xref: /openbmc/linux/fs/eventpoll.c (revision 1bff292e)
1 /*
2  *  fs/eventpoll.c (Efficient event retrieval implementation)
3  *  Copyright (C) 2001,...,2009	 Davide Libenzi
4  *
5  *  This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation; either version 2 of the License, or
8  *  (at your option) any later version.
9  *
10  *  Davide Libenzi <davidel@xmailserver.org>
11  *
12  */
13 
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/device.h>
37 #include <asm/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <linux/atomic.h>
41 
42 /*
43  * LOCKING:
44  * There are three level of locking required by epoll :
45  *
46  * 1) epmutex (mutex)
47  * 2) ep->mtx (mutex)
48  * 3) ep->lock (spinlock)
49  *
50  * The acquire order is the one listed above, from 1 to 3.
51  * We need a spinlock (ep->lock) because we manipulate objects
52  * from inside the poll callback, that might be triggered from
53  * a wake_up() that in turn might be called from IRQ context.
54  * So we can't sleep inside the poll callback and hence we need
55  * a spinlock. During the event transfer loop (from kernel to
56  * user space) we could end up sleeping due a copy_to_user(), so
57  * we need a lock that will allow us to sleep. This lock is a
58  * mutex (ep->mtx). It is acquired during the event transfer loop,
59  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60  * Then we also need a global mutex to serialize eventpoll_release_file()
61  * and ep_free().
62  * This mutex is acquired by ep_free() during the epoll file
63  * cleanup path and it is also acquired by eventpoll_release_file()
64  * if a file has been pushed inside an epoll set and it is then
65  * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
66  * It is also acquired when inserting an epoll fd onto another epoll
67  * fd. We do this so that we walk the epoll tree and ensure that this
68  * insertion does not create a cycle of epoll file descriptors, which
69  * could lead to deadlock. We need a global mutex to prevent two
70  * simultaneous inserts (A into B and B into A) from racing and
71  * constructing a cycle without either insert observing that it is
72  * going to.
73  * It is necessary to acquire multiple "ep->mtx"es at once in the
74  * case when one epoll fd is added to another. In this case, we
75  * always acquire the locks in the order of nesting (i.e. after
76  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
77  * before e2->mtx). Since we disallow cycles of epoll file
78  * descriptors, this ensures that the mutexes are well-ordered. In
79  * order to communicate this nesting to lockdep, when walking a tree
80  * of epoll file descriptors, we use the current recursion depth as
81  * the lockdep subkey.
82  * It is possible to drop the "ep->mtx" and to use the global
83  * mutex "epmutex" (together with "ep->lock") to have it working,
84  * but having "ep->mtx" will make the interface more scalable.
85  * Events that require holding "epmutex" are very rare, while for
86  * normal operations the epoll private "ep->mtx" will guarantee
87  * a better scalability.
88  */
89 
90 /* Epoll private bits inside the event mask */
91 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET)
92 
93 /* Maximum number of nesting allowed inside epoll sets */
94 #define EP_MAX_NESTS 4
95 
96 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
97 
98 #define EP_UNACTIVE_PTR ((void *) -1L)
99 
100 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
101 
102 struct epoll_filefd {
103 	struct file *file;
104 	int fd;
105 };
106 
107 /*
108  * Structure used to track possible nested calls, for too deep recursions
109  * and loop cycles.
110  */
111 struct nested_call_node {
112 	struct list_head llink;
113 	void *cookie;
114 	void *ctx;
115 };
116 
117 /*
118  * This structure is used as collector for nested calls, to check for
119  * maximum recursion dept and loop cycles.
120  */
121 struct nested_calls {
122 	struct list_head tasks_call_list;
123 	spinlock_t lock;
124 };
125 
126 /*
127  * Each file descriptor added to the eventpoll interface will
128  * have an entry of this type linked to the "rbr" RB tree.
129  */
130 struct epitem {
131 	/* RB tree node used to link this structure to the eventpoll RB tree */
132 	struct rb_node rbn;
133 
134 	/* List header used to link this structure to the eventpoll ready list */
135 	struct list_head rdllink;
136 
137 	/*
138 	 * Works together "struct eventpoll"->ovflist in keeping the
139 	 * single linked chain of items.
140 	 */
141 	struct epitem *next;
142 
143 	/* The file descriptor information this item refers to */
144 	struct epoll_filefd ffd;
145 
146 	/* Number of active wait queue attached to poll operations */
147 	int nwait;
148 
149 	/* List containing poll wait queues */
150 	struct list_head pwqlist;
151 
152 	/* The "container" of this item */
153 	struct eventpoll *ep;
154 
155 	/* List header used to link this item to the "struct file" items list */
156 	struct list_head fllink;
157 
158 	/* wakeup_source used when EPOLLWAKEUP is set */
159 	struct wakeup_source *ws;
160 
161 	/* The structure that describe the interested events and the source fd */
162 	struct epoll_event event;
163 };
164 
165 /*
166  * This structure is stored inside the "private_data" member of the file
167  * structure and represents the main data structure for the eventpoll
168  * interface.
169  */
170 struct eventpoll {
171 	/* Protect the access to this structure */
172 	spinlock_t lock;
173 
174 	/*
175 	 * This mutex is used to ensure that files are not removed
176 	 * while epoll is using them. This is held during the event
177 	 * collection loop, the file cleanup path, the epoll file exit
178 	 * code and the ctl operations.
179 	 */
180 	struct mutex mtx;
181 
182 	/* Wait queue used by sys_epoll_wait() */
183 	wait_queue_head_t wq;
184 
185 	/* Wait queue used by file->poll() */
186 	wait_queue_head_t poll_wait;
187 
188 	/* List of ready file descriptors */
189 	struct list_head rdllist;
190 
191 	/* RB tree root used to store monitored fd structs */
192 	struct rb_root rbr;
193 
194 	/*
195 	 * This is a single linked list that chains all the "struct epitem" that
196 	 * happened while transferring ready events to userspace w/out
197 	 * holding ->lock.
198 	 */
199 	struct epitem *ovflist;
200 
201 	/* wakeup_source used when ep_scan_ready_list is running */
202 	struct wakeup_source *ws;
203 
204 	/* The user that created the eventpoll descriptor */
205 	struct user_struct *user;
206 
207 	struct file *file;
208 
209 	/* used to optimize loop detection check */
210 	int visited;
211 	struct list_head visited_list_link;
212 };
213 
214 /* Wait structure used by the poll hooks */
215 struct eppoll_entry {
216 	/* List header used to link this structure to the "struct epitem" */
217 	struct list_head llink;
218 
219 	/* The "base" pointer is set to the container "struct epitem" */
220 	struct epitem *base;
221 
222 	/*
223 	 * Wait queue item that will be linked to the target file wait
224 	 * queue head.
225 	 */
226 	wait_queue_t wait;
227 
228 	/* The wait queue head that linked the "wait" wait queue item */
229 	wait_queue_head_t *whead;
230 };
231 
232 /* Wrapper struct used by poll queueing */
233 struct ep_pqueue {
234 	poll_table pt;
235 	struct epitem *epi;
236 };
237 
238 /* Used by the ep_send_events() function as callback private data */
239 struct ep_send_events_data {
240 	int maxevents;
241 	struct epoll_event __user *events;
242 };
243 
244 /*
245  * Configuration options available inside /proc/sys/fs/epoll/
246  */
247 /* Maximum number of epoll watched descriptors, per user */
248 static long max_user_watches __read_mostly;
249 
250 /*
251  * This mutex is used to serialize ep_free() and eventpoll_release_file().
252  */
253 static DEFINE_MUTEX(epmutex);
254 
255 /* Used to check for epoll file descriptor inclusion loops */
256 static struct nested_calls poll_loop_ncalls;
257 
258 /* Used for safe wake up implementation */
259 static struct nested_calls poll_safewake_ncalls;
260 
261 /* Used to call file's f_op->poll() under the nested calls boundaries */
262 static struct nested_calls poll_readywalk_ncalls;
263 
264 /* Slab cache used to allocate "struct epitem" */
265 static struct kmem_cache *epi_cache __read_mostly;
266 
267 /* Slab cache used to allocate "struct eppoll_entry" */
268 static struct kmem_cache *pwq_cache __read_mostly;
269 
270 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
271 static LIST_HEAD(visited_list);
272 
273 /*
274  * List of files with newly added links, where we may need to limit the number
275  * of emanating paths. Protected by the epmutex.
276  */
277 static LIST_HEAD(tfile_check_list);
278 
279 #ifdef CONFIG_SYSCTL
280 
281 #include <linux/sysctl.h>
282 
283 static long zero;
284 static long long_max = LONG_MAX;
285 
286 ctl_table epoll_table[] = {
287 	{
288 		.procname	= "max_user_watches",
289 		.data		= &max_user_watches,
290 		.maxlen		= sizeof(max_user_watches),
291 		.mode		= 0644,
292 		.proc_handler	= proc_doulongvec_minmax,
293 		.extra1		= &zero,
294 		.extra2		= &long_max,
295 	},
296 	{ }
297 };
298 #endif /* CONFIG_SYSCTL */
299 
300 static const struct file_operations eventpoll_fops;
301 
302 static inline int is_file_epoll(struct file *f)
303 {
304 	return f->f_op == &eventpoll_fops;
305 }
306 
307 /* Setup the structure that is used as key for the RB tree */
308 static inline void ep_set_ffd(struct epoll_filefd *ffd,
309 			      struct file *file, int fd)
310 {
311 	ffd->file = file;
312 	ffd->fd = fd;
313 }
314 
315 /* Compare RB tree keys */
316 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
317 			     struct epoll_filefd *p2)
318 {
319 	return (p1->file > p2->file ? +1:
320 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
321 }
322 
323 /* Tells us if the item is currently linked */
324 static inline int ep_is_linked(struct list_head *p)
325 {
326 	return !list_empty(p);
327 }
328 
329 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_t *p)
330 {
331 	return container_of(p, struct eppoll_entry, wait);
332 }
333 
334 /* Get the "struct epitem" from a wait queue pointer */
335 static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
336 {
337 	return container_of(p, struct eppoll_entry, wait)->base;
338 }
339 
340 /* Get the "struct epitem" from an epoll queue wrapper */
341 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
342 {
343 	return container_of(p, struct ep_pqueue, pt)->epi;
344 }
345 
346 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
347 static inline int ep_op_has_event(int op)
348 {
349 	return op != EPOLL_CTL_DEL;
350 }
351 
352 /* Initialize the poll safe wake up structure */
353 static void ep_nested_calls_init(struct nested_calls *ncalls)
354 {
355 	INIT_LIST_HEAD(&ncalls->tasks_call_list);
356 	spin_lock_init(&ncalls->lock);
357 }
358 
359 /**
360  * ep_events_available - Checks if ready events might be available.
361  *
362  * @ep: Pointer to the eventpoll context.
363  *
364  * Returns: Returns a value different than zero if ready events are available,
365  *          or zero otherwise.
366  */
367 static inline int ep_events_available(struct eventpoll *ep)
368 {
369 	return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
370 }
371 
372 /**
373  * ep_call_nested - Perform a bound (possibly) nested call, by checking
374  *                  that the recursion limit is not exceeded, and that
375  *                  the same nested call (by the meaning of same cookie) is
376  *                  no re-entered.
377  *
378  * @ncalls: Pointer to the nested_calls structure to be used for this call.
379  * @max_nests: Maximum number of allowed nesting calls.
380  * @nproc: Nested call core function pointer.
381  * @priv: Opaque data to be passed to the @nproc callback.
382  * @cookie: Cookie to be used to identify this nested call.
383  * @ctx: This instance context.
384  *
385  * Returns: Returns the code returned by the @nproc callback, or -1 if
386  *          the maximum recursion limit has been exceeded.
387  */
388 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
389 			  int (*nproc)(void *, void *, int), void *priv,
390 			  void *cookie, void *ctx)
391 {
392 	int error, call_nests = 0;
393 	unsigned long flags;
394 	struct list_head *lsthead = &ncalls->tasks_call_list;
395 	struct nested_call_node *tncur;
396 	struct nested_call_node tnode;
397 
398 	spin_lock_irqsave(&ncalls->lock, flags);
399 
400 	/*
401 	 * Try to see if the current task is already inside this wakeup call.
402 	 * We use a list here, since the population inside this set is always
403 	 * very much limited.
404 	 */
405 	list_for_each_entry(tncur, lsthead, llink) {
406 		if (tncur->ctx == ctx &&
407 		    (tncur->cookie == cookie || ++call_nests > max_nests)) {
408 			/*
409 			 * Ops ... loop detected or maximum nest level reached.
410 			 * We abort this wake by breaking the cycle itself.
411 			 */
412 			error = -1;
413 			goto out_unlock;
414 		}
415 	}
416 
417 	/* Add the current task and cookie to the list */
418 	tnode.ctx = ctx;
419 	tnode.cookie = cookie;
420 	list_add(&tnode.llink, lsthead);
421 
422 	spin_unlock_irqrestore(&ncalls->lock, flags);
423 
424 	/* Call the nested function */
425 	error = (*nproc)(priv, cookie, call_nests);
426 
427 	/* Remove the current task from the list */
428 	spin_lock_irqsave(&ncalls->lock, flags);
429 	list_del(&tnode.llink);
430 out_unlock:
431 	spin_unlock_irqrestore(&ncalls->lock, flags);
432 
433 	return error;
434 }
435 
436 /*
437  * As described in commit 0ccf831cb lockdep: annotate epoll
438  * the use of wait queues used by epoll is done in a very controlled
439  * manner. Wake ups can nest inside each other, but are never done
440  * with the same locking. For example:
441  *
442  *   dfd = socket(...);
443  *   efd1 = epoll_create();
444  *   efd2 = epoll_create();
445  *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
446  *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
447  *
448  * When a packet arrives to the device underneath "dfd", the net code will
449  * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
450  * callback wakeup entry on that queue, and the wake_up() performed by the
451  * "dfd" net code will end up in ep_poll_callback(). At this point epoll
452  * (efd1) notices that it may have some event ready, so it needs to wake up
453  * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
454  * that ends up in another wake_up(), after having checked about the
455  * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
456  * avoid stack blasting.
457  *
458  * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
459  * this special case of epoll.
460  */
461 #ifdef CONFIG_DEBUG_LOCK_ALLOC
462 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
463 				     unsigned long events, int subclass)
464 {
465 	unsigned long flags;
466 
467 	spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
468 	wake_up_locked_poll(wqueue, events);
469 	spin_unlock_irqrestore(&wqueue->lock, flags);
470 }
471 #else
472 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
473 				     unsigned long events, int subclass)
474 {
475 	wake_up_poll(wqueue, events);
476 }
477 #endif
478 
479 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
480 {
481 	ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
482 			  1 + call_nests);
483 	return 0;
484 }
485 
486 /*
487  * Perform a safe wake up of the poll wait list. The problem is that
488  * with the new callback'd wake up system, it is possible that the
489  * poll callback is reentered from inside the call to wake_up() done
490  * on the poll wait queue head. The rule is that we cannot reenter the
491  * wake up code from the same task more than EP_MAX_NESTS times,
492  * and we cannot reenter the same wait queue head at all. This will
493  * enable to have a hierarchy of epoll file descriptor of no more than
494  * EP_MAX_NESTS deep.
495  */
496 static void ep_poll_safewake(wait_queue_head_t *wq)
497 {
498 	int this_cpu = get_cpu();
499 
500 	ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
501 		       ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
502 
503 	put_cpu();
504 }
505 
506 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
507 {
508 	wait_queue_head_t *whead;
509 
510 	rcu_read_lock();
511 	/* If it is cleared by POLLFREE, it should be rcu-safe */
512 	whead = rcu_dereference(pwq->whead);
513 	if (whead)
514 		remove_wait_queue(whead, &pwq->wait);
515 	rcu_read_unlock();
516 }
517 
518 /*
519  * This function unregisters poll callbacks from the associated file
520  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
521  * ep_free).
522  */
523 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
524 {
525 	struct list_head *lsthead = &epi->pwqlist;
526 	struct eppoll_entry *pwq;
527 
528 	while (!list_empty(lsthead)) {
529 		pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
530 
531 		list_del(&pwq->llink);
532 		ep_remove_wait_queue(pwq);
533 		kmem_cache_free(pwq_cache, pwq);
534 	}
535 }
536 
537 /**
538  * ep_scan_ready_list - Scans the ready list in a way that makes possible for
539  *                      the scan code, to call f_op->poll(). Also allows for
540  *                      O(NumReady) performance.
541  *
542  * @ep: Pointer to the epoll private data structure.
543  * @sproc: Pointer to the scan callback.
544  * @priv: Private opaque data passed to the @sproc callback.
545  * @depth: The current depth of recursive f_op->poll calls.
546  *
547  * Returns: The same integer error code returned by the @sproc callback.
548  */
549 static int ep_scan_ready_list(struct eventpoll *ep,
550 			      int (*sproc)(struct eventpoll *,
551 					   struct list_head *, void *),
552 			      void *priv,
553 			      int depth)
554 {
555 	int error, pwake = 0;
556 	unsigned long flags;
557 	struct epitem *epi, *nepi;
558 	LIST_HEAD(txlist);
559 
560 	/*
561 	 * We need to lock this because we could be hit by
562 	 * eventpoll_release_file() and epoll_ctl().
563 	 */
564 	mutex_lock_nested(&ep->mtx, depth);
565 
566 	/*
567 	 * Steal the ready list, and re-init the original one to the
568 	 * empty list. Also, set ep->ovflist to NULL so that events
569 	 * happening while looping w/out locks, are not lost. We cannot
570 	 * have the poll callback to queue directly on ep->rdllist,
571 	 * because we want the "sproc" callback to be able to do it
572 	 * in a lockless way.
573 	 */
574 	spin_lock_irqsave(&ep->lock, flags);
575 	list_splice_init(&ep->rdllist, &txlist);
576 	ep->ovflist = NULL;
577 	spin_unlock_irqrestore(&ep->lock, flags);
578 
579 	/*
580 	 * Now call the callback function.
581 	 */
582 	error = (*sproc)(ep, &txlist, priv);
583 
584 	spin_lock_irqsave(&ep->lock, flags);
585 	/*
586 	 * During the time we spent inside the "sproc" callback, some
587 	 * other events might have been queued by the poll callback.
588 	 * We re-insert them inside the main ready-list here.
589 	 */
590 	for (nepi = ep->ovflist; (epi = nepi) != NULL;
591 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
592 		/*
593 		 * We need to check if the item is already in the list.
594 		 * During the "sproc" callback execution time, items are
595 		 * queued into ->ovflist but the "txlist" might already
596 		 * contain them, and the list_splice() below takes care of them.
597 		 */
598 		if (!ep_is_linked(&epi->rdllink)) {
599 			list_add_tail(&epi->rdllink, &ep->rdllist);
600 			__pm_stay_awake(epi->ws);
601 		}
602 	}
603 	/*
604 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
605 	 * releasing the lock, events will be queued in the normal way inside
606 	 * ep->rdllist.
607 	 */
608 	ep->ovflist = EP_UNACTIVE_PTR;
609 
610 	/*
611 	 * Quickly re-inject items left on "txlist".
612 	 */
613 	list_splice(&txlist, &ep->rdllist);
614 	__pm_relax(ep->ws);
615 
616 	if (!list_empty(&ep->rdllist)) {
617 		/*
618 		 * Wake up (if active) both the eventpoll wait list and
619 		 * the ->poll() wait list (delayed after we release the lock).
620 		 */
621 		if (waitqueue_active(&ep->wq))
622 			wake_up_locked(&ep->wq);
623 		if (waitqueue_active(&ep->poll_wait))
624 			pwake++;
625 	}
626 	spin_unlock_irqrestore(&ep->lock, flags);
627 
628 	mutex_unlock(&ep->mtx);
629 
630 	/* We have to call this outside the lock */
631 	if (pwake)
632 		ep_poll_safewake(&ep->poll_wait);
633 
634 	return error;
635 }
636 
637 /*
638  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
639  * all the associated resources. Must be called with "mtx" held.
640  */
641 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
642 {
643 	unsigned long flags;
644 	struct file *file = epi->ffd.file;
645 
646 	/*
647 	 * Removes poll wait queue hooks. We _have_ to do this without holding
648 	 * the "ep->lock" otherwise a deadlock might occur. This because of the
649 	 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
650 	 * queue head lock when unregistering the wait queue. The wakeup callback
651 	 * will run by holding the wait queue head lock and will call our callback
652 	 * that will try to get "ep->lock".
653 	 */
654 	ep_unregister_pollwait(ep, epi);
655 
656 	/* Remove the current item from the list of epoll hooks */
657 	spin_lock(&file->f_lock);
658 	if (ep_is_linked(&epi->fllink))
659 		list_del_init(&epi->fllink);
660 	spin_unlock(&file->f_lock);
661 
662 	rb_erase(&epi->rbn, &ep->rbr);
663 
664 	spin_lock_irqsave(&ep->lock, flags);
665 	if (ep_is_linked(&epi->rdllink))
666 		list_del_init(&epi->rdllink);
667 	spin_unlock_irqrestore(&ep->lock, flags);
668 
669 	wakeup_source_unregister(epi->ws);
670 
671 	/* At this point it is safe to free the eventpoll item */
672 	kmem_cache_free(epi_cache, epi);
673 
674 	atomic_long_dec(&ep->user->epoll_watches);
675 
676 	return 0;
677 }
678 
679 static void ep_free(struct eventpoll *ep)
680 {
681 	struct rb_node *rbp;
682 	struct epitem *epi;
683 
684 	/* We need to release all tasks waiting for these file */
685 	if (waitqueue_active(&ep->poll_wait))
686 		ep_poll_safewake(&ep->poll_wait);
687 
688 	/*
689 	 * We need to lock this because we could be hit by
690 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
691 	 * We do not need to hold "ep->mtx" here because the epoll file
692 	 * is on the way to be removed and no one has references to it
693 	 * anymore. The only hit might come from eventpoll_release_file() but
694 	 * holding "epmutex" is sufficient here.
695 	 */
696 	mutex_lock(&epmutex);
697 
698 	/*
699 	 * Walks through the whole tree by unregistering poll callbacks.
700 	 */
701 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
702 		epi = rb_entry(rbp, struct epitem, rbn);
703 
704 		ep_unregister_pollwait(ep, epi);
705 	}
706 
707 	/*
708 	 * Walks through the whole tree by freeing each "struct epitem". At this
709 	 * point we are sure no poll callbacks will be lingering around, and also by
710 	 * holding "epmutex" we can be sure that no file cleanup code will hit
711 	 * us during this operation. So we can avoid the lock on "ep->lock".
712 	 */
713 	while ((rbp = rb_first(&ep->rbr)) != NULL) {
714 		epi = rb_entry(rbp, struct epitem, rbn);
715 		ep_remove(ep, epi);
716 	}
717 
718 	mutex_unlock(&epmutex);
719 	mutex_destroy(&ep->mtx);
720 	free_uid(ep->user);
721 	wakeup_source_unregister(ep->ws);
722 	kfree(ep);
723 }
724 
725 static int ep_eventpoll_release(struct inode *inode, struct file *file)
726 {
727 	struct eventpoll *ep = file->private_data;
728 
729 	if (ep)
730 		ep_free(ep);
731 
732 	return 0;
733 }
734 
735 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
736 			       void *priv)
737 {
738 	struct epitem *epi, *tmp;
739 	poll_table pt;
740 
741 	init_poll_funcptr(&pt, NULL);
742 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
743 		pt._key = epi->event.events;
744 		if (epi->ffd.file->f_op->poll(epi->ffd.file, &pt) &
745 		    epi->event.events)
746 			return POLLIN | POLLRDNORM;
747 		else {
748 			/*
749 			 * Item has been dropped into the ready list by the poll
750 			 * callback, but it's not actually ready, as far as
751 			 * caller requested events goes. We can remove it here.
752 			 */
753 			__pm_relax(epi->ws);
754 			list_del_init(&epi->rdllink);
755 		}
756 	}
757 
758 	return 0;
759 }
760 
761 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
762 {
763 	return ep_scan_ready_list(priv, ep_read_events_proc, NULL, call_nests + 1);
764 }
765 
766 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
767 {
768 	int pollflags;
769 	struct eventpoll *ep = file->private_data;
770 
771 	/* Insert inside our poll wait queue */
772 	poll_wait(file, &ep->poll_wait, wait);
773 
774 	/*
775 	 * Proceed to find out if wanted events are really available inside
776 	 * the ready list. This need to be done under ep_call_nested()
777 	 * supervision, since the call to f_op->poll() done on listed files
778 	 * could re-enter here.
779 	 */
780 	pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
781 				   ep_poll_readyevents_proc, ep, ep, current);
782 
783 	return pollflags != -1 ? pollflags : 0;
784 }
785 
786 /* File callbacks that implement the eventpoll file behaviour */
787 static const struct file_operations eventpoll_fops = {
788 	.release	= ep_eventpoll_release,
789 	.poll		= ep_eventpoll_poll,
790 	.llseek		= noop_llseek,
791 };
792 
793 /*
794  * This is called from eventpoll_release() to unlink files from the eventpoll
795  * interface. We need to have this facility to cleanup correctly files that are
796  * closed without being removed from the eventpoll interface.
797  */
798 void eventpoll_release_file(struct file *file)
799 {
800 	struct list_head *lsthead = &file->f_ep_links;
801 	struct eventpoll *ep;
802 	struct epitem *epi;
803 
804 	/*
805 	 * We don't want to get "file->f_lock" because it is not
806 	 * necessary. It is not necessary because we're in the "struct file"
807 	 * cleanup path, and this means that no one is using this file anymore.
808 	 * So, for example, epoll_ctl() cannot hit here since if we reach this
809 	 * point, the file counter already went to zero and fget() would fail.
810 	 * The only hit might come from ep_free() but by holding the mutex
811 	 * will correctly serialize the operation. We do need to acquire
812 	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
813 	 * from anywhere but ep_free().
814 	 *
815 	 * Besides, ep_remove() acquires the lock, so we can't hold it here.
816 	 */
817 	mutex_lock(&epmutex);
818 
819 	while (!list_empty(lsthead)) {
820 		epi = list_first_entry(lsthead, struct epitem, fllink);
821 
822 		ep = epi->ep;
823 		list_del_init(&epi->fllink);
824 		mutex_lock_nested(&ep->mtx, 0);
825 		ep_remove(ep, epi);
826 		mutex_unlock(&ep->mtx);
827 	}
828 
829 	mutex_unlock(&epmutex);
830 }
831 
832 static int ep_alloc(struct eventpoll **pep)
833 {
834 	int error;
835 	struct user_struct *user;
836 	struct eventpoll *ep;
837 
838 	user = get_current_user();
839 	error = -ENOMEM;
840 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
841 	if (unlikely(!ep))
842 		goto free_uid;
843 
844 	spin_lock_init(&ep->lock);
845 	mutex_init(&ep->mtx);
846 	init_waitqueue_head(&ep->wq);
847 	init_waitqueue_head(&ep->poll_wait);
848 	INIT_LIST_HEAD(&ep->rdllist);
849 	ep->rbr = RB_ROOT;
850 	ep->ovflist = EP_UNACTIVE_PTR;
851 	ep->user = user;
852 
853 	*pep = ep;
854 
855 	return 0;
856 
857 free_uid:
858 	free_uid(user);
859 	return error;
860 }
861 
862 /*
863  * Search the file inside the eventpoll tree. The RB tree operations
864  * are protected by the "mtx" mutex, and ep_find() must be called with
865  * "mtx" held.
866  */
867 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
868 {
869 	int kcmp;
870 	struct rb_node *rbp;
871 	struct epitem *epi, *epir = NULL;
872 	struct epoll_filefd ffd;
873 
874 	ep_set_ffd(&ffd, file, fd);
875 	for (rbp = ep->rbr.rb_node; rbp; ) {
876 		epi = rb_entry(rbp, struct epitem, rbn);
877 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
878 		if (kcmp > 0)
879 			rbp = rbp->rb_right;
880 		else if (kcmp < 0)
881 			rbp = rbp->rb_left;
882 		else {
883 			epir = epi;
884 			break;
885 		}
886 	}
887 
888 	return epir;
889 }
890 
891 /*
892  * This is the callback that is passed to the wait queue wakeup
893  * mechanism. It is called by the stored file descriptors when they
894  * have events to report.
895  */
896 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
897 {
898 	int pwake = 0;
899 	unsigned long flags;
900 	struct epitem *epi = ep_item_from_wait(wait);
901 	struct eventpoll *ep = epi->ep;
902 
903 	if ((unsigned long)key & POLLFREE) {
904 		ep_pwq_from_wait(wait)->whead = NULL;
905 		/*
906 		 * whead = NULL above can race with ep_remove_wait_queue()
907 		 * which can do another remove_wait_queue() after us, so we
908 		 * can't use __remove_wait_queue(). whead->lock is held by
909 		 * the caller.
910 		 */
911 		list_del_init(&wait->task_list);
912 	}
913 
914 	spin_lock_irqsave(&ep->lock, flags);
915 
916 	/*
917 	 * If the event mask does not contain any poll(2) event, we consider the
918 	 * descriptor to be disabled. This condition is likely the effect of the
919 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
920 	 * until the next EPOLL_CTL_MOD will be issued.
921 	 */
922 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
923 		goto out_unlock;
924 
925 	/*
926 	 * Check the events coming with the callback. At this stage, not
927 	 * every device reports the events in the "key" parameter of the
928 	 * callback. We need to be able to handle both cases here, hence the
929 	 * test for "key" != NULL before the event match test.
930 	 */
931 	if (key && !((unsigned long) key & epi->event.events))
932 		goto out_unlock;
933 
934 	/*
935 	 * If we are transferring events to userspace, we can hold no locks
936 	 * (because we're accessing user memory, and because of linux f_op->poll()
937 	 * semantics). All the events that happen during that period of time are
938 	 * chained in ep->ovflist and requeued later on.
939 	 */
940 	if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
941 		if (epi->next == EP_UNACTIVE_PTR) {
942 			epi->next = ep->ovflist;
943 			ep->ovflist = epi;
944 			if (epi->ws) {
945 				/*
946 				 * Activate ep->ws since epi->ws may get
947 				 * deactivated at any time.
948 				 */
949 				__pm_stay_awake(ep->ws);
950 			}
951 
952 		}
953 		goto out_unlock;
954 	}
955 
956 	/* If this file is already in the ready list we exit soon */
957 	if (!ep_is_linked(&epi->rdllink)) {
958 		list_add_tail(&epi->rdllink, &ep->rdllist);
959 		__pm_stay_awake(epi->ws);
960 	}
961 
962 	/*
963 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
964 	 * wait list.
965 	 */
966 	if (waitqueue_active(&ep->wq))
967 		wake_up_locked(&ep->wq);
968 	if (waitqueue_active(&ep->poll_wait))
969 		pwake++;
970 
971 out_unlock:
972 	spin_unlock_irqrestore(&ep->lock, flags);
973 
974 	/* We have to call this outside the lock */
975 	if (pwake)
976 		ep_poll_safewake(&ep->poll_wait);
977 
978 	return 1;
979 }
980 
981 /*
982  * This is the callback that is used to add our wait queue to the
983  * target file wakeup lists.
984  */
985 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
986 				 poll_table *pt)
987 {
988 	struct epitem *epi = ep_item_from_epqueue(pt);
989 	struct eppoll_entry *pwq;
990 
991 	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
992 		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
993 		pwq->whead = whead;
994 		pwq->base = epi;
995 		add_wait_queue(whead, &pwq->wait);
996 		list_add_tail(&pwq->llink, &epi->pwqlist);
997 		epi->nwait++;
998 	} else {
999 		/* We have to signal that an error occurred */
1000 		epi->nwait = -1;
1001 	}
1002 }
1003 
1004 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1005 {
1006 	int kcmp;
1007 	struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
1008 	struct epitem *epic;
1009 
1010 	while (*p) {
1011 		parent = *p;
1012 		epic = rb_entry(parent, struct epitem, rbn);
1013 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1014 		if (kcmp > 0)
1015 			p = &parent->rb_right;
1016 		else
1017 			p = &parent->rb_left;
1018 	}
1019 	rb_link_node(&epi->rbn, parent, p);
1020 	rb_insert_color(&epi->rbn, &ep->rbr);
1021 }
1022 
1023 
1024 
1025 #define PATH_ARR_SIZE 5
1026 /*
1027  * These are the number paths of length 1 to 5, that we are allowing to emanate
1028  * from a single file of interest. For example, we allow 1000 paths of length
1029  * 1, to emanate from each file of interest. This essentially represents the
1030  * potential wakeup paths, which need to be limited in order to avoid massive
1031  * uncontrolled wakeup storms. The common use case should be a single ep which
1032  * is connected to n file sources. In this case each file source has 1 path
1033  * of length 1. Thus, the numbers below should be more than sufficient. These
1034  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1035  * and delete can't add additional paths. Protected by the epmutex.
1036  */
1037 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1038 static int path_count[PATH_ARR_SIZE];
1039 
1040 static int path_count_inc(int nests)
1041 {
1042 	/* Allow an arbitrary number of depth 1 paths */
1043 	if (nests == 0)
1044 		return 0;
1045 
1046 	if (++path_count[nests] > path_limits[nests])
1047 		return -1;
1048 	return 0;
1049 }
1050 
1051 static void path_count_init(void)
1052 {
1053 	int i;
1054 
1055 	for (i = 0; i < PATH_ARR_SIZE; i++)
1056 		path_count[i] = 0;
1057 }
1058 
1059 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1060 {
1061 	int error = 0;
1062 	struct file *file = priv;
1063 	struct file *child_file;
1064 	struct epitem *epi;
1065 
1066 	list_for_each_entry(epi, &file->f_ep_links, fllink) {
1067 		child_file = epi->ep->file;
1068 		if (is_file_epoll(child_file)) {
1069 			if (list_empty(&child_file->f_ep_links)) {
1070 				if (path_count_inc(call_nests)) {
1071 					error = -1;
1072 					break;
1073 				}
1074 			} else {
1075 				error = ep_call_nested(&poll_loop_ncalls,
1076 							EP_MAX_NESTS,
1077 							reverse_path_check_proc,
1078 							child_file, child_file,
1079 							current);
1080 			}
1081 			if (error != 0)
1082 				break;
1083 		} else {
1084 			printk(KERN_ERR "reverse_path_check_proc: "
1085 				"file is not an ep!\n");
1086 		}
1087 	}
1088 	return error;
1089 }
1090 
1091 /**
1092  * reverse_path_check - The tfile_check_list is list of file *, which have
1093  *                      links that are proposed to be newly added. We need to
1094  *                      make sure that those added links don't add too many
1095  *                      paths such that we will spend all our time waking up
1096  *                      eventpoll objects.
1097  *
1098  * Returns: Returns zero if the proposed links don't create too many paths,
1099  *	    -1 otherwise.
1100  */
1101 static int reverse_path_check(void)
1102 {
1103 	int error = 0;
1104 	struct file *current_file;
1105 
1106 	/* let's call this for all tfiles */
1107 	list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1108 		path_count_init();
1109 		error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1110 					reverse_path_check_proc, current_file,
1111 					current_file, current);
1112 		if (error)
1113 			break;
1114 	}
1115 	return error;
1116 }
1117 
1118 static int ep_create_wakeup_source(struct epitem *epi)
1119 {
1120 	const char *name;
1121 
1122 	if (!epi->ep->ws) {
1123 		epi->ep->ws = wakeup_source_register("eventpoll");
1124 		if (!epi->ep->ws)
1125 			return -ENOMEM;
1126 	}
1127 
1128 	name = epi->ffd.file->f_path.dentry->d_name.name;
1129 	epi->ws = wakeup_source_register(name);
1130 	if (!epi->ws)
1131 		return -ENOMEM;
1132 
1133 	return 0;
1134 }
1135 
1136 static void ep_destroy_wakeup_source(struct epitem *epi)
1137 {
1138 	wakeup_source_unregister(epi->ws);
1139 	epi->ws = NULL;
1140 }
1141 
1142 /*
1143  * Must be called with "mtx" held.
1144  */
1145 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
1146 		     struct file *tfile, int fd)
1147 {
1148 	int error, revents, pwake = 0;
1149 	unsigned long flags;
1150 	long user_watches;
1151 	struct epitem *epi;
1152 	struct ep_pqueue epq;
1153 
1154 	user_watches = atomic_long_read(&ep->user->epoll_watches);
1155 	if (unlikely(user_watches >= max_user_watches))
1156 		return -ENOSPC;
1157 	if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1158 		return -ENOMEM;
1159 
1160 	/* Item initialization follow here ... */
1161 	INIT_LIST_HEAD(&epi->rdllink);
1162 	INIT_LIST_HEAD(&epi->fllink);
1163 	INIT_LIST_HEAD(&epi->pwqlist);
1164 	epi->ep = ep;
1165 	ep_set_ffd(&epi->ffd, tfile, fd);
1166 	epi->event = *event;
1167 	epi->nwait = 0;
1168 	epi->next = EP_UNACTIVE_PTR;
1169 	if (epi->event.events & EPOLLWAKEUP) {
1170 		error = ep_create_wakeup_source(epi);
1171 		if (error)
1172 			goto error_create_wakeup_source;
1173 	} else {
1174 		epi->ws = NULL;
1175 	}
1176 
1177 	/* Initialize the poll table using the queue callback */
1178 	epq.epi = epi;
1179 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1180 	epq.pt._key = event->events;
1181 
1182 	/*
1183 	 * Attach the item to the poll hooks and get current event bits.
1184 	 * We can safely use the file* here because its usage count has
1185 	 * been increased by the caller of this function. Note that after
1186 	 * this operation completes, the poll callback can start hitting
1187 	 * the new item.
1188 	 */
1189 	revents = tfile->f_op->poll(tfile, &epq.pt);
1190 
1191 	/*
1192 	 * We have to check if something went wrong during the poll wait queue
1193 	 * install process. Namely an allocation for a wait queue failed due
1194 	 * high memory pressure.
1195 	 */
1196 	error = -ENOMEM;
1197 	if (epi->nwait < 0)
1198 		goto error_unregister;
1199 
1200 	/* Add the current item to the list of active epoll hook for this file */
1201 	spin_lock(&tfile->f_lock);
1202 	list_add_tail(&epi->fllink, &tfile->f_ep_links);
1203 	spin_unlock(&tfile->f_lock);
1204 
1205 	/*
1206 	 * Add the current item to the RB tree. All RB tree operations are
1207 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1208 	 */
1209 	ep_rbtree_insert(ep, epi);
1210 
1211 	/* now check if we've created too many backpaths */
1212 	error = -EINVAL;
1213 	if (reverse_path_check())
1214 		goto error_remove_epi;
1215 
1216 	/* We have to drop the new item inside our item list to keep track of it */
1217 	spin_lock_irqsave(&ep->lock, flags);
1218 
1219 	/* If the file is already "ready" we drop it inside the ready list */
1220 	if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
1221 		list_add_tail(&epi->rdllink, &ep->rdllist);
1222 		__pm_stay_awake(epi->ws);
1223 
1224 		/* Notify waiting tasks that events are available */
1225 		if (waitqueue_active(&ep->wq))
1226 			wake_up_locked(&ep->wq);
1227 		if (waitqueue_active(&ep->poll_wait))
1228 			pwake++;
1229 	}
1230 
1231 	spin_unlock_irqrestore(&ep->lock, flags);
1232 
1233 	atomic_long_inc(&ep->user->epoll_watches);
1234 
1235 	/* We have to call this outside the lock */
1236 	if (pwake)
1237 		ep_poll_safewake(&ep->poll_wait);
1238 
1239 	return 0;
1240 
1241 error_remove_epi:
1242 	spin_lock(&tfile->f_lock);
1243 	if (ep_is_linked(&epi->fllink))
1244 		list_del_init(&epi->fllink);
1245 	spin_unlock(&tfile->f_lock);
1246 
1247 	rb_erase(&epi->rbn, &ep->rbr);
1248 
1249 error_unregister:
1250 	ep_unregister_pollwait(ep, epi);
1251 
1252 	/*
1253 	 * We need to do this because an event could have been arrived on some
1254 	 * allocated wait queue. Note that we don't care about the ep->ovflist
1255 	 * list, since that is used/cleaned only inside a section bound by "mtx".
1256 	 * And ep_insert() is called with "mtx" held.
1257 	 */
1258 	spin_lock_irqsave(&ep->lock, flags);
1259 	if (ep_is_linked(&epi->rdllink))
1260 		list_del_init(&epi->rdllink);
1261 	spin_unlock_irqrestore(&ep->lock, flags);
1262 
1263 	wakeup_source_unregister(epi->ws);
1264 
1265 error_create_wakeup_source:
1266 	kmem_cache_free(epi_cache, epi);
1267 
1268 	return error;
1269 }
1270 
1271 /*
1272  * Modify the interest event mask by dropping an event if the new mask
1273  * has a match in the current file status. Must be called with "mtx" held.
1274  */
1275 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1276 {
1277 	int pwake = 0;
1278 	unsigned int revents;
1279 	poll_table pt;
1280 
1281 	init_poll_funcptr(&pt, NULL);
1282 
1283 	/*
1284 	 * Set the new event interest mask before calling f_op->poll();
1285 	 * otherwise we might miss an event that happens between the
1286 	 * f_op->poll() call and the new event set registering.
1287 	 */
1288 	epi->event.events = event->events;
1289 	pt._key = event->events;
1290 	epi->event.data = event->data; /* protected by mtx */
1291 	if (epi->event.events & EPOLLWAKEUP) {
1292 		if (!epi->ws)
1293 			ep_create_wakeup_source(epi);
1294 	} else if (epi->ws) {
1295 		ep_destroy_wakeup_source(epi);
1296 	}
1297 
1298 	/*
1299 	 * Get current event bits. We can safely use the file* here because
1300 	 * its usage count has been increased by the caller of this function.
1301 	 */
1302 	revents = epi->ffd.file->f_op->poll(epi->ffd.file, &pt);
1303 
1304 	/*
1305 	 * If the item is "hot" and it is not registered inside the ready
1306 	 * list, push it inside.
1307 	 */
1308 	if (revents & event->events) {
1309 		spin_lock_irq(&ep->lock);
1310 		if (!ep_is_linked(&epi->rdllink)) {
1311 			list_add_tail(&epi->rdllink, &ep->rdllist);
1312 			__pm_stay_awake(epi->ws);
1313 
1314 			/* Notify waiting tasks that events are available */
1315 			if (waitqueue_active(&ep->wq))
1316 				wake_up_locked(&ep->wq);
1317 			if (waitqueue_active(&ep->poll_wait))
1318 				pwake++;
1319 		}
1320 		spin_unlock_irq(&ep->lock);
1321 	}
1322 
1323 	/* We have to call this outside the lock */
1324 	if (pwake)
1325 		ep_poll_safewake(&ep->poll_wait);
1326 
1327 	return 0;
1328 }
1329 
1330 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1331 			       void *priv)
1332 {
1333 	struct ep_send_events_data *esed = priv;
1334 	int eventcnt;
1335 	unsigned int revents;
1336 	struct epitem *epi;
1337 	struct epoll_event __user *uevent;
1338 	poll_table pt;
1339 
1340 	init_poll_funcptr(&pt, NULL);
1341 
1342 	/*
1343 	 * We can loop without lock because we are passed a task private list.
1344 	 * Items cannot vanish during the loop because ep_scan_ready_list() is
1345 	 * holding "mtx" during this call.
1346 	 */
1347 	for (eventcnt = 0, uevent = esed->events;
1348 	     !list_empty(head) && eventcnt < esed->maxevents;) {
1349 		epi = list_first_entry(head, struct epitem, rdllink);
1350 
1351 		/*
1352 		 * Activate ep->ws before deactivating epi->ws to prevent
1353 		 * triggering auto-suspend here (in case we reactive epi->ws
1354 		 * below).
1355 		 *
1356 		 * This could be rearranged to delay the deactivation of epi->ws
1357 		 * instead, but then epi->ws would temporarily be out of sync
1358 		 * with ep_is_linked().
1359 		 */
1360 		if (epi->ws && epi->ws->active)
1361 			__pm_stay_awake(ep->ws);
1362 		__pm_relax(epi->ws);
1363 		list_del_init(&epi->rdllink);
1364 
1365 		pt._key = epi->event.events;
1366 		revents = epi->ffd.file->f_op->poll(epi->ffd.file, &pt) &
1367 			epi->event.events;
1368 
1369 		/*
1370 		 * If the event mask intersect the caller-requested one,
1371 		 * deliver the event to userspace. Again, ep_scan_ready_list()
1372 		 * is holding "mtx", so no operations coming from userspace
1373 		 * can change the item.
1374 		 */
1375 		if (revents) {
1376 			if (__put_user(revents, &uevent->events) ||
1377 			    __put_user(epi->event.data, &uevent->data)) {
1378 				list_add(&epi->rdllink, head);
1379 				__pm_stay_awake(epi->ws);
1380 				return eventcnt ? eventcnt : -EFAULT;
1381 			}
1382 			eventcnt++;
1383 			uevent++;
1384 			if (epi->event.events & EPOLLONESHOT)
1385 				epi->event.events &= EP_PRIVATE_BITS;
1386 			else if (!(epi->event.events & EPOLLET)) {
1387 				/*
1388 				 * If this file has been added with Level
1389 				 * Trigger mode, we need to insert back inside
1390 				 * the ready list, so that the next call to
1391 				 * epoll_wait() will check again the events
1392 				 * availability. At this point, no one can insert
1393 				 * into ep->rdllist besides us. The epoll_ctl()
1394 				 * callers are locked out by
1395 				 * ep_scan_ready_list() holding "mtx" and the
1396 				 * poll callback will queue them in ep->ovflist.
1397 				 */
1398 				list_add_tail(&epi->rdllink, &ep->rdllist);
1399 				__pm_stay_awake(epi->ws);
1400 			}
1401 		}
1402 	}
1403 
1404 	return eventcnt;
1405 }
1406 
1407 static int ep_send_events(struct eventpoll *ep,
1408 			  struct epoll_event __user *events, int maxevents)
1409 {
1410 	struct ep_send_events_data esed;
1411 
1412 	esed.maxevents = maxevents;
1413 	esed.events = events;
1414 
1415 	return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0);
1416 }
1417 
1418 static inline struct timespec ep_set_mstimeout(long ms)
1419 {
1420 	struct timespec now, ts = {
1421 		.tv_sec = ms / MSEC_PER_SEC,
1422 		.tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1423 	};
1424 
1425 	ktime_get_ts(&now);
1426 	return timespec_add_safe(now, ts);
1427 }
1428 
1429 /**
1430  * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1431  *           event buffer.
1432  *
1433  * @ep: Pointer to the eventpoll context.
1434  * @events: Pointer to the userspace buffer where the ready events should be
1435  *          stored.
1436  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1437  * @timeout: Maximum timeout for the ready events fetch operation, in
1438  *           milliseconds. If the @timeout is zero, the function will not block,
1439  *           while if the @timeout is less than zero, the function will block
1440  *           until at least one event has been retrieved (or an error
1441  *           occurred).
1442  *
1443  * Returns: Returns the number of ready events which have been fetched, or an
1444  *          error code, in case of error.
1445  */
1446 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1447 		   int maxevents, long timeout)
1448 {
1449 	int res = 0, eavail, timed_out = 0;
1450 	unsigned long flags;
1451 	long slack = 0;
1452 	wait_queue_t wait;
1453 	ktime_t expires, *to = NULL;
1454 
1455 	if (timeout > 0) {
1456 		struct timespec end_time = ep_set_mstimeout(timeout);
1457 
1458 		slack = select_estimate_accuracy(&end_time);
1459 		to = &expires;
1460 		*to = timespec_to_ktime(end_time);
1461 	} else if (timeout == 0) {
1462 		/*
1463 		 * Avoid the unnecessary trip to the wait queue loop, if the
1464 		 * caller specified a non blocking operation.
1465 		 */
1466 		timed_out = 1;
1467 		spin_lock_irqsave(&ep->lock, flags);
1468 		goto check_events;
1469 	}
1470 
1471 fetch_events:
1472 	spin_lock_irqsave(&ep->lock, flags);
1473 
1474 	if (!ep_events_available(ep)) {
1475 		/*
1476 		 * We don't have any available event to return to the caller.
1477 		 * We need to sleep here, and we will be wake up by
1478 		 * ep_poll_callback() when events will become available.
1479 		 */
1480 		init_waitqueue_entry(&wait, current);
1481 		__add_wait_queue_exclusive(&ep->wq, &wait);
1482 
1483 		for (;;) {
1484 			/*
1485 			 * We don't want to sleep if the ep_poll_callback() sends us
1486 			 * a wakeup in between. That's why we set the task state
1487 			 * to TASK_INTERRUPTIBLE before doing the checks.
1488 			 */
1489 			set_current_state(TASK_INTERRUPTIBLE);
1490 			if (ep_events_available(ep) || timed_out)
1491 				break;
1492 			if (signal_pending(current)) {
1493 				res = -EINTR;
1494 				break;
1495 			}
1496 
1497 			spin_unlock_irqrestore(&ep->lock, flags);
1498 			if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1499 				timed_out = 1;
1500 
1501 			spin_lock_irqsave(&ep->lock, flags);
1502 		}
1503 		__remove_wait_queue(&ep->wq, &wait);
1504 
1505 		set_current_state(TASK_RUNNING);
1506 	}
1507 check_events:
1508 	/* Is it worth to try to dig for events ? */
1509 	eavail = ep_events_available(ep);
1510 
1511 	spin_unlock_irqrestore(&ep->lock, flags);
1512 
1513 	/*
1514 	 * Try to transfer events to user space. In case we get 0 events and
1515 	 * there's still timeout left over, we go trying again in search of
1516 	 * more luck.
1517 	 */
1518 	if (!res && eavail &&
1519 	    !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1520 		goto fetch_events;
1521 
1522 	return res;
1523 }
1524 
1525 /**
1526  * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1527  *                      API, to verify that adding an epoll file inside another
1528  *                      epoll structure, does not violate the constraints, in
1529  *                      terms of closed loops, or too deep chains (which can
1530  *                      result in excessive stack usage).
1531  *
1532  * @priv: Pointer to the epoll file to be currently checked.
1533  * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1534  *          data structure pointer.
1535  * @call_nests: Current dept of the @ep_call_nested() call stack.
1536  *
1537  * Returns: Returns zero if adding the epoll @file inside current epoll
1538  *          structure @ep does not violate the constraints, or -1 otherwise.
1539  */
1540 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1541 {
1542 	int error = 0;
1543 	struct file *file = priv;
1544 	struct eventpoll *ep = file->private_data;
1545 	struct eventpoll *ep_tovisit;
1546 	struct rb_node *rbp;
1547 	struct epitem *epi;
1548 
1549 	mutex_lock_nested(&ep->mtx, call_nests + 1);
1550 	ep->visited = 1;
1551 	list_add(&ep->visited_list_link, &visited_list);
1552 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1553 		epi = rb_entry(rbp, struct epitem, rbn);
1554 		if (unlikely(is_file_epoll(epi->ffd.file))) {
1555 			ep_tovisit = epi->ffd.file->private_data;
1556 			if (ep_tovisit->visited)
1557 				continue;
1558 			error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1559 					ep_loop_check_proc, epi->ffd.file,
1560 					ep_tovisit, current);
1561 			if (error != 0)
1562 				break;
1563 		} else {
1564 			/*
1565 			 * If we've reached a file that is not associated with
1566 			 * an ep, then we need to check if the newly added
1567 			 * links are going to add too many wakeup paths. We do
1568 			 * this by adding it to the tfile_check_list, if it's
1569 			 * not already there, and calling reverse_path_check()
1570 			 * during ep_insert().
1571 			 */
1572 			if (list_empty(&epi->ffd.file->f_tfile_llink))
1573 				list_add(&epi->ffd.file->f_tfile_llink,
1574 					 &tfile_check_list);
1575 		}
1576 	}
1577 	mutex_unlock(&ep->mtx);
1578 
1579 	return error;
1580 }
1581 
1582 /**
1583  * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1584  *                 another epoll file (represented by @ep) does not create
1585  *                 closed loops or too deep chains.
1586  *
1587  * @ep: Pointer to the epoll private data structure.
1588  * @file: Pointer to the epoll file to be checked.
1589  *
1590  * Returns: Returns zero if adding the epoll @file inside current epoll
1591  *          structure @ep does not violate the constraints, or -1 otherwise.
1592  */
1593 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1594 {
1595 	int ret;
1596 	struct eventpoll *ep_cur, *ep_next;
1597 
1598 	ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1599 			      ep_loop_check_proc, file, ep, current);
1600 	/* clear visited list */
1601 	list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
1602 							visited_list_link) {
1603 		ep_cur->visited = 0;
1604 		list_del(&ep_cur->visited_list_link);
1605 	}
1606 	return ret;
1607 }
1608 
1609 static void clear_tfile_check_list(void)
1610 {
1611 	struct file *file;
1612 
1613 	/* first clear the tfile_check_list */
1614 	while (!list_empty(&tfile_check_list)) {
1615 		file = list_first_entry(&tfile_check_list, struct file,
1616 					f_tfile_llink);
1617 		list_del_init(&file->f_tfile_llink);
1618 	}
1619 	INIT_LIST_HEAD(&tfile_check_list);
1620 }
1621 
1622 /*
1623  * Open an eventpoll file descriptor.
1624  */
1625 SYSCALL_DEFINE1(epoll_create1, int, flags)
1626 {
1627 	int error, fd;
1628 	struct eventpoll *ep = NULL;
1629 	struct file *file;
1630 
1631 	/* Check the EPOLL_* constant for consistency.  */
1632 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1633 
1634 	if (flags & ~EPOLL_CLOEXEC)
1635 		return -EINVAL;
1636 	/*
1637 	 * Create the internal data structure ("struct eventpoll").
1638 	 */
1639 	error = ep_alloc(&ep);
1640 	if (error < 0)
1641 		return error;
1642 	/*
1643 	 * Creates all the items needed to setup an eventpoll file. That is,
1644 	 * a file structure and a free file descriptor.
1645 	 */
1646 	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1647 	if (fd < 0) {
1648 		error = fd;
1649 		goto out_free_ep;
1650 	}
1651 	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1652 				 O_RDWR | (flags & O_CLOEXEC));
1653 	if (IS_ERR(file)) {
1654 		error = PTR_ERR(file);
1655 		goto out_free_fd;
1656 	}
1657 	ep->file = file;
1658 	fd_install(fd, file);
1659 	return fd;
1660 
1661 out_free_fd:
1662 	put_unused_fd(fd);
1663 out_free_ep:
1664 	ep_free(ep);
1665 	return error;
1666 }
1667 
1668 SYSCALL_DEFINE1(epoll_create, int, size)
1669 {
1670 	if (size <= 0)
1671 		return -EINVAL;
1672 
1673 	return sys_epoll_create1(0);
1674 }
1675 
1676 /*
1677  * The following function implements the controller interface for
1678  * the eventpoll file that enables the insertion/removal/change of
1679  * file descriptors inside the interest set.
1680  */
1681 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1682 		struct epoll_event __user *, event)
1683 {
1684 	int error;
1685 	int did_lock_epmutex = 0;
1686 	struct file *file, *tfile;
1687 	struct eventpoll *ep;
1688 	struct epitem *epi;
1689 	struct epoll_event epds;
1690 
1691 	error = -EFAULT;
1692 	if (ep_op_has_event(op) &&
1693 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
1694 		goto error_return;
1695 
1696 	/* Get the "struct file *" for the eventpoll file */
1697 	error = -EBADF;
1698 	file = fget(epfd);
1699 	if (!file)
1700 		goto error_return;
1701 
1702 	/* Get the "struct file *" for the target file */
1703 	tfile = fget(fd);
1704 	if (!tfile)
1705 		goto error_fput;
1706 
1707 	/* The target file descriptor must support poll */
1708 	error = -EPERM;
1709 	if (!tfile->f_op || !tfile->f_op->poll)
1710 		goto error_tgt_fput;
1711 
1712 	/* Check if EPOLLWAKEUP is allowed */
1713 	if ((epds.events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND))
1714 		epds.events &= ~EPOLLWAKEUP;
1715 
1716 	/*
1717 	 * We have to check that the file structure underneath the file descriptor
1718 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
1719 	 * adding an epoll file descriptor inside itself.
1720 	 */
1721 	error = -EINVAL;
1722 	if (file == tfile || !is_file_epoll(file))
1723 		goto error_tgt_fput;
1724 
1725 	/*
1726 	 * At this point it is safe to assume that the "private_data" contains
1727 	 * our own data structure.
1728 	 */
1729 	ep = file->private_data;
1730 
1731 	/*
1732 	 * When we insert an epoll file descriptor, inside another epoll file
1733 	 * descriptor, there is the change of creating closed loops, which are
1734 	 * better be handled here, than in more critical paths. While we are
1735 	 * checking for loops we also determine the list of files reachable
1736 	 * and hang them on the tfile_check_list, so we can check that we
1737 	 * haven't created too many possible wakeup paths.
1738 	 *
1739 	 * We need to hold the epmutex across both ep_insert and ep_remove
1740 	 * b/c we want to make sure we are looking at a coherent view of
1741 	 * epoll network.
1742 	 */
1743 	if (op == EPOLL_CTL_ADD || op == EPOLL_CTL_DEL) {
1744 		mutex_lock(&epmutex);
1745 		did_lock_epmutex = 1;
1746 	}
1747 	if (op == EPOLL_CTL_ADD) {
1748 		if (is_file_epoll(tfile)) {
1749 			error = -ELOOP;
1750 			if (ep_loop_check(ep, tfile) != 0) {
1751 				clear_tfile_check_list();
1752 				goto error_tgt_fput;
1753 			}
1754 		} else
1755 			list_add(&tfile->f_tfile_llink, &tfile_check_list);
1756 	}
1757 
1758 	mutex_lock_nested(&ep->mtx, 0);
1759 
1760 	/*
1761 	 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1762 	 * above, we can be sure to be able to use the item looked up by
1763 	 * ep_find() till we release the mutex.
1764 	 */
1765 	epi = ep_find(ep, tfile, fd);
1766 
1767 	error = -EINVAL;
1768 	switch (op) {
1769 	case EPOLL_CTL_ADD:
1770 		if (!epi) {
1771 			epds.events |= POLLERR | POLLHUP;
1772 			error = ep_insert(ep, &epds, tfile, fd);
1773 		} else
1774 			error = -EEXIST;
1775 		clear_tfile_check_list();
1776 		break;
1777 	case EPOLL_CTL_DEL:
1778 		if (epi)
1779 			error = ep_remove(ep, epi);
1780 		else
1781 			error = -ENOENT;
1782 		break;
1783 	case EPOLL_CTL_MOD:
1784 		if (epi) {
1785 			epds.events |= POLLERR | POLLHUP;
1786 			error = ep_modify(ep, epi, &epds);
1787 		} else
1788 			error = -ENOENT;
1789 		break;
1790 	}
1791 	mutex_unlock(&ep->mtx);
1792 
1793 error_tgt_fput:
1794 	if (did_lock_epmutex)
1795 		mutex_unlock(&epmutex);
1796 
1797 	fput(tfile);
1798 error_fput:
1799 	fput(file);
1800 error_return:
1801 
1802 	return error;
1803 }
1804 
1805 /*
1806  * Implement the event wait interface for the eventpoll file. It is the kernel
1807  * part of the user space epoll_wait(2).
1808  */
1809 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
1810 		int, maxevents, int, timeout)
1811 {
1812 	int error;
1813 	struct fd f;
1814 	struct eventpoll *ep;
1815 
1816 	/* The maximum number of event must be greater than zero */
1817 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1818 		return -EINVAL;
1819 
1820 	/* Verify that the area passed by the user is writeable */
1821 	if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event)))
1822 		return -EFAULT;
1823 
1824 	/* Get the "struct file *" for the eventpoll file */
1825 	f = fdget(epfd);
1826 	if (!f.file)
1827 		return -EBADF;
1828 
1829 	/*
1830 	 * We have to check that the file structure underneath the fd
1831 	 * the user passed to us _is_ an eventpoll file.
1832 	 */
1833 	error = -EINVAL;
1834 	if (!is_file_epoll(f.file))
1835 		goto error_fput;
1836 
1837 	/*
1838 	 * At this point it is safe to assume that the "private_data" contains
1839 	 * our own data structure.
1840 	 */
1841 	ep = f.file->private_data;
1842 
1843 	/* Time to fish for events ... */
1844 	error = ep_poll(ep, events, maxevents, timeout);
1845 
1846 error_fput:
1847 	fdput(f);
1848 	return error;
1849 }
1850 
1851 /*
1852  * Implement the event wait interface for the eventpoll file. It is the kernel
1853  * part of the user space epoll_pwait(2).
1854  */
1855 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
1856 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
1857 		size_t, sigsetsize)
1858 {
1859 	int error;
1860 	sigset_t ksigmask, sigsaved;
1861 
1862 	/*
1863 	 * If the caller wants a certain signal mask to be set during the wait,
1864 	 * we apply it here.
1865 	 */
1866 	if (sigmask) {
1867 		if (sigsetsize != sizeof(sigset_t))
1868 			return -EINVAL;
1869 		if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
1870 			return -EFAULT;
1871 		sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
1872 		sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1873 	}
1874 
1875 	error = sys_epoll_wait(epfd, events, maxevents, timeout);
1876 
1877 	/*
1878 	 * If we changed the signal mask, we need to restore the original one.
1879 	 * In case we've got a signal while waiting, we do not restore the
1880 	 * signal mask yet, and we allow do_signal() to deliver the signal on
1881 	 * the way back to userspace, before the signal mask is restored.
1882 	 */
1883 	if (sigmask) {
1884 		if (error == -EINTR) {
1885 			memcpy(&current->saved_sigmask, &sigsaved,
1886 			       sizeof(sigsaved));
1887 			set_restore_sigmask();
1888 		} else
1889 			sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1890 	}
1891 
1892 	return error;
1893 }
1894 
1895 static int __init eventpoll_init(void)
1896 {
1897 	struct sysinfo si;
1898 
1899 	si_meminfo(&si);
1900 	/*
1901 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
1902 	 */
1903 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
1904 		EP_ITEM_COST;
1905 	BUG_ON(max_user_watches < 0);
1906 
1907 	/*
1908 	 * Initialize the structure used to perform epoll file descriptor
1909 	 * inclusion loops checks.
1910 	 */
1911 	ep_nested_calls_init(&poll_loop_ncalls);
1912 
1913 	/* Initialize the structure used to perform safe poll wait head wake ups */
1914 	ep_nested_calls_init(&poll_safewake_ncalls);
1915 
1916 	/* Initialize the structure used to perform file's f_op->poll() calls */
1917 	ep_nested_calls_init(&poll_readywalk_ncalls);
1918 
1919 	/* Allocates slab cache used to allocate "struct epitem" items */
1920 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
1921 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1922 
1923 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
1924 	pwq_cache = kmem_cache_create("eventpoll_pwq",
1925 			sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
1926 
1927 	return 0;
1928 }
1929 fs_initcall(eventpoll_init);
1930