	 * This is a single linked list that chains all the "struct epitem" that
204 	 * happened while transferring ready events to userspace w/out
205 	 * holding ->lock.
206 	 */
207 	struct epitem *ovflist;
208 
209 	/* wakeup_source used when ep_scan_ready_list is running */
210 	struct wakeup_source *ws;
211 
212 	/* The user that created the eventpoll descriptor */
213 	struct user_struct *user;
214 
215 	struct file *file;
216 
217 	/* used to optimize loop detection check */
218 	u64 gen;
219 	struct hlist_head refs;
220 
221 	/*
222 	 * usage count, used together with epitem->dying to
223 	 * orchestrate the disposal of this struct
224 	 */
225 	refcount_t refcount;
226 
227 #ifdef CONFIG_NET_RX_BUSY_POLL
228 	/* used to track busy poll napi_id */
229 	unsigned int napi_id;
230 #endif
231 
232 #ifdef CONFIG_DEBUG_LOCK_ALLOC
233 	/* tracks wakeup nests for lockdep validation */
234 	u8 nests;
235 #endif
236 };
237 
238 /* Wrapper struct used by poll queueing */
239 struct ep_pqueue {
240 	poll_table pt;
241 	struct epitem *epi;
242 };
243 
244 /*
245  * Configuration options available inside /proc/sys/fs/epoll/
246  */
247 /* Maximum number of epoll watched descriptors, per user */
248 static long max_user_watches __read_mostly;
249 
250 /* Used for cycles detection */
251 static DEFINE_MUTEX(epnested_mutex);
252 
253 static u64 loop_check_gen = 0;
254 
255 /* Used to check for epoll file descriptor inclusion loops */
256 static struct eventpoll *inserting_into;
257 
258 /* Slab cache used to allocate "struct epitem" */
259 static struct kmem_cache *epi_cache __read_mostly;
260 
261 /* Slab cache used to allocate "struct eppoll_entry" */
262 static struct kmem_cache *pwq_cache __read_mostly;
263 
264 /*
265  * List of files with newly added links, where we may need to limit the number
266  * of emanating paths. Protected by the epnested_mutex.
267  */
268 struct epitems_head {
269 	struct hlist_head epitems;
270 	struct epitems_head *next;
271 };
272 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR;
273 
274 static struct kmem_cache *ephead_cache __read_mostly;
275 
276 static inline void free_ephead(struct epitems_head *head)
277 {
278 	if (head)
279 		kmem_cache_free(ephead_cache, head);
280 }
281 
282 static void list_file(struct file *file)
283 {
284 	struct epitems_head *head;
285 
286 	head = container_of(file->f_ep, struct epitems_head, epitems);
287 	if (!head->next) {
288 		head->next = tfile_check_list;
289 		tfile_check_list = head;
290 	}
291 }
292 
293 static void unlist_file(struct epitems_head *head)
294 {
295 	struct epitems_head *to_free = head;
296 	struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems));
297 	if (p) {
298 		struct epitem *epi= container_of(p, struct epitem, fllink);
299 		spin_lock(&epi->ffd.file->f_lock);
300 		if (!hlist_empty(&head->epitems))
301 			to_free = NULL;
302 		head->next = NULL;
303 		spin_unlock(&epi->ffd.file->f_lock);
304 	}
305 	free_ephead(to_free);
306 }
307 
308 #ifdef CONFIG_SYSCTL
309 
310 #include <linux/sysctl.h>
311 
312 static long long_zero;
313 static long long_max = LONG_MAX;
314 
315 static struct ctl_table epoll_table[] = {
316 	{
317 		.procname	= "max_user_watches",
318 		.data		= &max_user_watches,
319 		.maxlen		= sizeof(max_user_watches),
320 		.mode		= 0644,
321 		.proc_handler	= proc_doulongvec_minmax,
322 		.extra1		= &long_zero,
323 		.extra2		= &long_max,
324 	},
325 	{ }
326 };
327 
328 static void __init epoll_sysctls_init(void)
329 {
330 	register_sysctl("fs/epoll", epoll_table);
331 }
332 #else
333 #define epoll_sysctls_init() do { } while (0)
334 #endif /* CONFIG_SYSCTL */
335 
336 static const struct file_operations eventpoll_fops;
337 
338 static inline int is_file_epoll(struct file *f)
339 {
340 	return f->f_op == &eventpoll_fops;
341 }
342 
343 /* Setup the structure that is used as key for the RB tree */
344 static inline void ep_set_ffd(struct epoll_filefd *ffd,
345 			      struct file *file, int fd)
346 {
347 	ffd->file = file;
348 	ffd->fd = fd;
349 }
350 
351 /* Compare RB tree keys */
352 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
353 			     struct epoll_filefd *p2)
354 {
355 	return (p1->file > p2->file ? +1:
356 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
357 }
358 
359 /* Tells us if the item is currently linked */
360 static inline int ep_is_linked(struct epitem *epi)
361 {
362 	return !list_empty(&epi->rdllink);
363 }
364 
365 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
366 {
367 	return container_of(p, struct eppoll_entry, wait);
368 }
369 
370 /* Get the "struct epitem" from a wait queue pointer */
371 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
372 {
373 	return container_of(p, struct eppoll_entry, wait)->base;
374 }
375 
376 /**
377  * ep_events_available - Checks if ready events might be available.
378  *
379  * @ep: Pointer to the eventpoll context.
380  *
381  * Return: a value different than %zero if ready events are available,
382  *          or %zero otherwise.
383  */
384 static inline int ep_events_available(struct eventpoll *ep)
385 {
386 	return !list_empty_careful(&ep->rdllist) ||
387 		READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
388 }
389 
390 #ifdef CONFIG_NET_RX_BUSY_POLL
391 static bool ep_busy_loop_end(void *p, unsigned long start_time)
392 {
393 	struct eventpoll *ep = p;
394 
395 	return ep_events_available(ep) || busy_loop_timeout(start_time);
396 }
397 
398 /*
399  * Busy poll if globally on and supporting sockets found && no events,
400  * busy loop will return if need_resched or ep_events_available.
401  *
402  * we must do our busy polling with irqs enabled
403  */
404 static bool ep_busy_loop(struct eventpoll *ep, int nonblock)
405 {
406 	unsigned int napi_id = READ_ONCE(ep->napi_id);
407 
408 	if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) {
409 		napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, false,
410 			       BUSY_POLL_BUDGET);
411 		if (ep_events_available(ep))
412 			return true;
413 		/*
414 		 * Busy poll timed out.  Drop NAPI ID for now, we can add
415 		 * it back in when we have moved a socket with a valid NAPI
416 		 * ID onto the ready list.
417 		 */
418 		ep->napi_id = 0;
419 		return false;
420 	}
421 	return false;
422 }
423 
424 /*
425  * Set epoll busy poll NAPI ID from sk.
426  */
427 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
428 {
429 	struct eventpoll *ep;
430 	unsigned int napi_id;
431 	struct socket *sock;
432 	struct sock *sk;
433 
434 	if (!net_busy_loop_on())
435 		return;
436 
437 	sock = sock_from_file(epi->ffd.file);
438 	if (!sock)
439 		return;
440 
441 	sk = sock->sk;
442 	if (!sk)
443 		return;
444 
445 	napi_id = READ_ONCE(sk->sk_napi_id);
446 	ep = epi->ep;
447 
448 	/* Non-NAPI IDs can be rejected
449 	 *	or
450 	 * Nothing to do if we already have this ID
451 	 */
452 	if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
453 		return;
454 
455 	/* record NAPI ID for use in next busy poll */
456 	ep->napi_id = napi_id;
457 }
458 
459 #else
460 
461 static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock)
462 {
463 	return false;
464 }
465 
466 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
467 {
468 }
469 
470 #endif /* CONFIG_NET_RX_BUSY_POLL */
471 
472 /*
473  * As described in commit 0ccf831cb lockdep: annotate epoll
474  * the use of wait queues used by epoll is done in a very controlled
475  * manner. Wake ups can nest inside each other, but are never done
476  * with the same locking. For example:
477  *
478  *   dfd = socket(...);
479  *   efd1 = epoll_create();
480  *   efd2 = epoll_create();
481  *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
482  *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
483  *
484  * When a packet arrives to the device underneath "dfd", the net code will
485  * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
486  * callback wakeup entry on that queue, and the wake_up() performed by the
487  * "dfd" net code will end up in ep_poll_callback(). At this point epoll
488  * (efd1) notices that it may have some event ready, so it needs to wake up
489  * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
490  * that ends up in another wake_up(), after having checked about the
491  * recursion constraints. That are, no more than EP_MAX_NESTS, to avoid
492  * stack blasting.
493  *
494  * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
495  * this special case of epoll.
496  */
497 #ifdef CONFIG_DEBUG_LOCK_ALLOC
498 
499 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
500 			     unsigned pollflags)
501 {
502 	struct eventpoll *ep_src;
503 	unsigned long flags;
504 	u8 nests = 0;
505 
506 	/*
507 	 * To set the subclass or nesting level for spin_lock_irqsave_nested()
508 	 * it might be natural to create a per-cpu nest count. However, since
509 	 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
510 	 * schedule() in the -rt kernel, the per-cpu variable are no longer
511 	 * protected. Thus, we are introducing a per eventpoll nest field.
512 	 * If we are not being call from ep_poll_callback(), epi is NULL and
513 	 * we are at the first level of nesting, 0. Otherwise, we are being
514 	 * called from ep_poll_callback() and if a previous wakeup source is
515 	 * not an epoll file itself, we are at depth 1 since the wakeup source
516 	 * is depth 0. If the wakeup source is a previous epoll file in the
517 	 * wakeup chain then we use its nests value and record ours as
518 	 * nests + 1. The previous epoll file nests value is stable since its
519 	 * already holding its own poll_wait.lock.
520 	 */
521 	if (epi) {
522 		if ((is_file_epoll(epi->ffd.file))) {
523 			ep_src = epi->ffd.file->private_data;
524 			nests = ep_src->nests;
525 		} else {
526 			nests = 1;
527 		}
528 	}
529 	spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
530 	ep->nests = nests + 1;
531 	wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags);
532 	ep->nests = 0;
533 	spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
534 }
535 
536 #else
537 
538 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
539 			     __poll_t pollflags)
540 {
541 	wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags);
542 }
543 
544 #endif
545 
546 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
547 {
548 	wait_queue_head_t *whead;
549 
550 	rcu_read_lock();
551 	/*
552 	 * If it is cleared by POLLFREE, it should be rcu-safe.
553 	 * If we read NULL we need a barrier paired with
554 	 * smp_store_release() in ep_poll_callback(), otherwise
555 	 * we rely on whead->lock.
556 	 */
557 	whead = smp_load_acquire(&pwq->whead);
558 	if (whead)
559 		remove_wait_queue(whead, &pwq->wait);
560 	rcu_read_unlock();
561 }
562 
563 /*
564  * This function unregisters poll callbacks from the associated file
565  * descriptor.  Must be called with "mtx" held.
566  */
567 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
568 {
569 	struct eppoll_entry **p = &epi->pwqlist;
570 	struct eppoll_entry *pwq;
571 
572 	while ((pwq = *p) != NULL) {
573 		*p = pwq->next;
574 		ep_remove_wait_queue(pwq);
575 		kmem_cache_free(pwq_cache, pwq);
576 	}
577 }
578 
579 /* call only when ep->mtx is held */
580 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
581 {
582 	return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
583 }
584 
585 /* call only when ep->mtx is held */
586 static inline void ep_pm_stay_awake(struct epitem *epi)
587 {
588 	struct wakeup_source *ws = ep_wakeup_source(epi);
589 
590 	if (ws)
591 		__pm_stay_awake(ws);
592 }
593 
594 static inline bool ep_has_wakeup_source(struct epitem *epi)
595 {
596 	return rcu_access_pointer(epi->ws) ? true : false;
597 }
598 
599 /* call when ep->mtx cannot be held (ep_poll_callback) */
600 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
601 {
602 	struct wakeup_source *ws;
603 
604 	rcu_read_lock();
605 	ws = rcu_dereference(epi->ws);
606 	if (ws)
607 		__pm_stay_awake(ws);
608 	rcu_read_unlock();
609 }
610 
611 
612 /*
613  * ep->mutex needs to be held because we could be hit by
614  * eventpoll_release_file() and epoll_ctl().
615  */
616 static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist)
617 {
618 	/*
619 	 * Steal the ready list, and re-init the original one to the
620 	 * empty list. Also, set ep->ovflist to NULL so that events
621 	 * happening while looping w/out locks, are not lost. We cannot
622 	 * have the poll callback to queue directly on ep->rdllist,
623 	 * because we want the "sproc" callback to be able to do it
624 	 * in a lockless way.
625 	 */
626 	lockdep_assert_irqs_enabled();
627 	write_lock_irq(&ep->lock);
628 	list_splice_init(&ep->rdllist, txlist);
629 	WRITE_ONCE(ep->ovflist, NULL);
630 	write_unlock_irq(&ep->lock);
631 }
632 
633 static void ep_done_scan(struct eventpoll *ep,
634 			 struct list_head *txlist)
635 {
636 	struct epitem *epi, *nepi;
637 
638 	write_lock_irq(&ep->lock);
639 	/*
640 	 * During the time we spent inside the "sproc" callback, some
641 	 * other events might have been queued by the poll callback.
642 	 * We re-insert them inside the main ready-list here.
643 	 */
644 	for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
645 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
646 		/*
647 		 * We need to check if the item is already in the list.
648 		 * During the "sproc" callback execution time, items are
649 		 * queued into ->ovflist but the "txlist" might already
650 		 * contain them, and the list_splice() below takes care of them.
651 		 */
652 		if (!ep_is_linked(epi)) {
653 			/*
654 			 * ->ovflist is LIFO, so we have to reverse it in order
655 			 * to keep in FIFO.
656 			 */
657 			list_add(&epi->rdllink, &ep->rdllist);
658 			ep_pm_stay_awake(epi);
659 		}
660 	}
661 	/*
662 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
663 	 * releasing the lock, events will be queued in the normal way inside
664 	 * ep->rdllist.
665 	 */
666 	WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
667 
668 	/*
669 	 * Quickly re-inject items left on "txlist".
670 	 */
671 	list_splice(txlist, &ep->rdllist);
672 	__pm_relax(ep->ws);
673 
674 	if (!list_empty(&ep->rdllist)) {
675 		if (waitqueue_active(&ep->wq))
676 			wake_up(&ep->wq);
677 	}
678 
679 	write_unlock_irq(&ep->lock);
680 }
681 
682 static void epi_rcu_free(struct rcu_head *head)
683 {
684 	struct epitem *epi = container_of(head, struct epitem, rcu);
685 	kmem_cache_free(epi_cache, epi);
686 }
687 
688 static void ep_get(struct eventpoll *ep)
689 {
690 	refcount_inc(&ep->refcount);
691 }
692 
693 /*
694  * Returns true if the event poll can be disposed
695  */
696 static bool ep_refcount_dec_and_test(struct eventpoll *ep)
697 {
698 	if (!refcount_dec_and_test(&ep->refcount))
699 		return false;
700 
701 	WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.rb_root));
702 	return true;
703 }
704 
705 static void ep_free(struct eventpoll *ep)
706 {
707 	mutex_destroy(&ep->mtx);
708 	free_uid(ep->user);
709 	wakeup_source_unregister(ep->ws);
710 	kfree(ep);
711 }
712 
713 /*
714  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
715  * all the associated resources. Must be called with "mtx" held.
716  * If the dying flag is set, do the removal only if force is true.
717  * This prevents ep_clear_and_put() from dropping all the ep references
718  * while running concurrently with eventpoll_release_file().
719  * Returns true if the eventpoll can be disposed.
720  */
721 static bool __ep_remove(struct eventpoll *ep, struct epitem *epi, bool force)
722 {
723 	struct file *file = epi->ffd.file;
724 	struct epitems_head *to_free;
725 	struct hlist_head *head;
726 
727 	lockdep_assert_irqs_enabled();
728 
729 	/*
730 	 * Removes poll wait queue hooks.
731 	 */
732 	ep_unregister_pollwait(ep, epi);
733 
734 	/* Remove the current item from the list of epoll hooks */
735 	spin_lock(&file->f_lock);
736 	if (epi->dying && !force) {
737 		spin_unlock(&file->f_lock);
738 		return false;
739 	}
740 
741 	to_free = NULL;
742 	head = file->f_ep;
743 	if (head->first == &epi->fllink && !epi->fllink.next) {
744 		file->f_ep = NULL;
745 		if (!is_file_epoll(file)) {
746 			struct epitems_head *v;
747 			v = container_of(head, struct epitems_head, epitems);
748 			if (!smp_load_acquire(&v->next))
749 				to_free = v;
750 		}
751 	}
752 	hlist_del_rcu(&epi->fllink);
753 	spin_unlock(&file->f_lock);
754 	free_ephead(to_free);
755 
756 	rb_erase_cached(&epi->rbn, &ep->rbr);
757 
758 	write_lock_irq(&ep->lock);
759 	if (ep_is_linked(epi))
760 		list_del_init(&epi->rdllink);
761 	write_unlock_irq(&ep->lock);
762 
763 	wakeup_source_unregister(ep_wakeup_source(epi));
764 	/*
765 	 * At this point it is safe to free the eventpoll item. Use the union
766 	 * field epi->rcu, since we are trying to minimize the size of
767 	 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
768 	 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
769 	 * use of the rbn field.
770 	 */
771 	call_rcu(&epi->rcu, epi_rcu_free);
772 
773 	percpu_counter_dec(&ep->user->epoll_watches);
774 	return ep_refcount_dec_and_test(ep);
775 }
776 
777 /*
778  * ep_remove variant for callers owing an additional reference to the ep
779  */
780 static void ep_remove_safe(struct eventpoll *ep, struct epitem *epi)
781 {
782 	WARN_ON_ONCE(__ep_remove(ep, epi, false));
783 }
784 
785 static void ep_clear_and_put(struct eventpoll *ep)
786 {
787 	struct rb_node *rbp, *next;
788 	struct epitem *epi;
789 	bool dispose;
790 
791 	/* We need to release all tasks waiting for these file */
792 	if (waitqueue_active(&ep->poll_wait))
793 		ep_poll_safewake(ep, NULL, 0);
794 
795 	mutex_lock(&ep->mtx);
796 
797 	/*
798 	 * Walks through the whole tree by unregistering poll callbacks.
799 	 */
800 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
801 		epi = rb_entry(rbp, struct epitem, rbn);
802 
803 		ep_unregister_pollwait(ep, epi);
804 		cond_resched();
805 	}
806 
807 	/*
808 	 * Walks through the whole tree and try to free each "struct epitem".
809 	 * Note that ep_remove_safe() will not remove the epitem in case of a
810 	 * racing eventpoll_release_file(); the latter will do the removal.
811 	 * At this point we are sure no poll callbacks will be lingering around.
812 	 * Since we still own a reference to the eventpoll struct, the loop can't
813 	 * dispose it.
814 	 */
815 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = next) {
816 		next = rb_next(rbp);
817 		epi = rb_entry(rbp, struct epitem, rbn);
818 		ep_remove_safe(ep, epi);
819 		cond_resched();
820 	}
821 
822 	dispose = ep_refcount_dec_and_test(ep);
823 	mutex_unlock(&ep->mtx);
824 
825 	if (dispose)
826 		ep_free(ep);
827 }
828 
829 static int ep_eventpoll_release(struct inode *inode, struct file *file)
830 {
831 	struct eventpoll *ep = file->private_data;
832 
833 	if (ep)
834 		ep_clear_and_put(ep);
835 
836 	return 0;
837 }
838 
839 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth);
840 
841 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth)
842 {
843 	struct eventpoll *ep = file->private_data;
844 	LIST_HEAD(txlist);
845 	struct epitem *epi, *tmp;
846 	poll_table pt;
847 	__poll_t res = 0;
848 
849 	init_poll_funcptr(&pt, NULL);
850 
851 	/* Insert inside our poll wait queue */
852 	poll_wait(file, &ep->poll_wait, wait);
853 
854 	/*
855 	 * Proceed to find out if wanted events are really available inside
856 	 * the ready list.
857 	 */
858 	mutex_lock_nested(&ep->mtx, depth);
859 	ep_start_scan(ep, &txlist);
860 	list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
861 		if (ep_item_poll(epi, &pt, depth + 1)) {
862 			res = EPOLLIN | EPOLLRDNORM;
863 			break;
864 		} else {
865 			/*
866 			 * Item has been dropped into the ready list by the poll
867 			 * callback, but it's not actually ready, as far as
868 			 * caller requested events goes. We can remove it here.
869 			 */
870 			__pm_relax(ep_wakeup_source(epi));
871 			list_del_init(&epi->rdllink);
872 		}
873 	}
874 	ep_done_scan(ep, &txlist);
875 	mutex_unlock(&ep->mtx);
876 	return res;
877 }
878 
879 /*
880  * The ffd.file pointer may be in the process of being torn down due to
881  * being closed, but we may not have finished eventpoll_release() yet.
882  *
883  * Normally, even with the atomic_long_inc_not_zero, the file may have
884  * been free'd and then gotten re-allocated to something else (since
885  * files are not RCU-delayed, they are SLAB_TYPESAFE_BY_RCU).
886  *
887  * But for epoll, users hold the ep->mtx mutex, and as such any file in
888  * the process of being free'd will block in eventpoll_release_file()
889  * and thus the underlying file allocation will not be free'd, and the
890  * file re-use cannot happen.
891  *
892  * For the same reason we can avoid a rcu_read_lock() around the
893  * operation - 'ffd.file' cannot go away even if the refcount has
894  * reached zero (but we must still not call out to ->poll() functions
895  * etc).
896  */
897 static struct file *epi_fget(const struct epitem *epi)
898 {
899 	struct file *file;
900 
901 	file = epi->ffd.file;
902 	if (!atomic_long_inc_not_zero(&file->f_count))
903 		file = NULL;
904 	return file;
905 }
906 
907 /*
908  * Differs from ep_eventpoll_poll() in that internal callers already have
909  * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
910  * is correctly annotated.
911  */
912 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
913 				 int depth)
914 {
915 	struct file *file = epi_fget(epi);
916 	__poll_t res;
917 
918 	/*
919 	 * We could return EPOLLERR | EPOLLHUP or something, but let's
920 	 * treat this more as "file doesn't exist, poll didn't happen".
921 	 */
922 	if (!file)
923 		return 0;
924 
925 	pt->_key = epi->event.events;
926 	if (!is_file_epoll(file))
927 		res = vfs_poll(file, pt);
928 	else
929 		res = __ep_eventpoll_poll(file, pt, depth);
930 	fput(file);
931 	return res & epi->event.events;
932 }
933 
934 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
935 {
936 	return __ep_eventpoll_poll(file, wait, 0);
937 }
938 
939 #ifdef CONFIG_PROC_FS
940 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
941 {
942 	struct eventpoll *ep = f->private_data;
943 	struct rb_node *rbp;
944 
945 	mutex_lock(&ep->mtx);
946 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
947 		struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
948 		struct inode *inode = file_inode(epi->ffd.file);
949 
950 		seq_printf(m, "tfd: %8d events: %8x data: %16llx "
951 			   " pos:%lli ino:%lx sdev:%x\n",
952 			   epi->ffd.fd, epi->event.events,
953 			   (long long)epi->event.data,
954 			   (long long)epi->ffd.file->f_pos,
955 			   inode->i_ino, inode->i_sb->s_dev);
956 		if (seq_has_overflowed(m))
957 			break;
958 	}
959 	mutex_unlock(&ep->mtx);
960 }
961 #endif
962 
963 /* File callbacks that implement the eventpoll file behaviour */
964 static const struct file_operations eventpoll_fops = {
965 #ifdef CONFIG_PROC_FS
966 	.show_fdinfo	= ep_show_fdinfo,
967 #endif
968 	.release	= ep_eventpoll_release,
969 	.poll		= ep_eventpoll_poll,
970 	.llseek		= noop_llseek,
971 };
972 
973 /*
974  * This is called from eventpoll_release() to unlink files from the eventpoll
975  * interface. We need to have this facility to cleanup correctly files that are
976  * closed without being removed from the eventpoll interface.
977  */
978 void eventpoll_release_file(struct file *file)
979 {
980 	struct eventpoll *ep;
981 	struct epitem *epi;
982 	bool dispose;
983 
984 	/*
985 	 * Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from
986 	 * touching the epitems list before eventpoll_release_file() can access
987 	 * the ep->mtx.
988 	 */
989 again:
990 	spin_lock(&file->f_lock);
991 	if (file->f_ep && file->f_ep->first) {
992 		epi = hlist_entry(file->f_ep->first, struct epitem, fllink);
993 		epi->dying = true;
994 		spin_unlock(&file->f_lock);
995 
996 		/*
997 		 * ep access is safe as we still own a reference to the ep
998 		 * struct
999 		 */
1000 		ep = epi->ep;
1001 		mutex_lock(&ep->mtx);
1002 		dispose = __ep_remove(ep, epi, true);
1003 		mutex_unlock(&ep->mtx);
1004 
1005 		if (dispose)
1006 			ep_free(ep);
1007 		goto again;
1008 	}
1009 	spin_unlock(&file->f_lock);
1010 }
1011 
1012 static int ep_alloc(struct eventpoll **pep)
1013 {
1014 	struct eventpoll *ep;
1015 
1016 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1017 	if (unlikely(!ep))
1018 		return -ENOMEM;
1019 
1020 	mutex_init(&ep->mtx);
1021 	rwlock_init(&ep->lock);
1022 	init_waitqueue_head(&ep->wq);
1023 	init_waitqueue_head(&ep->poll_wait);
1024 	INIT_LIST_HEAD(&ep->rdllist);
1025 	ep->rbr = RB_ROOT_CACHED;
1026 	ep->ovflist = EP_UNACTIVE_PTR;
1027 	ep->user = get_current_user();
1028 	refcount_set(&ep->refcount, 1);
1029 
1030 	*pep = ep;
1031 
1032 	return 0;
1033 }
1034 
1035 /*
1036  * Search the file inside the eventpoll tree. The RB tree operations
1037  * are protected by the "mtx" mutex, and ep_find() must be called with
1038  * "mtx" held.
1039  */
1040 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1041 {
1042 	int kcmp;
1043 	struct rb_node *rbp;
1044 	struct epitem *epi, *epir = NULL;
1045 	struct epoll_filefd ffd;
1046 
1047 	ep_set_ffd(&ffd, file, fd);
1048 	for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1049 		epi = rb_entry(rbp, struct epitem, rbn);
1050 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1051 		if (kcmp > 0)
1052 			rbp = rbp->rb_right;
1053 		else if (kcmp < 0)
1054 			rbp = rbp->rb_left;
1055 		else {
1056 			epir = epi;
1057 			break;
1058 		}
1059 	}
1060 
1061 	return epir;
1062 }
1063 
1064 #ifdef CONFIG_KCMP
1065 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1066 {
1067 	struct rb_node *rbp;
1068 	struct epitem *epi;
1069 
1070 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1071 		epi = rb_entry(rbp, struct epitem, rbn);
1072 		if (epi->ffd.fd == tfd) {
1073 			if (toff == 0)
1074 				return epi;
1075 			else
1076 				toff--;
1077 		}
1078 		cond_resched();
1079 	}
1080 
1081 	return NULL;
1082 }
1083 
1084 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1085 				     unsigned long toff)
1086 {
1087 	struct file *file_raw;
1088 	struct eventpoll *ep;
1089 	struct epitem *epi;
1090 
1091 	if (!is_file_epoll(file))
1092 		return ERR_PTR(-EINVAL);
1093 
1094 	ep = file->private_data;
1095 
1096 	mutex_lock(&ep->mtx);
1097 	epi = ep_find_tfd(ep, tfd, toff);
1098 	if (epi)
1099 		file_raw = epi->ffd.file;
1100 	else
1101 		file_raw = ERR_PTR(-ENOENT);
1102 	mutex_unlock(&ep->mtx);
1103 
1104 	return file_raw;
1105 }
1106 #endif /* CONFIG_KCMP */
1107 
1108 /*
1109  * Adds a new entry to the tail of the list in a lockless way, i.e.
1110  * multiple CPUs are allowed to call this function concurrently.
1111  *
1112  * Beware: it is necessary to prevent any other modifications of the
1113  *         existing list until all changes are completed, in other words
1114  *         concurrent list_add_tail_lockless() calls should be protected
1115  *         with a read lock, where write lock acts as a barrier which
1116  *         makes sure all list_add_tail_lockless() calls are fully
1117  *         completed.
1118  *
1119  *        Also an element can be locklessly added to the list only in one
1120  *        direction i.e. either to the tail or to the head, otherwise
1121  *        concurrent access will corrupt the list.
1122  *
1123  * Return: %false if element has been already added to the list, %true
1124  * otherwise.
1125  */
1126 static inline bool list_add_tail_lockless(struct list_head *new,
1127 					  struct list_head *head)
1128 {
1129 	struct list_head *prev;
1130 
1131 	/*
1132 	 * This is simple 'new->next = head' operation, but cmpxchg()
1133 	 * is used in order to detect that same element has been just
1134 	 * added to the list from another CPU: the winner observes
1135 	 * new->next == new.
1136 	 */
1137 	if (!try_cmpxchg(&new->next, &new, head))
1138 		return false;
1139 
1140 	/*
1141 	 * Initially ->next of a new element must be updated with the head
1142 	 * (we are inserting to the tail) and only then pointers are atomically
1143 	 * exchanged.  XCHG guarantees memory ordering, thus ->next should be
1144 	 * updated before pointers are actually swapped and pointers are
1145 	 * swapped before prev->next is updated.
1146 	 */
1147 
1148 	prev = xchg(&head->prev, new);
1149 
1150 	/*
1151 	 * It is safe to modify prev->next and new->prev, because a new element
1152 	 * is added only to the tail and new->next is updated before XCHG.
1153 	 */
1154 
1155 	prev->next = new;
1156 	new->prev = prev;
1157 
1158 	return true;
1159 }
1160 
1161 /*
1162  * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1163  * i.e. multiple CPUs are allowed to call this function concurrently.
1164  *
1165  * Return: %false if epi element has been already chained, %true otherwise.
1166  */
1167 static inline bool chain_epi_lockless(struct epitem *epi)
1168 {
1169 	struct eventpoll *ep = epi->ep;
1170 
1171 	/* Fast preliminary check */
1172 	if (epi->next != EP_UNACTIVE_PTR)
1173 		return false;
1174 
1175 	/* Check that the same epi has not been just chained from another CPU */
1176 	if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1177 		return false;
1178 
1179 	/* Atomically exchange tail */
1180 	epi->next = xchg(&ep->ovflist, epi);
1181 
1182 	return true;
1183 }
1184 
1185 /*
1186  * This is the callback that is passed to the wait queue wakeup
1187  * mechanism. It is called by the stored file descriptors when they
1188  * have events to report.
1189  *
1190  * This callback takes a read lock in order not to contend with concurrent
1191  * events from another file descriptor, thus all modifications to ->rdllist
1192  * or ->ovflist are lockless.  Read lock is paired with the write lock from
1193  * ep_scan_ready_list(), which stops all list modifications and guarantees
1194  * that lists state is seen correctly.
1195  *
1196  * Another thing worth to mention is that ep_poll_callback() can be called
1197  * concurrently for the same @epi from different CPUs if poll table was inited
1198  * with several wait queues entries.  Plural wakeup from different CPUs of a
1199  * single wait queue is serialized by wq.lock, but the case when multiple wait
1200  * queues are used should be detected accordingly.  This is detected using
1201  * cmpxchg() operation.
1202  */
1203 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1204 {
1205 	int pwake = 0;
1206 	struct epitem *epi = ep_item_from_wait(wait);
1207 	struct eventpoll *ep = epi->ep;
1208 	__poll_t pollflags = key_to_poll(key);
1209 	unsigned long flags;
1210 	int ewake = 0;
1211 
1212 	read_lock_irqsave(&ep->lock, flags);
1213 
1214 	ep_set_busy_poll_napi_id(epi);
1215 
1216 	/*
1217 	 * If the event mask does not contain any poll(2) event, we consider the
1218 	 * descriptor to be disabled. This condition is likely the effect of the
1219 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1220 	 * until the next EPOLL_CTL_MOD will be issued.
1221 	 */
1222 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
1223 		goto out_unlock;
1224 
1225 	/*
1226 	 * Check the events coming with the callback. At this stage, not
1227 	 * every device reports the events in the "key" parameter of the
1228 	 * callback. We need to be able to handle both cases here, hence the
1229 	 * test for "key" != NULL before the event match test.
1230 	 */
1231 	if (pollflags && !(pollflags & epi->event.events))
1232 		goto out_unlock;
1233 
1234 	/*
1235 	 * If we are transferring events to userspace, we can hold no locks
1236 	 * (because we're accessing user memory, and because of linux f_op->poll()
1237 	 * semantics). All the events that happen during that period of time are
1238 	 * chained in ep->ovflist and requeued later on.
1239 	 */
1240 	if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1241 		if (chain_epi_lockless(epi))
1242 			ep_pm_stay_awake_rcu(epi);
1243 	} else if (!ep_is_linked(epi)) {
1244 		/* In the usual case, add event to ready list. */
1245 		if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1246 			ep_pm_stay_awake_rcu(epi);
1247 	}
1248 
1249 	/*
1250 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1251 	 * wait list.
1252 	 */
1253 	if (waitqueue_active(&ep->wq)) {
1254 		if ((epi->event.events & EPOLLEXCLUSIVE) &&
1255 					!(pollflags & POLLFREE)) {
1256 			switch (pollflags & EPOLLINOUT_BITS) {
1257 			case EPOLLIN:
1258 				if (epi->event.events & EPOLLIN)
1259 					ewake = 1;
1260 				break;
1261 			case EPOLLOUT:
1262 				if (epi->event.events & EPOLLOUT)
1263 					ewake = 1;
1264 				break;
1265 			case 0:
1266 				ewake = 1;
1267 				break;
1268 			}
1269 		}
1270 		wake_up(&ep->wq);
1271 	}
1272 	if (waitqueue_active(&ep->poll_wait))
1273 		pwake++;
1274 
1275 out_unlock:
1276 	read_unlock_irqrestore(&ep->lock, flags);
1277 
1278 	/* We have to call this outside the lock */
1279 	if (pwake)
1280 		ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE);
1281 
1282 	if (!(epi->event.events & EPOLLEXCLUSIVE))
1283 		ewake = 1;
1284 
1285 	if (pollflags & POLLFREE) {
1286 		/*
1287 		 * If we race with ep_remove_wait_queue() it can miss
1288 		 * ->whead = NULL and do another remove_wait_queue() after
1289 		 * us, so we can't use __remove_wait_queue().
1290 		 */
1291 		list_del_init(&wait->entry);
1292 		/*
1293 		 * ->whead != NULL protects us from the race with
1294 		 * ep_clear_and_put() or ep_remove(), ep_remove_wait_queue()
1295 		 * takes whead->lock held by the caller. Once we nullify it,
1296 		 * nothing protects ep/epi or even wait.
1297 		 */
1298 		smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1299 	}
1300 
1301 	return ewake;
1302 }
1303 
1304 /*
1305  * This is the callback that is used to add our wait queue to the
1306  * target file wakeup lists.
1307  */
1308 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1309 				 poll_table *pt)
1310 {
1311 	struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1312 	struct epitem *epi = epq->epi;
1313 	struct eppoll_entry *pwq;
1314 
1315 	if (unlikely(!epi))	// an earlier allocation has failed
1316 		return;
1317 
1318 	pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1319 	if (unlikely(!pwq)) {
1320 		epq->epi = NULL;
1321 		return;
1322 	}
1323 
1324 	init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1325 	pwq->whead = whead;
1326 	pwq->base = epi;
1327 	if (epi->event.events & EPOLLEXCLUSIVE)
1328 		add_wait_queue_exclusive(whead, &pwq->wait);
1329 	else
1330 		add_wait_queue(whead, &pwq->wait);
1331 	pwq->next = epi->pwqlist;
1332 	epi->pwqlist = pwq;
1333 }
1334 
1335 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1336 {
1337 	int kcmp;
1338 	struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1339 	struct epitem *epic;
1340 	bool leftmost = true;
1341 
1342 	while (*p) {
1343 		parent = *p;
1344 		epic = rb_entry(parent, struct epitem, rbn);
1345 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1346 		if (kcmp > 0) {
1347 			p = &parent->rb_right;
1348 			leftmost = false;
1349 		} else
1350 			p = &parent->rb_left;
1351 	}
1352 	rb_link_node(&epi->rbn, parent, p);
1353 	rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1354 }
1355 
1356 
1357 
1358 #define PATH_ARR_SIZE 5
1359 /*
1360  * These are the number paths of length 1 to 5, that we are allowing to emanate
1361  * from a single file of interest. For example, we allow 1000 paths of length
1362  * 1, to emanate from each file of interest. This essentially represents the
1363  * potential wakeup paths, which need to be limited in order to avoid massive
1364  * uncontrolled wakeup storms. The common use case should be a single ep which
1365  * is connected to n file sources. In this case each file source has 1 path
1366  * of length 1. Thus, the numbers below should be more than sufficient. These
1367  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1368  * and delete can't add additional paths. Protected by the epnested_mutex.
1369  */
1370 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1371 static int path_count[PATH_ARR_SIZE];
1372 
1373 static int path_count_inc(int nests)
1374 {
1375 	/* Allow an arbitrary number of depth 1 paths */
1376 	if (nests == 0)
1377 		return 0;
1378 
1379 	if (++path_count[nests] > path_limits[nests])
1380 		return -1;
1381 	return 0;
1382 }
1383 
1384 static void path_count_init(void)
1385 {
1386 	int i;
1387 
1388 	for (i = 0; i < PATH_ARR_SIZE; i++)
1389 		path_count[i] = 0;
1390 }
1391 
1392 static int reverse_path_check_proc(struct hlist_head *refs, int depth)
1393 {
1394 	int error = 0;
1395 	struct epitem *epi;
1396 
1397 	if (depth > EP_MAX_NESTS) /* too deep nesting */
1398 		return -1;
1399 
1400 	/* CTL_DEL can remove links here, but that can't increase our count */
1401 	hlist_for_each_entry_rcu(epi, refs, fllink) {
1402 		struct hlist_head *refs = &epi->ep->refs;
1403 		if (hlist_empty(refs))
1404 			error = path_count_inc(depth);
1405 		else
1406 			error = reverse_path_check_proc(refs, depth + 1);
1407 		if (error != 0)
1408 			break;
1409 	}
1410 	return error;
1411 }
1412 
1413 /**
1414  * reverse_path_check - The tfile_check_list is list of epitem_head, which have
1415  *                      links that are proposed to be newly added. We need to
1416  *                      make sure that those added links don't add too many
1417  *                      paths such that we will spend all our time waking up
1418  *                      eventpoll objects.
1419  *
1420  * Return: %zero if the proposed links don't create too many paths,
1421  *	    %-1 otherwise.
1422  */
1423 static int reverse_path_check(void)
1424 {
1425 	struct epitems_head *p;
1426 
1427 	for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) {
1428 		int error;
1429 		path_count_init();
1430 		rcu_read_lock();
1431 		error = reverse_path_check_proc(&p->epitems, 0);
1432 		rcu_read_unlock();
1433 		if (error)
1434 			return error;
1435 	}
1436 	return 0;
1437 }
1438 
1439 static int ep_create_wakeup_source(struct epitem *epi)
1440 {
1441 	struct name_snapshot n;
1442 	struct wakeup_source *ws;
1443 
1444 	if (!epi->ep->ws) {
1445 		epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1446 		if (!epi->ep->ws)
1447 			return -ENOMEM;
1448 	}
1449 
1450 	take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1451 	ws = wakeup_source_register(NULL, n.name.name);
1452 	release_dentry_name_snapshot(&n);
1453 
1454 	if (!ws)
1455 		return -ENOMEM;
1456 	rcu_assign_pointer(epi->ws, ws);
1457 
1458 	return 0;
1459 }
1460 
1461 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1462 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1463 {
1464 	struct wakeup_source *ws = ep_wakeup_source(epi);
1465 
1466 	RCU_INIT_POINTER(epi->ws, NULL);
1467 
1468 	/*
1469 	 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1470 	 * used internally by wakeup_source_remove, too (called by
1471 	 * wakeup_source_unregister), so we cannot use call_rcu
1472 	 */
1473 	synchronize_rcu();
1474 	wakeup_source_unregister(ws);
1475 }
1476 
1477 static int attach_epitem(struct file *file, struct epitem *epi)
1478 {
1479 	struct epitems_head *to_free = NULL;
1480 	struct hlist_head *head = NULL;
1481 	struct eventpoll *ep = NULL;
1482 
1483 	if (is_file_epoll(file))
1484 		ep = file->private_data;
1485 
1486 	if (ep) {
1487 		head = &ep->refs;
1488 	} else if (!READ_ONCE(file->f_ep)) {
1489 allocate:
1490 		to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL);
1491 		if (!to_free)
1492 			return -ENOMEM;
1493 		head = &to_free->epitems;
1494 	}
1495 	spin_lock(&file->f_lock);
1496 	if (!file->f_ep) {
1497 		if (unlikely(!head)) {
1498 			spin_unlock(&file->f_lock);
1499 			goto allocate;
1500 		}
1501 		file->f_ep = head;
1502 		to_free = NULL;
1503 	}
1504 	hlist_add_head_rcu(&epi->fllink, file->f_ep);
1505 	spin_unlock(&file->f_lock);
1506 	free_ephead(to_free);
1507 	return 0;
1508 }
1509 
1510 /*
1511  * Must be called with "mtx" held.
1512  */
1513 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1514 		     struct file *tfile, int fd, int full_check)
1515 {
1516 	int error, pwake = 0;
1517 	__poll_t revents;
1518 	struct epitem *epi;
1519 	struct ep_pqueue epq;
1520 	struct eventpoll *tep = NULL;
1521 
1522 	if (is_file_epoll(tfile))
1523 		tep = tfile->private_data;
1524 
1525 	lockdep_assert_irqs_enabled();
1526 
1527 	if (unlikely(percpu_counter_compare(&ep->user->epoll_watches,
1528 					    max_user_watches) >= 0))
1529 		return -ENOSPC;
1530 	percpu_counter_inc(&ep->user->epoll_watches);
1531 
1532 	if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) {
1533 		percpu_counter_dec(&ep->user->epoll_watches);
1534 		return -ENOMEM;
1535 	}
1536 
1537 	/* Item initialization follow here ... */
1538 	INIT_LIST_HEAD(&epi->rdllink);
1539 	epi->ep = ep;
1540 	ep_set_ffd(&epi->ffd, tfile, fd);
1541 	epi->event = *event;
1542 	epi->next = EP_UNACTIVE_PTR;
1543 
1544 	if (tep)
1545 		mutex_lock_nested(&tep->mtx, 1);
1546 	/* Add the current item to the list of active epoll hook for this file */
1547 	if (unlikely(attach_epitem(tfile, epi) < 0)) {
1548 		if (tep)
1549 			mutex_unlock(&tep->mtx);
1550 		kmem_cache_free(epi_cache, epi);
1551 		percpu_counter_dec(&ep->user->epoll_watches);
1552 		return -ENOMEM;
1553 	}
1554 
1555 	if (full_check && !tep)
1556 		list_file(tfile);
1557 
1558 	/*
1559 	 * Add the current item to the RB tree. All RB tree operations are
1560 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1561 	 */
1562 	ep_rbtree_insert(ep, epi);
1563 	if (tep)
1564 		mutex_unlock(&tep->mtx);
1565 
1566 	/*
1567 	 * ep_remove_safe() calls in the later error paths can't lead to
1568 	 * ep_free() as the ep file itself still holds an ep reference.
1569 	 */
1570 	ep_get(ep);
1571 
1572 	/* now check if we've created too many backpaths */
1573 	if (unlikely(full_check && reverse_path_check())) {
1574 		ep_remove_safe(ep, epi);
1575 		return -EINVAL;
1576 	}
1577 
1578 	if (epi->event.events & EPOLLWAKEUP) {
1579 		error = ep_create_wakeup_source(epi);
1580 		if (error) {
1581 			ep_remove_safe(ep, epi);
1582 			return error;
1583 		}
1584 	}
1585 
1586 	/* Initialize the poll table using the queue callback */
1587 	epq.epi = epi;
1588 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1589 
1590 	/*
1591 	 * Attach the item to the poll hooks and get current event bits.
1592 	 * We can safely use the file* here because its usage count has
1593 	 * been increased by the caller of this function. Note that after
1594 	 * this operation completes, the poll callback can start hitting
1595 	 * the new item.
1596 	 */
1597 	revents = ep_item_poll(epi, &epq.pt, 1);
1598 
1599 	/*
1600 	 * We have to check if something went wrong during the poll wait queue
1601 	 * install process. Namely an allocation for a wait queue failed due
1602 	 * high memory pressure.
1603 	 */
1604 	if (unlikely(!epq.epi)) {
1605 		ep_remove_safe(ep, epi);
1606 		return -ENOMEM;
1607 	}
1608 
1609 	/* We have to drop the new item inside our item list to keep track of it */
1610 	write_lock_irq(&ep->lock);
1611 
1612 	/* record NAPI ID of new item if present */
1613 	ep_set_busy_poll_napi_id(epi);
1614 
1615 	/* If the file is already "ready" we drop it inside the ready list */
1616 	if (revents && !ep_is_linked(epi)) {
1617 		list_add_tail(&epi->rdllink, &ep->rdllist);
1618 		ep_pm_stay_awake(epi);
1619 
1620 		/* Notify waiting tasks that events are available */
1621 		if (waitqueue_active(&ep->wq))
1622 			wake_up(&ep->wq);
1623 		if (waitqueue_active(&ep->poll_wait))
1624 			pwake++;
1625 	}
1626 
1627 	write_unlock_irq(&ep->lock);
1628 
1629 	/* We have to call this outside the lock */
1630 	if (pwake)
1631 		ep_poll_safewake(ep, NULL, 0);
1632 
1633 	return 0;
1634 }
1635 
1636 /*
1637  * Modify the interest event mask by dropping an event if the new mask
1638  * has a match in the current file status. Must be called with "mtx" held.
1639  */
1640 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1641 		     const struct epoll_event *event)
1642 {
1643 	int pwake = 0;
1644 	poll_table pt;
1645 
1646 	lockdep_assert_irqs_enabled();
1647 
1648 	init_poll_funcptr(&pt, NULL);
1649 
1650 	/*
1651 	 * Set the new event interest mask before calling f_op->poll();
1652 	 * otherwise we might miss an event that happens between the
1653 	 * f_op->poll() call and the new event set registering.
1654 	 */
1655 	epi->event.events = event->events; /* need barrier below */
1656 	epi->event.data = event->data; /* protected by mtx */
1657 	if (epi->event.events & EPOLLWAKEUP) {
1658 		if (!ep_has_wakeup_source(epi))
1659 			ep_create_wakeup_source(epi);
1660 	} else if (ep_has_wakeup_source(epi)) {
1661 		ep_destroy_wakeup_source(epi);
1662 	}
1663 
1664 	/*
1665 	 * The following barrier has two effects:
1666 	 *
1667 	 * 1) Flush epi changes above to other CPUs.  This ensures
1668 	 *    we do not miss events from ep_poll_callback if an
1669 	 *    event occurs immediately after we call f_op->poll().
1670 	 *    We need this because we did not take ep->lock while
1671 	 *    changing epi above (but ep_poll_callback does take
1672 	 *    ep->lock).
1673 	 *
1674 	 * 2) We also need to ensure we do not miss _past_ events
1675 	 *    when calling f_op->poll().  This barrier also
1676 	 *    pairs with the barrier in wq_has_sleeper (see
1677 	 *    comments for wq_has_sleeper).
1678 	 *
1679 	 * This barrier will now guarantee ep_poll_callback or f_op->poll
1680 	 * (or both) will notice the readiness of an item.
1681 	 */
1682 	smp_mb();
1683 
1684 	/*
1685 	 * Get current event bits. We can safely use the file* here because
1686 	 * its usage count has been increased by the caller of this function.
1687 	 * If the item is "hot" and it is not registered inside the ready
1688 	 * list, push it inside.
1689 	 */
1690 	if (ep_item_poll(epi, &pt, 1)) {
1691 		write_lock_irq(&ep->lock);
1692 		if (!ep_is_linked(epi)) {
1693 			list_add_tail(&epi->rdllink, &ep->rdllist);
1694 			ep_pm_stay_awake(epi);
1695 
1696 			/* Notify waiting tasks that events are available */
1697 			if (waitqueue_active(&ep->wq))
1698 				wake_up(&ep->wq);
1699 			if (waitqueue_active(&ep->poll_wait))
1700 				pwake++;
1701 		}
1702 		write_unlock_irq(&ep->lock);
1703 	}
1704 
1705 	/* We have to call this outside the lock */
1706 	if (pwake)
1707 		ep_poll_safewake(ep, NULL, 0);
1708 
1709 	return 0;
1710 }
1711 
1712 static int ep_send_events(struct eventpoll *ep,
1713 			  struct epoll_event __user *events, int maxevents)
1714 {
1715 	struct epitem *epi, *tmp;
1716 	LIST_HEAD(txlist);
1717 	poll_table pt;
1718 	int res = 0;
1719 
1720 	/*
1721 	 * Always short-circuit for fatal signals to allow threads to make a
1722 	 * timely exit without the chance of finding more events available and
1723 	 * fetching repeatedly.
1724 	 */
1725 	if (fatal_signal_pending(current))
1726 		return -EINTR;
1727 
1728 	init_poll_funcptr(&pt, NULL);
1729 
1730 	mutex_lock(&ep->mtx);
1731 	ep_start_scan(ep, &txlist);
1732 
1733 	/*
1734 	 * We can loop without lock because we are passed a task private list.
1735 	 * Items cannot vanish during the loop we are holding ep->mtx.
1736 	 */
1737 	list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
1738 		struct wakeup_source *ws;
1739 		__poll_t revents;
1740 
1741 		if (res >= maxevents)
1742 			break;
1743 
1744 		/*
1745 		 * Activate ep->ws before deactivating epi->ws to prevent
1746 		 * triggering auto-suspend here (in case we reactive epi->ws
1747 		 * below).
1748 		 *
1749 		 * This could be rearranged to delay the deactivation of epi->ws
1750 		 * instead, but then epi->ws would temporarily be out of sync
1751 		 * with ep_is_linked().
1752 		 */
1753 		ws = ep_wakeup_source(epi);
1754 		if (ws) {
1755 			if (ws->active)
1756 				__pm_stay_awake(ep->ws);
1757 			__pm_relax(ws);
1758 		}
1759 
1760 		list_del_init(&epi->rdllink);
1761 
1762 		/*
1763 		 * If the event mask intersect the caller-requested one,
1764 		 * deliver the event to userspace. Again, we are holding ep->mtx,
1765 		 * so no operations coming from userspace can change the item.
1766 		 */
1767 		revents = ep_item_poll(epi, &pt, 1);
1768 		if (!revents)
1769 			continue;
1770 
1771 		events = epoll_put_uevent(revents, epi->event.data, events);
1772 		if (!events) {
1773 			list_add(&epi->rdllink, &txlist);
1774 			ep_pm_stay_awake(epi);
1775 			if (!res)
1776 				res = -EFAULT;
1777 			break;
1778 		}
1779 		res++;
1780 		if (epi->event.events & EPOLLONESHOT)
1781 			epi->event.events &= EP_PRIVATE_BITS;
1782 		else if (!(epi->event.events & EPOLLET)) {
1783 			/*
1784 			 * If this file has been added with Level
1785 			 * Trigger mode, we need to insert back inside
1786 			 * the ready list, so that the next call to
1787 			 * epoll_wait() will check again the events
1788 			 * availability. At this point, no one can insert
1789 			 * into ep->rdllist besides us. The epoll_ctl()
1790 			 * callers are locked out by
1791 			 * ep_scan_ready_list() holding "mtx" and the
1792 			 * poll callback will queue them in ep->ovflist.
1793 			 */
1794 			list_add_tail(&epi->rdllink, &ep->rdllist);
1795 			ep_pm_stay_awake(epi);
1796 		}
1797 	}
1798 	ep_done_scan(ep, &txlist);
1799 	mutex_unlock(&ep->mtx);
1800 
1801 	return res;
1802 }
1803 
1804 static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms)
1805 {
1806 	struct timespec64 now;
1807 
1808 	if (ms < 0)
1809 		return NULL;
1810 
1811 	if (!ms) {
1812 		to->tv_sec = 0;
1813 		to->tv_nsec = 0;
1814 		return to;
1815 	}
1816 
1817 	to->tv_sec = ms / MSEC_PER_SEC;
1818 	to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC);
1819 
1820 	ktime_get_ts64(&now);
1821 	*to = timespec64_add_safe(now, *to);
1822 	return to;
1823 }
1824 
1825 /*
1826  * autoremove_wake_function, but remove even on failure to wake up, because we
1827  * know that default_wake_function/ttwu will only fail if the thread is already
1828  * woken, and in that case the ep_poll loop will remove the entry anyways, not
1829  * try to reuse it.
1830  */
1831 static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry,
1832 				       unsigned int mode, int sync, void *key)
1833 {
1834 	int ret = default_wake_function(wq_entry, mode, sync, key);
1835 
1836 	/*
1837 	 * Pairs with list_empty_careful in ep_poll, and ensures future loop
1838 	 * iterations see the cause of this wakeup.
1839 	 */
1840 	list_del_init_careful(&wq_entry->entry);
1841 	return ret;
1842 }
1843 
1844 /**
1845  * ep_poll - Retrieves ready events, and delivers them to the caller-supplied
1846  *           event buffer.
1847  *
1848  * @ep: Pointer to the eventpoll context.
1849  * @events: Pointer to the userspace buffer where the ready events should be
1850  *          stored.
1851  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1852  * @timeout: Maximum timeout for the ready events fetch operation, in
1853  *           timespec. If the timeout is zero, the function will not block,
1854  *           while if the @timeout ptr is NULL, the function will block
1855  *           until at least one event has been retrieved (or an error
1856  *           occurred).
1857  *
1858  * Return: the number of ready events which have been fetched, or an
1859  *          error code, in case of error.
1860  */
1861 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1862 		   int maxevents, struct timespec64 *timeout)
1863 {
1864 	int res, eavail, timed_out = 0;
1865 	u64 slack = 0;
1866 	wait_queue_entry_t wait;
1867 	ktime_t expires, *to = NULL;
1868 
1869 	lockdep_assert_irqs_enabled();
1870 
1871 	if (timeout && (timeout->tv_sec | timeout->tv_nsec)) {
1872 		slack = select_estimate_accuracy(timeout);
1873 		to = &expires;
1874 		*to = timespec64_to_ktime(*timeout);
1875 	} else if (timeout) {
1876 		/*
1877 		 * Avoid the unnecessary trip to the wait queue loop, if the
1878 		 * caller specified a non blocking operation.
1879 		 */
1880 		timed_out = 1;
1881 	}
1882 
1883 	/*
1884 	 * This call is racy: We may or may not see events that are being added
1885 	 * to the ready list under the lock (e.g., in IRQ callbacks). For cases
1886 	 * with a non-zero timeout, this thread will check the ready list under
1887 	 * lock and will add to the wait queue.  For cases with a zero
1888 	 * timeout, the user by definition should not care and will have to
1889 	 * recheck again.
1890 	 */
1891 	eavail = ep_events_available(ep);
1892 
1893 	while (1) {
1894 		if (eavail) {
1895 			/*
1896 			 * Try to transfer events to user space. In case we get
1897 			 * 0 events and there's still timeout left over, we go
1898 			 * trying again in search of more luck.
1899 			 */
1900 			res = ep_send_events(ep, events, maxevents);
1901 			if (res)
1902 				return res;
1903 		}
1904 
1905 		if (timed_out)
1906 			return 0;
1907 
1908 		eavail = ep_busy_loop(ep, timed_out);
1909 		if (eavail)
1910 			continue;
1911 
1912 		if (signal_pending(current))
1913 			return -EINTR;
1914 
1915 		/*
1916 		 * Internally init_wait() uses autoremove_wake_function(),
1917 		 * thus wait entry is removed from the wait queue on each
1918 		 * wakeup. Why it is important? In case of several waiters
1919 		 * each new wakeup will hit the next waiter, giving it the
1920 		 * chance to harvest new event. Otherwise wakeup can be
1921 		 * lost. This is also good performance-wise, because on
1922 		 * normal wakeup path no need to call __remove_wait_queue()
1923 		 * explicitly, thus ep->lock is not taken, which halts the
1924 		 * event delivery.
1925 		 *
1926 		 * In fact, we now use an even more aggressive function that
1927 		 * unconditionally removes, because we don't reuse the wait
1928 		 * entry between loop iterations. This lets us also avoid the
1929 		 * performance issue if a process is killed, causing all of its
1930 		 * threads to wake up without being removed normally.
1931 		 */
1932 		init_wait(&wait);
1933 		wait.func = ep_autoremove_wake_function;
1934 
1935 		write_lock_irq(&ep->lock);
1936 		/*
1937 		 * Barrierless variant, waitqueue_active() is called under
1938 		 * the same lock on wakeup ep_poll_callback() side, so it
1939 		 * is safe to avoid an explicit barrier.
1940 		 */
1941 		__set_current_state(TASK_INTERRUPTIBLE);
1942 
1943 		/*
1944 		 * Do the final check under the lock. ep_scan_ready_list()
1945 		 * plays with two lists (->rdllist and ->ovflist) and there
1946 		 * is always a race when both lists are empty for short
1947 		 * period of time although events are pending, so lock is
1948 		 * important.
1949 		 */
1950 		eavail = ep_events_available(ep);
1951 		if (!eavail)
1952 			__add_wait_queue_exclusive(&ep->wq, &wait);
1953 
1954 		write_unlock_irq(&ep->lock);
1955 
1956 		if (!eavail)
1957 			timed_out = !schedule_hrtimeout_range(to, slack,
1958 							      HRTIMER_MODE_ABS);
1959 		__set_current_state(TASK_RUNNING);
1960 
1961 		/*
1962 		 * We were woken up, thus go and try to harvest some events.
1963 		 * If timed out and still on the wait queue, recheck eavail
1964 		 * carefully under lock, below.
1965 		 */
1966 		eavail = 1;
1967 
1968 		if (!list_empty_careful(&wait.entry)) {
1969 			write_lock_irq(&ep->lock);
1970 			/*
1971 			 * If the thread timed out and is not on the wait queue,
1972 			 * it means that the thread was woken up after its
1973 			 * timeout expired before it could reacquire the lock.
1974 			 * Thus, when wait.entry is empty, it needs to harvest
1975 			 * events.
1976 			 */
1977 			if (timed_out)
1978 				eavail = list_empty(&wait.entry);
1979 			__remove_wait_queue(&ep->wq, &wait);
1980 			write_unlock_irq(&ep->lock);
1981 		}
1982 	}
1983 }
1984 
1985 /**
1986  * ep_loop_check_proc - verify that adding an epoll file inside another
1987  *                      epoll structure does not violate the constraints, in
1988  *                      terms of closed loops, or too deep chains (which can
1989  *                      result in excessive stack usage).
1990  *
1991  * @ep: the &struct eventpoll to be currently checked.
1992  * @depth: Current depth of the path being checked.
1993  *
1994  * Return: %zero if adding the epoll @file inside current epoll
1995  *          structure @ep does not violate the constraints, or %-1 otherwise.
1996  */
1997 static int ep_loop_check_proc(struct eventpoll *ep, int depth)
1998 {
1999 	int error = 0;
2000 	struct rb_node *rbp;
2001 	struct epitem *epi;
2002 
2003 	mutex_lock_nested(&ep->mtx, depth + 1);
2004 	ep->gen = loop_check_gen;
2005 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
2006 		epi = rb_entry(rbp, struct epitem, rbn);
2007 		if (unlikely(is_file_epoll(epi->ffd.file))) {
2008 			struct eventpoll *ep_tovisit;
2009 			ep_tovisit = epi->ffd.file->private_data;
2010 			if (ep_tovisit->gen == loop_check_gen)
2011 				continue;
2012 			if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS)
2013 				error = -1;
2014 			else
2015 				error = ep_loop_check_proc(ep_tovisit, depth + 1);
2016 			if (error != 0)
2017 				break;
2018 		} else {
2019 			/*
2020 			 * If we've reached a file that is not associated with
2021 			 * an ep, then we need to check if the newly added
2022 			 * links are going to add too many wakeup paths. We do
2023 			 * this by adding it to the tfile_check_list, if it's
2024 			 * not already there, and calling reverse_path_check()
2025 			 * during ep_insert().
2026 			 */
2027 			list_file(epi->ffd.file);
2028 		}
2029 	}
2030 	mutex_unlock(&ep->mtx);
2031 
2032 	return error;
2033 }
2034 
2035 /**
2036  * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
2037  *                 into another epoll file (represented by @ep) does not create
2038  *                 closed loops or too deep chains.
2039  *
2040  * @ep: Pointer to the epoll we are inserting into.
2041  * @to: Pointer to the epoll to be inserted.
2042  *
2043  * Return: %zero if adding the epoll @to inside the epoll @from
2044  * does not violate the constraints, or %-1 otherwise.
2045  */
2046 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to)
2047 {
2048 	inserting_into = ep;
2049 	return ep_loop_check_proc(to, 0);
2050 }
2051 
2052 static void clear_tfile_check_list(void)
2053 {
2054 	rcu_read_lock();
2055 	while (tfile_check_list != EP_UNACTIVE_PTR) {
2056 		struct epitems_head *head = tfile_check_list;
2057 		tfile_check_list = head->next;
2058 		unlist_file(head);
2059 	}
2060 	rcu_read_unlock();
2061 }
2062 
2063 /*
2064  * Open an eventpoll file descriptor.
2065  */
2066 static int do_epoll_create(int flags)
2067 {
2068 	int error, fd;
2069 	struct eventpoll *ep = NULL;
2070 	struct file *file;
2071 
2072 	/* Check the EPOLL_* constant for consistency.  */
2073 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2074 
2075 	if (flags & ~EPOLL_CLOEXEC)
2076 		return -EINVAL;
2077 	/*
2078 	 * Create the internal data structure ("struct eventpoll").
2079 	 */
2080 	error = ep_alloc(&ep);
2081 	if (error < 0)
2082 		return error;
2083 	/*
2084 	 * Creates all the items needed to setup an eventpoll file. That is,
2085 	 * a file structure and a free file descriptor.
2086 	 */
2087 	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2088 	if (fd < 0) {
2089 		error = fd;
2090 		goto out_free_ep;
2091 	}
2092 	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2093 				 O_RDWR | (flags & O_CLOEXEC));
2094 	if (IS_ERR(file)) {
2095 		error = PTR_ERR(file);
2096 		goto out_free_fd;
2097 	}
2098 	ep->file = file;
2099 	fd_install(fd, file);
2100 	return fd;
2101 
2102 out_free_fd:
2103 	put_unused_fd(fd);
2104 out_free_ep:
2105 	ep_clear_and_put(ep);
2106 	return error;
2107 }
2108 
2109 SYSCALL_DEFINE1(epoll_create1, int, flags)
2110 {
2111 	return do_epoll_create(flags);
2112 }
2113 
2114 SYSCALL_DEFINE1(epoll_create, int, size)
2115 {
2116 	if (size <= 0)
2117 		return -EINVAL;
2118 
2119 	return do_epoll_create(0);
2120 }
2121 
2122 #ifdef CONFIG_PM_SLEEP
2123 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2124 {
2125 	if ((epev->events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND))
2126 		epev->events &= ~EPOLLWAKEUP;
2127 }
2128 #else
2129 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2130 {
2131 	epev->events &= ~EPOLLWAKEUP;
2132 }
2133 #endif
2134 
2135 static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2136 				   bool nonblock)
2137 {
2138 	if (!nonblock) {
2139 		mutex_lock_nested(mutex, depth);
2140 		return 0;
2141 	}
2142 	if (mutex_trylock(mutex))
2143 		return 0;
2144 	return -EAGAIN;
2145 }
2146 
2147 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2148 		 bool nonblock)
2149 {
2150 	int error;
2151 	int full_check = 0;
2152 	struct fd f, tf;
2153 	struct eventpoll *ep;
2154 	struct epitem *epi;
2155 	struct eventpoll *tep = NULL;
2156 
2157 	error = -EBADF;
2158 	f = fdget(epfd);
2159 	if (!f.file)
2160 		goto error_return;
2161 
2162 	/* Get the "struct file *" for the target file */
2163 	tf = fdget(fd);
2164 	if (!tf.file)
2165 		goto error_fput;
2166 
2167 	/* The target file descriptor must support poll */
2168 	error = -EPERM;
2169 	if (!file_can_poll(tf.file))
2170 		goto error_tgt_fput;
2171 
2172 	/* Check if EPOLLWAKEUP is allowed */
2173 	if (ep_op_has_event(op))
2174 		ep_take_care_of_epollwakeup(epds);
2175 
2176 	/*
2177 	 * We have to check that the file structure underneath the file descriptor
2178 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
2179 	 * adding an epoll file descriptor inside itself.
2180 	 */
2181 	error = -EINVAL;
2182 	if (f.file == tf.file || !is_file_epoll(f.file))
2183 		goto error_tgt_fput;
2184 
2185 	/*
2186 	 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2187 	 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2188 	 * Also, we do not currently supported nested exclusive wakeups.
2189 	 */
2190 	if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2191 		if (op == EPOLL_CTL_MOD)
2192 			goto error_tgt_fput;
2193 		if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2194 				(epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2195 			goto error_tgt_fput;
2196 	}
2197 
2198 	/*
2199 	 * At this point it is safe to assume that the "private_data" contains
2200 	 * our own data structure.
2201 	 */
2202 	ep = f.file->private_data;
2203 
2204 	/*
2205 	 * When we insert an epoll file descriptor inside another epoll file
2206 	 * descriptor, there is the chance of creating closed loops, which are
2207 	 * better be handled here, than in more critical paths. While we are
2208 	 * checking for loops we also determine the list of files reachable
2209 	 * and hang them on the tfile_check_list, so we can check that we
2210 	 * haven't created too many possible wakeup paths.
2211 	 *
2212 	 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2213 	 * the epoll file descriptor is attaching directly to a wakeup source,
2214 	 * unless the epoll file descriptor is nested. The purpose of taking the
2215 	 * 'epnested_mutex' on add is to prevent complex toplogies such as loops and
2216 	 * deep wakeup paths from forming in parallel through multiple
2217 	 * EPOLL_CTL_ADD operations.
2218 	 */
2219 	error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2220 	if (error)
2221 		goto error_tgt_fput;
2222 	if (op == EPOLL_CTL_ADD) {
2223 		if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen ||
2224 		    is_file_epoll(tf.file)) {
2225 			mutex_unlock(&ep->mtx);
2226 			error = epoll_mutex_lock(&epnested_mutex, 0, nonblock);
2227 			if (error)
2228 				goto error_tgt_fput;
2229 			loop_check_gen++;
2230 			full_check = 1;
2231 			if (is_file_epoll(tf.file)) {
2232 				tep = tf.file->private_data;
2233 				error = -ELOOP;
2234 				if (ep_loop_check(ep, tep) != 0)
2235 					goto error_tgt_fput;
2236 			}
2237 			error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2238 			if (error)
2239 				goto error_tgt_fput;
2240 		}
2241 	}
2242 
2243 	/*
2244 	 * Try to lookup the file inside our RB tree. Since we grabbed "mtx"
2245 	 * above, we can be sure to be able to use the item looked up by
2246 	 * ep_find() till we release the mutex.
2247 	 */
2248 	epi = ep_find(ep, tf.file, fd);
2249 
2250 	error = -EINVAL;
2251 	switch (op) {
2252 	case EPOLL_CTL_ADD:
2253 		if (!epi) {
2254 			epds->events |= EPOLLERR | EPOLLHUP;
2255 			error = ep_insert(ep, epds, tf.file, fd, full_check);
2256 		} else
2257 			error = -EEXIST;
2258 		break;
2259 	case EPOLL_CTL_DEL:
2260 		if (epi) {
2261 			/*
2262 			 * The eventpoll itself is still alive: the refcount
2263 			 * can't go to zero here.
2264 			 */
2265 			ep_remove_safe(ep, epi);
2266 			error = 0;
2267 		} else {
2268 			error = -ENOENT;
2269 		}
2270 		break;
2271 	case EPOLL_CTL_MOD:
2272 		if (epi) {
2273 			if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2274 				epds->events |= EPOLLERR | EPOLLHUP;
2275 				error = ep_modify(ep, epi, epds);
2276 			}
2277 		} else
2278 			error = -ENOENT;
2279 		break;
2280 	}
2281 	mutex_unlock(&ep->mtx);
2282 
2283 error_tgt_fput:
2284 	if (full_check) {
2285 		clear_tfile_check_list();
2286 		loop_check_gen++;
2287 		mutex_unlock(&epnested_mutex);
2288 	}
2289 
2290 	fdput(tf);
2291 error_fput:
2292 	fdput(f);
2293 error_return:
2294 
2295 	return error;
2296 }
2297 
2298 /*
2299  * The following function implements the controller interface for
2300  * the eventpoll file that enables the insertion/removal/change of
2301  * file descriptors inside the interest set.
2302  */
2303 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2304 		struct epoll_event __user *, event)
2305 {
2306 	struct epoll_event epds;
2307 
2308 	if (ep_op_has_event(op) &&
2309 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
2310 		return -EFAULT;
2311 
2312 	return do_epoll_ctl(epfd, op, fd, &epds, false);
2313 }
2314 
2315 /*
2316  * Implement the event wait interface for the eventpoll file. It is the kernel
2317  * part of the user space epoll_wait(2).
2318  */
2319 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2320 			 int maxevents, struct timespec64 *to)
2321 {
2322 	int error;
2323 	struct fd f;
2324 	struct eventpoll *ep;
2325 
2326 	/* The maximum number of event must be greater than zero */
2327 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2328 		return -EINVAL;
2329 
2330 	/* Verify that the area passed by the user is writeable */
2331 	if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2332 		return -EFAULT;
2333 
2334 	/* Get the "struct file *" for the eventpoll file */
2335 	f = fdget(epfd);
2336 	if (!f.file)
2337 		return -EBADF;
2338 
2339 	/*
2340 	 * We have to check that the file structure underneath the fd
2341 	 * the user passed to us _is_ an eventpoll file.
2342 	 */
2343 	error = -EINVAL;
2344 	if (!is_file_epoll(f.file))
2345 		goto error_fput;
2346 
2347 	/*
2348 	 * At this point it is safe to assume that the "private_data" contains
2349 	 * our own data structure.
2350 	 */
2351 	ep = f.file->private_data;
2352 
2353 	/* Time to fish for events ... */
2354 	error = ep_poll(ep, events, maxevents, to);
2355 
2356 error_fput:
2357 	fdput(f);
2358 	return error;
2359 }
2360 
2361 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2362 		int, maxevents, int, timeout)
2363 {
2364 	struct timespec64 to;
2365 
2366 	return do_epoll_wait(epfd, events, maxevents,
2367 			     ep_timeout_to_timespec(&to, timeout));
2368 }
2369 
2370 /*
2371  * Implement the event wait interface for the eventpoll file. It is the kernel
2372  * part of the user space epoll_pwait(2).
2373  */
2374 static int do_epoll_pwait(int epfd, struct epoll_event __user *events,
2375 			  int maxevents, struct timespec64 *to,
2376 			  const sigset_t __user *sigmask, size_t sigsetsize)
2377 {
2378 	int error;
2379 
2380 	/*
2381 	 * If the caller wants a certain signal mask to be set during the wait,
2382 	 * we apply it here.
2383 	 */
2384 	error = set_user_sigmask(sigmask, sigsetsize);
2385 	if (error)
2386 		return error;
2387 
2388 	error = do_epoll_wait(epfd, events, maxevents, to);
2389 
2390 	restore_saved_sigmask_unless(error == -EINTR);
2391 
2392 	return error;
2393 }
2394 
2395 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2396 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2397 		size_t, sigsetsize)
2398 {
2399 	struct timespec64 to;
2400 
2401 	return do_epoll_pwait(epfd, events, maxevents,
2402 			      ep_timeout_to_timespec(&to, timeout),
2403 			      sigmask, sigsetsize);
2404 }
2405 
2406 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events,
2407 		int, maxevents, const struct __kernel_timespec __user *, timeout,
2408 		const sigset_t __user *, sigmask, size_t, sigsetsize)
2409 {
2410 	struct timespec64 ts, *to = NULL;
2411 
2412 	if (timeout) {
2413 		if (get_timespec64(&ts, timeout))
2414 			return -EFAULT;
2415 		to = &ts;
2416 		if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2417 			return -EINVAL;
2418 	}
2419 
2420 	return do_epoll_pwait(epfd, events, maxevents, to,
2421 			      sigmask, sigsetsize);
2422 }
2423 
2424 #ifdef CONFIG_COMPAT
2425 static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events,
2426 				 int maxevents, struct timespec64 *timeout,
2427 				 const compat_sigset_t __user *sigmask,
2428 				 compat_size_t sigsetsize)
2429 {
2430 	long err;
2431 
2432 	/*
2433 	 * If the caller wants a certain signal mask to be set during the wait,
2434 	 * we apply it here.
2435 	 */
2436 	err = set_compat_user_sigmask(sigmask, sigsetsize);
2437 	if (err)
2438 		return err;
2439 
2440 	err = do_epoll_wait(epfd, events, maxevents, timeout);
2441 
2442 	restore_saved_sigmask_unless(err == -EINTR);
2443 
2444 	return err;
2445 }
2446 
2447 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2448 		       struct epoll_event __user *, events,
2449 		       int, maxevents, int, timeout,
2450 		       const compat_sigset_t __user *, sigmask,
2451 		       compat_size_t, sigsetsize)
2452 {
2453 	struct timespec64 to;
2454 
2455 	return do_compat_epoll_pwait(epfd, events, maxevents,
2456 				     ep_timeout_to_timespec(&to, timeout),
2457 				     sigmask, sigsetsize);
2458 }
2459 
2460 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd,
2461 		       struct epoll_event __user *, events,
2462 		       int, maxevents,
2463 		       const struct __kernel_timespec __user *, timeout,
2464 		       const compat_sigset_t __user *, sigmask,
2465 		       compat_size_t, sigsetsize)
2466 {
2467 	struct timespec64 ts, *to = NULL;
2468 
2469 	if (timeout) {
2470 		if (get_timespec64(&ts, timeout))
2471 			return -EFAULT;
2472 		to = &ts;
2473 		if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2474 			return -EINVAL;
2475 	}
2476 
2477 	return do_compat_epoll_pwait(epfd, events, maxevents, to,
2478 				     sigmask, sigsetsize);
2479 }
2480 
2481 #endif
2482 
2483 static int __init eventpoll_init(void)
2484 {
2485 	struct sysinfo si;
2486 
2487 	si_meminfo(&si);
2488 	/*
2489 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2490 	 */
2491 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2492 		EP_ITEM_COST;
2493 	BUG_ON(max_user_watches < 0);
2494 
2495 	/*
2496 	 * We can have many thousands of epitems, so prevent this from
2497 	 * using an extra cache line on 64-bit (and smaller) CPUs
2498 	 */
2499 	BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2500 
2501 	/* Allocates slab cache used to allocate "struct epitem" items */
2502 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2503 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2504 
2505 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
2506 	pwq_cache = kmem_cache_create("eventpoll_pwq",
2507 		sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2508 	epoll_sysctls_init();
2509 
2510 	ephead_cache = kmem_cache_create("ep_head",
2511 		sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2512 
2513 	return 0;
2514 }
2515 fs_initcall(eventpoll_init);
2516