1 /* 2 * fs/eventpoll.c (Efficent event polling implementation) 3 * Copyright (C) 2001,...,2007 Davide Libenzi 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * Davide Libenzi <davidel@xmailserver.org> 11 * 12 */ 13 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/file.h> 19 #include <linux/signal.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/slab.h> 23 #include <linux/poll.h> 24 #include <linux/string.h> 25 #include <linux/list.h> 26 #include <linux/hash.h> 27 #include <linux/spinlock.h> 28 #include <linux/syscalls.h> 29 #include <linux/rbtree.h> 30 #include <linux/wait.h> 31 #include <linux/eventpoll.h> 32 #include <linux/mount.h> 33 #include <linux/bitops.h> 34 #include <linux/mutex.h> 35 #include <linux/anon_inodes.h> 36 #include <asm/uaccess.h> 37 #include <asm/system.h> 38 #include <asm/io.h> 39 #include <asm/mman.h> 40 #include <asm/atomic.h> 41 42 /* 43 * LOCKING: 44 * There are three level of locking required by epoll : 45 * 46 * 1) epmutex (mutex) 47 * 2) ep->mtx (mutex) 48 * 3) ep->lock (spinlock) 49 * 50 * The acquire order is the one listed above, from 1 to 3. 51 * We need a spinlock (ep->lock) because we manipulate objects 52 * from inside the poll callback, that might be triggered from 53 * a wake_up() that in turn might be called from IRQ context. 54 * So we can't sleep inside the poll callback and hence we need 55 * a spinlock. During the event transfer loop (from kernel to 56 * user space) we could end up sleeping due a copy_to_user(), so 57 * we need a lock that will allow us to sleep. This lock is a 58 * mutex (ep->mtx). It is acquired during the event transfer loop, 59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 60 * Then we also need a global mutex to serialize eventpoll_release_file() 61 * and ep_free(). 62 * This mutex is acquired by ep_free() during the epoll file 63 * cleanup path and it is also acquired by eventpoll_release_file() 64 * if a file has been pushed inside an epoll set and it is then 65 * close()d without a previous call toepoll_ctl(EPOLL_CTL_DEL). 66 * It is possible to drop the "ep->mtx" and to use the global 67 * mutex "epmutex" (together with "ep->lock") to have it working, 68 * but having "ep->mtx" will make the interface more scalable. 69 * Events that require holding "epmutex" are very rare, while for 70 * normal operations the epoll private "ep->mtx" will guarantee 71 * a better scalability. 72 */ 73 74 #define DEBUG_EPOLL 0 75 76 #if DEBUG_EPOLL > 0 77 #define DPRINTK(x) printk x 78 #define DNPRINTK(n, x) do { if ((n) <= DEBUG_EPOLL) printk x; } while (0) 79 #else /* #if DEBUG_EPOLL > 0 */ 80 #define DPRINTK(x) (void) 0 81 #define DNPRINTK(n, x) (void) 0 82 #endif /* #if DEBUG_EPOLL > 0 */ 83 84 #define DEBUG_EPI 0 85 86 #if DEBUG_EPI != 0 87 #define EPI_SLAB_DEBUG (SLAB_DEBUG_FREE | SLAB_RED_ZONE /* | SLAB_POISON */) 88 #else /* #if DEBUG_EPI != 0 */ 89 #define EPI_SLAB_DEBUG 0 90 #endif /* #if DEBUG_EPI != 0 */ 91 92 /* Epoll private bits inside the event mask */ 93 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET) 94 95 /* Maximum number of poll wake up nests we are allowing */ 96 #define EP_MAX_POLLWAKE_NESTS 4 97 98 /* Maximum msec timeout value storeable in a long int */ 99 #define EP_MAX_MSTIMEO min(1000ULL * MAX_SCHEDULE_TIMEOUT / HZ, (LONG_MAX - 999ULL) / HZ) 100 101 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 102 103 #define EP_UNACTIVE_PTR ((void *) -1L) 104 105 struct epoll_filefd { 106 struct file *file; 107 int fd; 108 }; 109 110 /* 111 * Node that is linked into the "wake_task_list" member of the "struct poll_safewake". 112 * It is used to keep track on all tasks that are currently inside the wake_up() code 113 * to 1) short-circuit the one coming from the same task and same wait queue head 114 * (loop) 2) allow a maximum number of epoll descriptors inclusion nesting 115 * 3) let go the ones coming from other tasks. 116 */ 117 struct wake_task_node { 118 struct list_head llink; 119 struct task_struct *task; 120 wait_queue_head_t *wq; 121 }; 122 123 /* 124 * This is used to implement the safe poll wake up avoiding to reenter 125 * the poll callback from inside wake_up(). 126 */ 127 struct poll_safewake { 128 struct list_head wake_task_list; 129 spinlock_t lock; 130 }; 131 132 /* 133 * Each file descriptor added to the eventpoll interface will 134 * have an entry of this type linked to the "rbr" RB tree. 135 */ 136 struct epitem { 137 /* RB tree node used to link this structure to the eventpoll RB tree */ 138 struct rb_node rbn; 139 140 /* List header used to link this structure to the eventpoll ready list */ 141 struct list_head rdllink; 142 143 /* 144 * Works together "struct eventpoll"->ovflist in keeping the 145 * single linked chain of items. 146 */ 147 struct epitem *next; 148 149 /* The file descriptor information this item refers to */ 150 struct epoll_filefd ffd; 151 152 /* Number of active wait queue attached to poll operations */ 153 int nwait; 154 155 /* List containing poll wait queues */ 156 struct list_head pwqlist; 157 158 /* The "container" of this item */ 159 struct eventpoll *ep; 160 161 /* List header used to link this item to the "struct file" items list */ 162 struct list_head fllink; 163 164 /* The structure that describe the interested events and the source fd */ 165 struct epoll_event event; 166 }; 167 168 /* 169 * This structure is stored inside the "private_data" member of the file 170 * structure and rapresent the main data sructure for the eventpoll 171 * interface. 172 */ 173 struct eventpoll { 174 /* Protect the this structure access */ 175 spinlock_t lock; 176 177 /* 178 * This mutex is used to ensure that files are not removed 179 * while epoll is using them. This is held during the event 180 * collection loop, the file cleanup path, the epoll file exit 181 * code and the ctl operations. 182 */ 183 struct mutex mtx; 184 185 /* Wait queue used by sys_epoll_wait() */ 186 wait_queue_head_t wq; 187 188 /* Wait queue used by file->poll() */ 189 wait_queue_head_t poll_wait; 190 191 /* List of ready file descriptors */ 192 struct list_head rdllist; 193 194 /* RB tree root used to store monitored fd structs */ 195 struct rb_root rbr; 196 197 /* 198 * This is a single linked list that chains all the "struct epitem" that 199 * happened while transfering ready events to userspace w/out 200 * holding ->lock. 201 */ 202 struct epitem *ovflist; 203 }; 204 205 /* Wait structure used by the poll hooks */ 206 struct eppoll_entry { 207 /* List header used to link this structure to the "struct epitem" */ 208 struct list_head llink; 209 210 /* The "base" pointer is set to the container "struct epitem" */ 211 void *base; 212 213 /* 214 * Wait queue item that will be linked to the target file wait 215 * queue head. 216 */ 217 wait_queue_t wait; 218 219 /* The wait queue head that linked the "wait" wait queue item */ 220 wait_queue_head_t *whead; 221 }; 222 223 /* Wrapper struct used by poll queueing */ 224 struct ep_pqueue { 225 poll_table pt; 226 struct epitem *epi; 227 }; 228 229 /* 230 * This mutex is used to serialize ep_free() and eventpoll_release_file(). 231 */ 232 static struct mutex epmutex; 233 234 /* Safe wake up implementation */ 235 static struct poll_safewake psw; 236 237 /* Slab cache used to allocate "struct epitem" */ 238 static struct kmem_cache *epi_cache __read_mostly; 239 240 /* Slab cache used to allocate "struct eppoll_entry" */ 241 static struct kmem_cache *pwq_cache __read_mostly; 242 243 244 /* Setup the structure that is used as key for the RB tree */ 245 static inline void ep_set_ffd(struct epoll_filefd *ffd, 246 struct file *file, int fd) 247 { 248 ffd->file = file; 249 ffd->fd = fd; 250 } 251 252 /* Compare RB tree keys */ 253 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 254 struct epoll_filefd *p2) 255 { 256 return (p1->file > p2->file ? +1: 257 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 258 } 259 260 /* Tells us if the item is currently linked */ 261 static inline int ep_is_linked(struct list_head *p) 262 { 263 return !list_empty(p); 264 } 265 266 /* Get the "struct epitem" from a wait queue pointer */ 267 static inline struct epitem *ep_item_from_wait(wait_queue_t *p) 268 { 269 return container_of(p, struct eppoll_entry, wait)->base; 270 } 271 272 /* Get the "struct epitem" from an epoll queue wrapper */ 273 static inline struct epitem *ep_item_from_epqueue(poll_table *p) 274 { 275 return container_of(p, struct ep_pqueue, pt)->epi; 276 } 277 278 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ 279 static inline int ep_op_has_event(int op) 280 { 281 return op != EPOLL_CTL_DEL; 282 } 283 284 /* Initialize the poll safe wake up structure */ 285 static void ep_poll_safewake_init(struct poll_safewake *psw) 286 { 287 288 INIT_LIST_HEAD(&psw->wake_task_list); 289 spin_lock_init(&psw->lock); 290 } 291 292 /* 293 * Perform a safe wake up of the poll wait list. The problem is that 294 * with the new callback'd wake up system, it is possible that the 295 * poll callback is reentered from inside the call to wake_up() done 296 * on the poll wait queue head. The rule is that we cannot reenter the 297 * wake up code from the same task more than EP_MAX_POLLWAKE_NESTS times, 298 * and we cannot reenter the same wait queue head at all. This will 299 * enable to have a hierarchy of epoll file descriptor of no more than 300 * EP_MAX_POLLWAKE_NESTS deep. We need the irq version of the spin lock 301 * because this one gets called by the poll callback, that in turn is called 302 * from inside a wake_up(), that might be called from irq context. 303 */ 304 static void ep_poll_safewake(struct poll_safewake *psw, wait_queue_head_t *wq) 305 { 306 int wake_nests = 0; 307 unsigned long flags; 308 struct task_struct *this_task = current; 309 struct list_head *lsthead = &psw->wake_task_list; 310 struct wake_task_node *tncur; 311 struct wake_task_node tnode; 312 313 spin_lock_irqsave(&psw->lock, flags); 314 315 /* Try to see if the current task is already inside this wakeup call */ 316 list_for_each_entry(tncur, lsthead, llink) { 317 318 if (tncur->wq == wq || 319 (tncur->task == this_task && ++wake_nests > EP_MAX_POLLWAKE_NESTS)) { 320 /* 321 * Ops ... loop detected or maximum nest level reached. 322 * We abort this wake by breaking the cycle itself. 323 */ 324 spin_unlock_irqrestore(&psw->lock, flags); 325 return; 326 } 327 } 328 329 /* Add the current task to the list */ 330 tnode.task = this_task; 331 tnode.wq = wq; 332 list_add(&tnode.llink, lsthead); 333 334 spin_unlock_irqrestore(&psw->lock, flags); 335 336 /* Do really wake up now */ 337 wake_up_nested(wq, 1 + wake_nests); 338 339 /* Remove the current task from the list */ 340 spin_lock_irqsave(&psw->lock, flags); 341 list_del(&tnode.llink); 342 spin_unlock_irqrestore(&psw->lock, flags); 343 } 344 345 /* 346 * This function unregister poll callbacks from the associated file descriptor. 347 * Since this must be called without holding "ep->lock" the atomic exchange trick 348 * will protect us from multiple unregister. 349 */ 350 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 351 { 352 int nwait; 353 struct list_head *lsthead = &epi->pwqlist; 354 struct eppoll_entry *pwq; 355 356 /* This is called without locks, so we need the atomic exchange */ 357 nwait = xchg(&epi->nwait, 0); 358 359 if (nwait) { 360 while (!list_empty(lsthead)) { 361 pwq = list_first_entry(lsthead, struct eppoll_entry, llink); 362 363 list_del_init(&pwq->llink); 364 remove_wait_queue(pwq->whead, &pwq->wait); 365 kmem_cache_free(pwq_cache, pwq); 366 } 367 } 368 } 369 370 /* 371 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 372 * all the associated resources. Must be called with "mtx" held. 373 */ 374 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 375 { 376 unsigned long flags; 377 struct file *file = epi->ffd.file; 378 379 /* 380 * Removes poll wait queue hooks. We _have_ to do this without holding 381 * the "ep->lock" otherwise a deadlock might occur. This because of the 382 * sequence of the lock acquisition. Here we do "ep->lock" then the wait 383 * queue head lock when unregistering the wait queue. The wakeup callback 384 * will run by holding the wait queue head lock and will call our callback 385 * that will try to get "ep->lock". 386 */ 387 ep_unregister_pollwait(ep, epi); 388 389 /* Remove the current item from the list of epoll hooks */ 390 spin_lock(&file->f_ep_lock); 391 if (ep_is_linked(&epi->fllink)) 392 list_del_init(&epi->fllink); 393 spin_unlock(&file->f_ep_lock); 394 395 rb_erase(&epi->rbn, &ep->rbr); 396 397 spin_lock_irqsave(&ep->lock, flags); 398 if (ep_is_linked(&epi->rdllink)) 399 list_del_init(&epi->rdllink); 400 spin_unlock_irqrestore(&ep->lock, flags); 401 402 /* At this point it is safe to free the eventpoll item */ 403 kmem_cache_free(epi_cache, epi); 404 405 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_remove(%p, %p)\n", 406 current, ep, file)); 407 408 return 0; 409 } 410 411 static void ep_free(struct eventpoll *ep) 412 { 413 struct rb_node *rbp; 414 struct epitem *epi; 415 416 /* We need to release all tasks waiting for these file */ 417 if (waitqueue_active(&ep->poll_wait)) 418 ep_poll_safewake(&psw, &ep->poll_wait); 419 420 /* 421 * We need to lock this because we could be hit by 422 * eventpoll_release_file() while we're freeing the "struct eventpoll". 423 * We do not need to hold "ep->mtx" here because the epoll file 424 * is on the way to be removed and no one has references to it 425 * anymore. The only hit might come from eventpoll_release_file() but 426 * holding "epmutex" is sufficent here. 427 */ 428 mutex_lock(&epmutex); 429 430 /* 431 * Walks through the whole tree by unregistering poll callbacks. 432 */ 433 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 434 epi = rb_entry(rbp, struct epitem, rbn); 435 436 ep_unregister_pollwait(ep, epi); 437 } 438 439 /* 440 * Walks through the whole tree by freeing each "struct epitem". At this 441 * point we are sure no poll callbacks will be lingering around, and also by 442 * holding "epmutex" we can be sure that no file cleanup code will hit 443 * us during this operation. So we can avoid the lock on "ep->lock". 444 */ 445 while ((rbp = rb_first(&ep->rbr)) != NULL) { 446 epi = rb_entry(rbp, struct epitem, rbn); 447 ep_remove(ep, epi); 448 } 449 450 mutex_unlock(&epmutex); 451 mutex_destroy(&ep->mtx); 452 kfree(ep); 453 } 454 455 static int ep_eventpoll_release(struct inode *inode, struct file *file) 456 { 457 struct eventpoll *ep = file->private_data; 458 459 if (ep) 460 ep_free(ep); 461 462 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: close() ep=%p\n", current, ep)); 463 return 0; 464 } 465 466 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait) 467 { 468 unsigned int pollflags = 0; 469 unsigned long flags; 470 struct eventpoll *ep = file->private_data; 471 472 /* Insert inside our poll wait queue */ 473 poll_wait(file, &ep->poll_wait, wait); 474 475 /* Check our condition */ 476 spin_lock_irqsave(&ep->lock, flags); 477 if (!list_empty(&ep->rdllist)) 478 pollflags = POLLIN | POLLRDNORM; 479 spin_unlock_irqrestore(&ep->lock, flags); 480 481 return pollflags; 482 } 483 484 /* File callbacks that implement the eventpoll file behaviour */ 485 static const struct file_operations eventpoll_fops = { 486 .release = ep_eventpoll_release, 487 .poll = ep_eventpoll_poll 488 }; 489 490 /* Fast test to see if the file is an evenpoll file */ 491 static inline int is_file_epoll(struct file *f) 492 { 493 return f->f_op == &eventpoll_fops; 494 } 495 496 /* 497 * This is called from eventpoll_release() to unlink files from the eventpoll 498 * interface. We need to have this facility to cleanup correctly files that are 499 * closed without being removed from the eventpoll interface. 500 */ 501 void eventpoll_release_file(struct file *file) 502 { 503 struct list_head *lsthead = &file->f_ep_links; 504 struct eventpoll *ep; 505 struct epitem *epi; 506 507 /* 508 * We don't want to get "file->f_ep_lock" because it is not 509 * necessary. It is not necessary because we're in the "struct file" 510 * cleanup path, and this means that noone is using this file anymore. 511 * So, for example, epoll_ctl() cannot hit here sicne if we reach this 512 * point, the file counter already went to zero and fget() would fail. 513 * The only hit might come from ep_free() but by holding the mutex 514 * will correctly serialize the operation. We do need to acquire 515 * "ep->mtx" after "epmutex" because ep_remove() requires it when called 516 * from anywhere but ep_free(). 517 */ 518 mutex_lock(&epmutex); 519 520 while (!list_empty(lsthead)) { 521 epi = list_first_entry(lsthead, struct epitem, fllink); 522 523 ep = epi->ep; 524 list_del_init(&epi->fllink); 525 mutex_lock(&ep->mtx); 526 ep_remove(ep, epi); 527 mutex_unlock(&ep->mtx); 528 } 529 530 mutex_unlock(&epmutex); 531 } 532 533 static int ep_alloc(struct eventpoll **pep) 534 { 535 struct eventpoll *ep = kzalloc(sizeof(*ep), GFP_KERNEL); 536 537 if (!ep) 538 return -ENOMEM; 539 540 spin_lock_init(&ep->lock); 541 mutex_init(&ep->mtx); 542 init_waitqueue_head(&ep->wq); 543 init_waitqueue_head(&ep->poll_wait); 544 INIT_LIST_HEAD(&ep->rdllist); 545 ep->rbr = RB_ROOT; 546 ep->ovflist = EP_UNACTIVE_PTR; 547 548 *pep = ep; 549 550 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_alloc() ep=%p\n", 551 current, ep)); 552 return 0; 553 } 554 555 /* 556 * Search the file inside the eventpoll tree. The RB tree operations 557 * are protected by the "mtx" mutex, and ep_find() must be called with 558 * "mtx" held. 559 */ 560 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 561 { 562 int kcmp; 563 struct rb_node *rbp; 564 struct epitem *epi, *epir = NULL; 565 struct epoll_filefd ffd; 566 567 ep_set_ffd(&ffd, file, fd); 568 for (rbp = ep->rbr.rb_node; rbp; ) { 569 epi = rb_entry(rbp, struct epitem, rbn); 570 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 571 if (kcmp > 0) 572 rbp = rbp->rb_right; 573 else if (kcmp < 0) 574 rbp = rbp->rb_left; 575 else { 576 epir = epi; 577 break; 578 } 579 } 580 581 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_find(%p) -> %p\n", 582 current, file, epir)); 583 584 return epir; 585 } 586 587 /* 588 * This is the callback that is passed to the wait queue wakeup 589 * machanism. It is called by the stored file descriptors when they 590 * have events to report. 591 */ 592 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key) 593 { 594 int pwake = 0; 595 unsigned long flags; 596 struct epitem *epi = ep_item_from_wait(wait); 597 struct eventpoll *ep = epi->ep; 598 599 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: poll_callback(%p) epi=%p ep=%p\n", 600 current, epi->ffd.file, epi, ep)); 601 602 spin_lock_irqsave(&ep->lock, flags); 603 604 /* 605 * If the event mask does not contain any poll(2) event, we consider the 606 * descriptor to be disabled. This condition is likely the effect of the 607 * EPOLLONESHOT bit that disables the descriptor when an event is received, 608 * until the next EPOLL_CTL_MOD will be issued. 609 */ 610 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 611 goto out_unlock; 612 613 /* 614 * If we are trasfering events to userspace, we can hold no locks 615 * (because we're accessing user memory, and because of linux f_op->poll() 616 * semantics). All the events that happens during that period of time are 617 * chained in ep->ovflist and requeued later on. 618 */ 619 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) { 620 if (epi->next == EP_UNACTIVE_PTR) { 621 epi->next = ep->ovflist; 622 ep->ovflist = epi; 623 } 624 goto out_unlock; 625 } 626 627 /* If this file is already in the ready list we exit soon */ 628 if (ep_is_linked(&epi->rdllink)) 629 goto is_linked; 630 631 list_add_tail(&epi->rdllink, &ep->rdllist); 632 633 is_linked: 634 /* 635 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 636 * wait list. 637 */ 638 if (waitqueue_active(&ep->wq)) 639 wake_up_locked(&ep->wq); 640 if (waitqueue_active(&ep->poll_wait)) 641 pwake++; 642 643 out_unlock: 644 spin_unlock_irqrestore(&ep->lock, flags); 645 646 /* We have to call this outside the lock */ 647 if (pwake) 648 ep_poll_safewake(&psw, &ep->poll_wait); 649 650 return 1; 651 } 652 653 /* 654 * This is the callback that is used to add our wait queue to the 655 * target file wakeup lists. 656 */ 657 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 658 poll_table *pt) 659 { 660 struct epitem *epi = ep_item_from_epqueue(pt); 661 struct eppoll_entry *pwq; 662 663 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { 664 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 665 pwq->whead = whead; 666 pwq->base = epi; 667 add_wait_queue(whead, &pwq->wait); 668 list_add_tail(&pwq->llink, &epi->pwqlist); 669 epi->nwait++; 670 } else { 671 /* We have to signal that an error occurred */ 672 epi->nwait = -1; 673 } 674 } 675 676 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 677 { 678 int kcmp; 679 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL; 680 struct epitem *epic; 681 682 while (*p) { 683 parent = *p; 684 epic = rb_entry(parent, struct epitem, rbn); 685 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 686 if (kcmp > 0) 687 p = &parent->rb_right; 688 else 689 p = &parent->rb_left; 690 } 691 rb_link_node(&epi->rbn, parent, p); 692 rb_insert_color(&epi->rbn, &ep->rbr); 693 } 694 695 /* 696 * Must be called with "mtx" held. 697 */ 698 static int ep_insert(struct eventpoll *ep, struct epoll_event *event, 699 struct file *tfile, int fd) 700 { 701 int error, revents, pwake = 0; 702 unsigned long flags; 703 struct epitem *epi; 704 struct ep_pqueue epq; 705 706 error = -ENOMEM; 707 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) 708 goto error_return; 709 710 /* Item initialization follow here ... */ 711 INIT_LIST_HEAD(&epi->rdllink); 712 INIT_LIST_HEAD(&epi->fllink); 713 INIT_LIST_HEAD(&epi->pwqlist); 714 epi->ep = ep; 715 ep_set_ffd(&epi->ffd, tfile, fd); 716 epi->event = *event; 717 epi->nwait = 0; 718 epi->next = EP_UNACTIVE_PTR; 719 720 /* Initialize the poll table using the queue callback */ 721 epq.epi = epi; 722 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 723 724 /* 725 * Attach the item to the poll hooks and get current event bits. 726 * We can safely use the file* here because its usage count has 727 * been increased by the caller of this function. Note that after 728 * this operation completes, the poll callback can start hitting 729 * the new item. 730 */ 731 revents = tfile->f_op->poll(tfile, &epq.pt); 732 733 /* 734 * We have to check if something went wrong during the poll wait queue 735 * install process. Namely an allocation for a wait queue failed due 736 * high memory pressure. 737 */ 738 if (epi->nwait < 0) 739 goto error_unregister; 740 741 /* Add the current item to the list of active epoll hook for this file */ 742 spin_lock(&tfile->f_ep_lock); 743 list_add_tail(&epi->fllink, &tfile->f_ep_links); 744 spin_unlock(&tfile->f_ep_lock); 745 746 /* 747 * Add the current item to the RB tree. All RB tree operations are 748 * protected by "mtx", and ep_insert() is called with "mtx" held. 749 */ 750 ep_rbtree_insert(ep, epi); 751 752 /* We have to drop the new item inside our item list to keep track of it */ 753 spin_lock_irqsave(&ep->lock, flags); 754 755 /* If the file is already "ready" we drop it inside the ready list */ 756 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) { 757 list_add_tail(&epi->rdllink, &ep->rdllist); 758 759 /* Notify waiting tasks that events are available */ 760 if (waitqueue_active(&ep->wq)) 761 wake_up_locked(&ep->wq); 762 if (waitqueue_active(&ep->poll_wait)) 763 pwake++; 764 } 765 766 spin_unlock_irqrestore(&ep->lock, flags); 767 768 /* We have to call this outside the lock */ 769 if (pwake) 770 ep_poll_safewake(&psw, &ep->poll_wait); 771 772 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_insert(%p, %p, %d)\n", 773 current, ep, tfile, fd)); 774 775 return 0; 776 777 error_unregister: 778 ep_unregister_pollwait(ep, epi); 779 780 /* 781 * We need to do this because an event could have been arrived on some 782 * allocated wait queue. Note that we don't care about the ep->ovflist 783 * list, since that is used/cleaned only inside a section bound by "mtx". 784 * And ep_insert() is called with "mtx" held. 785 */ 786 spin_lock_irqsave(&ep->lock, flags); 787 if (ep_is_linked(&epi->rdllink)) 788 list_del_init(&epi->rdllink); 789 spin_unlock_irqrestore(&ep->lock, flags); 790 791 kmem_cache_free(epi_cache, epi); 792 error_return: 793 return error; 794 } 795 796 /* 797 * Modify the interest event mask by dropping an event if the new mask 798 * has a match in the current file status. Must be called with "mtx" held. 799 */ 800 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event) 801 { 802 int pwake = 0; 803 unsigned int revents; 804 unsigned long flags; 805 806 /* 807 * Set the new event interest mask before calling f_op->poll(), otherwise 808 * a potential race might occur. In fact if we do this operation inside 809 * the lock, an event might happen between the f_op->poll() call and the 810 * new event set registering. 811 */ 812 epi->event.events = event->events; 813 814 /* 815 * Get current event bits. We can safely use the file* here because 816 * its usage count has been increased by the caller of this function. 817 */ 818 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL); 819 820 spin_lock_irqsave(&ep->lock, flags); 821 822 /* Copy the data member from inside the lock */ 823 epi->event.data = event->data; 824 825 /* 826 * If the item is "hot" and it is not registered inside the ready 827 * list, push it inside. 828 */ 829 if (revents & event->events) { 830 if (!ep_is_linked(&epi->rdllink)) { 831 list_add_tail(&epi->rdllink, &ep->rdllist); 832 833 /* Notify waiting tasks that events are available */ 834 if (waitqueue_active(&ep->wq)) 835 wake_up_locked(&ep->wq); 836 if (waitqueue_active(&ep->poll_wait)) 837 pwake++; 838 } 839 } 840 spin_unlock_irqrestore(&ep->lock, flags); 841 842 /* We have to call this outside the lock */ 843 if (pwake) 844 ep_poll_safewake(&psw, &ep->poll_wait); 845 846 return 0; 847 } 848 849 static int ep_send_events(struct eventpoll *ep, struct epoll_event __user *events, 850 int maxevents) 851 { 852 int eventcnt, error = -EFAULT, pwake = 0; 853 unsigned int revents; 854 unsigned long flags; 855 struct epitem *epi, *nepi; 856 struct list_head txlist; 857 858 INIT_LIST_HEAD(&txlist); 859 860 /* 861 * We need to lock this because we could be hit by 862 * eventpoll_release_file() and epoll_ctl(EPOLL_CTL_DEL). 863 */ 864 mutex_lock(&ep->mtx); 865 866 /* 867 * Steal the ready list, and re-init the original one to the 868 * empty list. Also, set ep->ovflist to NULL so that events 869 * happening while looping w/out locks, are not lost. We cannot 870 * have the poll callback to queue directly on ep->rdllist, 871 * because we are doing it in the loop below, in a lockless way. 872 */ 873 spin_lock_irqsave(&ep->lock, flags); 874 list_splice(&ep->rdllist, &txlist); 875 INIT_LIST_HEAD(&ep->rdllist); 876 ep->ovflist = NULL; 877 spin_unlock_irqrestore(&ep->lock, flags); 878 879 /* 880 * We can loop without lock because this is a task private list. 881 * We just splice'd out the ep->rdllist in ep_collect_ready_items(). 882 * Items cannot vanish during the loop because we are holding "mtx". 883 */ 884 for (eventcnt = 0; !list_empty(&txlist) && eventcnt < maxevents;) { 885 epi = list_first_entry(&txlist, struct epitem, rdllink); 886 887 list_del_init(&epi->rdllink); 888 889 /* 890 * Get the ready file event set. We can safely use the file 891 * because we are holding the "mtx" and this will guarantee 892 * that both the file and the item will not vanish. 893 */ 894 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL); 895 revents &= epi->event.events; 896 897 /* 898 * Is the event mask intersect the caller-requested one, 899 * deliver the event to userspace. Again, we are holding 900 * "mtx", so no operations coming from userspace can change 901 * the item. 902 */ 903 if (revents) { 904 if (__put_user(revents, 905 &events[eventcnt].events) || 906 __put_user(epi->event.data, 907 &events[eventcnt].data)) 908 goto errxit; 909 if (epi->event.events & EPOLLONESHOT) 910 epi->event.events &= EP_PRIVATE_BITS; 911 eventcnt++; 912 } 913 /* 914 * At this point, noone can insert into ep->rdllist besides 915 * us. The epoll_ctl() callers are locked out by us holding 916 * "mtx" and the poll callback will queue them in ep->ovflist. 917 */ 918 if (!(epi->event.events & EPOLLET) && 919 (revents & epi->event.events)) 920 list_add_tail(&epi->rdllink, &ep->rdllist); 921 } 922 error = 0; 923 924 errxit: 925 926 spin_lock_irqsave(&ep->lock, flags); 927 /* 928 * During the time we spent in the loop above, some other events 929 * might have been queued by the poll callback. We re-insert them 930 * inside the main ready-list here. 931 */ 932 for (nepi = ep->ovflist; (epi = nepi) != NULL; 933 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 934 /* 935 * If the above loop quit with errors, the epoll item might still 936 * be linked to "txlist", and the list_splice() done below will 937 * take care of those cases. 938 */ 939 if (!ep_is_linked(&epi->rdllink)) 940 list_add_tail(&epi->rdllink, &ep->rdllist); 941 } 942 /* 943 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 944 * releasing the lock, events will be queued in the normal way inside 945 * ep->rdllist. 946 */ 947 ep->ovflist = EP_UNACTIVE_PTR; 948 949 /* 950 * In case of error in the event-send loop, or in case the number of 951 * ready events exceeds the userspace limit, we need to splice the 952 * "txlist" back inside ep->rdllist. 953 */ 954 list_splice(&txlist, &ep->rdllist); 955 956 if (!list_empty(&ep->rdllist)) { 957 /* 958 * Wake up (if active) both the eventpoll wait list and the ->poll() 959 * wait list (delayed after we release the lock). 960 */ 961 if (waitqueue_active(&ep->wq)) 962 wake_up_locked(&ep->wq); 963 if (waitqueue_active(&ep->poll_wait)) 964 pwake++; 965 } 966 spin_unlock_irqrestore(&ep->lock, flags); 967 968 mutex_unlock(&ep->mtx); 969 970 /* We have to call this outside the lock */ 971 if (pwake) 972 ep_poll_safewake(&psw, &ep->poll_wait); 973 974 return eventcnt == 0 ? error: eventcnt; 975 } 976 977 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 978 int maxevents, long timeout) 979 { 980 int res, eavail; 981 unsigned long flags; 982 long jtimeout; 983 wait_queue_t wait; 984 985 /* 986 * Calculate the timeout by checking for the "infinite" value ( -1 ) 987 * and the overflow condition. The passed timeout is in milliseconds, 988 * that why (t * HZ) / 1000. 989 */ 990 jtimeout = (timeout < 0 || timeout >= EP_MAX_MSTIMEO) ? 991 MAX_SCHEDULE_TIMEOUT : (timeout * HZ + 999) / 1000; 992 993 retry: 994 spin_lock_irqsave(&ep->lock, flags); 995 996 res = 0; 997 if (list_empty(&ep->rdllist)) { 998 /* 999 * We don't have any available event to return to the caller. 1000 * We need to sleep here, and we will be wake up by 1001 * ep_poll_callback() when events will become available. 1002 */ 1003 init_waitqueue_entry(&wait, current); 1004 wait.flags |= WQ_FLAG_EXCLUSIVE; 1005 __add_wait_queue(&ep->wq, &wait); 1006 1007 for (;;) { 1008 /* 1009 * We don't want to sleep if the ep_poll_callback() sends us 1010 * a wakeup in between. That's why we set the task state 1011 * to TASK_INTERRUPTIBLE before doing the checks. 1012 */ 1013 set_current_state(TASK_INTERRUPTIBLE); 1014 if (!list_empty(&ep->rdllist) || !jtimeout) 1015 break; 1016 if (signal_pending(current)) { 1017 res = -EINTR; 1018 break; 1019 } 1020 1021 spin_unlock_irqrestore(&ep->lock, flags); 1022 jtimeout = schedule_timeout(jtimeout); 1023 spin_lock_irqsave(&ep->lock, flags); 1024 } 1025 __remove_wait_queue(&ep->wq, &wait); 1026 1027 set_current_state(TASK_RUNNING); 1028 } 1029 1030 /* Is it worth to try to dig for events ? */ 1031 eavail = !list_empty(&ep->rdllist); 1032 1033 spin_unlock_irqrestore(&ep->lock, flags); 1034 1035 /* 1036 * Try to transfer events to user space. In case we get 0 events and 1037 * there's still timeout left over, we go trying again in search of 1038 * more luck. 1039 */ 1040 if (!res && eavail && 1041 !(res = ep_send_events(ep, events, maxevents)) && jtimeout) 1042 goto retry; 1043 1044 return res; 1045 } 1046 1047 /* 1048 * Open an eventpoll file descriptor. 1049 */ 1050 asmlinkage long sys_epoll_create1(int flags) 1051 { 1052 int error, fd = -1; 1053 struct eventpoll *ep; 1054 1055 /* Check the EPOLL_* constant for consistency. */ 1056 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 1057 1058 if (flags & ~EPOLL_CLOEXEC) 1059 return -EINVAL; 1060 1061 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d)\n", 1062 current, flags)); 1063 1064 /* 1065 * Create the internal data structure ( "struct eventpoll" ). 1066 */ 1067 error = ep_alloc(&ep); 1068 if (error < 0) { 1069 fd = error; 1070 goto error_return; 1071 } 1072 1073 /* 1074 * Creates all the items needed to setup an eventpoll file. That is, 1075 * a file structure and a free file descriptor. 1076 */ 1077 fd = anon_inode_getfd("[eventpoll]", &eventpoll_fops, ep, 1078 flags & O_CLOEXEC); 1079 if (fd < 0) 1080 ep_free(ep); 1081 1082 error_return: 1083 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d) = %d\n", 1084 current, flags, fd)); 1085 1086 return fd; 1087 } 1088 1089 asmlinkage long sys_epoll_create(int size) 1090 { 1091 if (size < 0) 1092 return -EINVAL; 1093 1094 return sys_epoll_create1(0); 1095 } 1096 1097 /* 1098 * The following function implements the controller interface for 1099 * the eventpoll file that enables the insertion/removal/change of 1100 * file descriptors inside the interest set. 1101 */ 1102 asmlinkage long sys_epoll_ctl(int epfd, int op, int fd, 1103 struct epoll_event __user *event) 1104 { 1105 int error; 1106 struct file *file, *tfile; 1107 struct eventpoll *ep; 1108 struct epitem *epi; 1109 struct epoll_event epds; 1110 1111 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_ctl(%d, %d, %d, %p)\n", 1112 current, epfd, op, fd, event)); 1113 1114 error = -EFAULT; 1115 if (ep_op_has_event(op) && 1116 copy_from_user(&epds, event, sizeof(struct epoll_event))) 1117 goto error_return; 1118 1119 /* Get the "struct file *" for the eventpoll file */ 1120 error = -EBADF; 1121 file = fget(epfd); 1122 if (!file) 1123 goto error_return; 1124 1125 /* Get the "struct file *" for the target file */ 1126 tfile = fget(fd); 1127 if (!tfile) 1128 goto error_fput; 1129 1130 /* The target file descriptor must support poll */ 1131 error = -EPERM; 1132 if (!tfile->f_op || !tfile->f_op->poll) 1133 goto error_tgt_fput; 1134 1135 /* 1136 * We have to check that the file structure underneath the file descriptor 1137 * the user passed to us _is_ an eventpoll file. And also we do not permit 1138 * adding an epoll file descriptor inside itself. 1139 */ 1140 error = -EINVAL; 1141 if (file == tfile || !is_file_epoll(file)) 1142 goto error_tgt_fput; 1143 1144 /* 1145 * At this point it is safe to assume that the "private_data" contains 1146 * our own data structure. 1147 */ 1148 ep = file->private_data; 1149 1150 mutex_lock(&ep->mtx); 1151 1152 /* 1153 * Try to lookup the file inside our RB tree, Since we grabbed "mtx" 1154 * above, we can be sure to be able to use the item looked up by 1155 * ep_find() till we release the mutex. 1156 */ 1157 epi = ep_find(ep, tfile, fd); 1158 1159 error = -EINVAL; 1160 switch (op) { 1161 case EPOLL_CTL_ADD: 1162 if (!epi) { 1163 epds.events |= POLLERR | POLLHUP; 1164 1165 error = ep_insert(ep, &epds, tfile, fd); 1166 } else 1167 error = -EEXIST; 1168 break; 1169 case EPOLL_CTL_DEL: 1170 if (epi) 1171 error = ep_remove(ep, epi); 1172 else 1173 error = -ENOENT; 1174 break; 1175 case EPOLL_CTL_MOD: 1176 if (epi) { 1177 epds.events |= POLLERR | POLLHUP; 1178 error = ep_modify(ep, epi, &epds); 1179 } else 1180 error = -ENOENT; 1181 break; 1182 } 1183 mutex_unlock(&ep->mtx); 1184 1185 error_tgt_fput: 1186 fput(tfile); 1187 error_fput: 1188 fput(file); 1189 error_return: 1190 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_ctl(%d, %d, %d, %p) = %d\n", 1191 current, epfd, op, fd, event, error)); 1192 1193 return error; 1194 } 1195 1196 /* 1197 * Implement the event wait interface for the eventpoll file. It is the kernel 1198 * part of the user space epoll_wait(2). 1199 */ 1200 asmlinkage long sys_epoll_wait(int epfd, struct epoll_event __user *events, 1201 int maxevents, int timeout) 1202 { 1203 int error; 1204 struct file *file; 1205 struct eventpoll *ep; 1206 1207 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_wait(%d, %p, %d, %d)\n", 1208 current, epfd, events, maxevents, timeout)); 1209 1210 /* The maximum number of event must be greater than zero */ 1211 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 1212 return -EINVAL; 1213 1214 /* Verify that the area passed by the user is writeable */ 1215 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) { 1216 error = -EFAULT; 1217 goto error_return; 1218 } 1219 1220 /* Get the "struct file *" for the eventpoll file */ 1221 error = -EBADF; 1222 file = fget(epfd); 1223 if (!file) 1224 goto error_return; 1225 1226 /* 1227 * We have to check that the file structure underneath the fd 1228 * the user passed to us _is_ an eventpoll file. 1229 */ 1230 error = -EINVAL; 1231 if (!is_file_epoll(file)) 1232 goto error_fput; 1233 1234 /* 1235 * At this point it is safe to assume that the "private_data" contains 1236 * our own data structure. 1237 */ 1238 ep = file->private_data; 1239 1240 /* Time to fish for events ... */ 1241 error = ep_poll(ep, events, maxevents, timeout); 1242 1243 error_fput: 1244 fput(file); 1245 error_return: 1246 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_wait(%d, %p, %d, %d) = %d\n", 1247 current, epfd, events, maxevents, timeout, error)); 1248 1249 return error; 1250 } 1251 1252 #ifdef HAVE_SET_RESTORE_SIGMASK 1253 1254 /* 1255 * Implement the event wait interface for the eventpoll file. It is the kernel 1256 * part of the user space epoll_pwait(2). 1257 */ 1258 asmlinkage long sys_epoll_pwait(int epfd, struct epoll_event __user *events, 1259 int maxevents, int timeout, const sigset_t __user *sigmask, 1260 size_t sigsetsize) 1261 { 1262 int error; 1263 sigset_t ksigmask, sigsaved; 1264 1265 /* 1266 * If the caller wants a certain signal mask to be set during the wait, 1267 * we apply it here. 1268 */ 1269 if (sigmask) { 1270 if (sigsetsize != sizeof(sigset_t)) 1271 return -EINVAL; 1272 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask))) 1273 return -EFAULT; 1274 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 1275 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved); 1276 } 1277 1278 error = sys_epoll_wait(epfd, events, maxevents, timeout); 1279 1280 /* 1281 * If we changed the signal mask, we need to restore the original one. 1282 * In case we've got a signal while waiting, we do not restore the 1283 * signal mask yet, and we allow do_signal() to deliver the signal on 1284 * the way back to userspace, before the signal mask is restored. 1285 */ 1286 if (sigmask) { 1287 if (error == -EINTR) { 1288 memcpy(¤t->saved_sigmask, &sigsaved, 1289 sizeof(sigsaved)); 1290 set_restore_sigmask(); 1291 } else 1292 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 1293 } 1294 1295 return error; 1296 } 1297 1298 #endif /* HAVE_SET_RESTORE_SIGMASK */ 1299 1300 static int __init eventpoll_init(void) 1301 { 1302 mutex_init(&epmutex); 1303 1304 /* Initialize the structure used to perform safe poll wait head wake ups */ 1305 ep_poll_safewake_init(&psw); 1306 1307 /* Allocates slab cache used to allocate "struct epitem" items */ 1308 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 1309 0, SLAB_HWCACHE_ALIGN|EPI_SLAB_DEBUG|SLAB_PANIC, 1310 NULL); 1311 1312 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 1313 pwq_cache = kmem_cache_create("eventpoll_pwq", 1314 sizeof(struct eppoll_entry), 0, 1315 EPI_SLAB_DEBUG|SLAB_PANIC, NULL); 1316 1317 return 0; 1318 } 1319 fs_initcall(eventpoll_init); 1320