xref: /openbmc/linux/fs/eventpoll.c (revision 2c684d89)
1 /*
2  *  fs/eventpoll.c (Efficient event retrieval implementation)
3  *  Copyright (C) 2001,...,2009	 Davide Libenzi
4  *
5  *  This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation; either version 2 of the License, or
8  *  (at your option) any later version.
9  *
10  *  Davide Libenzi <davidel@xmailserver.org>
11  *
12  */
13 
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/device.h>
37 #include <asm/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <linux/atomic.h>
41 #include <linux/proc_fs.h>
42 #include <linux/seq_file.h>
43 #include <linux/compat.h>
44 #include <linux/rculist.h>
45 
46 /*
47  * LOCKING:
48  * There are three level of locking required by epoll :
49  *
50  * 1) epmutex (mutex)
51  * 2) ep->mtx (mutex)
52  * 3) ep->lock (spinlock)
53  *
54  * The acquire order is the one listed above, from 1 to 3.
55  * We need a spinlock (ep->lock) because we manipulate objects
56  * from inside the poll callback, that might be triggered from
57  * a wake_up() that in turn might be called from IRQ context.
58  * So we can't sleep inside the poll callback and hence we need
59  * a spinlock. During the event transfer loop (from kernel to
60  * user space) we could end up sleeping due a copy_to_user(), so
61  * we need a lock that will allow us to sleep. This lock is a
62  * mutex (ep->mtx). It is acquired during the event transfer loop,
63  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
64  * Then we also need a global mutex to serialize eventpoll_release_file()
65  * and ep_free().
66  * This mutex is acquired by ep_free() during the epoll file
67  * cleanup path and it is also acquired by eventpoll_release_file()
68  * if a file has been pushed inside an epoll set and it is then
69  * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
70  * It is also acquired when inserting an epoll fd onto another epoll
71  * fd. We do this so that we walk the epoll tree and ensure that this
72  * insertion does not create a cycle of epoll file descriptors, which
73  * could lead to deadlock. We need a global mutex to prevent two
74  * simultaneous inserts (A into B and B into A) from racing and
75  * constructing a cycle without either insert observing that it is
76  * going to.
77  * It is necessary to acquire multiple "ep->mtx"es at once in the
78  * case when one epoll fd is added to another. In this case, we
79  * always acquire the locks in the order of nesting (i.e. after
80  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
81  * before e2->mtx). Since we disallow cycles of epoll file
82  * descriptors, this ensures that the mutexes are well-ordered. In
83  * order to communicate this nesting to lockdep, when walking a tree
84  * of epoll file descriptors, we use the current recursion depth as
85  * the lockdep subkey.
86  * It is possible to drop the "ep->mtx" and to use the global
87  * mutex "epmutex" (together with "ep->lock") to have it working,
88  * but having "ep->mtx" will make the interface more scalable.
89  * Events that require holding "epmutex" are very rare, while for
90  * normal operations the epoll private "ep->mtx" will guarantee
91  * a better scalability.
92  */
93 
94 /* Epoll private bits inside the event mask */
95 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET)
96 
97 /* Maximum number of nesting allowed inside epoll sets */
98 #define EP_MAX_NESTS 4
99 
100 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
101 
102 #define EP_UNACTIVE_PTR ((void *) -1L)
103 
104 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
105 
106 struct epoll_filefd {
107 	struct file *file;
108 	int fd;
109 } __packed;
110 
111 /*
112  * Structure used to track possible nested calls, for too deep recursions
113  * and loop cycles.
114  */
115 struct nested_call_node {
116 	struct list_head llink;
117 	void *cookie;
118 	void *ctx;
119 };
120 
121 /*
122  * This structure is used as collector for nested calls, to check for
123  * maximum recursion dept and loop cycles.
124  */
125 struct nested_calls {
126 	struct list_head tasks_call_list;
127 	spinlock_t lock;
128 };
129 
130 /*
131  * Each file descriptor added to the eventpoll interface will
132  * have an entry of this type linked to the "rbr" RB tree.
133  * Avoid increasing the size of this struct, there can be many thousands
134  * of these on a server and we do not want this to take another cache line.
135  */
136 struct epitem {
137 	union {
138 		/* RB tree node links this structure to the eventpoll RB tree */
139 		struct rb_node rbn;
140 		/* Used to free the struct epitem */
141 		struct rcu_head rcu;
142 	};
143 
144 	/* List header used to link this structure to the eventpoll ready list */
145 	struct list_head rdllink;
146 
147 	/*
148 	 * Works together "struct eventpoll"->ovflist in keeping the
149 	 * single linked chain of items.
150 	 */
151 	struct epitem *next;
152 
153 	/* The file descriptor information this item refers to */
154 	struct epoll_filefd ffd;
155 
156 	/* Number of active wait queue attached to poll operations */
157 	int nwait;
158 
159 	/* List containing poll wait queues */
160 	struct list_head pwqlist;
161 
162 	/* The "container" of this item */
163 	struct eventpoll *ep;
164 
165 	/* List header used to link this item to the "struct file" items list */
166 	struct list_head fllink;
167 
168 	/* wakeup_source used when EPOLLWAKEUP is set */
169 	struct wakeup_source __rcu *ws;
170 
171 	/* The structure that describe the interested events and the source fd */
172 	struct epoll_event event;
173 };
174 
175 /*
176  * This structure is stored inside the "private_data" member of the file
177  * structure and represents the main data structure for the eventpoll
178  * interface.
179  */
180 struct eventpoll {
181 	/* Protect the access to this structure */
182 	spinlock_t lock;
183 
184 	/*
185 	 * This mutex is used to ensure that files are not removed
186 	 * while epoll is using them. This is held during the event
187 	 * collection loop, the file cleanup path, the epoll file exit
188 	 * code and the ctl operations.
189 	 */
190 	struct mutex mtx;
191 
192 	/* Wait queue used by sys_epoll_wait() */
193 	wait_queue_head_t wq;
194 
195 	/* Wait queue used by file->poll() */
196 	wait_queue_head_t poll_wait;
197 
198 	/* List of ready file descriptors */
199 	struct list_head rdllist;
200 
201 	/* RB tree root used to store monitored fd structs */
202 	struct rb_root rbr;
203 
204 	/*
205 	 * This is a single linked list that chains all the "struct epitem" that
206 	 * happened while transferring ready events to userspace w/out
207 	 * holding ->lock.
208 	 */
209 	struct epitem *ovflist;
210 
211 	/* wakeup_source used when ep_scan_ready_list is running */
212 	struct wakeup_source *ws;
213 
214 	/* The user that created the eventpoll descriptor */
215 	struct user_struct *user;
216 
217 	struct file *file;
218 
219 	/* used to optimize loop detection check */
220 	int visited;
221 	struct list_head visited_list_link;
222 };
223 
224 /* Wait structure used by the poll hooks */
225 struct eppoll_entry {
226 	/* List header used to link this structure to the "struct epitem" */
227 	struct list_head llink;
228 
229 	/* The "base" pointer is set to the container "struct epitem" */
230 	struct epitem *base;
231 
232 	/*
233 	 * Wait queue item that will be linked to the target file wait
234 	 * queue head.
235 	 */
236 	wait_queue_t wait;
237 
238 	/* The wait queue head that linked the "wait" wait queue item */
239 	wait_queue_head_t *whead;
240 };
241 
242 /* Wrapper struct used by poll queueing */
243 struct ep_pqueue {
244 	poll_table pt;
245 	struct epitem *epi;
246 };
247 
248 /* Used by the ep_send_events() function as callback private data */
249 struct ep_send_events_data {
250 	int maxevents;
251 	struct epoll_event __user *events;
252 };
253 
254 /*
255  * Configuration options available inside /proc/sys/fs/epoll/
256  */
257 /* Maximum number of epoll watched descriptors, per user */
258 static long max_user_watches __read_mostly;
259 
260 /*
261  * This mutex is used to serialize ep_free() and eventpoll_release_file().
262  */
263 static DEFINE_MUTEX(epmutex);
264 
265 /* Used to check for epoll file descriptor inclusion loops */
266 static struct nested_calls poll_loop_ncalls;
267 
268 /* Used for safe wake up implementation */
269 static struct nested_calls poll_safewake_ncalls;
270 
271 /* Used to call file's f_op->poll() under the nested calls boundaries */
272 static struct nested_calls poll_readywalk_ncalls;
273 
274 /* Slab cache used to allocate "struct epitem" */
275 static struct kmem_cache *epi_cache __read_mostly;
276 
277 /* Slab cache used to allocate "struct eppoll_entry" */
278 static struct kmem_cache *pwq_cache __read_mostly;
279 
280 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
281 static LIST_HEAD(visited_list);
282 
283 /*
284  * List of files with newly added links, where we may need to limit the number
285  * of emanating paths. Protected by the epmutex.
286  */
287 static LIST_HEAD(tfile_check_list);
288 
289 #ifdef CONFIG_SYSCTL
290 
291 #include <linux/sysctl.h>
292 
293 static long zero;
294 static long long_max = LONG_MAX;
295 
296 struct ctl_table epoll_table[] = {
297 	{
298 		.procname	= "max_user_watches",
299 		.data		= &max_user_watches,
300 		.maxlen		= sizeof(max_user_watches),
301 		.mode		= 0644,
302 		.proc_handler	= proc_doulongvec_minmax,
303 		.extra1		= &zero,
304 		.extra2		= &long_max,
305 	},
306 	{ }
307 };
308 #endif /* CONFIG_SYSCTL */
309 
310 static const struct file_operations eventpoll_fops;
311 
312 static inline int is_file_epoll(struct file *f)
313 {
314 	return f->f_op == &eventpoll_fops;
315 }
316 
317 /* Setup the structure that is used as key for the RB tree */
318 static inline void ep_set_ffd(struct epoll_filefd *ffd,
319 			      struct file *file, int fd)
320 {
321 	ffd->file = file;
322 	ffd->fd = fd;
323 }
324 
325 /* Compare RB tree keys */
326 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
327 			     struct epoll_filefd *p2)
328 {
329 	return (p1->file > p2->file ? +1:
330 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
331 }
332 
333 /* Tells us if the item is currently linked */
334 static inline int ep_is_linked(struct list_head *p)
335 {
336 	return !list_empty(p);
337 }
338 
339 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_t *p)
340 {
341 	return container_of(p, struct eppoll_entry, wait);
342 }
343 
344 /* Get the "struct epitem" from a wait queue pointer */
345 static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
346 {
347 	return container_of(p, struct eppoll_entry, wait)->base;
348 }
349 
350 /* Get the "struct epitem" from an epoll queue wrapper */
351 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
352 {
353 	return container_of(p, struct ep_pqueue, pt)->epi;
354 }
355 
356 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
357 static inline int ep_op_has_event(int op)
358 {
359 	return op != EPOLL_CTL_DEL;
360 }
361 
362 /* Initialize the poll safe wake up structure */
363 static void ep_nested_calls_init(struct nested_calls *ncalls)
364 {
365 	INIT_LIST_HEAD(&ncalls->tasks_call_list);
366 	spin_lock_init(&ncalls->lock);
367 }
368 
369 /**
370  * ep_events_available - Checks if ready events might be available.
371  *
372  * @ep: Pointer to the eventpoll context.
373  *
374  * Returns: Returns a value different than zero if ready events are available,
375  *          or zero otherwise.
376  */
377 static inline int ep_events_available(struct eventpoll *ep)
378 {
379 	return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
380 }
381 
382 /**
383  * ep_call_nested - Perform a bound (possibly) nested call, by checking
384  *                  that the recursion limit is not exceeded, and that
385  *                  the same nested call (by the meaning of same cookie) is
386  *                  no re-entered.
387  *
388  * @ncalls: Pointer to the nested_calls structure to be used for this call.
389  * @max_nests: Maximum number of allowed nesting calls.
390  * @nproc: Nested call core function pointer.
391  * @priv: Opaque data to be passed to the @nproc callback.
392  * @cookie: Cookie to be used to identify this nested call.
393  * @ctx: This instance context.
394  *
395  * Returns: Returns the code returned by the @nproc callback, or -1 if
396  *          the maximum recursion limit has been exceeded.
397  */
398 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
399 			  int (*nproc)(void *, void *, int), void *priv,
400 			  void *cookie, void *ctx)
401 {
402 	int error, call_nests = 0;
403 	unsigned long flags;
404 	struct list_head *lsthead = &ncalls->tasks_call_list;
405 	struct nested_call_node *tncur;
406 	struct nested_call_node tnode;
407 
408 	spin_lock_irqsave(&ncalls->lock, flags);
409 
410 	/*
411 	 * Try to see if the current task is already inside this wakeup call.
412 	 * We use a list here, since the population inside this set is always
413 	 * very much limited.
414 	 */
415 	list_for_each_entry(tncur, lsthead, llink) {
416 		if (tncur->ctx == ctx &&
417 		    (tncur->cookie == cookie || ++call_nests > max_nests)) {
418 			/*
419 			 * Ops ... loop detected or maximum nest level reached.
420 			 * We abort this wake by breaking the cycle itself.
421 			 */
422 			error = -1;
423 			goto out_unlock;
424 		}
425 	}
426 
427 	/* Add the current task and cookie to the list */
428 	tnode.ctx = ctx;
429 	tnode.cookie = cookie;
430 	list_add(&tnode.llink, lsthead);
431 
432 	spin_unlock_irqrestore(&ncalls->lock, flags);
433 
434 	/* Call the nested function */
435 	error = (*nproc)(priv, cookie, call_nests);
436 
437 	/* Remove the current task from the list */
438 	spin_lock_irqsave(&ncalls->lock, flags);
439 	list_del(&tnode.llink);
440 out_unlock:
441 	spin_unlock_irqrestore(&ncalls->lock, flags);
442 
443 	return error;
444 }
445 
446 /*
447  * As described in commit 0ccf831cb lockdep: annotate epoll
448  * the use of wait queues used by epoll is done in a very controlled
449  * manner. Wake ups can nest inside each other, but are never done
450  * with the same locking. For example:
451  *
452  *   dfd = socket(...);
453  *   efd1 = epoll_create();
454  *   efd2 = epoll_create();
455  *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
456  *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
457  *
458  * When a packet arrives to the device underneath "dfd", the net code will
459  * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
460  * callback wakeup entry on that queue, and the wake_up() performed by the
461  * "dfd" net code will end up in ep_poll_callback(). At this point epoll
462  * (efd1) notices that it may have some event ready, so it needs to wake up
463  * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
464  * that ends up in another wake_up(), after having checked about the
465  * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
466  * avoid stack blasting.
467  *
468  * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
469  * this special case of epoll.
470  */
471 #ifdef CONFIG_DEBUG_LOCK_ALLOC
472 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
473 				     unsigned long events, int subclass)
474 {
475 	unsigned long flags;
476 
477 	spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
478 	wake_up_locked_poll(wqueue, events);
479 	spin_unlock_irqrestore(&wqueue->lock, flags);
480 }
481 #else
482 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
483 				     unsigned long events, int subclass)
484 {
485 	wake_up_poll(wqueue, events);
486 }
487 #endif
488 
489 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
490 {
491 	ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
492 			  1 + call_nests);
493 	return 0;
494 }
495 
496 /*
497  * Perform a safe wake up of the poll wait list. The problem is that
498  * with the new callback'd wake up system, it is possible that the
499  * poll callback is reentered from inside the call to wake_up() done
500  * on the poll wait queue head. The rule is that we cannot reenter the
501  * wake up code from the same task more than EP_MAX_NESTS times,
502  * and we cannot reenter the same wait queue head at all. This will
503  * enable to have a hierarchy of epoll file descriptor of no more than
504  * EP_MAX_NESTS deep.
505  */
506 static void ep_poll_safewake(wait_queue_head_t *wq)
507 {
508 	int this_cpu = get_cpu();
509 
510 	ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
511 		       ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
512 
513 	put_cpu();
514 }
515 
516 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
517 {
518 	wait_queue_head_t *whead;
519 
520 	rcu_read_lock();
521 	/* If it is cleared by POLLFREE, it should be rcu-safe */
522 	whead = rcu_dereference(pwq->whead);
523 	if (whead)
524 		remove_wait_queue(whead, &pwq->wait);
525 	rcu_read_unlock();
526 }
527 
528 /*
529  * This function unregisters poll callbacks from the associated file
530  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
531  * ep_free).
532  */
533 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
534 {
535 	struct list_head *lsthead = &epi->pwqlist;
536 	struct eppoll_entry *pwq;
537 
538 	while (!list_empty(lsthead)) {
539 		pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
540 
541 		list_del(&pwq->llink);
542 		ep_remove_wait_queue(pwq);
543 		kmem_cache_free(pwq_cache, pwq);
544 	}
545 }
546 
547 /* call only when ep->mtx is held */
548 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
549 {
550 	return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
551 }
552 
553 /* call only when ep->mtx is held */
554 static inline void ep_pm_stay_awake(struct epitem *epi)
555 {
556 	struct wakeup_source *ws = ep_wakeup_source(epi);
557 
558 	if (ws)
559 		__pm_stay_awake(ws);
560 }
561 
562 static inline bool ep_has_wakeup_source(struct epitem *epi)
563 {
564 	return rcu_access_pointer(epi->ws) ? true : false;
565 }
566 
567 /* call when ep->mtx cannot be held (ep_poll_callback) */
568 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
569 {
570 	struct wakeup_source *ws;
571 
572 	rcu_read_lock();
573 	ws = rcu_dereference(epi->ws);
574 	if (ws)
575 		__pm_stay_awake(ws);
576 	rcu_read_unlock();
577 }
578 
579 /**
580  * ep_scan_ready_list - Scans the ready list in a way that makes possible for
581  *                      the scan code, to call f_op->poll(). Also allows for
582  *                      O(NumReady) performance.
583  *
584  * @ep: Pointer to the epoll private data structure.
585  * @sproc: Pointer to the scan callback.
586  * @priv: Private opaque data passed to the @sproc callback.
587  * @depth: The current depth of recursive f_op->poll calls.
588  * @ep_locked: caller already holds ep->mtx
589  *
590  * Returns: The same integer error code returned by the @sproc callback.
591  */
592 static int ep_scan_ready_list(struct eventpoll *ep,
593 			      int (*sproc)(struct eventpoll *,
594 					   struct list_head *, void *),
595 			      void *priv, int depth, bool ep_locked)
596 {
597 	int error, pwake = 0;
598 	unsigned long flags;
599 	struct epitem *epi, *nepi;
600 	LIST_HEAD(txlist);
601 
602 	/*
603 	 * We need to lock this because we could be hit by
604 	 * eventpoll_release_file() and epoll_ctl().
605 	 */
606 
607 	if (!ep_locked)
608 		mutex_lock_nested(&ep->mtx, depth);
609 
610 	/*
611 	 * Steal the ready list, and re-init the original one to the
612 	 * empty list. Also, set ep->ovflist to NULL so that events
613 	 * happening while looping w/out locks, are not lost. We cannot
614 	 * have the poll callback to queue directly on ep->rdllist,
615 	 * because we want the "sproc" callback to be able to do it
616 	 * in a lockless way.
617 	 */
618 	spin_lock_irqsave(&ep->lock, flags);
619 	list_splice_init(&ep->rdllist, &txlist);
620 	ep->ovflist = NULL;
621 	spin_unlock_irqrestore(&ep->lock, flags);
622 
623 	/*
624 	 * Now call the callback function.
625 	 */
626 	error = (*sproc)(ep, &txlist, priv);
627 
628 	spin_lock_irqsave(&ep->lock, flags);
629 	/*
630 	 * During the time we spent inside the "sproc" callback, some
631 	 * other events might have been queued by the poll callback.
632 	 * We re-insert them inside the main ready-list here.
633 	 */
634 	for (nepi = ep->ovflist; (epi = nepi) != NULL;
635 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
636 		/*
637 		 * We need to check if the item is already in the list.
638 		 * During the "sproc" callback execution time, items are
639 		 * queued into ->ovflist but the "txlist" might already
640 		 * contain them, and the list_splice() below takes care of them.
641 		 */
642 		if (!ep_is_linked(&epi->rdllink)) {
643 			list_add_tail(&epi->rdllink, &ep->rdllist);
644 			ep_pm_stay_awake(epi);
645 		}
646 	}
647 	/*
648 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
649 	 * releasing the lock, events will be queued in the normal way inside
650 	 * ep->rdllist.
651 	 */
652 	ep->ovflist = EP_UNACTIVE_PTR;
653 
654 	/*
655 	 * Quickly re-inject items left on "txlist".
656 	 */
657 	list_splice(&txlist, &ep->rdllist);
658 	__pm_relax(ep->ws);
659 
660 	if (!list_empty(&ep->rdllist)) {
661 		/*
662 		 * Wake up (if active) both the eventpoll wait list and
663 		 * the ->poll() wait list (delayed after we release the lock).
664 		 */
665 		if (waitqueue_active(&ep->wq))
666 			wake_up_locked(&ep->wq);
667 		if (waitqueue_active(&ep->poll_wait))
668 			pwake++;
669 	}
670 	spin_unlock_irqrestore(&ep->lock, flags);
671 
672 	if (!ep_locked)
673 		mutex_unlock(&ep->mtx);
674 
675 	/* We have to call this outside the lock */
676 	if (pwake)
677 		ep_poll_safewake(&ep->poll_wait);
678 
679 	return error;
680 }
681 
682 static void epi_rcu_free(struct rcu_head *head)
683 {
684 	struct epitem *epi = container_of(head, struct epitem, rcu);
685 	kmem_cache_free(epi_cache, epi);
686 }
687 
688 /*
689  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
690  * all the associated resources. Must be called with "mtx" held.
691  */
692 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
693 {
694 	unsigned long flags;
695 	struct file *file = epi->ffd.file;
696 
697 	/*
698 	 * Removes poll wait queue hooks. We _have_ to do this without holding
699 	 * the "ep->lock" otherwise a deadlock might occur. This because of the
700 	 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
701 	 * queue head lock when unregistering the wait queue. The wakeup callback
702 	 * will run by holding the wait queue head lock and will call our callback
703 	 * that will try to get "ep->lock".
704 	 */
705 	ep_unregister_pollwait(ep, epi);
706 
707 	/* Remove the current item from the list of epoll hooks */
708 	spin_lock(&file->f_lock);
709 	list_del_rcu(&epi->fllink);
710 	spin_unlock(&file->f_lock);
711 
712 	rb_erase(&epi->rbn, &ep->rbr);
713 
714 	spin_lock_irqsave(&ep->lock, flags);
715 	if (ep_is_linked(&epi->rdllink))
716 		list_del_init(&epi->rdllink);
717 	spin_unlock_irqrestore(&ep->lock, flags);
718 
719 	wakeup_source_unregister(ep_wakeup_source(epi));
720 	/*
721 	 * At this point it is safe to free the eventpoll item. Use the union
722 	 * field epi->rcu, since we are trying to minimize the size of
723 	 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
724 	 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
725 	 * use of the rbn field.
726 	 */
727 	call_rcu(&epi->rcu, epi_rcu_free);
728 
729 	atomic_long_dec(&ep->user->epoll_watches);
730 
731 	return 0;
732 }
733 
734 static void ep_free(struct eventpoll *ep)
735 {
736 	struct rb_node *rbp;
737 	struct epitem *epi;
738 
739 	/* We need to release all tasks waiting for these file */
740 	if (waitqueue_active(&ep->poll_wait))
741 		ep_poll_safewake(&ep->poll_wait);
742 
743 	/*
744 	 * We need to lock this because we could be hit by
745 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
746 	 * We do not need to hold "ep->mtx" here because the epoll file
747 	 * is on the way to be removed and no one has references to it
748 	 * anymore. The only hit might come from eventpoll_release_file() but
749 	 * holding "epmutex" is sufficient here.
750 	 */
751 	mutex_lock(&epmutex);
752 
753 	/*
754 	 * Walks through the whole tree by unregistering poll callbacks.
755 	 */
756 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
757 		epi = rb_entry(rbp, struct epitem, rbn);
758 
759 		ep_unregister_pollwait(ep, epi);
760 		cond_resched();
761 	}
762 
763 	/*
764 	 * Walks through the whole tree by freeing each "struct epitem". At this
765 	 * point we are sure no poll callbacks will be lingering around, and also by
766 	 * holding "epmutex" we can be sure that no file cleanup code will hit
767 	 * us during this operation. So we can avoid the lock on "ep->lock".
768 	 * We do not need to lock ep->mtx, either, we only do it to prevent
769 	 * a lockdep warning.
770 	 */
771 	mutex_lock(&ep->mtx);
772 	while ((rbp = rb_first(&ep->rbr)) != NULL) {
773 		epi = rb_entry(rbp, struct epitem, rbn);
774 		ep_remove(ep, epi);
775 		cond_resched();
776 	}
777 	mutex_unlock(&ep->mtx);
778 
779 	mutex_unlock(&epmutex);
780 	mutex_destroy(&ep->mtx);
781 	free_uid(ep->user);
782 	wakeup_source_unregister(ep->ws);
783 	kfree(ep);
784 }
785 
786 static int ep_eventpoll_release(struct inode *inode, struct file *file)
787 {
788 	struct eventpoll *ep = file->private_data;
789 
790 	if (ep)
791 		ep_free(ep);
792 
793 	return 0;
794 }
795 
796 static inline unsigned int ep_item_poll(struct epitem *epi, poll_table *pt)
797 {
798 	pt->_key = epi->event.events;
799 
800 	return epi->ffd.file->f_op->poll(epi->ffd.file, pt) & epi->event.events;
801 }
802 
803 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
804 			       void *priv)
805 {
806 	struct epitem *epi, *tmp;
807 	poll_table pt;
808 
809 	init_poll_funcptr(&pt, NULL);
810 
811 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
812 		if (ep_item_poll(epi, &pt))
813 			return POLLIN | POLLRDNORM;
814 		else {
815 			/*
816 			 * Item has been dropped into the ready list by the poll
817 			 * callback, but it's not actually ready, as far as
818 			 * caller requested events goes. We can remove it here.
819 			 */
820 			__pm_relax(ep_wakeup_source(epi));
821 			list_del_init(&epi->rdllink);
822 		}
823 	}
824 
825 	return 0;
826 }
827 
828 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
829 				 poll_table *pt);
830 
831 struct readyevents_arg {
832 	struct eventpoll *ep;
833 	bool locked;
834 };
835 
836 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
837 {
838 	struct readyevents_arg *arg = priv;
839 
840 	return ep_scan_ready_list(arg->ep, ep_read_events_proc, NULL,
841 				  call_nests + 1, arg->locked);
842 }
843 
844 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
845 {
846 	int pollflags;
847 	struct eventpoll *ep = file->private_data;
848 	struct readyevents_arg arg;
849 
850 	/*
851 	 * During ep_insert() we already hold the ep->mtx for the tfile.
852 	 * Prevent re-aquisition.
853 	 */
854 	arg.locked = wait && (wait->_qproc == ep_ptable_queue_proc);
855 	arg.ep = ep;
856 
857 	/* Insert inside our poll wait queue */
858 	poll_wait(file, &ep->poll_wait, wait);
859 
860 	/*
861 	 * Proceed to find out if wanted events are really available inside
862 	 * the ready list. This need to be done under ep_call_nested()
863 	 * supervision, since the call to f_op->poll() done on listed files
864 	 * could re-enter here.
865 	 */
866 	pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
867 				   ep_poll_readyevents_proc, &arg, ep, current);
868 
869 	return pollflags != -1 ? pollflags : 0;
870 }
871 
872 #ifdef CONFIG_PROC_FS
873 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
874 {
875 	struct eventpoll *ep = f->private_data;
876 	struct rb_node *rbp;
877 
878 	mutex_lock(&ep->mtx);
879 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
880 		struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
881 
882 		seq_printf(m, "tfd: %8d events: %8x data: %16llx\n",
883 			   epi->ffd.fd, epi->event.events,
884 			   (long long)epi->event.data);
885 		if (seq_has_overflowed(m))
886 			break;
887 	}
888 	mutex_unlock(&ep->mtx);
889 }
890 #endif
891 
892 /* File callbacks that implement the eventpoll file behaviour */
893 static const struct file_operations eventpoll_fops = {
894 #ifdef CONFIG_PROC_FS
895 	.show_fdinfo	= ep_show_fdinfo,
896 #endif
897 	.release	= ep_eventpoll_release,
898 	.poll		= ep_eventpoll_poll,
899 	.llseek		= noop_llseek,
900 };
901 
902 /*
903  * This is called from eventpoll_release() to unlink files from the eventpoll
904  * interface. We need to have this facility to cleanup correctly files that are
905  * closed without being removed from the eventpoll interface.
906  */
907 void eventpoll_release_file(struct file *file)
908 {
909 	struct eventpoll *ep;
910 	struct epitem *epi, *next;
911 
912 	/*
913 	 * We don't want to get "file->f_lock" because it is not
914 	 * necessary. It is not necessary because we're in the "struct file"
915 	 * cleanup path, and this means that no one is using this file anymore.
916 	 * So, for example, epoll_ctl() cannot hit here since if we reach this
917 	 * point, the file counter already went to zero and fget() would fail.
918 	 * The only hit might come from ep_free() but by holding the mutex
919 	 * will correctly serialize the operation. We do need to acquire
920 	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
921 	 * from anywhere but ep_free().
922 	 *
923 	 * Besides, ep_remove() acquires the lock, so we can't hold it here.
924 	 */
925 	mutex_lock(&epmutex);
926 	list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
927 		ep = epi->ep;
928 		mutex_lock_nested(&ep->mtx, 0);
929 		ep_remove(ep, epi);
930 		mutex_unlock(&ep->mtx);
931 	}
932 	mutex_unlock(&epmutex);
933 }
934 
935 static int ep_alloc(struct eventpoll **pep)
936 {
937 	int error;
938 	struct user_struct *user;
939 	struct eventpoll *ep;
940 
941 	user = get_current_user();
942 	error = -ENOMEM;
943 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
944 	if (unlikely(!ep))
945 		goto free_uid;
946 
947 	spin_lock_init(&ep->lock);
948 	mutex_init(&ep->mtx);
949 	init_waitqueue_head(&ep->wq);
950 	init_waitqueue_head(&ep->poll_wait);
951 	INIT_LIST_HEAD(&ep->rdllist);
952 	ep->rbr = RB_ROOT;
953 	ep->ovflist = EP_UNACTIVE_PTR;
954 	ep->user = user;
955 
956 	*pep = ep;
957 
958 	return 0;
959 
960 free_uid:
961 	free_uid(user);
962 	return error;
963 }
964 
965 /*
966  * Search the file inside the eventpoll tree. The RB tree operations
967  * are protected by the "mtx" mutex, and ep_find() must be called with
968  * "mtx" held.
969  */
970 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
971 {
972 	int kcmp;
973 	struct rb_node *rbp;
974 	struct epitem *epi, *epir = NULL;
975 	struct epoll_filefd ffd;
976 
977 	ep_set_ffd(&ffd, file, fd);
978 	for (rbp = ep->rbr.rb_node; rbp; ) {
979 		epi = rb_entry(rbp, struct epitem, rbn);
980 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
981 		if (kcmp > 0)
982 			rbp = rbp->rb_right;
983 		else if (kcmp < 0)
984 			rbp = rbp->rb_left;
985 		else {
986 			epir = epi;
987 			break;
988 		}
989 	}
990 
991 	return epir;
992 }
993 
994 /*
995  * This is the callback that is passed to the wait queue wakeup
996  * mechanism. It is called by the stored file descriptors when they
997  * have events to report.
998  */
999 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
1000 {
1001 	int pwake = 0;
1002 	unsigned long flags;
1003 	struct epitem *epi = ep_item_from_wait(wait);
1004 	struct eventpoll *ep = epi->ep;
1005 
1006 	if ((unsigned long)key & POLLFREE) {
1007 		ep_pwq_from_wait(wait)->whead = NULL;
1008 		/*
1009 		 * whead = NULL above can race with ep_remove_wait_queue()
1010 		 * which can do another remove_wait_queue() after us, so we
1011 		 * can't use __remove_wait_queue(). whead->lock is held by
1012 		 * the caller.
1013 		 */
1014 		list_del_init(&wait->task_list);
1015 	}
1016 
1017 	spin_lock_irqsave(&ep->lock, flags);
1018 
1019 	/*
1020 	 * If the event mask does not contain any poll(2) event, we consider the
1021 	 * descriptor to be disabled. This condition is likely the effect of the
1022 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1023 	 * until the next EPOLL_CTL_MOD will be issued.
1024 	 */
1025 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
1026 		goto out_unlock;
1027 
1028 	/*
1029 	 * Check the events coming with the callback. At this stage, not
1030 	 * every device reports the events in the "key" parameter of the
1031 	 * callback. We need to be able to handle both cases here, hence the
1032 	 * test for "key" != NULL before the event match test.
1033 	 */
1034 	if (key && !((unsigned long) key & epi->event.events))
1035 		goto out_unlock;
1036 
1037 	/*
1038 	 * If we are transferring events to userspace, we can hold no locks
1039 	 * (because we're accessing user memory, and because of linux f_op->poll()
1040 	 * semantics). All the events that happen during that period of time are
1041 	 * chained in ep->ovflist and requeued later on.
1042 	 */
1043 	if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
1044 		if (epi->next == EP_UNACTIVE_PTR) {
1045 			epi->next = ep->ovflist;
1046 			ep->ovflist = epi;
1047 			if (epi->ws) {
1048 				/*
1049 				 * Activate ep->ws since epi->ws may get
1050 				 * deactivated at any time.
1051 				 */
1052 				__pm_stay_awake(ep->ws);
1053 			}
1054 
1055 		}
1056 		goto out_unlock;
1057 	}
1058 
1059 	/* If this file is already in the ready list we exit soon */
1060 	if (!ep_is_linked(&epi->rdllink)) {
1061 		list_add_tail(&epi->rdllink, &ep->rdllist);
1062 		ep_pm_stay_awake_rcu(epi);
1063 	}
1064 
1065 	/*
1066 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1067 	 * wait list.
1068 	 */
1069 	if (waitqueue_active(&ep->wq))
1070 		wake_up_locked(&ep->wq);
1071 	if (waitqueue_active(&ep->poll_wait))
1072 		pwake++;
1073 
1074 out_unlock:
1075 	spin_unlock_irqrestore(&ep->lock, flags);
1076 
1077 	/* We have to call this outside the lock */
1078 	if (pwake)
1079 		ep_poll_safewake(&ep->poll_wait);
1080 
1081 	return 1;
1082 }
1083 
1084 /*
1085  * This is the callback that is used to add our wait queue to the
1086  * target file wakeup lists.
1087  */
1088 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1089 				 poll_table *pt)
1090 {
1091 	struct epitem *epi = ep_item_from_epqueue(pt);
1092 	struct eppoll_entry *pwq;
1093 
1094 	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1095 		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1096 		pwq->whead = whead;
1097 		pwq->base = epi;
1098 		add_wait_queue(whead, &pwq->wait);
1099 		list_add_tail(&pwq->llink, &epi->pwqlist);
1100 		epi->nwait++;
1101 	} else {
1102 		/* We have to signal that an error occurred */
1103 		epi->nwait = -1;
1104 	}
1105 }
1106 
1107 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1108 {
1109 	int kcmp;
1110 	struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
1111 	struct epitem *epic;
1112 
1113 	while (*p) {
1114 		parent = *p;
1115 		epic = rb_entry(parent, struct epitem, rbn);
1116 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1117 		if (kcmp > 0)
1118 			p = &parent->rb_right;
1119 		else
1120 			p = &parent->rb_left;
1121 	}
1122 	rb_link_node(&epi->rbn, parent, p);
1123 	rb_insert_color(&epi->rbn, &ep->rbr);
1124 }
1125 
1126 
1127 
1128 #define PATH_ARR_SIZE 5
1129 /*
1130  * These are the number paths of length 1 to 5, that we are allowing to emanate
1131  * from a single file of interest. For example, we allow 1000 paths of length
1132  * 1, to emanate from each file of interest. This essentially represents the
1133  * potential wakeup paths, which need to be limited in order to avoid massive
1134  * uncontrolled wakeup storms. The common use case should be a single ep which
1135  * is connected to n file sources. In this case each file source has 1 path
1136  * of length 1. Thus, the numbers below should be more than sufficient. These
1137  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1138  * and delete can't add additional paths. Protected by the epmutex.
1139  */
1140 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1141 static int path_count[PATH_ARR_SIZE];
1142 
1143 static int path_count_inc(int nests)
1144 {
1145 	/* Allow an arbitrary number of depth 1 paths */
1146 	if (nests == 0)
1147 		return 0;
1148 
1149 	if (++path_count[nests] > path_limits[nests])
1150 		return -1;
1151 	return 0;
1152 }
1153 
1154 static void path_count_init(void)
1155 {
1156 	int i;
1157 
1158 	for (i = 0; i < PATH_ARR_SIZE; i++)
1159 		path_count[i] = 0;
1160 }
1161 
1162 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1163 {
1164 	int error = 0;
1165 	struct file *file = priv;
1166 	struct file *child_file;
1167 	struct epitem *epi;
1168 
1169 	/* CTL_DEL can remove links here, but that can't increase our count */
1170 	rcu_read_lock();
1171 	list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1172 		child_file = epi->ep->file;
1173 		if (is_file_epoll(child_file)) {
1174 			if (list_empty(&child_file->f_ep_links)) {
1175 				if (path_count_inc(call_nests)) {
1176 					error = -1;
1177 					break;
1178 				}
1179 			} else {
1180 				error = ep_call_nested(&poll_loop_ncalls,
1181 							EP_MAX_NESTS,
1182 							reverse_path_check_proc,
1183 							child_file, child_file,
1184 							current);
1185 			}
1186 			if (error != 0)
1187 				break;
1188 		} else {
1189 			printk(KERN_ERR "reverse_path_check_proc: "
1190 				"file is not an ep!\n");
1191 		}
1192 	}
1193 	rcu_read_unlock();
1194 	return error;
1195 }
1196 
1197 /**
1198  * reverse_path_check - The tfile_check_list is list of file *, which have
1199  *                      links that are proposed to be newly added. We need to
1200  *                      make sure that those added links don't add too many
1201  *                      paths such that we will spend all our time waking up
1202  *                      eventpoll objects.
1203  *
1204  * Returns: Returns zero if the proposed links don't create too many paths,
1205  *	    -1 otherwise.
1206  */
1207 static int reverse_path_check(void)
1208 {
1209 	int error = 0;
1210 	struct file *current_file;
1211 
1212 	/* let's call this for all tfiles */
1213 	list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1214 		path_count_init();
1215 		error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1216 					reverse_path_check_proc, current_file,
1217 					current_file, current);
1218 		if (error)
1219 			break;
1220 	}
1221 	return error;
1222 }
1223 
1224 static int ep_create_wakeup_source(struct epitem *epi)
1225 {
1226 	const char *name;
1227 	struct wakeup_source *ws;
1228 
1229 	if (!epi->ep->ws) {
1230 		epi->ep->ws = wakeup_source_register("eventpoll");
1231 		if (!epi->ep->ws)
1232 			return -ENOMEM;
1233 	}
1234 
1235 	name = epi->ffd.file->f_path.dentry->d_name.name;
1236 	ws = wakeup_source_register(name);
1237 
1238 	if (!ws)
1239 		return -ENOMEM;
1240 	rcu_assign_pointer(epi->ws, ws);
1241 
1242 	return 0;
1243 }
1244 
1245 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1246 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1247 {
1248 	struct wakeup_source *ws = ep_wakeup_source(epi);
1249 
1250 	RCU_INIT_POINTER(epi->ws, NULL);
1251 
1252 	/*
1253 	 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1254 	 * used internally by wakeup_source_remove, too (called by
1255 	 * wakeup_source_unregister), so we cannot use call_rcu
1256 	 */
1257 	synchronize_rcu();
1258 	wakeup_source_unregister(ws);
1259 }
1260 
1261 /*
1262  * Must be called with "mtx" held.
1263  */
1264 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
1265 		     struct file *tfile, int fd, int full_check)
1266 {
1267 	int error, revents, pwake = 0;
1268 	unsigned long flags;
1269 	long user_watches;
1270 	struct epitem *epi;
1271 	struct ep_pqueue epq;
1272 
1273 	user_watches = atomic_long_read(&ep->user->epoll_watches);
1274 	if (unlikely(user_watches >= max_user_watches))
1275 		return -ENOSPC;
1276 	if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1277 		return -ENOMEM;
1278 
1279 	/* Item initialization follow here ... */
1280 	INIT_LIST_HEAD(&epi->rdllink);
1281 	INIT_LIST_HEAD(&epi->fllink);
1282 	INIT_LIST_HEAD(&epi->pwqlist);
1283 	epi->ep = ep;
1284 	ep_set_ffd(&epi->ffd, tfile, fd);
1285 	epi->event = *event;
1286 	epi->nwait = 0;
1287 	epi->next = EP_UNACTIVE_PTR;
1288 	if (epi->event.events & EPOLLWAKEUP) {
1289 		error = ep_create_wakeup_source(epi);
1290 		if (error)
1291 			goto error_create_wakeup_source;
1292 	} else {
1293 		RCU_INIT_POINTER(epi->ws, NULL);
1294 	}
1295 
1296 	/* Initialize the poll table using the queue callback */
1297 	epq.epi = epi;
1298 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1299 
1300 	/*
1301 	 * Attach the item to the poll hooks and get current event bits.
1302 	 * We can safely use the file* here because its usage count has
1303 	 * been increased by the caller of this function. Note that after
1304 	 * this operation completes, the poll callback can start hitting
1305 	 * the new item.
1306 	 */
1307 	revents = ep_item_poll(epi, &epq.pt);
1308 
1309 	/*
1310 	 * We have to check if something went wrong during the poll wait queue
1311 	 * install process. Namely an allocation for a wait queue failed due
1312 	 * high memory pressure.
1313 	 */
1314 	error = -ENOMEM;
1315 	if (epi->nwait < 0)
1316 		goto error_unregister;
1317 
1318 	/* Add the current item to the list of active epoll hook for this file */
1319 	spin_lock(&tfile->f_lock);
1320 	list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1321 	spin_unlock(&tfile->f_lock);
1322 
1323 	/*
1324 	 * Add the current item to the RB tree. All RB tree operations are
1325 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1326 	 */
1327 	ep_rbtree_insert(ep, epi);
1328 
1329 	/* now check if we've created too many backpaths */
1330 	error = -EINVAL;
1331 	if (full_check && reverse_path_check())
1332 		goto error_remove_epi;
1333 
1334 	/* We have to drop the new item inside our item list to keep track of it */
1335 	spin_lock_irqsave(&ep->lock, flags);
1336 
1337 	/* If the file is already "ready" we drop it inside the ready list */
1338 	if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
1339 		list_add_tail(&epi->rdllink, &ep->rdllist);
1340 		ep_pm_stay_awake(epi);
1341 
1342 		/* Notify waiting tasks that events are available */
1343 		if (waitqueue_active(&ep->wq))
1344 			wake_up_locked(&ep->wq);
1345 		if (waitqueue_active(&ep->poll_wait))
1346 			pwake++;
1347 	}
1348 
1349 	spin_unlock_irqrestore(&ep->lock, flags);
1350 
1351 	atomic_long_inc(&ep->user->epoll_watches);
1352 
1353 	/* We have to call this outside the lock */
1354 	if (pwake)
1355 		ep_poll_safewake(&ep->poll_wait);
1356 
1357 	return 0;
1358 
1359 error_remove_epi:
1360 	spin_lock(&tfile->f_lock);
1361 	list_del_rcu(&epi->fllink);
1362 	spin_unlock(&tfile->f_lock);
1363 
1364 	rb_erase(&epi->rbn, &ep->rbr);
1365 
1366 error_unregister:
1367 	ep_unregister_pollwait(ep, epi);
1368 
1369 	/*
1370 	 * We need to do this because an event could have been arrived on some
1371 	 * allocated wait queue. Note that we don't care about the ep->ovflist
1372 	 * list, since that is used/cleaned only inside a section bound by "mtx".
1373 	 * And ep_insert() is called with "mtx" held.
1374 	 */
1375 	spin_lock_irqsave(&ep->lock, flags);
1376 	if (ep_is_linked(&epi->rdllink))
1377 		list_del_init(&epi->rdllink);
1378 	spin_unlock_irqrestore(&ep->lock, flags);
1379 
1380 	wakeup_source_unregister(ep_wakeup_source(epi));
1381 
1382 error_create_wakeup_source:
1383 	kmem_cache_free(epi_cache, epi);
1384 
1385 	return error;
1386 }
1387 
1388 /*
1389  * Modify the interest event mask by dropping an event if the new mask
1390  * has a match in the current file status. Must be called with "mtx" held.
1391  */
1392 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1393 {
1394 	int pwake = 0;
1395 	unsigned int revents;
1396 	poll_table pt;
1397 
1398 	init_poll_funcptr(&pt, NULL);
1399 
1400 	/*
1401 	 * Set the new event interest mask before calling f_op->poll();
1402 	 * otherwise we might miss an event that happens between the
1403 	 * f_op->poll() call and the new event set registering.
1404 	 */
1405 	epi->event.events = event->events; /* need barrier below */
1406 	epi->event.data = event->data; /* protected by mtx */
1407 	if (epi->event.events & EPOLLWAKEUP) {
1408 		if (!ep_has_wakeup_source(epi))
1409 			ep_create_wakeup_source(epi);
1410 	} else if (ep_has_wakeup_source(epi)) {
1411 		ep_destroy_wakeup_source(epi);
1412 	}
1413 
1414 	/*
1415 	 * The following barrier has two effects:
1416 	 *
1417 	 * 1) Flush epi changes above to other CPUs.  This ensures
1418 	 *    we do not miss events from ep_poll_callback if an
1419 	 *    event occurs immediately after we call f_op->poll().
1420 	 *    We need this because we did not take ep->lock while
1421 	 *    changing epi above (but ep_poll_callback does take
1422 	 *    ep->lock).
1423 	 *
1424 	 * 2) We also need to ensure we do not miss _past_ events
1425 	 *    when calling f_op->poll().  This barrier also
1426 	 *    pairs with the barrier in wq_has_sleeper (see
1427 	 *    comments for wq_has_sleeper).
1428 	 *
1429 	 * This barrier will now guarantee ep_poll_callback or f_op->poll
1430 	 * (or both) will notice the readiness of an item.
1431 	 */
1432 	smp_mb();
1433 
1434 	/*
1435 	 * Get current event bits. We can safely use the file* here because
1436 	 * its usage count has been increased by the caller of this function.
1437 	 */
1438 	revents = ep_item_poll(epi, &pt);
1439 
1440 	/*
1441 	 * If the item is "hot" and it is not registered inside the ready
1442 	 * list, push it inside.
1443 	 */
1444 	if (revents & event->events) {
1445 		spin_lock_irq(&ep->lock);
1446 		if (!ep_is_linked(&epi->rdllink)) {
1447 			list_add_tail(&epi->rdllink, &ep->rdllist);
1448 			ep_pm_stay_awake(epi);
1449 
1450 			/* Notify waiting tasks that events are available */
1451 			if (waitqueue_active(&ep->wq))
1452 				wake_up_locked(&ep->wq);
1453 			if (waitqueue_active(&ep->poll_wait))
1454 				pwake++;
1455 		}
1456 		spin_unlock_irq(&ep->lock);
1457 	}
1458 
1459 	/* We have to call this outside the lock */
1460 	if (pwake)
1461 		ep_poll_safewake(&ep->poll_wait);
1462 
1463 	return 0;
1464 }
1465 
1466 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1467 			       void *priv)
1468 {
1469 	struct ep_send_events_data *esed = priv;
1470 	int eventcnt;
1471 	unsigned int revents;
1472 	struct epitem *epi;
1473 	struct epoll_event __user *uevent;
1474 	struct wakeup_source *ws;
1475 	poll_table pt;
1476 
1477 	init_poll_funcptr(&pt, NULL);
1478 
1479 	/*
1480 	 * We can loop without lock because we are passed a task private list.
1481 	 * Items cannot vanish during the loop because ep_scan_ready_list() is
1482 	 * holding "mtx" during this call.
1483 	 */
1484 	for (eventcnt = 0, uevent = esed->events;
1485 	     !list_empty(head) && eventcnt < esed->maxevents;) {
1486 		epi = list_first_entry(head, struct epitem, rdllink);
1487 
1488 		/*
1489 		 * Activate ep->ws before deactivating epi->ws to prevent
1490 		 * triggering auto-suspend here (in case we reactive epi->ws
1491 		 * below).
1492 		 *
1493 		 * This could be rearranged to delay the deactivation of epi->ws
1494 		 * instead, but then epi->ws would temporarily be out of sync
1495 		 * with ep_is_linked().
1496 		 */
1497 		ws = ep_wakeup_source(epi);
1498 		if (ws) {
1499 			if (ws->active)
1500 				__pm_stay_awake(ep->ws);
1501 			__pm_relax(ws);
1502 		}
1503 
1504 		list_del_init(&epi->rdllink);
1505 
1506 		revents = ep_item_poll(epi, &pt);
1507 
1508 		/*
1509 		 * If the event mask intersect the caller-requested one,
1510 		 * deliver the event to userspace. Again, ep_scan_ready_list()
1511 		 * is holding "mtx", so no operations coming from userspace
1512 		 * can change the item.
1513 		 */
1514 		if (revents) {
1515 			if (__put_user(revents, &uevent->events) ||
1516 			    __put_user(epi->event.data, &uevent->data)) {
1517 				list_add(&epi->rdllink, head);
1518 				ep_pm_stay_awake(epi);
1519 				return eventcnt ? eventcnt : -EFAULT;
1520 			}
1521 			eventcnt++;
1522 			uevent++;
1523 			if (epi->event.events & EPOLLONESHOT)
1524 				epi->event.events &= EP_PRIVATE_BITS;
1525 			else if (!(epi->event.events & EPOLLET)) {
1526 				/*
1527 				 * If this file has been added with Level
1528 				 * Trigger mode, we need to insert back inside
1529 				 * the ready list, so that the next call to
1530 				 * epoll_wait() will check again the events
1531 				 * availability. At this point, no one can insert
1532 				 * into ep->rdllist besides us. The epoll_ctl()
1533 				 * callers are locked out by
1534 				 * ep_scan_ready_list() holding "mtx" and the
1535 				 * poll callback will queue them in ep->ovflist.
1536 				 */
1537 				list_add_tail(&epi->rdllink, &ep->rdllist);
1538 				ep_pm_stay_awake(epi);
1539 			}
1540 		}
1541 	}
1542 
1543 	return eventcnt;
1544 }
1545 
1546 static int ep_send_events(struct eventpoll *ep,
1547 			  struct epoll_event __user *events, int maxevents)
1548 {
1549 	struct ep_send_events_data esed;
1550 
1551 	esed.maxevents = maxevents;
1552 	esed.events = events;
1553 
1554 	return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1555 }
1556 
1557 static inline struct timespec ep_set_mstimeout(long ms)
1558 {
1559 	struct timespec now, ts = {
1560 		.tv_sec = ms / MSEC_PER_SEC,
1561 		.tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1562 	};
1563 
1564 	ktime_get_ts(&now);
1565 	return timespec_add_safe(now, ts);
1566 }
1567 
1568 /**
1569  * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1570  *           event buffer.
1571  *
1572  * @ep: Pointer to the eventpoll context.
1573  * @events: Pointer to the userspace buffer where the ready events should be
1574  *          stored.
1575  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1576  * @timeout: Maximum timeout for the ready events fetch operation, in
1577  *           milliseconds. If the @timeout is zero, the function will not block,
1578  *           while if the @timeout is less than zero, the function will block
1579  *           until at least one event has been retrieved (or an error
1580  *           occurred).
1581  *
1582  * Returns: Returns the number of ready events which have been fetched, or an
1583  *          error code, in case of error.
1584  */
1585 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1586 		   int maxevents, long timeout)
1587 {
1588 	int res = 0, eavail, timed_out = 0;
1589 	unsigned long flags;
1590 	long slack = 0;
1591 	wait_queue_t wait;
1592 	ktime_t expires, *to = NULL;
1593 
1594 	if (timeout > 0) {
1595 		struct timespec end_time = ep_set_mstimeout(timeout);
1596 
1597 		slack = select_estimate_accuracy(&end_time);
1598 		to = &expires;
1599 		*to = timespec_to_ktime(end_time);
1600 	} else if (timeout == 0) {
1601 		/*
1602 		 * Avoid the unnecessary trip to the wait queue loop, if the
1603 		 * caller specified a non blocking operation.
1604 		 */
1605 		timed_out = 1;
1606 		spin_lock_irqsave(&ep->lock, flags);
1607 		goto check_events;
1608 	}
1609 
1610 fetch_events:
1611 	spin_lock_irqsave(&ep->lock, flags);
1612 
1613 	if (!ep_events_available(ep)) {
1614 		/*
1615 		 * We don't have any available event to return to the caller.
1616 		 * We need to sleep here, and we will be wake up by
1617 		 * ep_poll_callback() when events will become available.
1618 		 */
1619 		init_waitqueue_entry(&wait, current);
1620 		__add_wait_queue_exclusive(&ep->wq, &wait);
1621 
1622 		for (;;) {
1623 			/*
1624 			 * We don't want to sleep if the ep_poll_callback() sends us
1625 			 * a wakeup in between. That's why we set the task state
1626 			 * to TASK_INTERRUPTIBLE before doing the checks.
1627 			 */
1628 			set_current_state(TASK_INTERRUPTIBLE);
1629 			if (ep_events_available(ep) || timed_out)
1630 				break;
1631 			if (signal_pending(current)) {
1632 				res = -EINTR;
1633 				break;
1634 			}
1635 
1636 			spin_unlock_irqrestore(&ep->lock, flags);
1637 			if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1638 				timed_out = 1;
1639 
1640 			spin_lock_irqsave(&ep->lock, flags);
1641 		}
1642 
1643 		__remove_wait_queue(&ep->wq, &wait);
1644 		__set_current_state(TASK_RUNNING);
1645 	}
1646 check_events:
1647 	/* Is it worth to try to dig for events ? */
1648 	eavail = ep_events_available(ep);
1649 
1650 	spin_unlock_irqrestore(&ep->lock, flags);
1651 
1652 	/*
1653 	 * Try to transfer events to user space. In case we get 0 events and
1654 	 * there's still timeout left over, we go trying again in search of
1655 	 * more luck.
1656 	 */
1657 	if (!res && eavail &&
1658 	    !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1659 		goto fetch_events;
1660 
1661 	return res;
1662 }
1663 
1664 /**
1665  * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1666  *                      API, to verify that adding an epoll file inside another
1667  *                      epoll structure, does not violate the constraints, in
1668  *                      terms of closed loops, or too deep chains (which can
1669  *                      result in excessive stack usage).
1670  *
1671  * @priv: Pointer to the epoll file to be currently checked.
1672  * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1673  *          data structure pointer.
1674  * @call_nests: Current dept of the @ep_call_nested() call stack.
1675  *
1676  * Returns: Returns zero if adding the epoll @file inside current epoll
1677  *          structure @ep does not violate the constraints, or -1 otherwise.
1678  */
1679 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1680 {
1681 	int error = 0;
1682 	struct file *file = priv;
1683 	struct eventpoll *ep = file->private_data;
1684 	struct eventpoll *ep_tovisit;
1685 	struct rb_node *rbp;
1686 	struct epitem *epi;
1687 
1688 	mutex_lock_nested(&ep->mtx, call_nests + 1);
1689 	ep->visited = 1;
1690 	list_add(&ep->visited_list_link, &visited_list);
1691 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1692 		epi = rb_entry(rbp, struct epitem, rbn);
1693 		if (unlikely(is_file_epoll(epi->ffd.file))) {
1694 			ep_tovisit = epi->ffd.file->private_data;
1695 			if (ep_tovisit->visited)
1696 				continue;
1697 			error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1698 					ep_loop_check_proc, epi->ffd.file,
1699 					ep_tovisit, current);
1700 			if (error != 0)
1701 				break;
1702 		} else {
1703 			/*
1704 			 * If we've reached a file that is not associated with
1705 			 * an ep, then we need to check if the newly added
1706 			 * links are going to add too many wakeup paths. We do
1707 			 * this by adding it to the tfile_check_list, if it's
1708 			 * not already there, and calling reverse_path_check()
1709 			 * during ep_insert().
1710 			 */
1711 			if (list_empty(&epi->ffd.file->f_tfile_llink))
1712 				list_add(&epi->ffd.file->f_tfile_llink,
1713 					 &tfile_check_list);
1714 		}
1715 	}
1716 	mutex_unlock(&ep->mtx);
1717 
1718 	return error;
1719 }
1720 
1721 /**
1722  * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1723  *                 another epoll file (represented by @ep) does not create
1724  *                 closed loops or too deep chains.
1725  *
1726  * @ep: Pointer to the epoll private data structure.
1727  * @file: Pointer to the epoll file to be checked.
1728  *
1729  * Returns: Returns zero if adding the epoll @file inside current epoll
1730  *          structure @ep does not violate the constraints, or -1 otherwise.
1731  */
1732 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1733 {
1734 	int ret;
1735 	struct eventpoll *ep_cur, *ep_next;
1736 
1737 	ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1738 			      ep_loop_check_proc, file, ep, current);
1739 	/* clear visited list */
1740 	list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
1741 							visited_list_link) {
1742 		ep_cur->visited = 0;
1743 		list_del(&ep_cur->visited_list_link);
1744 	}
1745 	return ret;
1746 }
1747 
1748 static void clear_tfile_check_list(void)
1749 {
1750 	struct file *file;
1751 
1752 	/* first clear the tfile_check_list */
1753 	while (!list_empty(&tfile_check_list)) {
1754 		file = list_first_entry(&tfile_check_list, struct file,
1755 					f_tfile_llink);
1756 		list_del_init(&file->f_tfile_llink);
1757 	}
1758 	INIT_LIST_HEAD(&tfile_check_list);
1759 }
1760 
1761 /*
1762  * Open an eventpoll file descriptor.
1763  */
1764 SYSCALL_DEFINE1(epoll_create1, int, flags)
1765 {
1766 	int error, fd;
1767 	struct eventpoll *ep = NULL;
1768 	struct file *file;
1769 
1770 	/* Check the EPOLL_* constant for consistency.  */
1771 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1772 
1773 	if (flags & ~EPOLL_CLOEXEC)
1774 		return -EINVAL;
1775 	/*
1776 	 * Create the internal data structure ("struct eventpoll").
1777 	 */
1778 	error = ep_alloc(&ep);
1779 	if (error < 0)
1780 		return error;
1781 	/*
1782 	 * Creates all the items needed to setup an eventpoll file. That is,
1783 	 * a file structure and a free file descriptor.
1784 	 */
1785 	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1786 	if (fd < 0) {
1787 		error = fd;
1788 		goto out_free_ep;
1789 	}
1790 	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1791 				 O_RDWR | (flags & O_CLOEXEC));
1792 	if (IS_ERR(file)) {
1793 		error = PTR_ERR(file);
1794 		goto out_free_fd;
1795 	}
1796 	ep->file = file;
1797 	fd_install(fd, file);
1798 	return fd;
1799 
1800 out_free_fd:
1801 	put_unused_fd(fd);
1802 out_free_ep:
1803 	ep_free(ep);
1804 	return error;
1805 }
1806 
1807 SYSCALL_DEFINE1(epoll_create, int, size)
1808 {
1809 	if (size <= 0)
1810 		return -EINVAL;
1811 
1812 	return sys_epoll_create1(0);
1813 }
1814 
1815 /*
1816  * The following function implements the controller interface for
1817  * the eventpoll file that enables the insertion/removal/change of
1818  * file descriptors inside the interest set.
1819  */
1820 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1821 		struct epoll_event __user *, event)
1822 {
1823 	int error;
1824 	int full_check = 0;
1825 	struct fd f, tf;
1826 	struct eventpoll *ep;
1827 	struct epitem *epi;
1828 	struct epoll_event epds;
1829 	struct eventpoll *tep = NULL;
1830 
1831 	error = -EFAULT;
1832 	if (ep_op_has_event(op) &&
1833 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
1834 		goto error_return;
1835 
1836 	error = -EBADF;
1837 	f = fdget(epfd);
1838 	if (!f.file)
1839 		goto error_return;
1840 
1841 	/* Get the "struct file *" for the target file */
1842 	tf = fdget(fd);
1843 	if (!tf.file)
1844 		goto error_fput;
1845 
1846 	/* The target file descriptor must support poll */
1847 	error = -EPERM;
1848 	if (!tf.file->f_op->poll)
1849 		goto error_tgt_fput;
1850 
1851 	/* Check if EPOLLWAKEUP is allowed */
1852 	if (ep_op_has_event(op))
1853 		ep_take_care_of_epollwakeup(&epds);
1854 
1855 	/*
1856 	 * We have to check that the file structure underneath the file descriptor
1857 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
1858 	 * adding an epoll file descriptor inside itself.
1859 	 */
1860 	error = -EINVAL;
1861 	if (f.file == tf.file || !is_file_epoll(f.file))
1862 		goto error_tgt_fput;
1863 
1864 	/*
1865 	 * At this point it is safe to assume that the "private_data" contains
1866 	 * our own data structure.
1867 	 */
1868 	ep = f.file->private_data;
1869 
1870 	/*
1871 	 * When we insert an epoll file descriptor, inside another epoll file
1872 	 * descriptor, there is the change of creating closed loops, which are
1873 	 * better be handled here, than in more critical paths. While we are
1874 	 * checking for loops we also determine the list of files reachable
1875 	 * and hang them on the tfile_check_list, so we can check that we
1876 	 * haven't created too many possible wakeup paths.
1877 	 *
1878 	 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
1879 	 * the epoll file descriptor is attaching directly to a wakeup source,
1880 	 * unless the epoll file descriptor is nested. The purpose of taking the
1881 	 * 'epmutex' on add is to prevent complex toplogies such as loops and
1882 	 * deep wakeup paths from forming in parallel through multiple
1883 	 * EPOLL_CTL_ADD operations.
1884 	 */
1885 	mutex_lock_nested(&ep->mtx, 0);
1886 	if (op == EPOLL_CTL_ADD) {
1887 		if (!list_empty(&f.file->f_ep_links) ||
1888 						is_file_epoll(tf.file)) {
1889 			full_check = 1;
1890 			mutex_unlock(&ep->mtx);
1891 			mutex_lock(&epmutex);
1892 			if (is_file_epoll(tf.file)) {
1893 				error = -ELOOP;
1894 				if (ep_loop_check(ep, tf.file) != 0) {
1895 					clear_tfile_check_list();
1896 					goto error_tgt_fput;
1897 				}
1898 			} else
1899 				list_add(&tf.file->f_tfile_llink,
1900 							&tfile_check_list);
1901 			mutex_lock_nested(&ep->mtx, 0);
1902 			if (is_file_epoll(tf.file)) {
1903 				tep = tf.file->private_data;
1904 				mutex_lock_nested(&tep->mtx, 1);
1905 			}
1906 		}
1907 	}
1908 
1909 	/*
1910 	 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1911 	 * above, we can be sure to be able to use the item looked up by
1912 	 * ep_find() till we release the mutex.
1913 	 */
1914 	epi = ep_find(ep, tf.file, fd);
1915 
1916 	error = -EINVAL;
1917 	switch (op) {
1918 	case EPOLL_CTL_ADD:
1919 		if (!epi) {
1920 			epds.events |= POLLERR | POLLHUP;
1921 			error = ep_insert(ep, &epds, tf.file, fd, full_check);
1922 		} else
1923 			error = -EEXIST;
1924 		if (full_check)
1925 			clear_tfile_check_list();
1926 		break;
1927 	case EPOLL_CTL_DEL:
1928 		if (epi)
1929 			error = ep_remove(ep, epi);
1930 		else
1931 			error = -ENOENT;
1932 		break;
1933 	case EPOLL_CTL_MOD:
1934 		if (epi) {
1935 			epds.events |= POLLERR | POLLHUP;
1936 			error = ep_modify(ep, epi, &epds);
1937 		} else
1938 			error = -ENOENT;
1939 		break;
1940 	}
1941 	if (tep != NULL)
1942 		mutex_unlock(&tep->mtx);
1943 	mutex_unlock(&ep->mtx);
1944 
1945 error_tgt_fput:
1946 	if (full_check)
1947 		mutex_unlock(&epmutex);
1948 
1949 	fdput(tf);
1950 error_fput:
1951 	fdput(f);
1952 error_return:
1953 
1954 	return error;
1955 }
1956 
1957 /*
1958  * Implement the event wait interface for the eventpoll file. It is the kernel
1959  * part of the user space epoll_wait(2).
1960  */
1961 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
1962 		int, maxevents, int, timeout)
1963 {
1964 	int error;
1965 	struct fd f;
1966 	struct eventpoll *ep;
1967 
1968 	/* The maximum number of event must be greater than zero */
1969 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1970 		return -EINVAL;
1971 
1972 	/* Verify that the area passed by the user is writeable */
1973 	if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event)))
1974 		return -EFAULT;
1975 
1976 	/* Get the "struct file *" for the eventpoll file */
1977 	f = fdget(epfd);
1978 	if (!f.file)
1979 		return -EBADF;
1980 
1981 	/*
1982 	 * We have to check that the file structure underneath the fd
1983 	 * the user passed to us _is_ an eventpoll file.
1984 	 */
1985 	error = -EINVAL;
1986 	if (!is_file_epoll(f.file))
1987 		goto error_fput;
1988 
1989 	/*
1990 	 * At this point it is safe to assume that the "private_data" contains
1991 	 * our own data structure.
1992 	 */
1993 	ep = f.file->private_data;
1994 
1995 	/* Time to fish for events ... */
1996 	error = ep_poll(ep, events, maxevents, timeout);
1997 
1998 error_fput:
1999 	fdput(f);
2000 	return error;
2001 }
2002 
2003 /*
2004  * Implement the event wait interface for the eventpoll file. It is the kernel
2005  * part of the user space epoll_pwait(2).
2006  */
2007 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2008 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2009 		size_t, sigsetsize)
2010 {
2011 	int error;
2012 	sigset_t ksigmask, sigsaved;
2013 
2014 	/*
2015 	 * If the caller wants a certain signal mask to be set during the wait,
2016 	 * we apply it here.
2017 	 */
2018 	if (sigmask) {
2019 		if (sigsetsize != sizeof(sigset_t))
2020 			return -EINVAL;
2021 		if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
2022 			return -EFAULT;
2023 		sigsaved = current->blocked;
2024 		set_current_blocked(&ksigmask);
2025 	}
2026 
2027 	error = sys_epoll_wait(epfd, events, maxevents, timeout);
2028 
2029 	/*
2030 	 * If we changed the signal mask, we need to restore the original one.
2031 	 * In case we've got a signal while waiting, we do not restore the
2032 	 * signal mask yet, and we allow do_signal() to deliver the signal on
2033 	 * the way back to userspace, before the signal mask is restored.
2034 	 */
2035 	if (sigmask) {
2036 		if (error == -EINTR) {
2037 			memcpy(&current->saved_sigmask, &sigsaved,
2038 			       sizeof(sigsaved));
2039 			set_restore_sigmask();
2040 		} else
2041 			set_current_blocked(&sigsaved);
2042 	}
2043 
2044 	return error;
2045 }
2046 
2047 #ifdef CONFIG_COMPAT
2048 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2049 			struct epoll_event __user *, events,
2050 			int, maxevents, int, timeout,
2051 			const compat_sigset_t __user *, sigmask,
2052 			compat_size_t, sigsetsize)
2053 {
2054 	long err;
2055 	compat_sigset_t csigmask;
2056 	sigset_t ksigmask, sigsaved;
2057 
2058 	/*
2059 	 * If the caller wants a certain signal mask to be set during the wait,
2060 	 * we apply it here.
2061 	 */
2062 	if (sigmask) {
2063 		if (sigsetsize != sizeof(compat_sigset_t))
2064 			return -EINVAL;
2065 		if (copy_from_user(&csigmask, sigmask, sizeof(csigmask)))
2066 			return -EFAULT;
2067 		sigset_from_compat(&ksigmask, &csigmask);
2068 		sigsaved = current->blocked;
2069 		set_current_blocked(&ksigmask);
2070 	}
2071 
2072 	err = sys_epoll_wait(epfd, events, maxevents, timeout);
2073 
2074 	/*
2075 	 * If we changed the signal mask, we need to restore the original one.
2076 	 * In case we've got a signal while waiting, we do not restore the
2077 	 * signal mask yet, and we allow do_signal() to deliver the signal on
2078 	 * the way back to userspace, before the signal mask is restored.
2079 	 */
2080 	if (sigmask) {
2081 		if (err == -EINTR) {
2082 			memcpy(&current->saved_sigmask, &sigsaved,
2083 			       sizeof(sigsaved));
2084 			set_restore_sigmask();
2085 		} else
2086 			set_current_blocked(&sigsaved);
2087 	}
2088 
2089 	return err;
2090 }
2091 #endif
2092 
2093 static int __init eventpoll_init(void)
2094 {
2095 	struct sysinfo si;
2096 
2097 	si_meminfo(&si);
2098 	/*
2099 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2100 	 */
2101 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2102 		EP_ITEM_COST;
2103 	BUG_ON(max_user_watches < 0);
2104 
2105 	/*
2106 	 * Initialize the structure used to perform epoll file descriptor
2107 	 * inclusion loops checks.
2108 	 */
2109 	ep_nested_calls_init(&poll_loop_ncalls);
2110 
2111 	/* Initialize the structure used to perform safe poll wait head wake ups */
2112 	ep_nested_calls_init(&poll_safewake_ncalls);
2113 
2114 	/* Initialize the structure used to perform file's f_op->poll() calls */
2115 	ep_nested_calls_init(&poll_readywalk_ncalls);
2116 
2117 	/*
2118 	 * We can have many thousands of epitems, so prevent this from
2119 	 * using an extra cache line on 64-bit (and smaller) CPUs
2120 	 */
2121 	BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2122 
2123 	/* Allocates slab cache used to allocate "struct epitem" items */
2124 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2125 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2126 
2127 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
2128 	pwq_cache = kmem_cache_create("eventpoll_pwq",
2129 			sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
2130 
2131 	return 0;
2132 }
2133 fs_initcall(eventpoll_init);
2134