xref: /openbmc/linux/fs/eventpoll.c (revision 4e042f02)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  fs/eventpoll.c (Efficient event retrieval implementation)
4  *  Copyright (C) 2001,...,2009	 Davide Libenzi
5  *
6  *  Davide Libenzi <davidel@xmailserver.org>
7  */
8 
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/uaccess.h>
33 #include <asm/io.h>
34 #include <asm/mman.h>
35 #include <linux/atomic.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/compat.h>
39 #include <linux/rculist.h>
40 #include <net/busy_poll.h>
41 
42 /*
43  * LOCKING:
44  * There are three level of locking required by epoll :
45  *
46  * 1) epnested_mutex (mutex)
47  * 2) ep->mtx (mutex)
48  * 3) ep->lock (rwlock)
49  *
50  * The acquire order is the one listed above, from 1 to 3.
51  * We need a rwlock (ep->lock) because we manipulate objects
52  * from inside the poll callback, that might be triggered from
53  * a wake_up() that in turn might be called from IRQ context.
54  * So we can't sleep inside the poll callback and hence we need
55  * a spinlock. During the event transfer loop (from kernel to
56  * user space) we could end up sleeping due a copy_to_user(), so
57  * we need a lock that will allow us to sleep. This lock is a
58  * mutex (ep->mtx). It is acquired during the event transfer loop,
59  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60  * The epnested_mutex is acquired when inserting an epoll fd onto another
61  * epoll fd. We do this so that we walk the epoll tree and ensure that this
62  * insertion does not create a cycle of epoll file descriptors, which
63  * could lead to deadlock. We need a global mutex to prevent two
64  * simultaneous inserts (A into B and B into A) from racing and
65  * constructing a cycle without either insert observing that it is
66  * going to.
67  * It is necessary to acquire multiple "ep->mtx"es at once in the
68  * case when one epoll fd is added to another. In this case, we
69  * always acquire the locks in the order of nesting (i.e. after
70  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
71  * before e2->mtx). Since we disallow cycles of epoll file
72  * descriptors, this ensures that the mutexes are well-ordered. In
73  * order to communicate this nesting to lockdep, when walking a tree
74  * of epoll file descriptors, we use the current recursion depth as
75  * the lockdep subkey.
76  * It is possible to drop the "ep->mtx" and to use the global
77  * mutex "epnested_mutex" (together with "ep->lock") to have it working,
78  * but having "ep->mtx" will make the interface more scalable.
79  * Events that require holding "epnested_mutex" are very rare, while for
80  * normal operations the epoll private "ep->mtx" will guarantee
81  * a better scalability.
82  */
83 
84 /* Epoll private bits inside the event mask */
85 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
86 
87 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
88 
89 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
90 				EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
91 
92 /* Maximum number of nesting allowed inside epoll sets */
93 #define EP_MAX_NESTS 4
94 
95 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
96 
97 #define EP_UNACTIVE_PTR ((void *) -1L)
98 
99 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
100 
101 struct epoll_filefd {
102 	struct file *file;
103 	int fd;
104 } __packed;
105 
106 /* Wait structure used by the poll hooks */
107 struct eppoll_entry {
108 	/* List header used to link this structure to the "struct epitem" */
109 	struct eppoll_entry *next;
110 
111 	/* The "base" pointer is set to the container "struct epitem" */
112 	struct epitem *base;
113 
114 	/*
115 	 * Wait queue item that will be linked to the target file wait
116 	 * queue head.
117 	 */
118 	wait_queue_entry_t wait;
119 
120 	/* The wait queue head that linked the "wait" wait queue item */
121 	wait_queue_head_t *whead;
122 };
123 
124 /*
125  * Each file descriptor added to the eventpoll interface will
126  * have an entry of this type linked to the "rbr" RB tree.
127  * Avoid increasing the size of this struct, there can be many thousands
128  * of these on a server and we do not want this to take another cache line.
129  */
130 struct epitem {
131 	union {
132 		/* RB tree node links this structure to the eventpoll RB tree */
133 		struct rb_node rbn;
134 		/* Used to free the struct epitem */
135 		struct rcu_head rcu;
136 	};
137 
138 	/* List header used to link this structure to the eventpoll ready list */
139 	struct list_head rdllink;
140 
141 	/*
142 	 * Works together "struct eventpoll"->ovflist in keeping the
143 	 * single linked chain of items.
144 	 */
145 	struct epitem *next;
146 
147 	/* The file descriptor information this item refers to */
148 	struct epoll_filefd ffd;
149 
150 	/*
151 	 * Protected by file->f_lock, true for to-be-released epitem already
152 	 * removed from the "struct file" items list; together with
153 	 * eventpoll->refcount orchestrates "struct eventpoll" disposal
154 	 */
155 	bool dying;
156 
157 	/* List containing poll wait queues */
158 	struct eppoll_entry *pwqlist;
159 
160 	/* The "container" of this item */
161 	struct eventpoll *ep;
162 
163 	/* List header used to link this item to the "struct file" items list */
164 	struct hlist_node fllink;
165 
166 	/* wakeup_source used when EPOLLWAKEUP is set */
167 	struct wakeup_source __rcu *ws;
168 
169 	/* The structure that describe the interested events and the source fd */
170 	struct epoll_event event;
171 };
172 
173 /*
174  * This structure is stored inside the "private_data" member of the file
175  * structure and represents the main data structure for the eventpoll
176  * interface.
177  */
178 struct eventpoll {
179 	/*
180 	 * This mutex is used to ensure that files are not removed
181 	 * while epoll is using them. This is held during the event
182 	 * collection loop, the file cleanup path, the epoll file exit
183 	 * code and the ctl operations.
184 	 */
185 	struct mutex mtx;
186 
187 	/* Wait queue used by sys_epoll_wait() */
188 	wait_queue_head_t wq;
189 
190 	/* Wait queue used by file->poll() */
191 	wait_queue_head_t poll_wait;
192 
193 	/* List of ready file descriptors */
194 	struct list_head rdllist;
195 
196 	/* Lock which protects rdllist and ovflist */
197 	rwlock_t lock;
198 
199 	/* RB tree root used to store monitored fd structs */
200 	struct rb_root_cached rbr;
201 
202 	/*
203 	 * This is a single linked list that chains all the "struct epitem" that
204 	 * happened while transferring ready events to userspace w/out
205 	 * holding ->lock.
206 	 */
207 	struct epitem *ovflist;
208 
209 	/* wakeup_source used when ep_scan_ready_list is running */
210 	struct wakeup_source *ws;
211 
212 	/* The user that created the eventpoll descriptor */
213 	struct user_struct *user;
214 
215 	struct file *file;
216 
217 	/* used to optimize loop detection check */
218 	u64 gen;
219 	struct hlist_head refs;
220 
221 	/*
222 	 * usage count, used together with epitem->dying to
223 	 * orchestrate the disposal of this struct
224 	 */
225 	refcount_t refcount;
226 
227 #ifdef CONFIG_NET_RX_BUSY_POLL
228 	/* used to track busy poll napi_id */
229 	unsigned int napi_id;
230 #endif
231 
232 #ifdef CONFIG_DEBUG_LOCK_ALLOC
233 	/* tracks wakeup nests for lockdep validation */
234 	u8 nests;
235 #endif
236 };
237 
238 /* Wrapper struct used by poll queueing */
239 struct ep_pqueue {
240 	poll_table pt;
241 	struct epitem *epi;
242 };
243 
244 /*
245  * Configuration options available inside /proc/sys/fs/epoll/
246  */
247 /* Maximum number of epoll watched descriptors, per user */
248 static long max_user_watches __read_mostly;
249 
250 /* Used for cycles detection */
251 static DEFINE_MUTEX(epnested_mutex);
252 
253 static u64 loop_check_gen = 0;
254 
255 /* Used to check for epoll file descriptor inclusion loops */
256 static struct eventpoll *inserting_into;
257 
258 /* Slab cache used to allocate "struct epitem" */
259 static struct kmem_cache *epi_cache __read_mostly;
260 
261 /* Slab cache used to allocate "struct eppoll_entry" */
262 static struct kmem_cache *pwq_cache __read_mostly;
263 
264 /*
265  * List of files with newly added links, where we may need to limit the number
266  * of emanating paths. Protected by the epnested_mutex.
267  */
268 struct epitems_head {
269 	struct hlist_head epitems;
270 	struct epitems_head *next;
271 };
272 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR;
273 
274 static struct kmem_cache *ephead_cache __read_mostly;
275 
276 static inline void free_ephead(struct epitems_head *head)
277 {
278 	if (head)
279 		kmem_cache_free(ephead_cache, head);
280 }
281 
282 static void list_file(struct file *file)
283 {
284 	struct epitems_head *head;
285 
286 	head = container_of(file->f_ep, struct epitems_head, epitems);
287 	if (!head->next) {
288 		head->next = tfile_check_list;
289 		tfile_check_list = head;
290 	}
291 }
292 
293 static void unlist_file(struct epitems_head *head)
294 {
295 	struct epitems_head *to_free = head;
296 	struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems));
297 	if (p) {
298 		struct epitem *epi= container_of(p, struct epitem, fllink);
299 		spin_lock(&epi->ffd.file->f_lock);
300 		if (!hlist_empty(&head->epitems))
301 			to_free = NULL;
302 		head->next = NULL;
303 		spin_unlock(&epi->ffd.file->f_lock);
304 	}
305 	free_ephead(to_free);
306 }
307 
308 #ifdef CONFIG_SYSCTL
309 
310 #include <linux/sysctl.h>
311 
312 static long long_zero;
313 static long long_max = LONG_MAX;
314 
315 static struct ctl_table epoll_table[] = {
316 	{
317 		.procname	= "max_user_watches",
318 		.data		= &max_user_watches,
319 		.maxlen		= sizeof(max_user_watches),
320 		.mode		= 0644,
321 		.proc_handler	= proc_doulongvec_minmax,
322 		.extra1		= &long_zero,
323 		.extra2		= &long_max,
324 	},
325 	{ }
326 };
327 
328 static void __init epoll_sysctls_init(void)
329 {
330 	register_sysctl("fs/epoll", epoll_table);
331 }
332 #else
333 #define epoll_sysctls_init() do { } while (0)
334 #endif /* CONFIG_SYSCTL */
335 
336 static const struct file_operations eventpoll_fops;
337 
338 static inline int is_file_epoll(struct file *f)
339 {
340 	return f->f_op == &eventpoll_fops;
341 }
342 
343 /* Setup the structure that is used as key for the RB tree */
344 static inline void ep_set_ffd(struct epoll_filefd *ffd,
345 			      struct file *file, int fd)
346 {
347 	ffd->file = file;
348 	ffd->fd = fd;
349 }
350 
351 /* Compare RB tree keys */
352 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
353 			     struct epoll_filefd *p2)
354 {
355 	return (p1->file > p2->file ? +1:
356 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
357 }
358 
359 /* Tells us if the item is currently linked */
360 static inline int ep_is_linked(struct epitem *epi)
361 {
362 	return !list_empty(&epi->rdllink);
363 }
364 
365 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
366 {
367 	return container_of(p, struct eppoll_entry, wait);
368 }
369 
370 /* Get the "struct epitem" from a wait queue pointer */
371 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
372 {
373 	return container_of(p, struct eppoll_entry, wait)->base;
374 }
375 
376 /**
377  * ep_events_available - Checks if ready events might be available.
378  *
379  * @ep: Pointer to the eventpoll context.
380  *
381  * Return: a value different than %zero if ready events are available,
382  *          or %zero otherwise.
383  */
384 static inline int ep_events_available(struct eventpoll *ep)
385 {
386 	return !list_empty_careful(&ep->rdllist) ||
387 		READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
388 }
389 
390 #ifdef CONFIG_NET_RX_BUSY_POLL
391 static bool ep_busy_loop_end(void *p, unsigned long start_time)
392 {
393 	struct eventpoll *ep = p;
394 
395 	return ep_events_available(ep) || busy_loop_timeout(start_time);
396 }
397 
398 /*
399  * Busy poll if globally on and supporting sockets found && no events,
400  * busy loop will return if need_resched or ep_events_available.
401  *
402  * we must do our busy polling with irqs enabled
403  */
404 static bool ep_busy_loop(struct eventpoll *ep, int nonblock)
405 {
406 	unsigned int napi_id = READ_ONCE(ep->napi_id);
407 
408 	if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) {
409 		napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, false,
410 			       BUSY_POLL_BUDGET);
411 		if (ep_events_available(ep))
412 			return true;
413 		/*
414 		 * Busy poll timed out.  Drop NAPI ID for now, we can add
415 		 * it back in when we have moved a socket with a valid NAPI
416 		 * ID onto the ready list.
417 		 */
418 		ep->napi_id = 0;
419 		return false;
420 	}
421 	return false;
422 }
423 
424 /*
425  * Set epoll busy poll NAPI ID from sk.
426  */
427 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
428 {
429 	struct eventpoll *ep;
430 	unsigned int napi_id;
431 	struct socket *sock;
432 	struct sock *sk;
433 
434 	if (!net_busy_loop_on())
435 		return;
436 
437 	sock = sock_from_file(epi->ffd.file);
438 	if (!sock)
439 		return;
440 
441 	sk = sock->sk;
442 	if (!sk)
443 		return;
444 
445 	napi_id = READ_ONCE(sk->sk_napi_id);
446 	ep = epi->ep;
447 
448 	/* Non-NAPI IDs can be rejected
449 	 *	or
450 	 * Nothing to do if we already have this ID
451 	 */
452 	if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
453 		return;
454 
455 	/* record NAPI ID for use in next busy poll */
456 	ep->napi_id = napi_id;
457 }
458 
459 #else
460 
461 static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock)
462 {
463 	return false;
464 }
465 
466 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
467 {
468 }
469 
470 #endif /* CONFIG_NET_RX_BUSY_POLL */
471 
472 /*
473  * As described in commit 0ccf831cb lockdep: annotate epoll
474  * the use of wait queues used by epoll is done in a very controlled
475  * manner. Wake ups can nest inside each other, but are never done
476  * with the same locking. For example:
477  *
478  *   dfd = socket(...);
479  *   efd1 = epoll_create();
480  *   efd2 = epoll_create();
481  *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
482  *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
483  *
484  * When a packet arrives to the device underneath "dfd", the net code will
485  * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
486  * callback wakeup entry on that queue, and the wake_up() performed by the
487  * "dfd" net code will end up in ep_poll_callback(). At this point epoll
488  * (efd1) notices that it may have some event ready, so it needs to wake up
489  * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
490  * that ends up in another wake_up(), after having checked about the
491  * recursion constraints. That are, no more than EP_MAX_NESTS, to avoid
492  * stack blasting.
493  *
494  * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
495  * this special case of epoll.
496  */
497 #ifdef CONFIG_DEBUG_LOCK_ALLOC
498 
499 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
500 			     unsigned pollflags)
501 {
502 	struct eventpoll *ep_src;
503 	unsigned long flags;
504 	u8 nests = 0;
505 
506 	/*
507 	 * To set the subclass or nesting level for spin_lock_irqsave_nested()
508 	 * it might be natural to create a per-cpu nest count. However, since
509 	 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
510 	 * schedule() in the -rt kernel, the per-cpu variable are no longer
511 	 * protected. Thus, we are introducing a per eventpoll nest field.
512 	 * If we are not being call from ep_poll_callback(), epi is NULL and
513 	 * we are at the first level of nesting, 0. Otherwise, we are being
514 	 * called from ep_poll_callback() and if a previous wakeup source is
515 	 * not an epoll file itself, we are at depth 1 since the wakeup source
516 	 * is depth 0. If the wakeup source is a previous epoll file in the
517 	 * wakeup chain then we use its nests value and record ours as
518 	 * nests + 1. The previous epoll file nests value is stable since its
519 	 * already holding its own poll_wait.lock.
520 	 */
521 	if (epi) {
522 		if ((is_file_epoll(epi->ffd.file))) {
523 			ep_src = epi->ffd.file->private_data;
524 			nests = ep_src->nests;
525 		} else {
526 			nests = 1;
527 		}
528 	}
529 	spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
530 	ep->nests = nests + 1;
531 	wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags);
532 	ep->nests = 0;
533 	spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
534 }
535 
536 #else
537 
538 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
539 			     __poll_t pollflags)
540 {
541 	wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags);
542 }
543 
544 #endif
545 
546 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
547 {
548 	wait_queue_head_t *whead;
549 
550 	rcu_read_lock();
551 	/*
552 	 * If it is cleared by POLLFREE, it should be rcu-safe.
553 	 * If we read NULL we need a barrier paired with
554 	 * smp_store_release() in ep_poll_callback(), otherwise
555 	 * we rely on whead->lock.
556 	 */
557 	whead = smp_load_acquire(&pwq->whead);
558 	if (whead)
559 		remove_wait_queue(whead, &pwq->wait);
560 	rcu_read_unlock();
561 }
562 
563 /*
564  * This function unregisters poll callbacks from the associated file
565  * descriptor.  Must be called with "mtx" held.
566  */
567 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
568 {
569 	struct eppoll_entry **p = &epi->pwqlist;
570 	struct eppoll_entry *pwq;
571 
572 	while ((pwq = *p) != NULL) {
573 		*p = pwq->next;
574 		ep_remove_wait_queue(pwq);
575 		kmem_cache_free(pwq_cache, pwq);
576 	}
577 }
578 
579 /* call only when ep->mtx is held */
580 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
581 {
582 	return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
583 }
584 
585 /* call only when ep->mtx is held */
586 static inline void ep_pm_stay_awake(struct epitem *epi)
587 {
588 	struct wakeup_source *ws = ep_wakeup_source(epi);
589 
590 	if (ws)
591 		__pm_stay_awake(ws);
592 }
593 
594 static inline bool ep_has_wakeup_source(struct epitem *epi)
595 {
596 	return rcu_access_pointer(epi->ws) ? true : false;
597 }
598 
599 /* call when ep->mtx cannot be held (ep_poll_callback) */
600 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
601 {
602 	struct wakeup_source *ws;
603 
604 	rcu_read_lock();
605 	ws = rcu_dereference(epi->ws);
606 	if (ws)
607 		__pm_stay_awake(ws);
608 	rcu_read_unlock();
609 }
610 
611 
612 /*
613  * ep->mutex needs to be held because we could be hit by
614  * eventpoll_release_file() and epoll_ctl().
615  */
616 static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist)
617 {
618 	/*
619 	 * Steal the ready list, and re-init the original one to the
620 	 * empty list. Also, set ep->ovflist to NULL so that events
621 	 * happening while looping w/out locks, are not lost. We cannot
622 	 * have the poll callback to queue directly on ep->rdllist,
623 	 * because we want the "sproc" callback to be able to do it
624 	 * in a lockless way.
625 	 */
626 	lockdep_assert_irqs_enabled();
627 	write_lock_irq(&ep->lock);
628 	list_splice_init(&ep->rdllist, txlist);
629 	WRITE_ONCE(ep->ovflist, NULL);
630 	write_unlock_irq(&ep->lock);
631 }
632 
633 static void ep_done_scan(struct eventpoll *ep,
634 			 struct list_head *txlist)
635 {
636 	struct epitem *epi, *nepi;
637 
638 	write_lock_irq(&ep->lock);
639 	/*
640 	 * During the time we spent inside the "sproc" callback, some
641 	 * other events might have been queued by the poll callback.
642 	 * We re-insert them inside the main ready-list here.
643 	 */
644 	for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
645 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
646 		/*
647 		 * We need to check if the item is already in the list.
648 		 * During the "sproc" callback execution time, items are
649 		 * queued into ->ovflist but the "txlist" might already
650 		 * contain them, and the list_splice() below takes care of them.
651 		 */
652 		if (!ep_is_linked(epi)) {
653 			/*
654 			 * ->ovflist is LIFO, so we have to reverse it in order
655 			 * to keep in FIFO.
656 			 */
657 			list_add(&epi->rdllink, &ep->rdllist);
658 			ep_pm_stay_awake(epi);
659 		}
660 	}
661 	/*
662 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
663 	 * releasing the lock, events will be queued in the normal way inside
664 	 * ep->rdllist.
665 	 */
666 	WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
667 
668 	/*
669 	 * Quickly re-inject items left on "txlist".
670 	 */
671 	list_splice(txlist, &ep->rdllist);
672 	__pm_relax(ep->ws);
673 
674 	if (!list_empty(&ep->rdllist)) {
675 		if (waitqueue_active(&ep->wq))
676 			wake_up(&ep->wq);
677 	}
678 
679 	write_unlock_irq(&ep->lock);
680 }
681 
682 static void epi_rcu_free(struct rcu_head *head)
683 {
684 	struct epitem *epi = container_of(head, struct epitem, rcu);
685 	kmem_cache_free(epi_cache, epi);
686 }
687 
688 static void ep_get(struct eventpoll *ep)
689 {
690 	refcount_inc(&ep->refcount);
691 }
692 
693 /*
694  * Returns true if the event poll can be disposed
695  */
696 static bool ep_refcount_dec_and_test(struct eventpoll *ep)
697 {
698 	if (!refcount_dec_and_test(&ep->refcount))
699 		return false;
700 
701 	WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.rb_root));
702 	return true;
703 }
704 
705 static void ep_free(struct eventpoll *ep)
706 {
707 	mutex_destroy(&ep->mtx);
708 	free_uid(ep->user);
709 	wakeup_source_unregister(ep->ws);
710 	kfree(ep);
711 }
712 
713 /*
714  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
715  * all the associated resources. Must be called with "mtx" held.
716  * If the dying flag is set, do the removal only if force is true.
717  * This prevents ep_clear_and_put() from dropping all the ep references
718  * while running concurrently with eventpoll_release_file().
719  * Returns true if the eventpoll can be disposed.
720  */
721 static bool __ep_remove(struct eventpoll *ep, struct epitem *epi, bool force)
722 {
723 	struct file *file = epi->ffd.file;
724 	struct epitems_head *to_free;
725 	struct hlist_head *head;
726 
727 	lockdep_assert_irqs_enabled();
728 
729 	/*
730 	 * Removes poll wait queue hooks.
731 	 */
732 	ep_unregister_pollwait(ep, epi);
733 
734 	/* Remove the current item from the list of epoll hooks */
735 	spin_lock(&file->f_lock);
736 	if (epi->dying && !force) {
737 		spin_unlock(&file->f_lock);
738 		return false;
739 	}
740 
741 	to_free = NULL;
742 	head = file->f_ep;
743 	if (head->first == &epi->fllink && !epi->fllink.next) {
744 		file->f_ep = NULL;
745 		if (!is_file_epoll(file)) {
746 			struct epitems_head *v;
747 			v = container_of(head, struct epitems_head, epitems);
748 			if (!smp_load_acquire(&v->next))
749 				to_free = v;
750 		}
751 	}
752 	hlist_del_rcu(&epi->fllink);
753 	spin_unlock(&file->f_lock);
754 	free_ephead(to_free);
755 
756 	rb_erase_cached(&epi->rbn, &ep->rbr);
757 
758 	write_lock_irq(&ep->lock);
759 	if (ep_is_linked(epi))
760 		list_del_init(&epi->rdllink);
761 	write_unlock_irq(&ep->lock);
762 
763 	wakeup_source_unregister(ep_wakeup_source(epi));
764 	/*
765 	 * At this point it is safe to free the eventpoll item. Use the union
766 	 * field epi->rcu, since we are trying to minimize the size of
767 	 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
768 	 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
769 	 * use of the rbn field.
770 	 */
771 	call_rcu(&epi->rcu, epi_rcu_free);
772 
773 	percpu_counter_dec(&ep->user->epoll_watches);
774 	return ep_refcount_dec_and_test(ep);
775 }
776 
777 /*
778  * ep_remove variant for callers owing an additional reference to the ep
779  */
780 static void ep_remove_safe(struct eventpoll *ep, struct epitem *epi)
781 {
782 	WARN_ON_ONCE(__ep_remove(ep, epi, false));
783 }
784 
785 static void ep_clear_and_put(struct eventpoll *ep)
786 {
787 	struct rb_node *rbp, *next;
788 	struct epitem *epi;
789 	bool dispose;
790 
791 	/* We need to release all tasks waiting for these file */
792 	if (waitqueue_active(&ep->poll_wait))
793 		ep_poll_safewake(ep, NULL, 0);
794 
795 	mutex_lock(&ep->mtx);
796 
797 	/*
798 	 * Walks through the whole tree by unregistering poll callbacks.
799 	 */
800 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
801 		epi = rb_entry(rbp, struct epitem, rbn);
802 
803 		ep_unregister_pollwait(ep, epi);
804 		cond_resched();
805 	}
806 
807 	/*
808 	 * Walks through the whole tree and try to free each "struct epitem".
809 	 * Note that ep_remove_safe() will not remove the epitem in case of a
810 	 * racing eventpoll_release_file(); the latter will do the removal.
811 	 * At this point we are sure no poll callbacks will be lingering around.
812 	 * Since we still own a reference to the eventpoll struct, the loop can't
813 	 * dispose it.
814 	 */
815 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = next) {
816 		next = rb_next(rbp);
817 		epi = rb_entry(rbp, struct epitem, rbn);
818 		ep_remove_safe(ep, epi);
819 		cond_resched();
820 	}
821 
822 	dispose = ep_refcount_dec_and_test(ep);
823 	mutex_unlock(&ep->mtx);
824 
825 	if (dispose)
826 		ep_free(ep);
827 }
828 
829 static int ep_eventpoll_release(struct inode *inode, struct file *file)
830 {
831 	struct eventpoll *ep = file->private_data;
832 
833 	if (ep)
834 		ep_clear_and_put(ep);
835 
836 	return 0;
837 }
838 
839 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth);
840 
841 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth)
842 {
843 	struct eventpoll *ep = file->private_data;
844 	LIST_HEAD(txlist);
845 	struct epitem *epi, *tmp;
846 	poll_table pt;
847 	__poll_t res = 0;
848 
849 	init_poll_funcptr(&pt, NULL);
850 
851 	/* Insert inside our poll wait queue */
852 	poll_wait(file, &ep->poll_wait, wait);
853 
854 	/*
855 	 * Proceed to find out if wanted events are really available inside
856 	 * the ready list.
857 	 */
858 	mutex_lock_nested(&ep->mtx, depth);
859 	ep_start_scan(ep, &txlist);
860 	list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
861 		if (ep_item_poll(epi, &pt, depth + 1)) {
862 			res = EPOLLIN | EPOLLRDNORM;
863 			break;
864 		} else {
865 			/*
866 			 * Item has been dropped into the ready list by the poll
867 			 * callback, but it's not actually ready, as far as
868 			 * caller requested events goes. We can remove it here.
869 			 */
870 			__pm_relax(ep_wakeup_source(epi));
871 			list_del_init(&epi->rdllink);
872 		}
873 	}
874 	ep_done_scan(ep, &txlist);
875 	mutex_unlock(&ep->mtx);
876 	return res;
877 }
878 
879 /*
880  * Differs from ep_eventpoll_poll() in that internal callers already have
881  * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
882  * is correctly annotated.
883  */
884 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
885 				 int depth)
886 {
887 	struct file *file = epi->ffd.file;
888 	__poll_t res;
889 
890 	pt->_key = epi->event.events;
891 	if (!is_file_epoll(file))
892 		res = vfs_poll(file, pt);
893 	else
894 		res = __ep_eventpoll_poll(file, pt, depth);
895 	return res & epi->event.events;
896 }
897 
898 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
899 {
900 	return __ep_eventpoll_poll(file, wait, 0);
901 }
902 
903 #ifdef CONFIG_PROC_FS
904 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
905 {
906 	struct eventpoll *ep = f->private_data;
907 	struct rb_node *rbp;
908 
909 	mutex_lock(&ep->mtx);
910 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
911 		struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
912 		struct inode *inode = file_inode(epi->ffd.file);
913 
914 		seq_printf(m, "tfd: %8d events: %8x data: %16llx "
915 			   " pos:%lli ino:%lx sdev:%x\n",
916 			   epi->ffd.fd, epi->event.events,
917 			   (long long)epi->event.data,
918 			   (long long)epi->ffd.file->f_pos,
919 			   inode->i_ino, inode->i_sb->s_dev);
920 		if (seq_has_overflowed(m))
921 			break;
922 	}
923 	mutex_unlock(&ep->mtx);
924 }
925 #endif
926 
927 /* File callbacks that implement the eventpoll file behaviour */
928 static const struct file_operations eventpoll_fops = {
929 #ifdef CONFIG_PROC_FS
930 	.show_fdinfo	= ep_show_fdinfo,
931 #endif
932 	.release	= ep_eventpoll_release,
933 	.poll		= ep_eventpoll_poll,
934 	.llseek		= noop_llseek,
935 };
936 
937 /*
938  * This is called from eventpoll_release() to unlink files from the eventpoll
939  * interface. We need to have this facility to cleanup correctly files that are
940  * closed without being removed from the eventpoll interface.
941  */
942 void eventpoll_release_file(struct file *file)
943 {
944 	struct eventpoll *ep;
945 	struct epitem *epi;
946 	bool dispose;
947 
948 	/*
949 	 * Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from
950 	 * touching the epitems list before eventpoll_release_file() can access
951 	 * the ep->mtx.
952 	 */
953 again:
954 	spin_lock(&file->f_lock);
955 	if (file->f_ep && file->f_ep->first) {
956 		epi = hlist_entry(file->f_ep->first, struct epitem, fllink);
957 		epi->dying = true;
958 		spin_unlock(&file->f_lock);
959 
960 		/*
961 		 * ep access is safe as we still own a reference to the ep
962 		 * struct
963 		 */
964 		ep = epi->ep;
965 		mutex_lock(&ep->mtx);
966 		dispose = __ep_remove(ep, epi, true);
967 		mutex_unlock(&ep->mtx);
968 
969 		if (dispose)
970 			ep_free(ep);
971 		goto again;
972 	}
973 	spin_unlock(&file->f_lock);
974 }
975 
976 static int ep_alloc(struct eventpoll **pep)
977 {
978 	struct eventpoll *ep;
979 
980 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
981 	if (unlikely(!ep))
982 		return -ENOMEM;
983 
984 	mutex_init(&ep->mtx);
985 	rwlock_init(&ep->lock);
986 	init_waitqueue_head(&ep->wq);
987 	init_waitqueue_head(&ep->poll_wait);
988 	INIT_LIST_HEAD(&ep->rdllist);
989 	ep->rbr = RB_ROOT_CACHED;
990 	ep->ovflist = EP_UNACTIVE_PTR;
991 	ep->user = get_current_user();
992 	refcount_set(&ep->refcount, 1);
993 
994 	*pep = ep;
995 
996 	return 0;
997 }
998 
999 /*
1000  * Search the file inside the eventpoll tree. The RB tree operations
1001  * are protected by the "mtx" mutex, and ep_find() must be called with
1002  * "mtx" held.
1003  */
1004 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1005 {
1006 	int kcmp;
1007 	struct rb_node *rbp;
1008 	struct epitem *epi, *epir = NULL;
1009 	struct epoll_filefd ffd;
1010 
1011 	ep_set_ffd(&ffd, file, fd);
1012 	for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1013 		epi = rb_entry(rbp, struct epitem, rbn);
1014 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1015 		if (kcmp > 0)
1016 			rbp = rbp->rb_right;
1017 		else if (kcmp < 0)
1018 			rbp = rbp->rb_left;
1019 		else {
1020 			epir = epi;
1021 			break;
1022 		}
1023 	}
1024 
1025 	return epir;
1026 }
1027 
1028 #ifdef CONFIG_KCMP
1029 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1030 {
1031 	struct rb_node *rbp;
1032 	struct epitem *epi;
1033 
1034 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1035 		epi = rb_entry(rbp, struct epitem, rbn);
1036 		if (epi->ffd.fd == tfd) {
1037 			if (toff == 0)
1038 				return epi;
1039 			else
1040 				toff--;
1041 		}
1042 		cond_resched();
1043 	}
1044 
1045 	return NULL;
1046 }
1047 
1048 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1049 				     unsigned long toff)
1050 {
1051 	struct file *file_raw;
1052 	struct eventpoll *ep;
1053 	struct epitem *epi;
1054 
1055 	if (!is_file_epoll(file))
1056 		return ERR_PTR(-EINVAL);
1057 
1058 	ep = file->private_data;
1059 
1060 	mutex_lock(&ep->mtx);
1061 	epi = ep_find_tfd(ep, tfd, toff);
1062 	if (epi)
1063 		file_raw = epi->ffd.file;
1064 	else
1065 		file_raw = ERR_PTR(-ENOENT);
1066 	mutex_unlock(&ep->mtx);
1067 
1068 	return file_raw;
1069 }
1070 #endif /* CONFIG_KCMP */
1071 
1072 /*
1073  * Adds a new entry to the tail of the list in a lockless way, i.e.
1074  * multiple CPUs are allowed to call this function concurrently.
1075  *
1076  * Beware: it is necessary to prevent any other modifications of the
1077  *         existing list until all changes are completed, in other words
1078  *         concurrent list_add_tail_lockless() calls should be protected
1079  *         with a read lock, where write lock acts as a barrier which
1080  *         makes sure all list_add_tail_lockless() calls are fully
1081  *         completed.
1082  *
1083  *        Also an element can be locklessly added to the list only in one
1084  *        direction i.e. either to the tail or to the head, otherwise
1085  *        concurrent access will corrupt the list.
1086  *
1087  * Return: %false if element has been already added to the list, %true
1088  * otherwise.
1089  */
1090 static inline bool list_add_tail_lockless(struct list_head *new,
1091 					  struct list_head *head)
1092 {
1093 	struct list_head *prev;
1094 
1095 	/*
1096 	 * This is simple 'new->next = head' operation, but cmpxchg()
1097 	 * is used in order to detect that same element has been just
1098 	 * added to the list from another CPU: the winner observes
1099 	 * new->next == new.
1100 	 */
1101 	if (!try_cmpxchg(&new->next, &new, head))
1102 		return false;
1103 
1104 	/*
1105 	 * Initially ->next of a new element must be updated with the head
1106 	 * (we are inserting to the tail) and only then pointers are atomically
1107 	 * exchanged.  XCHG guarantees memory ordering, thus ->next should be
1108 	 * updated before pointers are actually swapped and pointers are
1109 	 * swapped before prev->next is updated.
1110 	 */
1111 
1112 	prev = xchg(&head->prev, new);
1113 
1114 	/*
1115 	 * It is safe to modify prev->next and new->prev, because a new element
1116 	 * is added only to the tail and new->next is updated before XCHG.
1117 	 */
1118 
1119 	prev->next = new;
1120 	new->prev = prev;
1121 
1122 	return true;
1123 }
1124 
1125 /*
1126  * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1127  * i.e. multiple CPUs are allowed to call this function concurrently.
1128  *
1129  * Return: %false if epi element has been already chained, %true otherwise.
1130  */
1131 static inline bool chain_epi_lockless(struct epitem *epi)
1132 {
1133 	struct eventpoll *ep = epi->ep;
1134 
1135 	/* Fast preliminary check */
1136 	if (epi->next != EP_UNACTIVE_PTR)
1137 		return false;
1138 
1139 	/* Check that the same epi has not been just chained from another CPU */
1140 	if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1141 		return false;
1142 
1143 	/* Atomically exchange tail */
1144 	epi->next = xchg(&ep->ovflist, epi);
1145 
1146 	return true;
1147 }
1148 
1149 /*
1150  * This is the callback that is passed to the wait queue wakeup
1151  * mechanism. It is called by the stored file descriptors when they
1152  * have events to report.
1153  *
1154  * This callback takes a read lock in order not to contend with concurrent
1155  * events from another file descriptor, thus all modifications to ->rdllist
1156  * or ->ovflist are lockless.  Read lock is paired with the write lock from
1157  * ep_scan_ready_list(), which stops all list modifications and guarantees
1158  * that lists state is seen correctly.
1159  *
1160  * Another thing worth to mention is that ep_poll_callback() can be called
1161  * concurrently for the same @epi from different CPUs if poll table was inited
1162  * with several wait queues entries.  Plural wakeup from different CPUs of a
1163  * single wait queue is serialized by wq.lock, but the case when multiple wait
1164  * queues are used should be detected accordingly.  This is detected using
1165  * cmpxchg() operation.
1166  */
1167 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1168 {
1169 	int pwake = 0;
1170 	struct epitem *epi = ep_item_from_wait(wait);
1171 	struct eventpoll *ep = epi->ep;
1172 	__poll_t pollflags = key_to_poll(key);
1173 	unsigned long flags;
1174 	int ewake = 0;
1175 
1176 	read_lock_irqsave(&ep->lock, flags);
1177 
1178 	ep_set_busy_poll_napi_id(epi);
1179 
1180 	/*
1181 	 * If the event mask does not contain any poll(2) event, we consider the
1182 	 * descriptor to be disabled. This condition is likely the effect of the
1183 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1184 	 * until the next EPOLL_CTL_MOD will be issued.
1185 	 */
1186 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
1187 		goto out_unlock;
1188 
1189 	/*
1190 	 * Check the events coming with the callback. At this stage, not
1191 	 * every device reports the events in the "key" parameter of the
1192 	 * callback. We need to be able to handle both cases here, hence the
1193 	 * test for "key" != NULL before the event match test.
1194 	 */
1195 	if (pollflags && !(pollflags & epi->event.events))
1196 		goto out_unlock;
1197 
1198 	/*
1199 	 * If we are transferring events to userspace, we can hold no locks
1200 	 * (because we're accessing user memory, and because of linux f_op->poll()
1201 	 * semantics). All the events that happen during that period of time are
1202 	 * chained in ep->ovflist and requeued later on.
1203 	 */
1204 	if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1205 		if (chain_epi_lockless(epi))
1206 			ep_pm_stay_awake_rcu(epi);
1207 	} else if (!ep_is_linked(epi)) {
1208 		/* In the usual case, add event to ready list. */
1209 		if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1210 			ep_pm_stay_awake_rcu(epi);
1211 	}
1212 
1213 	/*
1214 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1215 	 * wait list.
1216 	 */
1217 	if (waitqueue_active(&ep->wq)) {
1218 		if ((epi->event.events & EPOLLEXCLUSIVE) &&
1219 					!(pollflags & POLLFREE)) {
1220 			switch (pollflags & EPOLLINOUT_BITS) {
1221 			case EPOLLIN:
1222 				if (epi->event.events & EPOLLIN)
1223 					ewake = 1;
1224 				break;
1225 			case EPOLLOUT:
1226 				if (epi->event.events & EPOLLOUT)
1227 					ewake = 1;
1228 				break;
1229 			case 0:
1230 				ewake = 1;
1231 				break;
1232 			}
1233 		}
1234 		wake_up(&ep->wq);
1235 	}
1236 	if (waitqueue_active(&ep->poll_wait))
1237 		pwake++;
1238 
1239 out_unlock:
1240 	read_unlock_irqrestore(&ep->lock, flags);
1241 
1242 	/* We have to call this outside the lock */
1243 	if (pwake)
1244 		ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE);
1245 
1246 	if (!(epi->event.events & EPOLLEXCLUSIVE))
1247 		ewake = 1;
1248 
1249 	if (pollflags & POLLFREE) {
1250 		/*
1251 		 * If we race with ep_remove_wait_queue() it can miss
1252 		 * ->whead = NULL and do another remove_wait_queue() after
1253 		 * us, so we can't use __remove_wait_queue().
1254 		 */
1255 		list_del_init(&wait->entry);
1256 		/*
1257 		 * ->whead != NULL protects us from the race with
1258 		 * ep_clear_and_put() or ep_remove(), ep_remove_wait_queue()
1259 		 * takes whead->lock held by the caller. Once we nullify it,
1260 		 * nothing protects ep/epi or even wait.
1261 		 */
1262 		smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1263 	}
1264 
1265 	return ewake;
1266 }
1267 
1268 /*
1269  * This is the callback that is used to add our wait queue to the
1270  * target file wakeup lists.
1271  */
1272 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1273 				 poll_table *pt)
1274 {
1275 	struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1276 	struct epitem *epi = epq->epi;
1277 	struct eppoll_entry *pwq;
1278 
1279 	if (unlikely(!epi))	// an earlier allocation has failed
1280 		return;
1281 
1282 	pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1283 	if (unlikely(!pwq)) {
1284 		epq->epi = NULL;
1285 		return;
1286 	}
1287 
1288 	init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1289 	pwq->whead = whead;
1290 	pwq->base = epi;
1291 	if (epi->event.events & EPOLLEXCLUSIVE)
1292 		add_wait_queue_exclusive(whead, &pwq->wait);
1293 	else
1294 		add_wait_queue(whead, &pwq->wait);
1295 	pwq->next = epi->pwqlist;
1296 	epi->pwqlist = pwq;
1297 }
1298 
1299 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1300 {
1301 	int kcmp;
1302 	struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1303 	struct epitem *epic;
1304 	bool leftmost = true;
1305 
1306 	while (*p) {
1307 		parent = *p;
1308 		epic = rb_entry(parent, struct epitem, rbn);
1309 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1310 		if (kcmp > 0) {
1311 			p = &parent->rb_right;
1312 			leftmost = false;
1313 		} else
1314 			p = &parent->rb_left;
1315 	}
1316 	rb_link_node(&epi->rbn, parent, p);
1317 	rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1318 }
1319 
1320 
1321 
1322 #define PATH_ARR_SIZE 5
1323 /*
1324  * These are the number paths of length 1 to 5, that we are allowing to emanate
1325  * from a single file of interest. For example, we allow 1000 paths of length
1326  * 1, to emanate from each file of interest. This essentially represents the
1327  * potential wakeup paths, which need to be limited in order to avoid massive
1328  * uncontrolled wakeup storms. The common use case should be a single ep which
1329  * is connected to n file sources. In this case each file source has 1 path
1330  * of length 1. Thus, the numbers below should be more than sufficient. These
1331  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1332  * and delete can't add additional paths. Protected by the epnested_mutex.
1333  */
1334 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1335 static int path_count[PATH_ARR_SIZE];
1336 
1337 static int path_count_inc(int nests)
1338 {
1339 	/* Allow an arbitrary number of depth 1 paths */
1340 	if (nests == 0)
1341 		return 0;
1342 
1343 	if (++path_count[nests] > path_limits[nests])
1344 		return -1;
1345 	return 0;
1346 }
1347 
1348 static void path_count_init(void)
1349 {
1350 	int i;
1351 
1352 	for (i = 0; i < PATH_ARR_SIZE; i++)
1353 		path_count[i] = 0;
1354 }
1355 
1356 static int reverse_path_check_proc(struct hlist_head *refs, int depth)
1357 {
1358 	int error = 0;
1359 	struct epitem *epi;
1360 
1361 	if (depth > EP_MAX_NESTS) /* too deep nesting */
1362 		return -1;
1363 
1364 	/* CTL_DEL can remove links here, but that can't increase our count */
1365 	hlist_for_each_entry_rcu(epi, refs, fllink) {
1366 		struct hlist_head *refs = &epi->ep->refs;
1367 		if (hlist_empty(refs))
1368 			error = path_count_inc(depth);
1369 		else
1370 			error = reverse_path_check_proc(refs, depth + 1);
1371 		if (error != 0)
1372 			break;
1373 	}
1374 	return error;
1375 }
1376 
1377 /**
1378  * reverse_path_check - The tfile_check_list is list of epitem_head, which have
1379  *                      links that are proposed to be newly added. We need to
1380  *                      make sure that those added links don't add too many
1381  *                      paths such that we will spend all our time waking up
1382  *                      eventpoll objects.
1383  *
1384  * Return: %zero if the proposed links don't create too many paths,
1385  *	    %-1 otherwise.
1386  */
1387 static int reverse_path_check(void)
1388 {
1389 	struct epitems_head *p;
1390 
1391 	for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) {
1392 		int error;
1393 		path_count_init();
1394 		rcu_read_lock();
1395 		error = reverse_path_check_proc(&p->epitems, 0);
1396 		rcu_read_unlock();
1397 		if (error)
1398 			return error;
1399 	}
1400 	return 0;
1401 }
1402 
1403 static int ep_create_wakeup_source(struct epitem *epi)
1404 {
1405 	struct name_snapshot n;
1406 	struct wakeup_source *ws;
1407 
1408 	if (!epi->ep->ws) {
1409 		epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1410 		if (!epi->ep->ws)
1411 			return -ENOMEM;
1412 	}
1413 
1414 	take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1415 	ws = wakeup_source_register(NULL, n.name.name);
1416 	release_dentry_name_snapshot(&n);
1417 
1418 	if (!ws)
1419 		return -ENOMEM;
1420 	rcu_assign_pointer(epi->ws, ws);
1421 
1422 	return 0;
1423 }
1424 
1425 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1426 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1427 {
1428 	struct wakeup_source *ws = ep_wakeup_source(epi);
1429 
1430 	RCU_INIT_POINTER(epi->ws, NULL);
1431 
1432 	/*
1433 	 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1434 	 * used internally by wakeup_source_remove, too (called by
1435 	 * wakeup_source_unregister), so we cannot use call_rcu
1436 	 */
1437 	synchronize_rcu();
1438 	wakeup_source_unregister(ws);
1439 }
1440 
1441 static int attach_epitem(struct file *file, struct epitem *epi)
1442 {
1443 	struct epitems_head *to_free = NULL;
1444 	struct hlist_head *head = NULL;
1445 	struct eventpoll *ep = NULL;
1446 
1447 	if (is_file_epoll(file))
1448 		ep = file->private_data;
1449 
1450 	if (ep) {
1451 		head = &ep->refs;
1452 	} else if (!READ_ONCE(file->f_ep)) {
1453 allocate:
1454 		to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL);
1455 		if (!to_free)
1456 			return -ENOMEM;
1457 		head = &to_free->epitems;
1458 	}
1459 	spin_lock(&file->f_lock);
1460 	if (!file->f_ep) {
1461 		if (unlikely(!head)) {
1462 			spin_unlock(&file->f_lock);
1463 			goto allocate;
1464 		}
1465 		file->f_ep = head;
1466 		to_free = NULL;
1467 	}
1468 	hlist_add_head_rcu(&epi->fllink, file->f_ep);
1469 	spin_unlock(&file->f_lock);
1470 	free_ephead(to_free);
1471 	return 0;
1472 }
1473 
1474 /*
1475  * Must be called with "mtx" held.
1476  */
1477 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1478 		     struct file *tfile, int fd, int full_check)
1479 {
1480 	int error, pwake = 0;
1481 	__poll_t revents;
1482 	struct epitem *epi;
1483 	struct ep_pqueue epq;
1484 	struct eventpoll *tep = NULL;
1485 
1486 	if (is_file_epoll(tfile))
1487 		tep = tfile->private_data;
1488 
1489 	lockdep_assert_irqs_enabled();
1490 
1491 	if (unlikely(percpu_counter_compare(&ep->user->epoll_watches,
1492 					    max_user_watches) >= 0))
1493 		return -ENOSPC;
1494 	percpu_counter_inc(&ep->user->epoll_watches);
1495 
1496 	if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) {
1497 		percpu_counter_dec(&ep->user->epoll_watches);
1498 		return -ENOMEM;
1499 	}
1500 
1501 	/* Item initialization follow here ... */
1502 	INIT_LIST_HEAD(&epi->rdllink);
1503 	epi->ep = ep;
1504 	ep_set_ffd(&epi->ffd, tfile, fd);
1505 	epi->event = *event;
1506 	epi->next = EP_UNACTIVE_PTR;
1507 
1508 	if (tep)
1509 		mutex_lock_nested(&tep->mtx, 1);
1510 	/* Add the current item to the list of active epoll hook for this file */
1511 	if (unlikely(attach_epitem(tfile, epi) < 0)) {
1512 		if (tep)
1513 			mutex_unlock(&tep->mtx);
1514 		kmem_cache_free(epi_cache, epi);
1515 		percpu_counter_dec(&ep->user->epoll_watches);
1516 		return -ENOMEM;
1517 	}
1518 
1519 	if (full_check && !tep)
1520 		list_file(tfile);
1521 
1522 	/*
1523 	 * Add the current item to the RB tree. All RB tree operations are
1524 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1525 	 */
1526 	ep_rbtree_insert(ep, epi);
1527 	if (tep)
1528 		mutex_unlock(&tep->mtx);
1529 
1530 	/*
1531 	 * ep_remove_safe() calls in the later error paths can't lead to
1532 	 * ep_free() as the ep file itself still holds an ep reference.
1533 	 */
1534 	ep_get(ep);
1535 
1536 	/* now check if we've created too many backpaths */
1537 	if (unlikely(full_check && reverse_path_check())) {
1538 		ep_remove_safe(ep, epi);
1539 		return -EINVAL;
1540 	}
1541 
1542 	if (epi->event.events & EPOLLWAKEUP) {
1543 		error = ep_create_wakeup_source(epi);
1544 		if (error) {
1545 			ep_remove_safe(ep, epi);
1546 			return error;
1547 		}
1548 	}
1549 
1550 	/* Initialize the poll table using the queue callback */
1551 	epq.epi = epi;
1552 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1553 
1554 	/*
1555 	 * Attach the item to the poll hooks and get current event bits.
1556 	 * We can safely use the file* here because its usage count has
1557 	 * been increased by the caller of this function. Note that after
1558 	 * this operation completes, the poll callback can start hitting
1559 	 * the new item.
1560 	 */
1561 	revents = ep_item_poll(epi, &epq.pt, 1);
1562 
1563 	/*
1564 	 * We have to check if something went wrong during the poll wait queue
1565 	 * install process. Namely an allocation for a wait queue failed due
1566 	 * high memory pressure.
1567 	 */
1568 	if (unlikely(!epq.epi)) {
1569 		ep_remove_safe(ep, epi);
1570 		return -ENOMEM;
1571 	}
1572 
1573 	/* We have to drop the new item inside our item list to keep track of it */
1574 	write_lock_irq(&ep->lock);
1575 
1576 	/* record NAPI ID of new item if present */
1577 	ep_set_busy_poll_napi_id(epi);
1578 
1579 	/* If the file is already "ready" we drop it inside the ready list */
1580 	if (revents && !ep_is_linked(epi)) {
1581 		list_add_tail(&epi->rdllink, &ep->rdllist);
1582 		ep_pm_stay_awake(epi);
1583 
1584 		/* Notify waiting tasks that events are available */
1585 		if (waitqueue_active(&ep->wq))
1586 			wake_up(&ep->wq);
1587 		if (waitqueue_active(&ep->poll_wait))
1588 			pwake++;
1589 	}
1590 
1591 	write_unlock_irq(&ep->lock);
1592 
1593 	/* We have to call this outside the lock */
1594 	if (pwake)
1595 		ep_poll_safewake(ep, NULL, 0);
1596 
1597 	return 0;
1598 }
1599 
1600 /*
1601  * Modify the interest event mask by dropping an event if the new mask
1602  * has a match in the current file status. Must be called with "mtx" held.
1603  */
1604 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1605 		     const struct epoll_event *event)
1606 {
1607 	int pwake = 0;
1608 	poll_table pt;
1609 
1610 	lockdep_assert_irqs_enabled();
1611 
1612 	init_poll_funcptr(&pt, NULL);
1613 
1614 	/*
1615 	 * Set the new event interest mask before calling f_op->poll();
1616 	 * otherwise we might miss an event that happens between the
1617 	 * f_op->poll() call and the new event set registering.
1618 	 */
1619 	epi->event.events = event->events; /* need barrier below */
1620 	epi->event.data = event->data; /* protected by mtx */
1621 	if (epi->event.events & EPOLLWAKEUP) {
1622 		if (!ep_has_wakeup_source(epi))
1623 			ep_create_wakeup_source(epi);
1624 	} else if (ep_has_wakeup_source(epi)) {
1625 		ep_destroy_wakeup_source(epi);
1626 	}
1627 
1628 	/*
1629 	 * The following barrier has two effects:
1630 	 *
1631 	 * 1) Flush epi changes above to other CPUs.  This ensures
1632 	 *    we do not miss events from ep_poll_callback if an
1633 	 *    event occurs immediately after we call f_op->poll().
1634 	 *    We need this because we did not take ep->lock while
1635 	 *    changing epi above (but ep_poll_callback does take
1636 	 *    ep->lock).
1637 	 *
1638 	 * 2) We also need to ensure we do not miss _past_ events
1639 	 *    when calling f_op->poll().  This barrier also
1640 	 *    pairs with the barrier in wq_has_sleeper (see
1641 	 *    comments for wq_has_sleeper).
1642 	 *
1643 	 * This barrier will now guarantee ep_poll_callback or f_op->poll
1644 	 * (or both) will notice the readiness of an item.
1645 	 */
1646 	smp_mb();
1647 
1648 	/*
1649 	 * Get current event bits. We can safely use the file* here because
1650 	 * its usage count has been increased by the caller of this function.
1651 	 * If the item is "hot" and it is not registered inside the ready
1652 	 * list, push it inside.
1653 	 */
1654 	if (ep_item_poll(epi, &pt, 1)) {
1655 		write_lock_irq(&ep->lock);
1656 		if (!ep_is_linked(epi)) {
1657 			list_add_tail(&epi->rdllink, &ep->rdllist);
1658 			ep_pm_stay_awake(epi);
1659 
1660 			/* Notify waiting tasks that events are available */
1661 			if (waitqueue_active(&ep->wq))
1662 				wake_up(&ep->wq);
1663 			if (waitqueue_active(&ep->poll_wait))
1664 				pwake++;
1665 		}
1666 		write_unlock_irq(&ep->lock);
1667 	}
1668 
1669 	/* We have to call this outside the lock */
1670 	if (pwake)
1671 		ep_poll_safewake(ep, NULL, 0);
1672 
1673 	return 0;
1674 }
1675 
1676 static int ep_send_events(struct eventpoll *ep,
1677 			  struct epoll_event __user *events, int maxevents)
1678 {
1679 	struct epitem *epi, *tmp;
1680 	LIST_HEAD(txlist);
1681 	poll_table pt;
1682 	int res = 0;
1683 
1684 	/*
1685 	 * Always short-circuit for fatal signals to allow threads to make a
1686 	 * timely exit without the chance of finding more events available and
1687 	 * fetching repeatedly.
1688 	 */
1689 	if (fatal_signal_pending(current))
1690 		return -EINTR;
1691 
1692 	init_poll_funcptr(&pt, NULL);
1693 
1694 	mutex_lock(&ep->mtx);
1695 	ep_start_scan(ep, &txlist);
1696 
1697 	/*
1698 	 * We can loop without lock because we are passed a task private list.
1699 	 * Items cannot vanish during the loop we are holding ep->mtx.
1700 	 */
1701 	list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
1702 		struct wakeup_source *ws;
1703 		__poll_t revents;
1704 
1705 		if (res >= maxevents)
1706 			break;
1707 
1708 		/*
1709 		 * Activate ep->ws before deactivating epi->ws to prevent
1710 		 * triggering auto-suspend here (in case we reactive epi->ws
1711 		 * below).
1712 		 *
1713 		 * This could be rearranged to delay the deactivation of epi->ws
1714 		 * instead, but then epi->ws would temporarily be out of sync
1715 		 * with ep_is_linked().
1716 		 */
1717 		ws = ep_wakeup_source(epi);
1718 		if (ws) {
1719 			if (ws->active)
1720 				__pm_stay_awake(ep->ws);
1721 			__pm_relax(ws);
1722 		}
1723 
1724 		list_del_init(&epi->rdllink);
1725 
1726 		/*
1727 		 * If the event mask intersect the caller-requested one,
1728 		 * deliver the event to userspace. Again, we are holding ep->mtx,
1729 		 * so no operations coming from userspace can change the item.
1730 		 */
1731 		revents = ep_item_poll(epi, &pt, 1);
1732 		if (!revents)
1733 			continue;
1734 
1735 		events = epoll_put_uevent(revents, epi->event.data, events);
1736 		if (!events) {
1737 			list_add(&epi->rdllink, &txlist);
1738 			ep_pm_stay_awake(epi);
1739 			if (!res)
1740 				res = -EFAULT;
1741 			break;
1742 		}
1743 		res++;
1744 		if (epi->event.events & EPOLLONESHOT)
1745 			epi->event.events &= EP_PRIVATE_BITS;
1746 		else if (!(epi->event.events & EPOLLET)) {
1747 			/*
1748 			 * If this file has been added with Level
1749 			 * Trigger mode, we need to insert back inside
1750 			 * the ready list, so that the next call to
1751 			 * epoll_wait() will check again the events
1752 			 * availability. At this point, no one can insert
1753 			 * into ep->rdllist besides us. The epoll_ctl()
1754 			 * callers are locked out by
1755 			 * ep_scan_ready_list() holding "mtx" and the
1756 			 * poll callback will queue them in ep->ovflist.
1757 			 */
1758 			list_add_tail(&epi->rdllink, &ep->rdllist);
1759 			ep_pm_stay_awake(epi);
1760 		}
1761 	}
1762 	ep_done_scan(ep, &txlist);
1763 	mutex_unlock(&ep->mtx);
1764 
1765 	return res;
1766 }
1767 
1768 static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms)
1769 {
1770 	struct timespec64 now;
1771 
1772 	if (ms < 0)
1773 		return NULL;
1774 
1775 	if (!ms) {
1776 		to->tv_sec = 0;
1777 		to->tv_nsec = 0;
1778 		return to;
1779 	}
1780 
1781 	to->tv_sec = ms / MSEC_PER_SEC;
1782 	to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC);
1783 
1784 	ktime_get_ts64(&now);
1785 	*to = timespec64_add_safe(now, *to);
1786 	return to;
1787 }
1788 
1789 /*
1790  * autoremove_wake_function, but remove even on failure to wake up, because we
1791  * know that default_wake_function/ttwu will only fail if the thread is already
1792  * woken, and in that case the ep_poll loop will remove the entry anyways, not
1793  * try to reuse it.
1794  */
1795 static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry,
1796 				       unsigned int mode, int sync, void *key)
1797 {
1798 	int ret = default_wake_function(wq_entry, mode, sync, key);
1799 
1800 	/*
1801 	 * Pairs with list_empty_careful in ep_poll, and ensures future loop
1802 	 * iterations see the cause of this wakeup.
1803 	 */
1804 	list_del_init_careful(&wq_entry->entry);
1805 	return ret;
1806 }
1807 
1808 /**
1809  * ep_poll - Retrieves ready events, and delivers them to the caller-supplied
1810  *           event buffer.
1811  *
1812  * @ep: Pointer to the eventpoll context.
1813  * @events: Pointer to the userspace buffer where the ready events should be
1814  *          stored.
1815  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1816  * @timeout: Maximum timeout for the ready events fetch operation, in
1817  *           timespec. If the timeout is zero, the function will not block,
1818  *           while if the @timeout ptr is NULL, the function will block
1819  *           until at least one event has been retrieved (or an error
1820  *           occurred).
1821  *
1822  * Return: the number of ready events which have been fetched, or an
1823  *          error code, in case of error.
1824  */
1825 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1826 		   int maxevents, struct timespec64 *timeout)
1827 {
1828 	int res, eavail, timed_out = 0;
1829 	u64 slack = 0;
1830 	wait_queue_entry_t wait;
1831 	ktime_t expires, *to = NULL;
1832 
1833 	lockdep_assert_irqs_enabled();
1834 
1835 	if (timeout && (timeout->tv_sec | timeout->tv_nsec)) {
1836 		slack = select_estimate_accuracy(timeout);
1837 		to = &expires;
1838 		*to = timespec64_to_ktime(*timeout);
1839 	} else if (timeout) {
1840 		/*
1841 		 * Avoid the unnecessary trip to the wait queue loop, if the
1842 		 * caller specified a non blocking operation.
1843 		 */
1844 		timed_out = 1;
1845 	}
1846 
1847 	/*
1848 	 * This call is racy: We may or may not see events that are being added
1849 	 * to the ready list under the lock (e.g., in IRQ callbacks). For cases
1850 	 * with a non-zero timeout, this thread will check the ready list under
1851 	 * lock and will add to the wait queue.  For cases with a zero
1852 	 * timeout, the user by definition should not care and will have to
1853 	 * recheck again.
1854 	 */
1855 	eavail = ep_events_available(ep);
1856 
1857 	while (1) {
1858 		if (eavail) {
1859 			/*
1860 			 * Try to transfer events to user space. In case we get
1861 			 * 0 events and there's still timeout left over, we go
1862 			 * trying again in search of more luck.
1863 			 */
1864 			res = ep_send_events(ep, events, maxevents);
1865 			if (res)
1866 				return res;
1867 		}
1868 
1869 		if (timed_out)
1870 			return 0;
1871 
1872 		eavail = ep_busy_loop(ep, timed_out);
1873 		if (eavail)
1874 			continue;
1875 
1876 		if (signal_pending(current))
1877 			return -EINTR;
1878 
1879 		/*
1880 		 * Internally init_wait() uses autoremove_wake_function(),
1881 		 * thus wait entry is removed from the wait queue on each
1882 		 * wakeup. Why it is important? In case of several waiters
1883 		 * each new wakeup will hit the next waiter, giving it the
1884 		 * chance to harvest new event. Otherwise wakeup can be
1885 		 * lost. This is also good performance-wise, because on
1886 		 * normal wakeup path no need to call __remove_wait_queue()
1887 		 * explicitly, thus ep->lock is not taken, which halts the
1888 		 * event delivery.
1889 		 *
1890 		 * In fact, we now use an even more aggressive function that
1891 		 * unconditionally removes, because we don't reuse the wait
1892 		 * entry between loop iterations. This lets us also avoid the
1893 		 * performance issue if a process is killed, causing all of its
1894 		 * threads to wake up without being removed normally.
1895 		 */
1896 		init_wait(&wait);
1897 		wait.func = ep_autoremove_wake_function;
1898 
1899 		write_lock_irq(&ep->lock);
1900 		/*
1901 		 * Barrierless variant, waitqueue_active() is called under
1902 		 * the same lock on wakeup ep_poll_callback() side, so it
1903 		 * is safe to avoid an explicit barrier.
1904 		 */
1905 		__set_current_state(TASK_INTERRUPTIBLE);
1906 
1907 		/*
1908 		 * Do the final check under the lock. ep_scan_ready_list()
1909 		 * plays with two lists (->rdllist and ->ovflist) and there
1910 		 * is always a race when both lists are empty for short
1911 		 * period of time although events are pending, so lock is
1912 		 * important.
1913 		 */
1914 		eavail = ep_events_available(ep);
1915 		if (!eavail)
1916 			__add_wait_queue_exclusive(&ep->wq, &wait);
1917 
1918 		write_unlock_irq(&ep->lock);
1919 
1920 		if (!eavail)
1921 			timed_out = !schedule_hrtimeout_range(to, slack,
1922 							      HRTIMER_MODE_ABS);
1923 		__set_current_state(TASK_RUNNING);
1924 
1925 		/*
1926 		 * We were woken up, thus go and try to harvest some events.
1927 		 * If timed out and still on the wait queue, recheck eavail
1928 		 * carefully under lock, below.
1929 		 */
1930 		eavail = 1;
1931 
1932 		if (!list_empty_careful(&wait.entry)) {
1933 			write_lock_irq(&ep->lock);
1934 			/*
1935 			 * If the thread timed out and is not on the wait queue,
1936 			 * it means that the thread was woken up after its
1937 			 * timeout expired before it could reacquire the lock.
1938 			 * Thus, when wait.entry is empty, it needs to harvest
1939 			 * events.
1940 			 */
1941 			if (timed_out)
1942 				eavail = list_empty(&wait.entry);
1943 			__remove_wait_queue(&ep->wq, &wait);
1944 			write_unlock_irq(&ep->lock);
1945 		}
1946 	}
1947 }
1948 
1949 /**
1950  * ep_loop_check_proc - verify that adding an epoll file inside another
1951  *                      epoll structure does not violate the constraints, in
1952  *                      terms of closed loops, or too deep chains (which can
1953  *                      result in excessive stack usage).
1954  *
1955  * @ep: the &struct eventpoll to be currently checked.
1956  * @depth: Current depth of the path being checked.
1957  *
1958  * Return: %zero if adding the epoll @file inside current epoll
1959  *          structure @ep does not violate the constraints, or %-1 otherwise.
1960  */
1961 static int ep_loop_check_proc(struct eventpoll *ep, int depth)
1962 {
1963 	int error = 0;
1964 	struct rb_node *rbp;
1965 	struct epitem *epi;
1966 
1967 	mutex_lock_nested(&ep->mtx, depth + 1);
1968 	ep->gen = loop_check_gen;
1969 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1970 		epi = rb_entry(rbp, struct epitem, rbn);
1971 		if (unlikely(is_file_epoll(epi->ffd.file))) {
1972 			struct eventpoll *ep_tovisit;
1973 			ep_tovisit = epi->ffd.file->private_data;
1974 			if (ep_tovisit->gen == loop_check_gen)
1975 				continue;
1976 			if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS)
1977 				error = -1;
1978 			else
1979 				error = ep_loop_check_proc(ep_tovisit, depth + 1);
1980 			if (error != 0)
1981 				break;
1982 		} else {
1983 			/*
1984 			 * If we've reached a file that is not associated with
1985 			 * an ep, then we need to check if the newly added
1986 			 * links are going to add too many wakeup paths. We do
1987 			 * this by adding it to the tfile_check_list, if it's
1988 			 * not already there, and calling reverse_path_check()
1989 			 * during ep_insert().
1990 			 */
1991 			list_file(epi->ffd.file);
1992 		}
1993 	}
1994 	mutex_unlock(&ep->mtx);
1995 
1996 	return error;
1997 }
1998 
1999 /**
2000  * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
2001  *                 into another epoll file (represented by @ep) does not create
2002  *                 closed loops or too deep chains.
2003  *
2004  * @ep: Pointer to the epoll we are inserting into.
2005  * @to: Pointer to the epoll to be inserted.
2006  *
2007  * Return: %zero if adding the epoll @to inside the epoll @from
2008  * does not violate the constraints, or %-1 otherwise.
2009  */
2010 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to)
2011 {
2012 	inserting_into = ep;
2013 	return ep_loop_check_proc(to, 0);
2014 }
2015 
2016 static void clear_tfile_check_list(void)
2017 {
2018 	rcu_read_lock();
2019 	while (tfile_check_list != EP_UNACTIVE_PTR) {
2020 		struct epitems_head *head = tfile_check_list;
2021 		tfile_check_list = head->next;
2022 		unlist_file(head);
2023 	}
2024 	rcu_read_unlock();
2025 }
2026 
2027 /*
2028  * Open an eventpoll file descriptor.
2029  */
2030 static int do_epoll_create(int flags)
2031 {
2032 	int error, fd;
2033 	struct eventpoll *ep = NULL;
2034 	struct file *file;
2035 
2036 	/* Check the EPOLL_* constant for consistency.  */
2037 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2038 
2039 	if (flags & ~EPOLL_CLOEXEC)
2040 		return -EINVAL;
2041 	/*
2042 	 * Create the internal data structure ("struct eventpoll").
2043 	 */
2044 	error = ep_alloc(&ep);
2045 	if (error < 0)
2046 		return error;
2047 	/*
2048 	 * Creates all the items needed to setup an eventpoll file. That is,
2049 	 * a file structure and a free file descriptor.
2050 	 */
2051 	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2052 	if (fd < 0) {
2053 		error = fd;
2054 		goto out_free_ep;
2055 	}
2056 	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2057 				 O_RDWR | (flags & O_CLOEXEC));
2058 	if (IS_ERR(file)) {
2059 		error = PTR_ERR(file);
2060 		goto out_free_fd;
2061 	}
2062 	ep->file = file;
2063 	fd_install(fd, file);
2064 	return fd;
2065 
2066 out_free_fd:
2067 	put_unused_fd(fd);
2068 out_free_ep:
2069 	ep_clear_and_put(ep);
2070 	return error;
2071 }
2072 
2073 SYSCALL_DEFINE1(epoll_create1, int, flags)
2074 {
2075 	return do_epoll_create(flags);
2076 }
2077 
2078 SYSCALL_DEFINE1(epoll_create, int, size)
2079 {
2080 	if (size <= 0)
2081 		return -EINVAL;
2082 
2083 	return do_epoll_create(0);
2084 }
2085 
2086 #ifdef CONFIG_PM_SLEEP
2087 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2088 {
2089 	if ((epev->events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND))
2090 		epev->events &= ~EPOLLWAKEUP;
2091 }
2092 #else
2093 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2094 {
2095 	epev->events &= ~EPOLLWAKEUP;
2096 }
2097 #endif
2098 
2099 static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2100 				   bool nonblock)
2101 {
2102 	if (!nonblock) {
2103 		mutex_lock_nested(mutex, depth);
2104 		return 0;
2105 	}
2106 	if (mutex_trylock(mutex))
2107 		return 0;
2108 	return -EAGAIN;
2109 }
2110 
2111 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2112 		 bool nonblock)
2113 {
2114 	int error;
2115 	int full_check = 0;
2116 	struct fd f, tf;
2117 	struct eventpoll *ep;
2118 	struct epitem *epi;
2119 	struct eventpoll *tep = NULL;
2120 
2121 	error = -EBADF;
2122 	f = fdget(epfd);
2123 	if (!f.file)
2124 		goto error_return;
2125 
2126 	/* Get the "struct file *" for the target file */
2127 	tf = fdget(fd);
2128 	if (!tf.file)
2129 		goto error_fput;
2130 
2131 	/* The target file descriptor must support poll */
2132 	error = -EPERM;
2133 	if (!file_can_poll(tf.file))
2134 		goto error_tgt_fput;
2135 
2136 	/* Check if EPOLLWAKEUP is allowed */
2137 	if (ep_op_has_event(op))
2138 		ep_take_care_of_epollwakeup(epds);
2139 
2140 	/*
2141 	 * We have to check that the file structure underneath the file descriptor
2142 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
2143 	 * adding an epoll file descriptor inside itself.
2144 	 */
2145 	error = -EINVAL;
2146 	if (f.file == tf.file || !is_file_epoll(f.file))
2147 		goto error_tgt_fput;
2148 
2149 	/*
2150 	 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2151 	 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2152 	 * Also, we do not currently supported nested exclusive wakeups.
2153 	 */
2154 	if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2155 		if (op == EPOLL_CTL_MOD)
2156 			goto error_tgt_fput;
2157 		if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2158 				(epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2159 			goto error_tgt_fput;
2160 	}
2161 
2162 	/*
2163 	 * At this point it is safe to assume that the "private_data" contains
2164 	 * our own data structure.
2165 	 */
2166 	ep = f.file->private_data;
2167 
2168 	/*
2169 	 * When we insert an epoll file descriptor inside another epoll file
2170 	 * descriptor, there is the chance of creating closed loops, which are
2171 	 * better be handled here, than in more critical paths. While we are
2172 	 * checking for loops we also determine the list of files reachable
2173 	 * and hang them on the tfile_check_list, so we can check that we
2174 	 * haven't created too many possible wakeup paths.
2175 	 *
2176 	 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2177 	 * the epoll file descriptor is attaching directly to a wakeup source,
2178 	 * unless the epoll file descriptor is nested. The purpose of taking the
2179 	 * 'epnested_mutex' on add is to prevent complex toplogies such as loops and
2180 	 * deep wakeup paths from forming in parallel through multiple
2181 	 * EPOLL_CTL_ADD operations.
2182 	 */
2183 	error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2184 	if (error)
2185 		goto error_tgt_fput;
2186 	if (op == EPOLL_CTL_ADD) {
2187 		if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen ||
2188 		    is_file_epoll(tf.file)) {
2189 			mutex_unlock(&ep->mtx);
2190 			error = epoll_mutex_lock(&epnested_mutex, 0, nonblock);
2191 			if (error)
2192 				goto error_tgt_fput;
2193 			loop_check_gen++;
2194 			full_check = 1;
2195 			if (is_file_epoll(tf.file)) {
2196 				tep = tf.file->private_data;
2197 				error = -ELOOP;
2198 				if (ep_loop_check(ep, tep) != 0)
2199 					goto error_tgt_fput;
2200 			}
2201 			error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2202 			if (error)
2203 				goto error_tgt_fput;
2204 		}
2205 	}
2206 
2207 	/*
2208 	 * Try to lookup the file inside our RB tree. Since we grabbed "mtx"
2209 	 * above, we can be sure to be able to use the item looked up by
2210 	 * ep_find() till we release the mutex.
2211 	 */
2212 	epi = ep_find(ep, tf.file, fd);
2213 
2214 	error = -EINVAL;
2215 	switch (op) {
2216 	case EPOLL_CTL_ADD:
2217 		if (!epi) {
2218 			epds->events |= EPOLLERR | EPOLLHUP;
2219 			error = ep_insert(ep, epds, tf.file, fd, full_check);
2220 		} else
2221 			error = -EEXIST;
2222 		break;
2223 	case EPOLL_CTL_DEL:
2224 		if (epi) {
2225 			/*
2226 			 * The eventpoll itself is still alive: the refcount
2227 			 * can't go to zero here.
2228 			 */
2229 			ep_remove_safe(ep, epi);
2230 			error = 0;
2231 		} else {
2232 			error = -ENOENT;
2233 		}
2234 		break;
2235 	case EPOLL_CTL_MOD:
2236 		if (epi) {
2237 			if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2238 				epds->events |= EPOLLERR | EPOLLHUP;
2239 				error = ep_modify(ep, epi, epds);
2240 			}
2241 		} else
2242 			error = -ENOENT;
2243 		break;
2244 	}
2245 	mutex_unlock(&ep->mtx);
2246 
2247 error_tgt_fput:
2248 	if (full_check) {
2249 		clear_tfile_check_list();
2250 		loop_check_gen++;
2251 		mutex_unlock(&epnested_mutex);
2252 	}
2253 
2254 	fdput(tf);
2255 error_fput:
2256 	fdput(f);
2257 error_return:
2258 
2259 	return error;
2260 }
2261 
2262 /*
2263  * The following function implements the controller interface for
2264  * the eventpoll file that enables the insertion/removal/change of
2265  * file descriptors inside the interest set.
2266  */
2267 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2268 		struct epoll_event __user *, event)
2269 {
2270 	struct epoll_event epds;
2271 
2272 	if (ep_op_has_event(op) &&
2273 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
2274 		return -EFAULT;
2275 
2276 	return do_epoll_ctl(epfd, op, fd, &epds, false);
2277 }
2278 
2279 /*
2280  * Implement the event wait interface for the eventpoll file. It is the kernel
2281  * part of the user space epoll_wait(2).
2282  */
2283 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2284 			 int maxevents, struct timespec64 *to)
2285 {
2286 	int error;
2287 	struct fd f;
2288 	struct eventpoll *ep;
2289 
2290 	/* The maximum number of event must be greater than zero */
2291 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2292 		return -EINVAL;
2293 
2294 	/* Verify that the area passed by the user is writeable */
2295 	if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2296 		return -EFAULT;
2297 
2298 	/* Get the "struct file *" for the eventpoll file */
2299 	f = fdget(epfd);
2300 	if (!f.file)
2301 		return -EBADF;
2302 
2303 	/*
2304 	 * We have to check that the file structure underneath the fd
2305 	 * the user passed to us _is_ an eventpoll file.
2306 	 */
2307 	error = -EINVAL;
2308 	if (!is_file_epoll(f.file))
2309 		goto error_fput;
2310 
2311 	/*
2312 	 * At this point it is safe to assume that the "private_data" contains
2313 	 * our own data structure.
2314 	 */
2315 	ep = f.file->private_data;
2316 
2317 	/* Time to fish for events ... */
2318 	error = ep_poll(ep, events, maxevents, to);
2319 
2320 error_fput:
2321 	fdput(f);
2322 	return error;
2323 }
2324 
2325 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2326 		int, maxevents, int, timeout)
2327 {
2328 	struct timespec64 to;
2329 
2330 	return do_epoll_wait(epfd, events, maxevents,
2331 			     ep_timeout_to_timespec(&to, timeout));
2332 }
2333 
2334 /*
2335  * Implement the event wait interface for the eventpoll file. It is the kernel
2336  * part of the user space epoll_pwait(2).
2337  */
2338 static int do_epoll_pwait(int epfd, struct epoll_event __user *events,
2339 			  int maxevents, struct timespec64 *to,
2340 			  const sigset_t __user *sigmask, size_t sigsetsize)
2341 {
2342 	int error;
2343 
2344 	/*
2345 	 * If the caller wants a certain signal mask to be set during the wait,
2346 	 * we apply it here.
2347 	 */
2348 	error = set_user_sigmask(sigmask, sigsetsize);
2349 	if (error)
2350 		return error;
2351 
2352 	error = do_epoll_wait(epfd, events, maxevents, to);
2353 
2354 	restore_saved_sigmask_unless(error == -EINTR);
2355 
2356 	return error;
2357 }
2358 
2359 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2360 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2361 		size_t, sigsetsize)
2362 {
2363 	struct timespec64 to;
2364 
2365 	return do_epoll_pwait(epfd, events, maxevents,
2366 			      ep_timeout_to_timespec(&to, timeout),
2367 			      sigmask, sigsetsize);
2368 }
2369 
2370 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events,
2371 		int, maxevents, const struct __kernel_timespec __user *, timeout,
2372 		const sigset_t __user *, sigmask, size_t, sigsetsize)
2373 {
2374 	struct timespec64 ts, *to = NULL;
2375 
2376 	if (timeout) {
2377 		if (get_timespec64(&ts, timeout))
2378 			return -EFAULT;
2379 		to = &ts;
2380 		if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2381 			return -EINVAL;
2382 	}
2383 
2384 	return do_epoll_pwait(epfd, events, maxevents, to,
2385 			      sigmask, sigsetsize);
2386 }
2387 
2388 #ifdef CONFIG_COMPAT
2389 static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events,
2390 				 int maxevents, struct timespec64 *timeout,
2391 				 const compat_sigset_t __user *sigmask,
2392 				 compat_size_t sigsetsize)
2393 {
2394 	long err;
2395 
2396 	/*
2397 	 * If the caller wants a certain signal mask to be set during the wait,
2398 	 * we apply it here.
2399 	 */
2400 	err = set_compat_user_sigmask(sigmask, sigsetsize);
2401 	if (err)
2402 		return err;
2403 
2404 	err = do_epoll_wait(epfd, events, maxevents, timeout);
2405 
2406 	restore_saved_sigmask_unless(err == -EINTR);
2407 
2408 	return err;
2409 }
2410 
2411 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2412 		       struct epoll_event __user *, events,
2413 		       int, maxevents, int, timeout,
2414 		       const compat_sigset_t __user *, sigmask,
2415 		       compat_size_t, sigsetsize)
2416 {
2417 	struct timespec64 to;
2418 
2419 	return do_compat_epoll_pwait(epfd, events, maxevents,
2420 				     ep_timeout_to_timespec(&to, timeout),
2421 				     sigmask, sigsetsize);
2422 }
2423 
2424 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd,
2425 		       struct epoll_event __user *, events,
2426 		       int, maxevents,
2427 		       const struct __kernel_timespec __user *, timeout,
2428 		       const compat_sigset_t __user *, sigmask,
2429 		       compat_size_t, sigsetsize)
2430 {
2431 	struct timespec64 ts, *to = NULL;
2432 
2433 	if (timeout) {
2434 		if (get_timespec64(&ts, timeout))
2435 			return -EFAULT;
2436 		to = &ts;
2437 		if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2438 			return -EINVAL;
2439 	}
2440 
2441 	return do_compat_epoll_pwait(epfd, events, maxevents, to,
2442 				     sigmask, sigsetsize);
2443 }
2444 
2445 #endif
2446 
2447 static int __init eventpoll_init(void)
2448 {
2449 	struct sysinfo si;
2450 
2451 	si_meminfo(&si);
2452 	/*
2453 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2454 	 */
2455 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2456 		EP_ITEM_COST;
2457 	BUG_ON(max_user_watches < 0);
2458 
2459 	/*
2460 	 * We can have many thousands of epitems, so prevent this from
2461 	 * using an extra cache line on 64-bit (and smaller) CPUs
2462 	 */
2463 	BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2464 
2465 	/* Allocates slab cache used to allocate "struct epitem" items */
2466 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2467 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2468 
2469 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
2470 	pwq_cache = kmem_cache_create("eventpoll_pwq",
2471 		sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2472 	epoll_sysctls_init();
2473 
2474 	ephead_cache = kmem_cache_create("ep_head",
2475 		sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2476 
2477 	return 0;
2478 }
2479 fs_initcall(eventpoll_init);
2480