1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * fs/eventpoll.c (Efficient event retrieval implementation) 4 * Copyright (C) 2001,...,2009 Davide Libenzi 5 * 6 * Davide Libenzi <davidel@xmailserver.org> 7 */ 8 9 #include <linux/init.h> 10 #include <linux/kernel.h> 11 #include <linux/sched/signal.h> 12 #include <linux/fs.h> 13 #include <linux/file.h> 14 #include <linux/signal.h> 15 #include <linux/errno.h> 16 #include <linux/mm.h> 17 #include <linux/slab.h> 18 #include <linux/poll.h> 19 #include <linux/string.h> 20 #include <linux/list.h> 21 #include <linux/hash.h> 22 #include <linux/spinlock.h> 23 #include <linux/syscalls.h> 24 #include <linux/rbtree.h> 25 #include <linux/wait.h> 26 #include <linux/eventpoll.h> 27 #include <linux/mount.h> 28 #include <linux/bitops.h> 29 #include <linux/mutex.h> 30 #include <linux/anon_inodes.h> 31 #include <linux/device.h> 32 #include <linux/uaccess.h> 33 #include <asm/io.h> 34 #include <asm/mman.h> 35 #include <linux/atomic.h> 36 #include <linux/proc_fs.h> 37 #include <linux/seq_file.h> 38 #include <linux/compat.h> 39 #include <linux/rculist.h> 40 #include <net/busy_poll.h> 41 42 /* 43 * LOCKING: 44 * There are three level of locking required by epoll : 45 * 46 * 1) epmutex (mutex) 47 * 2) ep->mtx (mutex) 48 * 3) ep->lock (rwlock) 49 * 50 * The acquire order is the one listed above, from 1 to 3. 51 * We need a rwlock (ep->lock) because we manipulate objects 52 * from inside the poll callback, that might be triggered from 53 * a wake_up() that in turn might be called from IRQ context. 54 * So we can't sleep inside the poll callback and hence we need 55 * a spinlock. During the event transfer loop (from kernel to 56 * user space) we could end up sleeping due a copy_to_user(), so 57 * we need a lock that will allow us to sleep. This lock is a 58 * mutex (ep->mtx). It is acquired during the event transfer loop, 59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 60 * Then we also need a global mutex to serialize eventpoll_release_file() 61 * and ep_free(). 62 * This mutex is acquired by ep_free() during the epoll file 63 * cleanup path and it is also acquired by eventpoll_release_file() 64 * if a file has been pushed inside an epoll set and it is then 65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL). 66 * It is also acquired when inserting an epoll fd onto another epoll 67 * fd. We do this so that we walk the epoll tree and ensure that this 68 * insertion does not create a cycle of epoll file descriptors, which 69 * could lead to deadlock. We need a global mutex to prevent two 70 * simultaneous inserts (A into B and B into A) from racing and 71 * constructing a cycle without either insert observing that it is 72 * going to. 73 * It is necessary to acquire multiple "ep->mtx"es at once in the 74 * case when one epoll fd is added to another. In this case, we 75 * always acquire the locks in the order of nesting (i.e. after 76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 77 * before e2->mtx). Since we disallow cycles of epoll file 78 * descriptors, this ensures that the mutexes are well-ordered. In 79 * order to communicate this nesting to lockdep, when walking a tree 80 * of epoll file descriptors, we use the current recursion depth as 81 * the lockdep subkey. 82 * It is possible to drop the "ep->mtx" and to use the global 83 * mutex "epmutex" (together with "ep->lock") to have it working, 84 * but having "ep->mtx" will make the interface more scalable. 85 * Events that require holding "epmutex" are very rare, while for 86 * normal operations the epoll private "ep->mtx" will guarantee 87 * a better scalability. 88 */ 89 90 /* Epoll private bits inside the event mask */ 91 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE) 92 93 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT) 94 95 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \ 96 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE) 97 98 /* Maximum number of nesting allowed inside epoll sets */ 99 #define EP_MAX_NESTS 4 100 101 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 102 103 #define EP_UNACTIVE_PTR ((void *) -1L) 104 105 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 106 107 struct epoll_filefd { 108 struct file *file; 109 int fd; 110 } __packed; 111 112 /* 113 * Structure used to track possible nested calls, for too deep recursions 114 * and loop cycles. 115 */ 116 struct nested_call_node { 117 struct list_head llink; 118 void *cookie; 119 void *ctx; 120 }; 121 122 /* 123 * This structure is used as collector for nested calls, to check for 124 * maximum recursion dept and loop cycles. 125 */ 126 struct nested_calls { 127 struct list_head tasks_call_list; 128 spinlock_t lock; 129 }; 130 131 /* 132 * Each file descriptor added to the eventpoll interface will 133 * have an entry of this type linked to the "rbr" RB tree. 134 * Avoid increasing the size of this struct, there can be many thousands 135 * of these on a server and we do not want this to take another cache line. 136 */ 137 struct epitem { 138 union { 139 /* RB tree node links this structure to the eventpoll RB tree */ 140 struct rb_node rbn; 141 /* Used to free the struct epitem */ 142 struct rcu_head rcu; 143 }; 144 145 /* List header used to link this structure to the eventpoll ready list */ 146 struct list_head rdllink; 147 148 /* 149 * Works together "struct eventpoll"->ovflist in keeping the 150 * single linked chain of items. 151 */ 152 struct epitem *next; 153 154 /* The file descriptor information this item refers to */ 155 struct epoll_filefd ffd; 156 157 /* Number of active wait queue attached to poll operations */ 158 int nwait; 159 160 /* List containing poll wait queues */ 161 struct list_head pwqlist; 162 163 /* The "container" of this item */ 164 struct eventpoll *ep; 165 166 /* List header used to link this item to the "struct file" items list */ 167 struct list_head fllink; 168 169 /* wakeup_source used when EPOLLWAKEUP is set */ 170 struct wakeup_source __rcu *ws; 171 172 /* The structure that describe the interested events and the source fd */ 173 struct epoll_event event; 174 }; 175 176 /* 177 * This structure is stored inside the "private_data" member of the file 178 * structure and represents the main data structure for the eventpoll 179 * interface. 180 */ 181 struct eventpoll { 182 /* 183 * This mutex is used to ensure that files are not removed 184 * while epoll is using them. This is held during the event 185 * collection loop, the file cleanup path, the epoll file exit 186 * code and the ctl operations. 187 */ 188 struct mutex mtx; 189 190 /* Wait queue used by sys_epoll_wait() */ 191 wait_queue_head_t wq; 192 193 /* Wait queue used by file->poll() */ 194 wait_queue_head_t poll_wait; 195 196 /* List of ready file descriptors */ 197 struct list_head rdllist; 198 199 /* Lock which protects rdllist and ovflist */ 200 rwlock_t lock; 201 202 /* RB tree root used to store monitored fd structs */ 203 struct rb_root_cached rbr; 204 205 /* 206 * This is a single linked list that chains all the "struct epitem" that 207 * happened while transferring ready events to userspace w/out 208 * holding ->lock. 209 */ 210 struct epitem *ovflist; 211 212 /* wakeup_source used when ep_scan_ready_list is running */ 213 struct wakeup_source *ws; 214 215 /* The user that created the eventpoll descriptor */ 216 struct user_struct *user; 217 218 struct file *file; 219 220 /* used to optimize loop detection check */ 221 int visited; 222 struct list_head visited_list_link; 223 224 #ifdef CONFIG_NET_RX_BUSY_POLL 225 /* used to track busy poll napi_id */ 226 unsigned int napi_id; 227 #endif 228 }; 229 230 /* Wait structure used by the poll hooks */ 231 struct eppoll_entry { 232 /* List header used to link this structure to the "struct epitem" */ 233 struct list_head llink; 234 235 /* The "base" pointer is set to the container "struct epitem" */ 236 struct epitem *base; 237 238 /* 239 * Wait queue item that will be linked to the target file wait 240 * queue head. 241 */ 242 wait_queue_entry_t wait; 243 244 /* The wait queue head that linked the "wait" wait queue item */ 245 wait_queue_head_t *whead; 246 }; 247 248 /* Wrapper struct used by poll queueing */ 249 struct ep_pqueue { 250 poll_table pt; 251 struct epitem *epi; 252 }; 253 254 /* Used by the ep_send_events() function as callback private data */ 255 struct ep_send_events_data { 256 int maxevents; 257 struct epoll_event __user *events; 258 int res; 259 }; 260 261 /* 262 * Configuration options available inside /proc/sys/fs/epoll/ 263 */ 264 /* Maximum number of epoll watched descriptors, per user */ 265 static long max_user_watches __read_mostly; 266 267 /* 268 * This mutex is used to serialize ep_free() and eventpoll_release_file(). 269 */ 270 static DEFINE_MUTEX(epmutex); 271 272 /* Used to check for epoll file descriptor inclusion loops */ 273 static struct nested_calls poll_loop_ncalls; 274 275 /* Slab cache used to allocate "struct epitem" */ 276 static struct kmem_cache *epi_cache __read_mostly; 277 278 /* Slab cache used to allocate "struct eppoll_entry" */ 279 static struct kmem_cache *pwq_cache __read_mostly; 280 281 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */ 282 static LIST_HEAD(visited_list); 283 284 /* 285 * List of files with newly added links, where we may need to limit the number 286 * of emanating paths. Protected by the epmutex. 287 */ 288 static LIST_HEAD(tfile_check_list); 289 290 #ifdef CONFIG_SYSCTL 291 292 #include <linux/sysctl.h> 293 294 static long long_zero; 295 static long long_max = LONG_MAX; 296 297 struct ctl_table epoll_table[] = { 298 { 299 .procname = "max_user_watches", 300 .data = &max_user_watches, 301 .maxlen = sizeof(max_user_watches), 302 .mode = 0644, 303 .proc_handler = proc_doulongvec_minmax, 304 .extra1 = &long_zero, 305 .extra2 = &long_max, 306 }, 307 { } 308 }; 309 #endif /* CONFIG_SYSCTL */ 310 311 static const struct file_operations eventpoll_fops; 312 313 static inline int is_file_epoll(struct file *f) 314 { 315 return f->f_op == &eventpoll_fops; 316 } 317 318 /* Setup the structure that is used as key for the RB tree */ 319 static inline void ep_set_ffd(struct epoll_filefd *ffd, 320 struct file *file, int fd) 321 { 322 ffd->file = file; 323 ffd->fd = fd; 324 } 325 326 /* Compare RB tree keys */ 327 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 328 struct epoll_filefd *p2) 329 { 330 return (p1->file > p2->file ? +1: 331 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 332 } 333 334 /* Tells us if the item is currently linked */ 335 static inline int ep_is_linked(struct epitem *epi) 336 { 337 return !list_empty(&epi->rdllink); 338 } 339 340 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p) 341 { 342 return container_of(p, struct eppoll_entry, wait); 343 } 344 345 /* Get the "struct epitem" from a wait queue pointer */ 346 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p) 347 { 348 return container_of(p, struct eppoll_entry, wait)->base; 349 } 350 351 /* Get the "struct epitem" from an epoll queue wrapper */ 352 static inline struct epitem *ep_item_from_epqueue(poll_table *p) 353 { 354 return container_of(p, struct ep_pqueue, pt)->epi; 355 } 356 357 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ 358 static inline int ep_op_has_event(int op) 359 { 360 return op != EPOLL_CTL_DEL; 361 } 362 363 /* Initialize the poll safe wake up structure */ 364 static void ep_nested_calls_init(struct nested_calls *ncalls) 365 { 366 INIT_LIST_HEAD(&ncalls->tasks_call_list); 367 spin_lock_init(&ncalls->lock); 368 } 369 370 /** 371 * ep_events_available - Checks if ready events might be available. 372 * 373 * @ep: Pointer to the eventpoll context. 374 * 375 * Returns: Returns a value different than zero if ready events are available, 376 * or zero otherwise. 377 */ 378 static inline int ep_events_available(struct eventpoll *ep) 379 { 380 return !list_empty_careful(&ep->rdllist) || 381 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR; 382 } 383 384 #ifdef CONFIG_NET_RX_BUSY_POLL 385 static bool ep_busy_loop_end(void *p, unsigned long start_time) 386 { 387 struct eventpoll *ep = p; 388 389 return ep_events_available(ep) || busy_loop_timeout(start_time); 390 } 391 392 /* 393 * Busy poll if globally on and supporting sockets found && no events, 394 * busy loop will return if need_resched or ep_events_available. 395 * 396 * we must do our busy polling with irqs enabled 397 */ 398 static void ep_busy_loop(struct eventpoll *ep, int nonblock) 399 { 400 unsigned int napi_id = READ_ONCE(ep->napi_id); 401 402 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) 403 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep); 404 } 405 406 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep) 407 { 408 if (ep->napi_id) 409 ep->napi_id = 0; 410 } 411 412 /* 413 * Set epoll busy poll NAPI ID from sk. 414 */ 415 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 416 { 417 struct eventpoll *ep; 418 unsigned int napi_id; 419 struct socket *sock; 420 struct sock *sk; 421 int err; 422 423 if (!net_busy_loop_on()) 424 return; 425 426 sock = sock_from_file(epi->ffd.file, &err); 427 if (!sock) 428 return; 429 430 sk = sock->sk; 431 if (!sk) 432 return; 433 434 napi_id = READ_ONCE(sk->sk_napi_id); 435 ep = epi->ep; 436 437 /* Non-NAPI IDs can be rejected 438 * or 439 * Nothing to do if we already have this ID 440 */ 441 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id) 442 return; 443 444 /* record NAPI ID for use in next busy poll */ 445 ep->napi_id = napi_id; 446 } 447 448 #else 449 450 static inline void ep_busy_loop(struct eventpoll *ep, int nonblock) 451 { 452 } 453 454 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep) 455 { 456 } 457 458 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 459 { 460 } 461 462 #endif /* CONFIG_NET_RX_BUSY_POLL */ 463 464 /** 465 * ep_call_nested - Perform a bound (possibly) nested call, by checking 466 * that the recursion limit is not exceeded, and that 467 * the same nested call (by the meaning of same cookie) is 468 * no re-entered. 469 * 470 * @ncalls: Pointer to the nested_calls structure to be used for this call. 471 * @nproc: Nested call core function pointer. 472 * @priv: Opaque data to be passed to the @nproc callback. 473 * @cookie: Cookie to be used to identify this nested call. 474 * @ctx: This instance context. 475 * 476 * Returns: Returns the code returned by the @nproc callback, or -1 if 477 * the maximum recursion limit has been exceeded. 478 */ 479 static int ep_call_nested(struct nested_calls *ncalls, 480 int (*nproc)(void *, void *, int), void *priv, 481 void *cookie, void *ctx) 482 { 483 int error, call_nests = 0; 484 unsigned long flags; 485 struct list_head *lsthead = &ncalls->tasks_call_list; 486 struct nested_call_node *tncur; 487 struct nested_call_node tnode; 488 489 spin_lock_irqsave(&ncalls->lock, flags); 490 491 /* 492 * Try to see if the current task is already inside this wakeup call. 493 * We use a list here, since the population inside this set is always 494 * very much limited. 495 */ 496 list_for_each_entry(tncur, lsthead, llink) { 497 if (tncur->ctx == ctx && 498 (tncur->cookie == cookie || ++call_nests > EP_MAX_NESTS)) { 499 /* 500 * Ops ... loop detected or maximum nest level reached. 501 * We abort this wake by breaking the cycle itself. 502 */ 503 error = -1; 504 goto out_unlock; 505 } 506 } 507 508 /* Add the current task and cookie to the list */ 509 tnode.ctx = ctx; 510 tnode.cookie = cookie; 511 list_add(&tnode.llink, lsthead); 512 513 spin_unlock_irqrestore(&ncalls->lock, flags); 514 515 /* Call the nested function */ 516 error = (*nproc)(priv, cookie, call_nests); 517 518 /* Remove the current task from the list */ 519 spin_lock_irqsave(&ncalls->lock, flags); 520 list_del(&tnode.llink); 521 out_unlock: 522 spin_unlock_irqrestore(&ncalls->lock, flags); 523 524 return error; 525 } 526 527 /* 528 * As described in commit 0ccf831cb lockdep: annotate epoll 529 * the use of wait queues used by epoll is done in a very controlled 530 * manner. Wake ups can nest inside each other, but are never done 531 * with the same locking. For example: 532 * 533 * dfd = socket(...); 534 * efd1 = epoll_create(); 535 * efd2 = epoll_create(); 536 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 537 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 538 * 539 * When a packet arrives to the device underneath "dfd", the net code will 540 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 541 * callback wakeup entry on that queue, and the wake_up() performed by the 542 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 543 * (efd1) notices that it may have some event ready, so it needs to wake up 544 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 545 * that ends up in another wake_up(), after having checked about the 546 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to 547 * avoid stack blasting. 548 * 549 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 550 * this special case of epoll. 551 */ 552 #ifdef CONFIG_DEBUG_LOCK_ALLOC 553 554 static struct nested_calls poll_safewake_ncalls; 555 556 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests) 557 { 558 unsigned long flags; 559 wait_queue_head_t *wqueue = (wait_queue_head_t *)cookie; 560 561 spin_lock_irqsave_nested(&wqueue->lock, flags, call_nests + 1); 562 wake_up_locked_poll(wqueue, EPOLLIN); 563 spin_unlock_irqrestore(&wqueue->lock, flags); 564 565 return 0; 566 } 567 568 static void ep_poll_safewake(wait_queue_head_t *wq) 569 { 570 int this_cpu = get_cpu(); 571 572 ep_call_nested(&poll_safewake_ncalls, 573 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu); 574 575 put_cpu(); 576 } 577 578 #else 579 580 static void ep_poll_safewake(wait_queue_head_t *wq) 581 { 582 wake_up_poll(wq, EPOLLIN); 583 } 584 585 #endif 586 587 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 588 { 589 wait_queue_head_t *whead; 590 591 rcu_read_lock(); 592 /* 593 * If it is cleared by POLLFREE, it should be rcu-safe. 594 * If we read NULL we need a barrier paired with 595 * smp_store_release() in ep_poll_callback(), otherwise 596 * we rely on whead->lock. 597 */ 598 whead = smp_load_acquire(&pwq->whead); 599 if (whead) 600 remove_wait_queue(whead, &pwq->wait); 601 rcu_read_unlock(); 602 } 603 604 /* 605 * This function unregisters poll callbacks from the associated file 606 * descriptor. Must be called with "mtx" held (or "epmutex" if called from 607 * ep_free). 608 */ 609 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 610 { 611 struct list_head *lsthead = &epi->pwqlist; 612 struct eppoll_entry *pwq; 613 614 while (!list_empty(lsthead)) { 615 pwq = list_first_entry(lsthead, struct eppoll_entry, llink); 616 617 list_del(&pwq->llink); 618 ep_remove_wait_queue(pwq); 619 kmem_cache_free(pwq_cache, pwq); 620 } 621 } 622 623 /* call only when ep->mtx is held */ 624 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) 625 { 626 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); 627 } 628 629 /* call only when ep->mtx is held */ 630 static inline void ep_pm_stay_awake(struct epitem *epi) 631 { 632 struct wakeup_source *ws = ep_wakeup_source(epi); 633 634 if (ws) 635 __pm_stay_awake(ws); 636 } 637 638 static inline bool ep_has_wakeup_source(struct epitem *epi) 639 { 640 return rcu_access_pointer(epi->ws) ? true : false; 641 } 642 643 /* call when ep->mtx cannot be held (ep_poll_callback) */ 644 static inline void ep_pm_stay_awake_rcu(struct epitem *epi) 645 { 646 struct wakeup_source *ws; 647 648 rcu_read_lock(); 649 ws = rcu_dereference(epi->ws); 650 if (ws) 651 __pm_stay_awake(ws); 652 rcu_read_unlock(); 653 } 654 655 /** 656 * ep_scan_ready_list - Scans the ready list in a way that makes possible for 657 * the scan code, to call f_op->poll(). Also allows for 658 * O(NumReady) performance. 659 * 660 * @ep: Pointer to the epoll private data structure. 661 * @sproc: Pointer to the scan callback. 662 * @priv: Private opaque data passed to the @sproc callback. 663 * @depth: The current depth of recursive f_op->poll calls. 664 * @ep_locked: caller already holds ep->mtx 665 * 666 * Returns: The same integer error code returned by the @sproc callback. 667 */ 668 static __poll_t ep_scan_ready_list(struct eventpoll *ep, 669 __poll_t (*sproc)(struct eventpoll *, 670 struct list_head *, void *), 671 void *priv, int depth, bool ep_locked) 672 { 673 __poll_t res; 674 int pwake = 0; 675 struct epitem *epi, *nepi; 676 LIST_HEAD(txlist); 677 678 lockdep_assert_irqs_enabled(); 679 680 /* 681 * We need to lock this because we could be hit by 682 * eventpoll_release_file() and epoll_ctl(). 683 */ 684 685 if (!ep_locked) 686 mutex_lock_nested(&ep->mtx, depth); 687 688 /* 689 * Steal the ready list, and re-init the original one to the 690 * empty list. Also, set ep->ovflist to NULL so that events 691 * happening while looping w/out locks, are not lost. We cannot 692 * have the poll callback to queue directly on ep->rdllist, 693 * because we want the "sproc" callback to be able to do it 694 * in a lockless way. 695 */ 696 write_lock_irq(&ep->lock); 697 list_splice_init(&ep->rdllist, &txlist); 698 WRITE_ONCE(ep->ovflist, NULL); 699 write_unlock_irq(&ep->lock); 700 701 /* 702 * Now call the callback function. 703 */ 704 res = (*sproc)(ep, &txlist, priv); 705 706 write_lock_irq(&ep->lock); 707 /* 708 * During the time we spent inside the "sproc" callback, some 709 * other events might have been queued by the poll callback. 710 * We re-insert them inside the main ready-list here. 711 */ 712 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL; 713 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 714 /* 715 * We need to check if the item is already in the list. 716 * During the "sproc" callback execution time, items are 717 * queued into ->ovflist but the "txlist" might already 718 * contain them, and the list_splice() below takes care of them. 719 */ 720 if (!ep_is_linked(epi)) { 721 /* 722 * ->ovflist is LIFO, so we have to reverse it in order 723 * to keep in FIFO. 724 */ 725 list_add(&epi->rdllink, &ep->rdllist); 726 ep_pm_stay_awake(epi); 727 } 728 } 729 /* 730 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 731 * releasing the lock, events will be queued in the normal way inside 732 * ep->rdllist. 733 */ 734 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR); 735 736 /* 737 * Quickly re-inject items left on "txlist". 738 */ 739 list_splice(&txlist, &ep->rdllist); 740 __pm_relax(ep->ws); 741 742 if (!list_empty(&ep->rdllist)) { 743 /* 744 * Wake up (if active) both the eventpoll wait list and 745 * the ->poll() wait list (delayed after we release the lock). 746 */ 747 if (waitqueue_active(&ep->wq)) 748 wake_up(&ep->wq); 749 if (waitqueue_active(&ep->poll_wait)) 750 pwake++; 751 } 752 write_unlock_irq(&ep->lock); 753 754 if (!ep_locked) 755 mutex_unlock(&ep->mtx); 756 757 /* We have to call this outside the lock */ 758 if (pwake) 759 ep_poll_safewake(&ep->poll_wait); 760 761 return res; 762 } 763 764 static void epi_rcu_free(struct rcu_head *head) 765 { 766 struct epitem *epi = container_of(head, struct epitem, rcu); 767 kmem_cache_free(epi_cache, epi); 768 } 769 770 /* 771 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 772 * all the associated resources. Must be called with "mtx" held. 773 */ 774 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 775 { 776 struct file *file = epi->ffd.file; 777 778 lockdep_assert_irqs_enabled(); 779 780 /* 781 * Removes poll wait queue hooks. 782 */ 783 ep_unregister_pollwait(ep, epi); 784 785 /* Remove the current item from the list of epoll hooks */ 786 spin_lock(&file->f_lock); 787 list_del_rcu(&epi->fllink); 788 spin_unlock(&file->f_lock); 789 790 rb_erase_cached(&epi->rbn, &ep->rbr); 791 792 write_lock_irq(&ep->lock); 793 if (ep_is_linked(epi)) 794 list_del_init(&epi->rdllink); 795 write_unlock_irq(&ep->lock); 796 797 wakeup_source_unregister(ep_wakeup_source(epi)); 798 /* 799 * At this point it is safe to free the eventpoll item. Use the union 800 * field epi->rcu, since we are trying to minimize the size of 801 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by 802 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make 803 * use of the rbn field. 804 */ 805 call_rcu(&epi->rcu, epi_rcu_free); 806 807 atomic_long_dec(&ep->user->epoll_watches); 808 809 return 0; 810 } 811 812 static void ep_free(struct eventpoll *ep) 813 { 814 struct rb_node *rbp; 815 struct epitem *epi; 816 817 /* We need to release all tasks waiting for these file */ 818 if (waitqueue_active(&ep->poll_wait)) 819 ep_poll_safewake(&ep->poll_wait); 820 821 /* 822 * We need to lock this because we could be hit by 823 * eventpoll_release_file() while we're freeing the "struct eventpoll". 824 * We do not need to hold "ep->mtx" here because the epoll file 825 * is on the way to be removed and no one has references to it 826 * anymore. The only hit might come from eventpoll_release_file() but 827 * holding "epmutex" is sufficient here. 828 */ 829 mutex_lock(&epmutex); 830 831 /* 832 * Walks through the whole tree by unregistering poll callbacks. 833 */ 834 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 835 epi = rb_entry(rbp, struct epitem, rbn); 836 837 ep_unregister_pollwait(ep, epi); 838 cond_resched(); 839 } 840 841 /* 842 * Walks through the whole tree by freeing each "struct epitem". At this 843 * point we are sure no poll callbacks will be lingering around, and also by 844 * holding "epmutex" we can be sure that no file cleanup code will hit 845 * us during this operation. So we can avoid the lock on "ep->lock". 846 * We do not need to lock ep->mtx, either, we only do it to prevent 847 * a lockdep warning. 848 */ 849 mutex_lock(&ep->mtx); 850 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) { 851 epi = rb_entry(rbp, struct epitem, rbn); 852 ep_remove(ep, epi); 853 cond_resched(); 854 } 855 mutex_unlock(&ep->mtx); 856 857 mutex_unlock(&epmutex); 858 mutex_destroy(&ep->mtx); 859 free_uid(ep->user); 860 wakeup_source_unregister(ep->ws); 861 kfree(ep); 862 } 863 864 static int ep_eventpoll_release(struct inode *inode, struct file *file) 865 { 866 struct eventpoll *ep = file->private_data; 867 868 if (ep) 869 ep_free(ep); 870 871 return 0; 872 } 873 874 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head, 875 void *priv); 876 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 877 poll_table *pt); 878 879 /* 880 * Differs from ep_eventpoll_poll() in that internal callers already have 881 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested() 882 * is correctly annotated. 883 */ 884 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, 885 int depth) 886 { 887 struct eventpoll *ep; 888 bool locked; 889 890 pt->_key = epi->event.events; 891 if (!is_file_epoll(epi->ffd.file)) 892 return vfs_poll(epi->ffd.file, pt) & epi->event.events; 893 894 ep = epi->ffd.file->private_data; 895 poll_wait(epi->ffd.file, &ep->poll_wait, pt); 896 locked = pt && (pt->_qproc == ep_ptable_queue_proc); 897 898 return ep_scan_ready_list(epi->ffd.file->private_data, 899 ep_read_events_proc, &depth, depth, 900 locked) & epi->event.events; 901 } 902 903 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head, 904 void *priv) 905 { 906 struct epitem *epi, *tmp; 907 poll_table pt; 908 int depth = *(int *)priv; 909 910 init_poll_funcptr(&pt, NULL); 911 depth++; 912 913 list_for_each_entry_safe(epi, tmp, head, rdllink) { 914 if (ep_item_poll(epi, &pt, depth)) { 915 return EPOLLIN | EPOLLRDNORM; 916 } else { 917 /* 918 * Item has been dropped into the ready list by the poll 919 * callback, but it's not actually ready, as far as 920 * caller requested events goes. We can remove it here. 921 */ 922 __pm_relax(ep_wakeup_source(epi)); 923 list_del_init(&epi->rdllink); 924 } 925 } 926 927 return 0; 928 } 929 930 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait) 931 { 932 struct eventpoll *ep = file->private_data; 933 int depth = 0; 934 935 /* Insert inside our poll wait queue */ 936 poll_wait(file, &ep->poll_wait, wait); 937 938 /* 939 * Proceed to find out if wanted events are really available inside 940 * the ready list. 941 */ 942 return ep_scan_ready_list(ep, ep_read_events_proc, 943 &depth, depth, false); 944 } 945 946 #ifdef CONFIG_PROC_FS 947 static void ep_show_fdinfo(struct seq_file *m, struct file *f) 948 { 949 struct eventpoll *ep = f->private_data; 950 struct rb_node *rbp; 951 952 mutex_lock(&ep->mtx); 953 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 954 struct epitem *epi = rb_entry(rbp, struct epitem, rbn); 955 struct inode *inode = file_inode(epi->ffd.file); 956 957 seq_printf(m, "tfd: %8d events: %8x data: %16llx " 958 " pos:%lli ino:%lx sdev:%x\n", 959 epi->ffd.fd, epi->event.events, 960 (long long)epi->event.data, 961 (long long)epi->ffd.file->f_pos, 962 inode->i_ino, inode->i_sb->s_dev); 963 if (seq_has_overflowed(m)) 964 break; 965 } 966 mutex_unlock(&ep->mtx); 967 } 968 #endif 969 970 /* File callbacks that implement the eventpoll file behaviour */ 971 static const struct file_operations eventpoll_fops = { 972 #ifdef CONFIG_PROC_FS 973 .show_fdinfo = ep_show_fdinfo, 974 #endif 975 .release = ep_eventpoll_release, 976 .poll = ep_eventpoll_poll, 977 .llseek = noop_llseek, 978 }; 979 980 /* 981 * This is called from eventpoll_release() to unlink files from the eventpoll 982 * interface. We need to have this facility to cleanup correctly files that are 983 * closed without being removed from the eventpoll interface. 984 */ 985 void eventpoll_release_file(struct file *file) 986 { 987 struct eventpoll *ep; 988 struct epitem *epi, *next; 989 990 /* 991 * We don't want to get "file->f_lock" because it is not 992 * necessary. It is not necessary because we're in the "struct file" 993 * cleanup path, and this means that no one is using this file anymore. 994 * So, for example, epoll_ctl() cannot hit here since if we reach this 995 * point, the file counter already went to zero and fget() would fail. 996 * The only hit might come from ep_free() but by holding the mutex 997 * will correctly serialize the operation. We do need to acquire 998 * "ep->mtx" after "epmutex" because ep_remove() requires it when called 999 * from anywhere but ep_free(). 1000 * 1001 * Besides, ep_remove() acquires the lock, so we can't hold it here. 1002 */ 1003 mutex_lock(&epmutex); 1004 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) { 1005 ep = epi->ep; 1006 mutex_lock_nested(&ep->mtx, 0); 1007 ep_remove(ep, epi); 1008 mutex_unlock(&ep->mtx); 1009 } 1010 mutex_unlock(&epmutex); 1011 } 1012 1013 static int ep_alloc(struct eventpoll **pep) 1014 { 1015 int error; 1016 struct user_struct *user; 1017 struct eventpoll *ep; 1018 1019 user = get_current_user(); 1020 error = -ENOMEM; 1021 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 1022 if (unlikely(!ep)) 1023 goto free_uid; 1024 1025 mutex_init(&ep->mtx); 1026 rwlock_init(&ep->lock); 1027 init_waitqueue_head(&ep->wq); 1028 init_waitqueue_head(&ep->poll_wait); 1029 INIT_LIST_HEAD(&ep->rdllist); 1030 ep->rbr = RB_ROOT_CACHED; 1031 ep->ovflist = EP_UNACTIVE_PTR; 1032 ep->user = user; 1033 1034 *pep = ep; 1035 1036 return 0; 1037 1038 free_uid: 1039 free_uid(user); 1040 return error; 1041 } 1042 1043 /* 1044 * Search the file inside the eventpoll tree. The RB tree operations 1045 * are protected by the "mtx" mutex, and ep_find() must be called with 1046 * "mtx" held. 1047 */ 1048 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 1049 { 1050 int kcmp; 1051 struct rb_node *rbp; 1052 struct epitem *epi, *epir = NULL; 1053 struct epoll_filefd ffd; 1054 1055 ep_set_ffd(&ffd, file, fd); 1056 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) { 1057 epi = rb_entry(rbp, struct epitem, rbn); 1058 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 1059 if (kcmp > 0) 1060 rbp = rbp->rb_right; 1061 else if (kcmp < 0) 1062 rbp = rbp->rb_left; 1063 else { 1064 epir = epi; 1065 break; 1066 } 1067 } 1068 1069 return epir; 1070 } 1071 1072 #ifdef CONFIG_CHECKPOINT_RESTORE 1073 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff) 1074 { 1075 struct rb_node *rbp; 1076 struct epitem *epi; 1077 1078 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1079 epi = rb_entry(rbp, struct epitem, rbn); 1080 if (epi->ffd.fd == tfd) { 1081 if (toff == 0) 1082 return epi; 1083 else 1084 toff--; 1085 } 1086 cond_resched(); 1087 } 1088 1089 return NULL; 1090 } 1091 1092 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, 1093 unsigned long toff) 1094 { 1095 struct file *file_raw; 1096 struct eventpoll *ep; 1097 struct epitem *epi; 1098 1099 if (!is_file_epoll(file)) 1100 return ERR_PTR(-EINVAL); 1101 1102 ep = file->private_data; 1103 1104 mutex_lock(&ep->mtx); 1105 epi = ep_find_tfd(ep, tfd, toff); 1106 if (epi) 1107 file_raw = epi->ffd.file; 1108 else 1109 file_raw = ERR_PTR(-ENOENT); 1110 mutex_unlock(&ep->mtx); 1111 1112 return file_raw; 1113 } 1114 #endif /* CONFIG_CHECKPOINT_RESTORE */ 1115 1116 /** 1117 * Adds a new entry to the tail of the list in a lockless way, i.e. 1118 * multiple CPUs are allowed to call this function concurrently. 1119 * 1120 * Beware: it is necessary to prevent any other modifications of the 1121 * existing list until all changes are completed, in other words 1122 * concurrent list_add_tail_lockless() calls should be protected 1123 * with a read lock, where write lock acts as a barrier which 1124 * makes sure all list_add_tail_lockless() calls are fully 1125 * completed. 1126 * 1127 * Also an element can be locklessly added to the list only in one 1128 * direction i.e. either to the tail either to the head, otherwise 1129 * concurrent access will corrupt the list. 1130 * 1131 * Returns %false if element has been already added to the list, %true 1132 * otherwise. 1133 */ 1134 static inline bool list_add_tail_lockless(struct list_head *new, 1135 struct list_head *head) 1136 { 1137 struct list_head *prev; 1138 1139 /* 1140 * This is simple 'new->next = head' operation, but cmpxchg() 1141 * is used in order to detect that same element has been just 1142 * added to the list from another CPU: the winner observes 1143 * new->next == new. 1144 */ 1145 if (cmpxchg(&new->next, new, head) != new) 1146 return false; 1147 1148 /* 1149 * Initially ->next of a new element must be updated with the head 1150 * (we are inserting to the tail) and only then pointers are atomically 1151 * exchanged. XCHG guarantees memory ordering, thus ->next should be 1152 * updated before pointers are actually swapped and pointers are 1153 * swapped before prev->next is updated. 1154 */ 1155 1156 prev = xchg(&head->prev, new); 1157 1158 /* 1159 * It is safe to modify prev->next and new->prev, because a new element 1160 * is added only to the tail and new->next is updated before XCHG. 1161 */ 1162 1163 prev->next = new; 1164 new->prev = prev; 1165 1166 return true; 1167 } 1168 1169 /** 1170 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way, 1171 * i.e. multiple CPUs are allowed to call this function concurrently. 1172 * 1173 * Returns %false if epi element has been already chained, %true otherwise. 1174 */ 1175 static inline bool chain_epi_lockless(struct epitem *epi) 1176 { 1177 struct eventpoll *ep = epi->ep; 1178 1179 /* Check that the same epi has not been just chained from another CPU */ 1180 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR) 1181 return false; 1182 1183 /* Atomically exchange tail */ 1184 epi->next = xchg(&ep->ovflist, epi); 1185 1186 return true; 1187 } 1188 1189 /* 1190 * This is the callback that is passed to the wait queue wakeup 1191 * mechanism. It is called by the stored file descriptors when they 1192 * have events to report. 1193 * 1194 * This callback takes a read lock in order not to content with concurrent 1195 * events from another file descriptors, thus all modifications to ->rdllist 1196 * or ->ovflist are lockless. Read lock is paired with the write lock from 1197 * ep_scan_ready_list(), which stops all list modifications and guarantees 1198 * that lists state is seen correctly. 1199 * 1200 * Another thing worth to mention is that ep_poll_callback() can be called 1201 * concurrently for the same @epi from different CPUs if poll table was inited 1202 * with several wait queues entries. Plural wakeup from different CPUs of a 1203 * single wait queue is serialized by wq.lock, but the case when multiple wait 1204 * queues are used should be detected accordingly. This is detected using 1205 * cmpxchg() operation. 1206 */ 1207 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1208 { 1209 int pwake = 0; 1210 struct epitem *epi = ep_item_from_wait(wait); 1211 struct eventpoll *ep = epi->ep; 1212 __poll_t pollflags = key_to_poll(key); 1213 unsigned long flags; 1214 int ewake = 0; 1215 1216 read_lock_irqsave(&ep->lock, flags); 1217 1218 ep_set_busy_poll_napi_id(epi); 1219 1220 /* 1221 * If the event mask does not contain any poll(2) event, we consider the 1222 * descriptor to be disabled. This condition is likely the effect of the 1223 * EPOLLONESHOT bit that disables the descriptor when an event is received, 1224 * until the next EPOLL_CTL_MOD will be issued. 1225 */ 1226 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 1227 goto out_unlock; 1228 1229 /* 1230 * Check the events coming with the callback. At this stage, not 1231 * every device reports the events in the "key" parameter of the 1232 * callback. We need to be able to handle both cases here, hence the 1233 * test for "key" != NULL before the event match test. 1234 */ 1235 if (pollflags && !(pollflags & epi->event.events)) 1236 goto out_unlock; 1237 1238 /* 1239 * If we are transferring events to userspace, we can hold no locks 1240 * (because we're accessing user memory, and because of linux f_op->poll() 1241 * semantics). All the events that happen during that period of time are 1242 * chained in ep->ovflist and requeued later on. 1243 */ 1244 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) { 1245 if (epi->next == EP_UNACTIVE_PTR && 1246 chain_epi_lockless(epi)) 1247 ep_pm_stay_awake_rcu(epi); 1248 goto out_unlock; 1249 } 1250 1251 /* If this file is already in the ready list we exit soon */ 1252 if (!ep_is_linked(epi) && 1253 list_add_tail_lockless(&epi->rdllink, &ep->rdllist)) { 1254 ep_pm_stay_awake_rcu(epi); 1255 } 1256 1257 /* 1258 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1259 * wait list. 1260 */ 1261 if (waitqueue_active(&ep->wq)) { 1262 if ((epi->event.events & EPOLLEXCLUSIVE) && 1263 !(pollflags & POLLFREE)) { 1264 switch (pollflags & EPOLLINOUT_BITS) { 1265 case EPOLLIN: 1266 if (epi->event.events & EPOLLIN) 1267 ewake = 1; 1268 break; 1269 case EPOLLOUT: 1270 if (epi->event.events & EPOLLOUT) 1271 ewake = 1; 1272 break; 1273 case 0: 1274 ewake = 1; 1275 break; 1276 } 1277 } 1278 wake_up(&ep->wq); 1279 } 1280 if (waitqueue_active(&ep->poll_wait)) 1281 pwake++; 1282 1283 out_unlock: 1284 read_unlock_irqrestore(&ep->lock, flags); 1285 1286 /* We have to call this outside the lock */ 1287 if (pwake) 1288 ep_poll_safewake(&ep->poll_wait); 1289 1290 if (!(epi->event.events & EPOLLEXCLUSIVE)) 1291 ewake = 1; 1292 1293 if (pollflags & POLLFREE) { 1294 /* 1295 * If we race with ep_remove_wait_queue() it can miss 1296 * ->whead = NULL and do another remove_wait_queue() after 1297 * us, so we can't use __remove_wait_queue(). 1298 */ 1299 list_del_init(&wait->entry); 1300 /* 1301 * ->whead != NULL protects us from the race with ep_free() 1302 * or ep_remove(), ep_remove_wait_queue() takes whead->lock 1303 * held by the caller. Once we nullify it, nothing protects 1304 * ep/epi or even wait. 1305 */ 1306 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL); 1307 } 1308 1309 return ewake; 1310 } 1311 1312 /* 1313 * This is the callback that is used to add our wait queue to the 1314 * target file wakeup lists. 1315 */ 1316 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 1317 poll_table *pt) 1318 { 1319 struct epitem *epi = ep_item_from_epqueue(pt); 1320 struct eppoll_entry *pwq; 1321 1322 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { 1323 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 1324 pwq->whead = whead; 1325 pwq->base = epi; 1326 if (epi->event.events & EPOLLEXCLUSIVE) 1327 add_wait_queue_exclusive(whead, &pwq->wait); 1328 else 1329 add_wait_queue(whead, &pwq->wait); 1330 list_add_tail(&pwq->llink, &epi->pwqlist); 1331 epi->nwait++; 1332 } else { 1333 /* We have to signal that an error occurred */ 1334 epi->nwait = -1; 1335 } 1336 } 1337 1338 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1339 { 1340 int kcmp; 1341 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL; 1342 struct epitem *epic; 1343 bool leftmost = true; 1344 1345 while (*p) { 1346 parent = *p; 1347 epic = rb_entry(parent, struct epitem, rbn); 1348 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1349 if (kcmp > 0) { 1350 p = &parent->rb_right; 1351 leftmost = false; 1352 } else 1353 p = &parent->rb_left; 1354 } 1355 rb_link_node(&epi->rbn, parent, p); 1356 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost); 1357 } 1358 1359 1360 1361 #define PATH_ARR_SIZE 5 1362 /* 1363 * These are the number paths of length 1 to 5, that we are allowing to emanate 1364 * from a single file of interest. For example, we allow 1000 paths of length 1365 * 1, to emanate from each file of interest. This essentially represents the 1366 * potential wakeup paths, which need to be limited in order to avoid massive 1367 * uncontrolled wakeup storms. The common use case should be a single ep which 1368 * is connected to n file sources. In this case each file source has 1 path 1369 * of length 1. Thus, the numbers below should be more than sufficient. These 1370 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1371 * and delete can't add additional paths. Protected by the epmutex. 1372 */ 1373 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1374 static int path_count[PATH_ARR_SIZE]; 1375 1376 static int path_count_inc(int nests) 1377 { 1378 /* Allow an arbitrary number of depth 1 paths */ 1379 if (nests == 0) 1380 return 0; 1381 1382 if (++path_count[nests] > path_limits[nests]) 1383 return -1; 1384 return 0; 1385 } 1386 1387 static void path_count_init(void) 1388 { 1389 int i; 1390 1391 for (i = 0; i < PATH_ARR_SIZE; i++) 1392 path_count[i] = 0; 1393 } 1394 1395 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests) 1396 { 1397 int error = 0; 1398 struct file *file = priv; 1399 struct file *child_file; 1400 struct epitem *epi; 1401 1402 /* CTL_DEL can remove links here, but that can't increase our count */ 1403 rcu_read_lock(); 1404 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) { 1405 child_file = epi->ep->file; 1406 if (is_file_epoll(child_file)) { 1407 if (list_empty(&child_file->f_ep_links)) { 1408 if (path_count_inc(call_nests)) { 1409 error = -1; 1410 break; 1411 } 1412 } else { 1413 error = ep_call_nested(&poll_loop_ncalls, 1414 reverse_path_check_proc, 1415 child_file, child_file, 1416 current); 1417 } 1418 if (error != 0) 1419 break; 1420 } else { 1421 printk(KERN_ERR "reverse_path_check_proc: " 1422 "file is not an ep!\n"); 1423 } 1424 } 1425 rcu_read_unlock(); 1426 return error; 1427 } 1428 1429 /** 1430 * reverse_path_check - The tfile_check_list is list of file *, which have 1431 * links that are proposed to be newly added. We need to 1432 * make sure that those added links don't add too many 1433 * paths such that we will spend all our time waking up 1434 * eventpoll objects. 1435 * 1436 * Returns: Returns zero if the proposed links don't create too many paths, 1437 * -1 otherwise. 1438 */ 1439 static int reverse_path_check(void) 1440 { 1441 int error = 0; 1442 struct file *current_file; 1443 1444 /* let's call this for all tfiles */ 1445 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) { 1446 path_count_init(); 1447 error = ep_call_nested(&poll_loop_ncalls, 1448 reverse_path_check_proc, current_file, 1449 current_file, current); 1450 if (error) 1451 break; 1452 } 1453 return error; 1454 } 1455 1456 static int ep_create_wakeup_source(struct epitem *epi) 1457 { 1458 const char *name; 1459 struct wakeup_source *ws; 1460 1461 if (!epi->ep->ws) { 1462 epi->ep->ws = wakeup_source_register(NULL, "eventpoll"); 1463 if (!epi->ep->ws) 1464 return -ENOMEM; 1465 } 1466 1467 name = epi->ffd.file->f_path.dentry->d_name.name; 1468 ws = wakeup_source_register(NULL, name); 1469 1470 if (!ws) 1471 return -ENOMEM; 1472 rcu_assign_pointer(epi->ws, ws); 1473 1474 return 0; 1475 } 1476 1477 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ 1478 static noinline void ep_destroy_wakeup_source(struct epitem *epi) 1479 { 1480 struct wakeup_source *ws = ep_wakeup_source(epi); 1481 1482 RCU_INIT_POINTER(epi->ws, NULL); 1483 1484 /* 1485 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is 1486 * used internally by wakeup_source_remove, too (called by 1487 * wakeup_source_unregister), so we cannot use call_rcu 1488 */ 1489 synchronize_rcu(); 1490 wakeup_source_unregister(ws); 1491 } 1492 1493 /* 1494 * Must be called with "mtx" held. 1495 */ 1496 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event, 1497 struct file *tfile, int fd, int full_check) 1498 { 1499 int error, pwake = 0; 1500 __poll_t revents; 1501 long user_watches; 1502 struct epitem *epi; 1503 struct ep_pqueue epq; 1504 1505 lockdep_assert_irqs_enabled(); 1506 1507 user_watches = atomic_long_read(&ep->user->epoll_watches); 1508 if (unlikely(user_watches >= max_user_watches)) 1509 return -ENOSPC; 1510 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) 1511 return -ENOMEM; 1512 1513 /* Item initialization follow here ... */ 1514 INIT_LIST_HEAD(&epi->rdllink); 1515 INIT_LIST_HEAD(&epi->fllink); 1516 INIT_LIST_HEAD(&epi->pwqlist); 1517 epi->ep = ep; 1518 ep_set_ffd(&epi->ffd, tfile, fd); 1519 epi->event = *event; 1520 epi->nwait = 0; 1521 epi->next = EP_UNACTIVE_PTR; 1522 if (epi->event.events & EPOLLWAKEUP) { 1523 error = ep_create_wakeup_source(epi); 1524 if (error) 1525 goto error_create_wakeup_source; 1526 } else { 1527 RCU_INIT_POINTER(epi->ws, NULL); 1528 } 1529 1530 /* Initialize the poll table using the queue callback */ 1531 epq.epi = epi; 1532 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1533 1534 /* 1535 * Attach the item to the poll hooks and get current event bits. 1536 * We can safely use the file* here because its usage count has 1537 * been increased by the caller of this function. Note that after 1538 * this operation completes, the poll callback can start hitting 1539 * the new item. 1540 */ 1541 revents = ep_item_poll(epi, &epq.pt, 1); 1542 1543 /* 1544 * We have to check if something went wrong during the poll wait queue 1545 * install process. Namely an allocation for a wait queue failed due 1546 * high memory pressure. 1547 */ 1548 error = -ENOMEM; 1549 if (epi->nwait < 0) 1550 goto error_unregister; 1551 1552 /* Add the current item to the list of active epoll hook for this file */ 1553 spin_lock(&tfile->f_lock); 1554 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links); 1555 spin_unlock(&tfile->f_lock); 1556 1557 /* 1558 * Add the current item to the RB tree. All RB tree operations are 1559 * protected by "mtx", and ep_insert() is called with "mtx" held. 1560 */ 1561 ep_rbtree_insert(ep, epi); 1562 1563 /* now check if we've created too many backpaths */ 1564 error = -EINVAL; 1565 if (full_check && reverse_path_check()) 1566 goto error_remove_epi; 1567 1568 /* We have to drop the new item inside our item list to keep track of it */ 1569 write_lock_irq(&ep->lock); 1570 1571 /* record NAPI ID of new item if present */ 1572 ep_set_busy_poll_napi_id(epi); 1573 1574 /* If the file is already "ready" we drop it inside the ready list */ 1575 if (revents && !ep_is_linked(epi)) { 1576 list_add_tail(&epi->rdllink, &ep->rdllist); 1577 ep_pm_stay_awake(epi); 1578 1579 /* Notify waiting tasks that events are available */ 1580 if (waitqueue_active(&ep->wq)) 1581 wake_up(&ep->wq); 1582 if (waitqueue_active(&ep->poll_wait)) 1583 pwake++; 1584 } 1585 1586 write_unlock_irq(&ep->lock); 1587 1588 atomic_long_inc(&ep->user->epoll_watches); 1589 1590 /* We have to call this outside the lock */ 1591 if (pwake) 1592 ep_poll_safewake(&ep->poll_wait); 1593 1594 return 0; 1595 1596 error_remove_epi: 1597 spin_lock(&tfile->f_lock); 1598 list_del_rcu(&epi->fllink); 1599 spin_unlock(&tfile->f_lock); 1600 1601 rb_erase_cached(&epi->rbn, &ep->rbr); 1602 1603 error_unregister: 1604 ep_unregister_pollwait(ep, epi); 1605 1606 /* 1607 * We need to do this because an event could have been arrived on some 1608 * allocated wait queue. Note that we don't care about the ep->ovflist 1609 * list, since that is used/cleaned only inside a section bound by "mtx". 1610 * And ep_insert() is called with "mtx" held. 1611 */ 1612 write_lock_irq(&ep->lock); 1613 if (ep_is_linked(epi)) 1614 list_del_init(&epi->rdllink); 1615 write_unlock_irq(&ep->lock); 1616 1617 wakeup_source_unregister(ep_wakeup_source(epi)); 1618 1619 error_create_wakeup_source: 1620 kmem_cache_free(epi_cache, epi); 1621 1622 return error; 1623 } 1624 1625 /* 1626 * Modify the interest event mask by dropping an event if the new mask 1627 * has a match in the current file status. Must be called with "mtx" held. 1628 */ 1629 static int ep_modify(struct eventpoll *ep, struct epitem *epi, 1630 const struct epoll_event *event) 1631 { 1632 int pwake = 0; 1633 poll_table pt; 1634 1635 lockdep_assert_irqs_enabled(); 1636 1637 init_poll_funcptr(&pt, NULL); 1638 1639 /* 1640 * Set the new event interest mask before calling f_op->poll(); 1641 * otherwise we might miss an event that happens between the 1642 * f_op->poll() call and the new event set registering. 1643 */ 1644 epi->event.events = event->events; /* need barrier below */ 1645 epi->event.data = event->data; /* protected by mtx */ 1646 if (epi->event.events & EPOLLWAKEUP) { 1647 if (!ep_has_wakeup_source(epi)) 1648 ep_create_wakeup_source(epi); 1649 } else if (ep_has_wakeup_source(epi)) { 1650 ep_destroy_wakeup_source(epi); 1651 } 1652 1653 /* 1654 * The following barrier has two effects: 1655 * 1656 * 1) Flush epi changes above to other CPUs. This ensures 1657 * we do not miss events from ep_poll_callback if an 1658 * event occurs immediately after we call f_op->poll(). 1659 * We need this because we did not take ep->lock while 1660 * changing epi above (but ep_poll_callback does take 1661 * ep->lock). 1662 * 1663 * 2) We also need to ensure we do not miss _past_ events 1664 * when calling f_op->poll(). This barrier also 1665 * pairs with the barrier in wq_has_sleeper (see 1666 * comments for wq_has_sleeper). 1667 * 1668 * This barrier will now guarantee ep_poll_callback or f_op->poll 1669 * (or both) will notice the readiness of an item. 1670 */ 1671 smp_mb(); 1672 1673 /* 1674 * Get current event bits. We can safely use the file* here because 1675 * its usage count has been increased by the caller of this function. 1676 * If the item is "hot" and it is not registered inside the ready 1677 * list, push it inside. 1678 */ 1679 if (ep_item_poll(epi, &pt, 1)) { 1680 write_lock_irq(&ep->lock); 1681 if (!ep_is_linked(epi)) { 1682 list_add_tail(&epi->rdllink, &ep->rdllist); 1683 ep_pm_stay_awake(epi); 1684 1685 /* Notify waiting tasks that events are available */ 1686 if (waitqueue_active(&ep->wq)) 1687 wake_up(&ep->wq); 1688 if (waitqueue_active(&ep->poll_wait)) 1689 pwake++; 1690 } 1691 write_unlock_irq(&ep->lock); 1692 } 1693 1694 /* We have to call this outside the lock */ 1695 if (pwake) 1696 ep_poll_safewake(&ep->poll_wait); 1697 1698 return 0; 1699 } 1700 1701 static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head, 1702 void *priv) 1703 { 1704 struct ep_send_events_data *esed = priv; 1705 __poll_t revents; 1706 struct epitem *epi, *tmp; 1707 struct epoll_event __user *uevent = esed->events; 1708 struct wakeup_source *ws; 1709 poll_table pt; 1710 1711 init_poll_funcptr(&pt, NULL); 1712 esed->res = 0; 1713 1714 /* 1715 * We can loop without lock because we are passed a task private list. 1716 * Items cannot vanish during the loop because ep_scan_ready_list() is 1717 * holding "mtx" during this call. 1718 */ 1719 lockdep_assert_held(&ep->mtx); 1720 1721 list_for_each_entry_safe(epi, tmp, head, rdllink) { 1722 if (esed->res >= esed->maxevents) 1723 break; 1724 1725 /* 1726 * Activate ep->ws before deactivating epi->ws to prevent 1727 * triggering auto-suspend here (in case we reactive epi->ws 1728 * below). 1729 * 1730 * This could be rearranged to delay the deactivation of epi->ws 1731 * instead, but then epi->ws would temporarily be out of sync 1732 * with ep_is_linked(). 1733 */ 1734 ws = ep_wakeup_source(epi); 1735 if (ws) { 1736 if (ws->active) 1737 __pm_stay_awake(ep->ws); 1738 __pm_relax(ws); 1739 } 1740 1741 list_del_init(&epi->rdllink); 1742 1743 /* 1744 * If the event mask intersect the caller-requested one, 1745 * deliver the event to userspace. Again, ep_scan_ready_list() 1746 * is holding ep->mtx, so no operations coming from userspace 1747 * can change the item. 1748 */ 1749 revents = ep_item_poll(epi, &pt, 1); 1750 if (!revents) 1751 continue; 1752 1753 if (__put_user(revents, &uevent->events) || 1754 __put_user(epi->event.data, &uevent->data)) { 1755 list_add(&epi->rdllink, head); 1756 ep_pm_stay_awake(epi); 1757 if (!esed->res) 1758 esed->res = -EFAULT; 1759 return 0; 1760 } 1761 esed->res++; 1762 uevent++; 1763 if (epi->event.events & EPOLLONESHOT) 1764 epi->event.events &= EP_PRIVATE_BITS; 1765 else if (!(epi->event.events & EPOLLET)) { 1766 /* 1767 * If this file has been added with Level 1768 * Trigger mode, we need to insert back inside 1769 * the ready list, so that the next call to 1770 * epoll_wait() will check again the events 1771 * availability. At this point, no one can insert 1772 * into ep->rdllist besides us. The epoll_ctl() 1773 * callers are locked out by 1774 * ep_scan_ready_list() holding "mtx" and the 1775 * poll callback will queue them in ep->ovflist. 1776 */ 1777 list_add_tail(&epi->rdllink, &ep->rdllist); 1778 ep_pm_stay_awake(epi); 1779 } 1780 } 1781 1782 return 0; 1783 } 1784 1785 static int ep_send_events(struct eventpoll *ep, 1786 struct epoll_event __user *events, int maxevents) 1787 { 1788 struct ep_send_events_data esed; 1789 1790 esed.maxevents = maxevents; 1791 esed.events = events; 1792 1793 ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false); 1794 return esed.res; 1795 } 1796 1797 static inline struct timespec64 ep_set_mstimeout(long ms) 1798 { 1799 struct timespec64 now, ts = { 1800 .tv_sec = ms / MSEC_PER_SEC, 1801 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC), 1802 }; 1803 1804 ktime_get_ts64(&now); 1805 return timespec64_add_safe(now, ts); 1806 } 1807 1808 /** 1809 * ep_poll - Retrieves ready events, and delivers them to the caller supplied 1810 * event buffer. 1811 * 1812 * @ep: Pointer to the eventpoll context. 1813 * @events: Pointer to the userspace buffer where the ready events should be 1814 * stored. 1815 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1816 * @timeout: Maximum timeout for the ready events fetch operation, in 1817 * milliseconds. If the @timeout is zero, the function will not block, 1818 * while if the @timeout is less than zero, the function will block 1819 * until at least one event has been retrieved (or an error 1820 * occurred). 1821 * 1822 * Returns: Returns the number of ready events which have been fetched, or an 1823 * error code, in case of error. 1824 */ 1825 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1826 int maxevents, long timeout) 1827 { 1828 int res = 0, eavail, timed_out = 0; 1829 u64 slack = 0; 1830 bool waiter = false; 1831 wait_queue_entry_t wait; 1832 ktime_t expires, *to = NULL; 1833 1834 lockdep_assert_irqs_enabled(); 1835 1836 if (timeout > 0) { 1837 struct timespec64 end_time = ep_set_mstimeout(timeout); 1838 1839 slack = select_estimate_accuracy(&end_time); 1840 to = &expires; 1841 *to = timespec64_to_ktime(end_time); 1842 } else if (timeout == 0) { 1843 /* 1844 * Avoid the unnecessary trip to the wait queue loop, if the 1845 * caller specified a non blocking operation. We still need 1846 * lock because we could race and not see an epi being added 1847 * to the ready list while in irq callback. Thus incorrectly 1848 * returning 0 back to userspace. 1849 */ 1850 timed_out = 1; 1851 1852 write_lock_irq(&ep->lock); 1853 eavail = ep_events_available(ep); 1854 write_unlock_irq(&ep->lock); 1855 1856 goto send_events; 1857 } 1858 1859 fetch_events: 1860 1861 if (!ep_events_available(ep)) 1862 ep_busy_loop(ep, timed_out); 1863 1864 eavail = ep_events_available(ep); 1865 if (eavail) 1866 goto send_events; 1867 1868 /* 1869 * Busy poll timed out. Drop NAPI ID for now, we can add 1870 * it back in when we have moved a socket with a valid NAPI 1871 * ID onto the ready list. 1872 */ 1873 ep_reset_busy_poll_napi_id(ep); 1874 1875 /* 1876 * We don't have any available event to return to the caller. We need 1877 * to sleep here, and we will be woken by ep_poll_callback() when events 1878 * become available. 1879 */ 1880 if (!waiter) { 1881 waiter = true; 1882 init_waitqueue_entry(&wait, current); 1883 1884 spin_lock_irq(&ep->wq.lock); 1885 __add_wait_queue_exclusive(&ep->wq, &wait); 1886 spin_unlock_irq(&ep->wq.lock); 1887 } 1888 1889 for (;;) { 1890 /* 1891 * We don't want to sleep if the ep_poll_callback() sends us 1892 * a wakeup in between. That's why we set the task state 1893 * to TASK_INTERRUPTIBLE before doing the checks. 1894 */ 1895 set_current_state(TASK_INTERRUPTIBLE); 1896 /* 1897 * Always short-circuit for fatal signals to allow 1898 * threads to make a timely exit without the chance of 1899 * finding more events available and fetching 1900 * repeatedly. 1901 */ 1902 if (fatal_signal_pending(current)) { 1903 res = -EINTR; 1904 break; 1905 } 1906 1907 eavail = ep_events_available(ep); 1908 if (eavail) 1909 break; 1910 if (signal_pending(current)) { 1911 res = -EINTR; 1912 break; 1913 } 1914 1915 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) { 1916 timed_out = 1; 1917 break; 1918 } 1919 } 1920 1921 __set_current_state(TASK_RUNNING); 1922 1923 send_events: 1924 /* 1925 * Try to transfer events to user space. In case we get 0 events and 1926 * there's still timeout left over, we go trying again in search of 1927 * more luck. 1928 */ 1929 if (!res && eavail && 1930 !(res = ep_send_events(ep, events, maxevents)) && !timed_out) 1931 goto fetch_events; 1932 1933 if (waiter) { 1934 spin_lock_irq(&ep->wq.lock); 1935 __remove_wait_queue(&ep->wq, &wait); 1936 spin_unlock_irq(&ep->wq.lock); 1937 } 1938 1939 return res; 1940 } 1941 1942 /** 1943 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested() 1944 * API, to verify that adding an epoll file inside another 1945 * epoll structure, does not violate the constraints, in 1946 * terms of closed loops, or too deep chains (which can 1947 * result in excessive stack usage). 1948 * 1949 * @priv: Pointer to the epoll file to be currently checked. 1950 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll 1951 * data structure pointer. 1952 * @call_nests: Current dept of the @ep_call_nested() call stack. 1953 * 1954 * Returns: Returns zero if adding the epoll @file inside current epoll 1955 * structure @ep does not violate the constraints, or -1 otherwise. 1956 */ 1957 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests) 1958 { 1959 int error = 0; 1960 struct file *file = priv; 1961 struct eventpoll *ep = file->private_data; 1962 struct eventpoll *ep_tovisit; 1963 struct rb_node *rbp; 1964 struct epitem *epi; 1965 1966 mutex_lock_nested(&ep->mtx, call_nests + 1); 1967 ep->visited = 1; 1968 list_add(&ep->visited_list_link, &visited_list); 1969 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1970 epi = rb_entry(rbp, struct epitem, rbn); 1971 if (unlikely(is_file_epoll(epi->ffd.file))) { 1972 ep_tovisit = epi->ffd.file->private_data; 1973 if (ep_tovisit->visited) 1974 continue; 1975 error = ep_call_nested(&poll_loop_ncalls, 1976 ep_loop_check_proc, epi->ffd.file, 1977 ep_tovisit, current); 1978 if (error != 0) 1979 break; 1980 } else { 1981 /* 1982 * If we've reached a file that is not associated with 1983 * an ep, then we need to check if the newly added 1984 * links are going to add too many wakeup paths. We do 1985 * this by adding it to the tfile_check_list, if it's 1986 * not already there, and calling reverse_path_check() 1987 * during ep_insert(). 1988 */ 1989 if (list_empty(&epi->ffd.file->f_tfile_llink)) 1990 list_add(&epi->ffd.file->f_tfile_llink, 1991 &tfile_check_list); 1992 } 1993 } 1994 mutex_unlock(&ep->mtx); 1995 1996 return error; 1997 } 1998 1999 /** 2000 * ep_loop_check - Performs a check to verify that adding an epoll file (@file) 2001 * another epoll file (represented by @ep) does not create 2002 * closed loops or too deep chains. 2003 * 2004 * @ep: Pointer to the epoll private data structure. 2005 * @file: Pointer to the epoll file to be checked. 2006 * 2007 * Returns: Returns zero if adding the epoll @file inside current epoll 2008 * structure @ep does not violate the constraints, or -1 otherwise. 2009 */ 2010 static int ep_loop_check(struct eventpoll *ep, struct file *file) 2011 { 2012 int ret; 2013 struct eventpoll *ep_cur, *ep_next; 2014 2015 ret = ep_call_nested(&poll_loop_ncalls, 2016 ep_loop_check_proc, file, ep, current); 2017 /* clear visited list */ 2018 list_for_each_entry_safe(ep_cur, ep_next, &visited_list, 2019 visited_list_link) { 2020 ep_cur->visited = 0; 2021 list_del(&ep_cur->visited_list_link); 2022 } 2023 return ret; 2024 } 2025 2026 static void clear_tfile_check_list(void) 2027 { 2028 struct file *file; 2029 2030 /* first clear the tfile_check_list */ 2031 while (!list_empty(&tfile_check_list)) { 2032 file = list_first_entry(&tfile_check_list, struct file, 2033 f_tfile_llink); 2034 list_del_init(&file->f_tfile_llink); 2035 } 2036 INIT_LIST_HEAD(&tfile_check_list); 2037 } 2038 2039 /* 2040 * Open an eventpoll file descriptor. 2041 */ 2042 static int do_epoll_create(int flags) 2043 { 2044 int error, fd; 2045 struct eventpoll *ep = NULL; 2046 struct file *file; 2047 2048 /* Check the EPOLL_* constant for consistency. */ 2049 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 2050 2051 if (flags & ~EPOLL_CLOEXEC) 2052 return -EINVAL; 2053 /* 2054 * Create the internal data structure ("struct eventpoll"). 2055 */ 2056 error = ep_alloc(&ep); 2057 if (error < 0) 2058 return error; 2059 /* 2060 * Creates all the items needed to setup an eventpoll file. That is, 2061 * a file structure and a free file descriptor. 2062 */ 2063 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 2064 if (fd < 0) { 2065 error = fd; 2066 goto out_free_ep; 2067 } 2068 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 2069 O_RDWR | (flags & O_CLOEXEC)); 2070 if (IS_ERR(file)) { 2071 error = PTR_ERR(file); 2072 goto out_free_fd; 2073 } 2074 ep->file = file; 2075 fd_install(fd, file); 2076 return fd; 2077 2078 out_free_fd: 2079 put_unused_fd(fd); 2080 out_free_ep: 2081 ep_free(ep); 2082 return error; 2083 } 2084 2085 SYSCALL_DEFINE1(epoll_create1, int, flags) 2086 { 2087 return do_epoll_create(flags); 2088 } 2089 2090 SYSCALL_DEFINE1(epoll_create, int, size) 2091 { 2092 if (size <= 0) 2093 return -EINVAL; 2094 2095 return do_epoll_create(0); 2096 } 2097 2098 /* 2099 * The following function implements the controller interface for 2100 * the eventpoll file that enables the insertion/removal/change of 2101 * file descriptors inside the interest set. 2102 */ 2103 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 2104 struct epoll_event __user *, event) 2105 { 2106 int error; 2107 int full_check = 0; 2108 struct fd f, tf; 2109 struct eventpoll *ep; 2110 struct epitem *epi; 2111 struct epoll_event epds; 2112 struct eventpoll *tep = NULL; 2113 2114 error = -EFAULT; 2115 if (ep_op_has_event(op) && 2116 copy_from_user(&epds, event, sizeof(struct epoll_event))) 2117 goto error_return; 2118 2119 error = -EBADF; 2120 f = fdget(epfd); 2121 if (!f.file) 2122 goto error_return; 2123 2124 /* Get the "struct file *" for the target file */ 2125 tf = fdget(fd); 2126 if (!tf.file) 2127 goto error_fput; 2128 2129 /* The target file descriptor must support poll */ 2130 error = -EPERM; 2131 if (!file_can_poll(tf.file)) 2132 goto error_tgt_fput; 2133 2134 /* Check if EPOLLWAKEUP is allowed */ 2135 if (ep_op_has_event(op)) 2136 ep_take_care_of_epollwakeup(&epds); 2137 2138 /* 2139 * We have to check that the file structure underneath the file descriptor 2140 * the user passed to us _is_ an eventpoll file. And also we do not permit 2141 * adding an epoll file descriptor inside itself. 2142 */ 2143 error = -EINVAL; 2144 if (f.file == tf.file || !is_file_epoll(f.file)) 2145 goto error_tgt_fput; 2146 2147 /* 2148 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only, 2149 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation. 2150 * Also, we do not currently supported nested exclusive wakeups. 2151 */ 2152 if (ep_op_has_event(op) && (epds.events & EPOLLEXCLUSIVE)) { 2153 if (op == EPOLL_CTL_MOD) 2154 goto error_tgt_fput; 2155 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) || 2156 (epds.events & ~EPOLLEXCLUSIVE_OK_BITS))) 2157 goto error_tgt_fput; 2158 } 2159 2160 /* 2161 * At this point it is safe to assume that the "private_data" contains 2162 * our own data structure. 2163 */ 2164 ep = f.file->private_data; 2165 2166 /* 2167 * When we insert an epoll file descriptor, inside another epoll file 2168 * descriptor, there is the change of creating closed loops, which are 2169 * better be handled here, than in more critical paths. While we are 2170 * checking for loops we also determine the list of files reachable 2171 * and hang them on the tfile_check_list, so we can check that we 2172 * haven't created too many possible wakeup paths. 2173 * 2174 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when 2175 * the epoll file descriptor is attaching directly to a wakeup source, 2176 * unless the epoll file descriptor is nested. The purpose of taking the 2177 * 'epmutex' on add is to prevent complex toplogies such as loops and 2178 * deep wakeup paths from forming in parallel through multiple 2179 * EPOLL_CTL_ADD operations. 2180 */ 2181 mutex_lock_nested(&ep->mtx, 0); 2182 if (op == EPOLL_CTL_ADD) { 2183 if (!list_empty(&f.file->f_ep_links) || 2184 is_file_epoll(tf.file)) { 2185 full_check = 1; 2186 mutex_unlock(&ep->mtx); 2187 mutex_lock(&epmutex); 2188 if (is_file_epoll(tf.file)) { 2189 error = -ELOOP; 2190 if (ep_loop_check(ep, tf.file) != 0) { 2191 clear_tfile_check_list(); 2192 goto error_tgt_fput; 2193 } 2194 } else 2195 list_add(&tf.file->f_tfile_llink, 2196 &tfile_check_list); 2197 mutex_lock_nested(&ep->mtx, 0); 2198 if (is_file_epoll(tf.file)) { 2199 tep = tf.file->private_data; 2200 mutex_lock_nested(&tep->mtx, 1); 2201 } 2202 } 2203 } 2204 2205 /* 2206 * Try to lookup the file inside our RB tree, Since we grabbed "mtx" 2207 * above, we can be sure to be able to use the item looked up by 2208 * ep_find() till we release the mutex. 2209 */ 2210 epi = ep_find(ep, tf.file, fd); 2211 2212 error = -EINVAL; 2213 switch (op) { 2214 case EPOLL_CTL_ADD: 2215 if (!epi) { 2216 epds.events |= EPOLLERR | EPOLLHUP; 2217 error = ep_insert(ep, &epds, tf.file, fd, full_check); 2218 } else 2219 error = -EEXIST; 2220 if (full_check) 2221 clear_tfile_check_list(); 2222 break; 2223 case EPOLL_CTL_DEL: 2224 if (epi) 2225 error = ep_remove(ep, epi); 2226 else 2227 error = -ENOENT; 2228 break; 2229 case EPOLL_CTL_MOD: 2230 if (epi) { 2231 if (!(epi->event.events & EPOLLEXCLUSIVE)) { 2232 epds.events |= EPOLLERR | EPOLLHUP; 2233 error = ep_modify(ep, epi, &epds); 2234 } 2235 } else 2236 error = -ENOENT; 2237 break; 2238 } 2239 if (tep != NULL) 2240 mutex_unlock(&tep->mtx); 2241 mutex_unlock(&ep->mtx); 2242 2243 error_tgt_fput: 2244 if (full_check) 2245 mutex_unlock(&epmutex); 2246 2247 fdput(tf); 2248 error_fput: 2249 fdput(f); 2250 error_return: 2251 2252 return error; 2253 } 2254 2255 /* 2256 * Implement the event wait interface for the eventpoll file. It is the kernel 2257 * part of the user space epoll_wait(2). 2258 */ 2259 static int do_epoll_wait(int epfd, struct epoll_event __user *events, 2260 int maxevents, int timeout) 2261 { 2262 int error; 2263 struct fd f; 2264 struct eventpoll *ep; 2265 2266 /* The maximum number of event must be greater than zero */ 2267 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 2268 return -EINVAL; 2269 2270 /* Verify that the area passed by the user is writeable */ 2271 if (!access_ok(events, maxevents * sizeof(struct epoll_event))) 2272 return -EFAULT; 2273 2274 /* Get the "struct file *" for the eventpoll file */ 2275 f = fdget(epfd); 2276 if (!f.file) 2277 return -EBADF; 2278 2279 /* 2280 * We have to check that the file structure underneath the fd 2281 * the user passed to us _is_ an eventpoll file. 2282 */ 2283 error = -EINVAL; 2284 if (!is_file_epoll(f.file)) 2285 goto error_fput; 2286 2287 /* 2288 * At this point it is safe to assume that the "private_data" contains 2289 * our own data structure. 2290 */ 2291 ep = f.file->private_data; 2292 2293 /* Time to fish for events ... */ 2294 error = ep_poll(ep, events, maxevents, timeout); 2295 2296 error_fput: 2297 fdput(f); 2298 return error; 2299 } 2300 2301 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 2302 int, maxevents, int, timeout) 2303 { 2304 return do_epoll_wait(epfd, events, maxevents, timeout); 2305 } 2306 2307 /* 2308 * Implement the event wait interface for the eventpoll file. It is the kernel 2309 * part of the user space epoll_pwait(2). 2310 */ 2311 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 2312 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 2313 size_t, sigsetsize) 2314 { 2315 int error; 2316 2317 /* 2318 * If the caller wants a certain signal mask to be set during the wait, 2319 * we apply it here. 2320 */ 2321 error = set_user_sigmask(sigmask, sigsetsize); 2322 if (error) 2323 return error; 2324 2325 error = do_epoll_wait(epfd, events, maxevents, timeout); 2326 restore_saved_sigmask_unless(error == -EINTR); 2327 2328 return error; 2329 } 2330 2331 #ifdef CONFIG_COMPAT 2332 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, 2333 struct epoll_event __user *, events, 2334 int, maxevents, int, timeout, 2335 const compat_sigset_t __user *, sigmask, 2336 compat_size_t, sigsetsize) 2337 { 2338 long err; 2339 2340 /* 2341 * If the caller wants a certain signal mask to be set during the wait, 2342 * we apply it here. 2343 */ 2344 err = set_compat_user_sigmask(sigmask, sigsetsize); 2345 if (err) 2346 return err; 2347 2348 err = do_epoll_wait(epfd, events, maxevents, timeout); 2349 restore_saved_sigmask_unless(err == -EINTR); 2350 2351 return err; 2352 } 2353 #endif 2354 2355 static int __init eventpoll_init(void) 2356 { 2357 struct sysinfo si; 2358 2359 si_meminfo(&si); 2360 /* 2361 * Allows top 4% of lomem to be allocated for epoll watches (per user). 2362 */ 2363 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 2364 EP_ITEM_COST; 2365 BUG_ON(max_user_watches < 0); 2366 2367 /* 2368 * Initialize the structure used to perform epoll file descriptor 2369 * inclusion loops checks. 2370 */ 2371 ep_nested_calls_init(&poll_loop_ncalls); 2372 2373 #ifdef CONFIG_DEBUG_LOCK_ALLOC 2374 /* Initialize the structure used to perform safe poll wait head wake ups */ 2375 ep_nested_calls_init(&poll_safewake_ncalls); 2376 #endif 2377 2378 /* 2379 * We can have many thousands of epitems, so prevent this from 2380 * using an extra cache line on 64-bit (and smaller) CPUs 2381 */ 2382 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); 2383 2384 /* Allocates slab cache used to allocate "struct epitem" items */ 2385 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 2386 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 2387 2388 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 2389 pwq_cache = kmem_cache_create("eventpoll_pwq", 2390 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2391 2392 return 0; 2393 } 2394 fs_initcall(eventpoll_init); 2395