xref: /openbmc/linux/fs/eventpoll.c (revision 151f4e2b)
1 /*
2  *  fs/eventpoll.c (Efficient event retrieval implementation)
3  *  Copyright (C) 2001,...,2009	 Davide Libenzi
4  *
5  *  This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation; either version 2 of the License, or
8  *  (at your option) any later version.
9  *
10  *  Davide Libenzi <davidel@xmailserver.org>
11  *
12  */
13 
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched/signal.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/device.h>
37 #include <linux/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <linux/atomic.h>
41 #include <linux/proc_fs.h>
42 #include <linux/seq_file.h>
43 #include <linux/compat.h>
44 #include <linux/rculist.h>
45 #include <net/busy_poll.h>
46 
47 /*
48  * LOCKING:
49  * There are three level of locking required by epoll :
50  *
51  * 1) epmutex (mutex)
52  * 2) ep->mtx (mutex)
53  * 3) ep->lock (rwlock)
54  *
55  * The acquire order is the one listed above, from 1 to 3.
56  * We need a rwlock (ep->lock) because we manipulate objects
57  * from inside the poll callback, that might be triggered from
58  * a wake_up() that in turn might be called from IRQ context.
59  * So we can't sleep inside the poll callback and hence we need
60  * a spinlock. During the event transfer loop (from kernel to
61  * user space) we could end up sleeping due a copy_to_user(), so
62  * we need a lock that will allow us to sleep. This lock is a
63  * mutex (ep->mtx). It is acquired during the event transfer loop,
64  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
65  * Then we also need a global mutex to serialize eventpoll_release_file()
66  * and ep_free().
67  * This mutex is acquired by ep_free() during the epoll file
68  * cleanup path and it is also acquired by eventpoll_release_file()
69  * if a file has been pushed inside an epoll set and it is then
70  * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
71  * It is also acquired when inserting an epoll fd onto another epoll
72  * fd. We do this so that we walk the epoll tree and ensure that this
73  * insertion does not create a cycle of epoll file descriptors, which
74  * could lead to deadlock. We need a global mutex to prevent two
75  * simultaneous inserts (A into B and B into A) from racing and
76  * constructing a cycle without either insert observing that it is
77  * going to.
78  * It is necessary to acquire multiple "ep->mtx"es at once in the
79  * case when one epoll fd is added to another. In this case, we
80  * always acquire the locks in the order of nesting (i.e. after
81  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
82  * before e2->mtx). Since we disallow cycles of epoll file
83  * descriptors, this ensures that the mutexes are well-ordered. In
84  * order to communicate this nesting to lockdep, when walking a tree
85  * of epoll file descriptors, we use the current recursion depth as
86  * the lockdep subkey.
87  * It is possible to drop the "ep->mtx" and to use the global
88  * mutex "epmutex" (together with "ep->lock") to have it working,
89  * but having "ep->mtx" will make the interface more scalable.
90  * Events that require holding "epmutex" are very rare, while for
91  * normal operations the epoll private "ep->mtx" will guarantee
92  * a better scalability.
93  */
94 
95 /* Epoll private bits inside the event mask */
96 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
97 
98 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
99 
100 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
101 				EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
102 
103 /* Maximum number of nesting allowed inside epoll sets */
104 #define EP_MAX_NESTS 4
105 
106 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
107 
108 #define EP_UNACTIVE_PTR ((void *) -1L)
109 
110 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
111 
112 struct epoll_filefd {
113 	struct file *file;
114 	int fd;
115 } __packed;
116 
117 /*
118  * Structure used to track possible nested calls, for too deep recursions
119  * and loop cycles.
120  */
121 struct nested_call_node {
122 	struct list_head llink;
123 	void *cookie;
124 	void *ctx;
125 };
126 
127 /*
128  * This structure is used as collector for nested calls, to check for
129  * maximum recursion dept and loop cycles.
130  */
131 struct nested_calls {
132 	struct list_head tasks_call_list;
133 	spinlock_t lock;
134 };
135 
136 /*
137  * Each file descriptor added to the eventpoll interface will
138  * have an entry of this type linked to the "rbr" RB tree.
139  * Avoid increasing the size of this struct, there can be many thousands
140  * of these on a server and we do not want this to take another cache line.
141  */
142 struct epitem {
143 	union {
144 		/* RB tree node links this structure to the eventpoll RB tree */
145 		struct rb_node rbn;
146 		/* Used to free the struct epitem */
147 		struct rcu_head rcu;
148 	};
149 
150 	/* List header used to link this structure to the eventpoll ready list */
151 	struct list_head rdllink;
152 
153 	/*
154 	 * Works together "struct eventpoll"->ovflist in keeping the
155 	 * single linked chain of items.
156 	 */
157 	struct epitem *next;
158 
159 	/* The file descriptor information this item refers to */
160 	struct epoll_filefd ffd;
161 
162 	/* Number of active wait queue attached to poll operations */
163 	int nwait;
164 
165 	/* List containing poll wait queues */
166 	struct list_head pwqlist;
167 
168 	/* The "container" of this item */
169 	struct eventpoll *ep;
170 
171 	/* List header used to link this item to the "struct file" items list */
172 	struct list_head fllink;
173 
174 	/* wakeup_source used when EPOLLWAKEUP is set */
175 	struct wakeup_source __rcu *ws;
176 
177 	/* The structure that describe the interested events and the source fd */
178 	struct epoll_event event;
179 };
180 
181 /*
182  * This structure is stored inside the "private_data" member of the file
183  * structure and represents the main data structure for the eventpoll
184  * interface.
185  */
186 struct eventpoll {
187 	/*
188 	 * This mutex is used to ensure that files are not removed
189 	 * while epoll is using them. This is held during the event
190 	 * collection loop, the file cleanup path, the epoll file exit
191 	 * code and the ctl operations.
192 	 */
193 	struct mutex mtx;
194 
195 	/* Wait queue used by sys_epoll_wait() */
196 	wait_queue_head_t wq;
197 
198 	/* Wait queue used by file->poll() */
199 	wait_queue_head_t poll_wait;
200 
201 	/* List of ready file descriptors */
202 	struct list_head rdllist;
203 
204 	/* Lock which protects rdllist and ovflist */
205 	rwlock_t lock;
206 
207 	/* RB tree root used to store monitored fd structs */
208 	struct rb_root_cached rbr;
209 
210 	/*
211 	 * This is a single linked list that chains all the "struct epitem" that
212 	 * happened while transferring ready events to userspace w/out
213 	 * holding ->lock.
214 	 */
215 	struct epitem *ovflist;
216 
217 	/* wakeup_source used when ep_scan_ready_list is running */
218 	struct wakeup_source *ws;
219 
220 	/* The user that created the eventpoll descriptor */
221 	struct user_struct *user;
222 
223 	struct file *file;
224 
225 	/* used to optimize loop detection check */
226 	int visited;
227 	struct list_head visited_list_link;
228 
229 #ifdef CONFIG_NET_RX_BUSY_POLL
230 	/* used to track busy poll napi_id */
231 	unsigned int napi_id;
232 #endif
233 };
234 
235 /* Wait structure used by the poll hooks */
236 struct eppoll_entry {
237 	/* List header used to link this structure to the "struct epitem" */
238 	struct list_head llink;
239 
240 	/* The "base" pointer is set to the container "struct epitem" */
241 	struct epitem *base;
242 
243 	/*
244 	 * Wait queue item that will be linked to the target file wait
245 	 * queue head.
246 	 */
247 	wait_queue_entry_t wait;
248 
249 	/* The wait queue head that linked the "wait" wait queue item */
250 	wait_queue_head_t *whead;
251 };
252 
253 /* Wrapper struct used by poll queueing */
254 struct ep_pqueue {
255 	poll_table pt;
256 	struct epitem *epi;
257 };
258 
259 /* Used by the ep_send_events() function as callback private data */
260 struct ep_send_events_data {
261 	int maxevents;
262 	struct epoll_event __user *events;
263 	int res;
264 };
265 
266 /*
267  * Configuration options available inside /proc/sys/fs/epoll/
268  */
269 /* Maximum number of epoll watched descriptors, per user */
270 static long max_user_watches __read_mostly;
271 
272 /*
273  * This mutex is used to serialize ep_free() and eventpoll_release_file().
274  */
275 static DEFINE_MUTEX(epmutex);
276 
277 /* Used to check for epoll file descriptor inclusion loops */
278 static struct nested_calls poll_loop_ncalls;
279 
280 /* Slab cache used to allocate "struct epitem" */
281 static struct kmem_cache *epi_cache __read_mostly;
282 
283 /* Slab cache used to allocate "struct eppoll_entry" */
284 static struct kmem_cache *pwq_cache __read_mostly;
285 
286 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
287 static LIST_HEAD(visited_list);
288 
289 /*
290  * List of files with newly added links, where we may need to limit the number
291  * of emanating paths. Protected by the epmutex.
292  */
293 static LIST_HEAD(tfile_check_list);
294 
295 #ifdef CONFIG_SYSCTL
296 
297 #include <linux/sysctl.h>
298 
299 static long zero;
300 static long long_max = LONG_MAX;
301 
302 struct ctl_table epoll_table[] = {
303 	{
304 		.procname	= "max_user_watches",
305 		.data		= &max_user_watches,
306 		.maxlen		= sizeof(max_user_watches),
307 		.mode		= 0644,
308 		.proc_handler	= proc_doulongvec_minmax,
309 		.extra1		= &zero,
310 		.extra2		= &long_max,
311 	},
312 	{ }
313 };
314 #endif /* CONFIG_SYSCTL */
315 
316 static const struct file_operations eventpoll_fops;
317 
318 static inline int is_file_epoll(struct file *f)
319 {
320 	return f->f_op == &eventpoll_fops;
321 }
322 
323 /* Setup the structure that is used as key for the RB tree */
324 static inline void ep_set_ffd(struct epoll_filefd *ffd,
325 			      struct file *file, int fd)
326 {
327 	ffd->file = file;
328 	ffd->fd = fd;
329 }
330 
331 /* Compare RB tree keys */
332 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
333 			     struct epoll_filefd *p2)
334 {
335 	return (p1->file > p2->file ? +1:
336 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
337 }
338 
339 /* Tells us if the item is currently linked */
340 static inline int ep_is_linked(struct epitem *epi)
341 {
342 	return !list_empty(&epi->rdllink);
343 }
344 
345 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
346 {
347 	return container_of(p, struct eppoll_entry, wait);
348 }
349 
350 /* Get the "struct epitem" from a wait queue pointer */
351 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
352 {
353 	return container_of(p, struct eppoll_entry, wait)->base;
354 }
355 
356 /* Get the "struct epitem" from an epoll queue wrapper */
357 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
358 {
359 	return container_of(p, struct ep_pqueue, pt)->epi;
360 }
361 
362 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
363 static inline int ep_op_has_event(int op)
364 {
365 	return op != EPOLL_CTL_DEL;
366 }
367 
368 /* Initialize the poll safe wake up structure */
369 static void ep_nested_calls_init(struct nested_calls *ncalls)
370 {
371 	INIT_LIST_HEAD(&ncalls->tasks_call_list);
372 	spin_lock_init(&ncalls->lock);
373 }
374 
375 /**
376  * ep_events_available - Checks if ready events might be available.
377  *
378  * @ep: Pointer to the eventpoll context.
379  *
380  * Returns: Returns a value different than zero if ready events are available,
381  *          or zero otherwise.
382  */
383 static inline int ep_events_available(struct eventpoll *ep)
384 {
385 	return !list_empty_careful(&ep->rdllist) ||
386 		READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
387 }
388 
389 #ifdef CONFIG_NET_RX_BUSY_POLL
390 static bool ep_busy_loop_end(void *p, unsigned long start_time)
391 {
392 	struct eventpoll *ep = p;
393 
394 	return ep_events_available(ep) || busy_loop_timeout(start_time);
395 }
396 
397 /*
398  * Busy poll if globally on and supporting sockets found && no events,
399  * busy loop will return if need_resched or ep_events_available.
400  *
401  * we must do our busy polling with irqs enabled
402  */
403 static void ep_busy_loop(struct eventpoll *ep, int nonblock)
404 {
405 	unsigned int napi_id = READ_ONCE(ep->napi_id);
406 
407 	if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
408 		napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep);
409 }
410 
411 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
412 {
413 	if (ep->napi_id)
414 		ep->napi_id = 0;
415 }
416 
417 /*
418  * Set epoll busy poll NAPI ID from sk.
419  */
420 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
421 {
422 	struct eventpoll *ep;
423 	unsigned int napi_id;
424 	struct socket *sock;
425 	struct sock *sk;
426 	int err;
427 
428 	if (!net_busy_loop_on())
429 		return;
430 
431 	sock = sock_from_file(epi->ffd.file, &err);
432 	if (!sock)
433 		return;
434 
435 	sk = sock->sk;
436 	if (!sk)
437 		return;
438 
439 	napi_id = READ_ONCE(sk->sk_napi_id);
440 	ep = epi->ep;
441 
442 	/* Non-NAPI IDs can be rejected
443 	 *	or
444 	 * Nothing to do if we already have this ID
445 	 */
446 	if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
447 		return;
448 
449 	/* record NAPI ID for use in next busy poll */
450 	ep->napi_id = napi_id;
451 }
452 
453 #else
454 
455 static inline void ep_busy_loop(struct eventpoll *ep, int nonblock)
456 {
457 }
458 
459 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
460 {
461 }
462 
463 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
464 {
465 }
466 
467 #endif /* CONFIG_NET_RX_BUSY_POLL */
468 
469 /**
470  * ep_call_nested - Perform a bound (possibly) nested call, by checking
471  *                  that the recursion limit is not exceeded, and that
472  *                  the same nested call (by the meaning of same cookie) is
473  *                  no re-entered.
474  *
475  * @ncalls: Pointer to the nested_calls structure to be used for this call.
476  * @nproc: Nested call core function pointer.
477  * @priv: Opaque data to be passed to the @nproc callback.
478  * @cookie: Cookie to be used to identify this nested call.
479  * @ctx: This instance context.
480  *
481  * Returns: Returns the code returned by the @nproc callback, or -1 if
482  *          the maximum recursion limit has been exceeded.
483  */
484 static int ep_call_nested(struct nested_calls *ncalls,
485 			  int (*nproc)(void *, void *, int), void *priv,
486 			  void *cookie, void *ctx)
487 {
488 	int error, call_nests = 0;
489 	unsigned long flags;
490 	struct list_head *lsthead = &ncalls->tasks_call_list;
491 	struct nested_call_node *tncur;
492 	struct nested_call_node tnode;
493 
494 	spin_lock_irqsave(&ncalls->lock, flags);
495 
496 	/*
497 	 * Try to see if the current task is already inside this wakeup call.
498 	 * We use a list here, since the population inside this set is always
499 	 * very much limited.
500 	 */
501 	list_for_each_entry(tncur, lsthead, llink) {
502 		if (tncur->ctx == ctx &&
503 		    (tncur->cookie == cookie || ++call_nests > EP_MAX_NESTS)) {
504 			/*
505 			 * Ops ... loop detected or maximum nest level reached.
506 			 * We abort this wake by breaking the cycle itself.
507 			 */
508 			error = -1;
509 			goto out_unlock;
510 		}
511 	}
512 
513 	/* Add the current task and cookie to the list */
514 	tnode.ctx = ctx;
515 	tnode.cookie = cookie;
516 	list_add(&tnode.llink, lsthead);
517 
518 	spin_unlock_irqrestore(&ncalls->lock, flags);
519 
520 	/* Call the nested function */
521 	error = (*nproc)(priv, cookie, call_nests);
522 
523 	/* Remove the current task from the list */
524 	spin_lock_irqsave(&ncalls->lock, flags);
525 	list_del(&tnode.llink);
526 out_unlock:
527 	spin_unlock_irqrestore(&ncalls->lock, flags);
528 
529 	return error;
530 }
531 
532 /*
533  * As described in commit 0ccf831cb lockdep: annotate epoll
534  * the use of wait queues used by epoll is done in a very controlled
535  * manner. Wake ups can nest inside each other, but are never done
536  * with the same locking. For example:
537  *
538  *   dfd = socket(...);
539  *   efd1 = epoll_create();
540  *   efd2 = epoll_create();
541  *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
542  *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
543  *
544  * When a packet arrives to the device underneath "dfd", the net code will
545  * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
546  * callback wakeup entry on that queue, and the wake_up() performed by the
547  * "dfd" net code will end up in ep_poll_callback(). At this point epoll
548  * (efd1) notices that it may have some event ready, so it needs to wake up
549  * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
550  * that ends up in another wake_up(), after having checked about the
551  * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
552  * avoid stack blasting.
553  *
554  * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
555  * this special case of epoll.
556  */
557 #ifdef CONFIG_DEBUG_LOCK_ALLOC
558 
559 static struct nested_calls poll_safewake_ncalls;
560 
561 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
562 {
563 	unsigned long flags;
564 	wait_queue_head_t *wqueue = (wait_queue_head_t *)cookie;
565 
566 	spin_lock_irqsave_nested(&wqueue->lock, flags, call_nests + 1);
567 	wake_up_locked_poll(wqueue, EPOLLIN);
568 	spin_unlock_irqrestore(&wqueue->lock, flags);
569 
570 	return 0;
571 }
572 
573 static void ep_poll_safewake(wait_queue_head_t *wq)
574 {
575 	int this_cpu = get_cpu();
576 
577 	ep_call_nested(&poll_safewake_ncalls,
578 		       ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
579 
580 	put_cpu();
581 }
582 
583 #else
584 
585 static void ep_poll_safewake(wait_queue_head_t *wq)
586 {
587 	wake_up_poll(wq, EPOLLIN);
588 }
589 
590 #endif
591 
592 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
593 {
594 	wait_queue_head_t *whead;
595 
596 	rcu_read_lock();
597 	/*
598 	 * If it is cleared by POLLFREE, it should be rcu-safe.
599 	 * If we read NULL we need a barrier paired with
600 	 * smp_store_release() in ep_poll_callback(), otherwise
601 	 * we rely on whead->lock.
602 	 */
603 	whead = smp_load_acquire(&pwq->whead);
604 	if (whead)
605 		remove_wait_queue(whead, &pwq->wait);
606 	rcu_read_unlock();
607 }
608 
609 /*
610  * This function unregisters poll callbacks from the associated file
611  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
612  * ep_free).
613  */
614 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
615 {
616 	struct list_head *lsthead = &epi->pwqlist;
617 	struct eppoll_entry *pwq;
618 
619 	while (!list_empty(lsthead)) {
620 		pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
621 
622 		list_del(&pwq->llink);
623 		ep_remove_wait_queue(pwq);
624 		kmem_cache_free(pwq_cache, pwq);
625 	}
626 }
627 
628 /* call only when ep->mtx is held */
629 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
630 {
631 	return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
632 }
633 
634 /* call only when ep->mtx is held */
635 static inline void ep_pm_stay_awake(struct epitem *epi)
636 {
637 	struct wakeup_source *ws = ep_wakeup_source(epi);
638 
639 	if (ws)
640 		__pm_stay_awake(ws);
641 }
642 
643 static inline bool ep_has_wakeup_source(struct epitem *epi)
644 {
645 	return rcu_access_pointer(epi->ws) ? true : false;
646 }
647 
648 /* call when ep->mtx cannot be held (ep_poll_callback) */
649 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
650 {
651 	struct wakeup_source *ws;
652 
653 	rcu_read_lock();
654 	ws = rcu_dereference(epi->ws);
655 	if (ws)
656 		__pm_stay_awake(ws);
657 	rcu_read_unlock();
658 }
659 
660 /**
661  * ep_scan_ready_list - Scans the ready list in a way that makes possible for
662  *                      the scan code, to call f_op->poll(). Also allows for
663  *                      O(NumReady) performance.
664  *
665  * @ep: Pointer to the epoll private data structure.
666  * @sproc: Pointer to the scan callback.
667  * @priv: Private opaque data passed to the @sproc callback.
668  * @depth: The current depth of recursive f_op->poll calls.
669  * @ep_locked: caller already holds ep->mtx
670  *
671  * Returns: The same integer error code returned by the @sproc callback.
672  */
673 static __poll_t ep_scan_ready_list(struct eventpoll *ep,
674 			      __poll_t (*sproc)(struct eventpoll *,
675 					   struct list_head *, void *),
676 			      void *priv, int depth, bool ep_locked)
677 {
678 	__poll_t res;
679 	int pwake = 0;
680 	struct epitem *epi, *nepi;
681 	LIST_HEAD(txlist);
682 
683 	lockdep_assert_irqs_enabled();
684 
685 	/*
686 	 * We need to lock this because we could be hit by
687 	 * eventpoll_release_file() and epoll_ctl().
688 	 */
689 
690 	if (!ep_locked)
691 		mutex_lock_nested(&ep->mtx, depth);
692 
693 	/*
694 	 * Steal the ready list, and re-init the original one to the
695 	 * empty list. Also, set ep->ovflist to NULL so that events
696 	 * happening while looping w/out locks, are not lost. We cannot
697 	 * have the poll callback to queue directly on ep->rdllist,
698 	 * because we want the "sproc" callback to be able to do it
699 	 * in a lockless way.
700 	 */
701 	write_lock_irq(&ep->lock);
702 	list_splice_init(&ep->rdllist, &txlist);
703 	WRITE_ONCE(ep->ovflist, NULL);
704 	write_unlock_irq(&ep->lock);
705 
706 	/*
707 	 * Now call the callback function.
708 	 */
709 	res = (*sproc)(ep, &txlist, priv);
710 
711 	write_lock_irq(&ep->lock);
712 	/*
713 	 * During the time we spent inside the "sproc" callback, some
714 	 * other events might have been queued by the poll callback.
715 	 * We re-insert them inside the main ready-list here.
716 	 */
717 	for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
718 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
719 		/*
720 		 * We need to check if the item is already in the list.
721 		 * During the "sproc" callback execution time, items are
722 		 * queued into ->ovflist but the "txlist" might already
723 		 * contain them, and the list_splice() below takes care of them.
724 		 */
725 		if (!ep_is_linked(epi)) {
726 			/*
727 			 * ->ovflist is LIFO, so we have to reverse it in order
728 			 * to keep in FIFO.
729 			 */
730 			list_add(&epi->rdllink, &ep->rdllist);
731 			ep_pm_stay_awake(epi);
732 		}
733 	}
734 	/*
735 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
736 	 * releasing the lock, events will be queued in the normal way inside
737 	 * ep->rdllist.
738 	 */
739 	WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
740 
741 	/*
742 	 * Quickly re-inject items left on "txlist".
743 	 */
744 	list_splice(&txlist, &ep->rdllist);
745 	__pm_relax(ep->ws);
746 
747 	if (!list_empty(&ep->rdllist)) {
748 		/*
749 		 * Wake up (if active) both the eventpoll wait list and
750 		 * the ->poll() wait list (delayed after we release the lock).
751 		 */
752 		if (waitqueue_active(&ep->wq))
753 			wake_up(&ep->wq);
754 		if (waitqueue_active(&ep->poll_wait))
755 			pwake++;
756 	}
757 	write_unlock_irq(&ep->lock);
758 
759 	if (!ep_locked)
760 		mutex_unlock(&ep->mtx);
761 
762 	/* We have to call this outside the lock */
763 	if (pwake)
764 		ep_poll_safewake(&ep->poll_wait);
765 
766 	return res;
767 }
768 
769 static void epi_rcu_free(struct rcu_head *head)
770 {
771 	struct epitem *epi = container_of(head, struct epitem, rcu);
772 	kmem_cache_free(epi_cache, epi);
773 }
774 
775 /*
776  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
777  * all the associated resources. Must be called with "mtx" held.
778  */
779 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
780 {
781 	struct file *file = epi->ffd.file;
782 
783 	lockdep_assert_irqs_enabled();
784 
785 	/*
786 	 * Removes poll wait queue hooks.
787 	 */
788 	ep_unregister_pollwait(ep, epi);
789 
790 	/* Remove the current item from the list of epoll hooks */
791 	spin_lock(&file->f_lock);
792 	list_del_rcu(&epi->fllink);
793 	spin_unlock(&file->f_lock);
794 
795 	rb_erase_cached(&epi->rbn, &ep->rbr);
796 
797 	write_lock_irq(&ep->lock);
798 	if (ep_is_linked(epi))
799 		list_del_init(&epi->rdllink);
800 	write_unlock_irq(&ep->lock);
801 
802 	wakeup_source_unregister(ep_wakeup_source(epi));
803 	/*
804 	 * At this point it is safe to free the eventpoll item. Use the union
805 	 * field epi->rcu, since we are trying to minimize the size of
806 	 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
807 	 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
808 	 * use of the rbn field.
809 	 */
810 	call_rcu(&epi->rcu, epi_rcu_free);
811 
812 	atomic_long_dec(&ep->user->epoll_watches);
813 
814 	return 0;
815 }
816 
817 static void ep_free(struct eventpoll *ep)
818 {
819 	struct rb_node *rbp;
820 	struct epitem *epi;
821 
822 	/* We need to release all tasks waiting for these file */
823 	if (waitqueue_active(&ep->poll_wait))
824 		ep_poll_safewake(&ep->poll_wait);
825 
826 	/*
827 	 * We need to lock this because we could be hit by
828 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
829 	 * We do not need to hold "ep->mtx" here because the epoll file
830 	 * is on the way to be removed and no one has references to it
831 	 * anymore. The only hit might come from eventpoll_release_file() but
832 	 * holding "epmutex" is sufficient here.
833 	 */
834 	mutex_lock(&epmutex);
835 
836 	/*
837 	 * Walks through the whole tree by unregistering poll callbacks.
838 	 */
839 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
840 		epi = rb_entry(rbp, struct epitem, rbn);
841 
842 		ep_unregister_pollwait(ep, epi);
843 		cond_resched();
844 	}
845 
846 	/*
847 	 * Walks through the whole tree by freeing each "struct epitem". At this
848 	 * point we are sure no poll callbacks will be lingering around, and also by
849 	 * holding "epmutex" we can be sure that no file cleanup code will hit
850 	 * us during this operation. So we can avoid the lock on "ep->lock".
851 	 * We do not need to lock ep->mtx, either, we only do it to prevent
852 	 * a lockdep warning.
853 	 */
854 	mutex_lock(&ep->mtx);
855 	while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
856 		epi = rb_entry(rbp, struct epitem, rbn);
857 		ep_remove(ep, epi);
858 		cond_resched();
859 	}
860 	mutex_unlock(&ep->mtx);
861 
862 	mutex_unlock(&epmutex);
863 	mutex_destroy(&ep->mtx);
864 	free_uid(ep->user);
865 	wakeup_source_unregister(ep->ws);
866 	kfree(ep);
867 }
868 
869 static int ep_eventpoll_release(struct inode *inode, struct file *file)
870 {
871 	struct eventpoll *ep = file->private_data;
872 
873 	if (ep)
874 		ep_free(ep);
875 
876 	return 0;
877 }
878 
879 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
880 			       void *priv);
881 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
882 				 poll_table *pt);
883 
884 /*
885  * Differs from ep_eventpoll_poll() in that internal callers already have
886  * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
887  * is correctly annotated.
888  */
889 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
890 				 int depth)
891 {
892 	struct eventpoll *ep;
893 	bool locked;
894 
895 	pt->_key = epi->event.events;
896 	if (!is_file_epoll(epi->ffd.file))
897 		return vfs_poll(epi->ffd.file, pt) & epi->event.events;
898 
899 	ep = epi->ffd.file->private_data;
900 	poll_wait(epi->ffd.file, &ep->poll_wait, pt);
901 	locked = pt && (pt->_qproc == ep_ptable_queue_proc);
902 
903 	return ep_scan_ready_list(epi->ffd.file->private_data,
904 				  ep_read_events_proc, &depth, depth,
905 				  locked) & epi->event.events;
906 }
907 
908 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
909 			       void *priv)
910 {
911 	struct epitem *epi, *tmp;
912 	poll_table pt;
913 	int depth = *(int *)priv;
914 
915 	init_poll_funcptr(&pt, NULL);
916 	depth++;
917 
918 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
919 		if (ep_item_poll(epi, &pt, depth)) {
920 			return EPOLLIN | EPOLLRDNORM;
921 		} else {
922 			/*
923 			 * Item has been dropped into the ready list by the poll
924 			 * callback, but it's not actually ready, as far as
925 			 * caller requested events goes. We can remove it here.
926 			 */
927 			__pm_relax(ep_wakeup_source(epi));
928 			list_del_init(&epi->rdllink);
929 		}
930 	}
931 
932 	return 0;
933 }
934 
935 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
936 {
937 	struct eventpoll *ep = file->private_data;
938 	int depth = 0;
939 
940 	/* Insert inside our poll wait queue */
941 	poll_wait(file, &ep->poll_wait, wait);
942 
943 	/*
944 	 * Proceed to find out if wanted events are really available inside
945 	 * the ready list.
946 	 */
947 	return ep_scan_ready_list(ep, ep_read_events_proc,
948 				  &depth, depth, false);
949 }
950 
951 #ifdef CONFIG_PROC_FS
952 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
953 {
954 	struct eventpoll *ep = f->private_data;
955 	struct rb_node *rbp;
956 
957 	mutex_lock(&ep->mtx);
958 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
959 		struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
960 		struct inode *inode = file_inode(epi->ffd.file);
961 
962 		seq_printf(m, "tfd: %8d events: %8x data: %16llx "
963 			   " pos:%lli ino:%lx sdev:%x\n",
964 			   epi->ffd.fd, epi->event.events,
965 			   (long long)epi->event.data,
966 			   (long long)epi->ffd.file->f_pos,
967 			   inode->i_ino, inode->i_sb->s_dev);
968 		if (seq_has_overflowed(m))
969 			break;
970 	}
971 	mutex_unlock(&ep->mtx);
972 }
973 #endif
974 
975 /* File callbacks that implement the eventpoll file behaviour */
976 static const struct file_operations eventpoll_fops = {
977 #ifdef CONFIG_PROC_FS
978 	.show_fdinfo	= ep_show_fdinfo,
979 #endif
980 	.release	= ep_eventpoll_release,
981 	.poll		= ep_eventpoll_poll,
982 	.llseek		= noop_llseek,
983 };
984 
985 /*
986  * This is called from eventpoll_release() to unlink files from the eventpoll
987  * interface. We need to have this facility to cleanup correctly files that are
988  * closed without being removed from the eventpoll interface.
989  */
990 void eventpoll_release_file(struct file *file)
991 {
992 	struct eventpoll *ep;
993 	struct epitem *epi, *next;
994 
995 	/*
996 	 * We don't want to get "file->f_lock" because it is not
997 	 * necessary. It is not necessary because we're in the "struct file"
998 	 * cleanup path, and this means that no one is using this file anymore.
999 	 * So, for example, epoll_ctl() cannot hit here since if we reach this
1000 	 * point, the file counter already went to zero and fget() would fail.
1001 	 * The only hit might come from ep_free() but by holding the mutex
1002 	 * will correctly serialize the operation. We do need to acquire
1003 	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
1004 	 * from anywhere but ep_free().
1005 	 *
1006 	 * Besides, ep_remove() acquires the lock, so we can't hold it here.
1007 	 */
1008 	mutex_lock(&epmutex);
1009 	list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
1010 		ep = epi->ep;
1011 		mutex_lock_nested(&ep->mtx, 0);
1012 		ep_remove(ep, epi);
1013 		mutex_unlock(&ep->mtx);
1014 	}
1015 	mutex_unlock(&epmutex);
1016 }
1017 
1018 static int ep_alloc(struct eventpoll **pep)
1019 {
1020 	int error;
1021 	struct user_struct *user;
1022 	struct eventpoll *ep;
1023 
1024 	user = get_current_user();
1025 	error = -ENOMEM;
1026 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1027 	if (unlikely(!ep))
1028 		goto free_uid;
1029 
1030 	mutex_init(&ep->mtx);
1031 	rwlock_init(&ep->lock);
1032 	init_waitqueue_head(&ep->wq);
1033 	init_waitqueue_head(&ep->poll_wait);
1034 	INIT_LIST_HEAD(&ep->rdllist);
1035 	ep->rbr = RB_ROOT_CACHED;
1036 	ep->ovflist = EP_UNACTIVE_PTR;
1037 	ep->user = user;
1038 
1039 	*pep = ep;
1040 
1041 	return 0;
1042 
1043 free_uid:
1044 	free_uid(user);
1045 	return error;
1046 }
1047 
1048 /*
1049  * Search the file inside the eventpoll tree. The RB tree operations
1050  * are protected by the "mtx" mutex, and ep_find() must be called with
1051  * "mtx" held.
1052  */
1053 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1054 {
1055 	int kcmp;
1056 	struct rb_node *rbp;
1057 	struct epitem *epi, *epir = NULL;
1058 	struct epoll_filefd ffd;
1059 
1060 	ep_set_ffd(&ffd, file, fd);
1061 	for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1062 		epi = rb_entry(rbp, struct epitem, rbn);
1063 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1064 		if (kcmp > 0)
1065 			rbp = rbp->rb_right;
1066 		else if (kcmp < 0)
1067 			rbp = rbp->rb_left;
1068 		else {
1069 			epir = epi;
1070 			break;
1071 		}
1072 	}
1073 
1074 	return epir;
1075 }
1076 
1077 #ifdef CONFIG_CHECKPOINT_RESTORE
1078 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1079 {
1080 	struct rb_node *rbp;
1081 	struct epitem *epi;
1082 
1083 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1084 		epi = rb_entry(rbp, struct epitem, rbn);
1085 		if (epi->ffd.fd == tfd) {
1086 			if (toff == 0)
1087 				return epi;
1088 			else
1089 				toff--;
1090 		}
1091 		cond_resched();
1092 	}
1093 
1094 	return NULL;
1095 }
1096 
1097 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1098 				     unsigned long toff)
1099 {
1100 	struct file *file_raw;
1101 	struct eventpoll *ep;
1102 	struct epitem *epi;
1103 
1104 	if (!is_file_epoll(file))
1105 		return ERR_PTR(-EINVAL);
1106 
1107 	ep = file->private_data;
1108 
1109 	mutex_lock(&ep->mtx);
1110 	epi = ep_find_tfd(ep, tfd, toff);
1111 	if (epi)
1112 		file_raw = epi->ffd.file;
1113 	else
1114 		file_raw = ERR_PTR(-ENOENT);
1115 	mutex_unlock(&ep->mtx);
1116 
1117 	return file_raw;
1118 }
1119 #endif /* CONFIG_CHECKPOINT_RESTORE */
1120 
1121 /**
1122  * Adds a new entry to the tail of the list in a lockless way, i.e.
1123  * multiple CPUs are allowed to call this function concurrently.
1124  *
1125  * Beware: it is necessary to prevent any other modifications of the
1126  *         existing list until all changes are completed, in other words
1127  *         concurrent list_add_tail_lockless() calls should be protected
1128  *         with a read lock, where write lock acts as a barrier which
1129  *         makes sure all list_add_tail_lockless() calls are fully
1130  *         completed.
1131  *
1132  *        Also an element can be locklessly added to the list only in one
1133  *        direction i.e. either to the tail either to the head, otherwise
1134  *        concurrent access will corrupt the list.
1135  *
1136  * Returns %false if element has been already added to the list, %true
1137  * otherwise.
1138  */
1139 static inline bool list_add_tail_lockless(struct list_head *new,
1140 					  struct list_head *head)
1141 {
1142 	struct list_head *prev;
1143 
1144 	/*
1145 	 * This is simple 'new->next = head' operation, but cmpxchg()
1146 	 * is used in order to detect that same element has been just
1147 	 * added to the list from another CPU: the winner observes
1148 	 * new->next == new.
1149 	 */
1150 	if (cmpxchg(&new->next, new, head) != new)
1151 		return false;
1152 
1153 	/*
1154 	 * Initially ->next of a new element must be updated with the head
1155 	 * (we are inserting to the tail) and only then pointers are atomically
1156 	 * exchanged.  XCHG guarantees memory ordering, thus ->next should be
1157 	 * updated before pointers are actually swapped and pointers are
1158 	 * swapped before prev->next is updated.
1159 	 */
1160 
1161 	prev = xchg(&head->prev, new);
1162 
1163 	/*
1164 	 * It is safe to modify prev->next and new->prev, because a new element
1165 	 * is added only to the tail and new->next is updated before XCHG.
1166 	 */
1167 
1168 	prev->next = new;
1169 	new->prev = prev;
1170 
1171 	return true;
1172 }
1173 
1174 /**
1175  * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1176  * i.e. multiple CPUs are allowed to call this function concurrently.
1177  *
1178  * Returns %false if epi element has been already chained, %true otherwise.
1179  */
1180 static inline bool chain_epi_lockless(struct epitem *epi)
1181 {
1182 	struct eventpoll *ep = epi->ep;
1183 
1184 	/* Check that the same epi has not been just chained from another CPU */
1185 	if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1186 		return false;
1187 
1188 	/* Atomically exchange tail */
1189 	epi->next = xchg(&ep->ovflist, epi);
1190 
1191 	return true;
1192 }
1193 
1194 /*
1195  * This is the callback that is passed to the wait queue wakeup
1196  * mechanism. It is called by the stored file descriptors when they
1197  * have events to report.
1198  *
1199  * This callback takes a read lock in order not to content with concurrent
1200  * events from another file descriptors, thus all modifications to ->rdllist
1201  * or ->ovflist are lockless.  Read lock is paired with the write lock from
1202  * ep_scan_ready_list(), which stops all list modifications and guarantees
1203  * that lists state is seen correctly.
1204  *
1205  * Another thing worth to mention is that ep_poll_callback() can be called
1206  * concurrently for the same @epi from different CPUs if poll table was inited
1207  * with several wait queues entries.  Plural wakeup from different CPUs of a
1208  * single wait queue is serialized by wq.lock, but the case when multiple wait
1209  * queues are used should be detected accordingly.  This is detected using
1210  * cmpxchg() operation.
1211  */
1212 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1213 {
1214 	int pwake = 0;
1215 	struct epitem *epi = ep_item_from_wait(wait);
1216 	struct eventpoll *ep = epi->ep;
1217 	__poll_t pollflags = key_to_poll(key);
1218 	unsigned long flags;
1219 	int ewake = 0;
1220 
1221 	read_lock_irqsave(&ep->lock, flags);
1222 
1223 	ep_set_busy_poll_napi_id(epi);
1224 
1225 	/*
1226 	 * If the event mask does not contain any poll(2) event, we consider the
1227 	 * descriptor to be disabled. This condition is likely the effect of the
1228 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1229 	 * until the next EPOLL_CTL_MOD will be issued.
1230 	 */
1231 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
1232 		goto out_unlock;
1233 
1234 	/*
1235 	 * Check the events coming with the callback. At this stage, not
1236 	 * every device reports the events in the "key" parameter of the
1237 	 * callback. We need to be able to handle both cases here, hence the
1238 	 * test for "key" != NULL before the event match test.
1239 	 */
1240 	if (pollflags && !(pollflags & epi->event.events))
1241 		goto out_unlock;
1242 
1243 	/*
1244 	 * If we are transferring events to userspace, we can hold no locks
1245 	 * (because we're accessing user memory, and because of linux f_op->poll()
1246 	 * semantics). All the events that happen during that period of time are
1247 	 * chained in ep->ovflist and requeued later on.
1248 	 */
1249 	if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1250 		if (epi->next == EP_UNACTIVE_PTR &&
1251 		    chain_epi_lockless(epi))
1252 			ep_pm_stay_awake_rcu(epi);
1253 		goto out_unlock;
1254 	}
1255 
1256 	/* If this file is already in the ready list we exit soon */
1257 	if (!ep_is_linked(epi) &&
1258 	    list_add_tail_lockless(&epi->rdllink, &ep->rdllist)) {
1259 		ep_pm_stay_awake_rcu(epi);
1260 	}
1261 
1262 	/*
1263 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1264 	 * wait list.
1265 	 */
1266 	if (waitqueue_active(&ep->wq)) {
1267 		if ((epi->event.events & EPOLLEXCLUSIVE) &&
1268 					!(pollflags & POLLFREE)) {
1269 			switch (pollflags & EPOLLINOUT_BITS) {
1270 			case EPOLLIN:
1271 				if (epi->event.events & EPOLLIN)
1272 					ewake = 1;
1273 				break;
1274 			case EPOLLOUT:
1275 				if (epi->event.events & EPOLLOUT)
1276 					ewake = 1;
1277 				break;
1278 			case 0:
1279 				ewake = 1;
1280 				break;
1281 			}
1282 		}
1283 		wake_up(&ep->wq);
1284 	}
1285 	if (waitqueue_active(&ep->poll_wait))
1286 		pwake++;
1287 
1288 out_unlock:
1289 	read_unlock_irqrestore(&ep->lock, flags);
1290 
1291 	/* We have to call this outside the lock */
1292 	if (pwake)
1293 		ep_poll_safewake(&ep->poll_wait);
1294 
1295 	if (!(epi->event.events & EPOLLEXCLUSIVE))
1296 		ewake = 1;
1297 
1298 	if (pollflags & POLLFREE) {
1299 		/*
1300 		 * If we race with ep_remove_wait_queue() it can miss
1301 		 * ->whead = NULL and do another remove_wait_queue() after
1302 		 * us, so we can't use __remove_wait_queue().
1303 		 */
1304 		list_del_init(&wait->entry);
1305 		/*
1306 		 * ->whead != NULL protects us from the race with ep_free()
1307 		 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1308 		 * held by the caller. Once we nullify it, nothing protects
1309 		 * ep/epi or even wait.
1310 		 */
1311 		smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1312 	}
1313 
1314 	return ewake;
1315 }
1316 
1317 /*
1318  * This is the callback that is used to add our wait queue to the
1319  * target file wakeup lists.
1320  */
1321 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1322 				 poll_table *pt)
1323 {
1324 	struct epitem *epi = ep_item_from_epqueue(pt);
1325 	struct eppoll_entry *pwq;
1326 
1327 	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1328 		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1329 		pwq->whead = whead;
1330 		pwq->base = epi;
1331 		if (epi->event.events & EPOLLEXCLUSIVE)
1332 			add_wait_queue_exclusive(whead, &pwq->wait);
1333 		else
1334 			add_wait_queue(whead, &pwq->wait);
1335 		list_add_tail(&pwq->llink, &epi->pwqlist);
1336 		epi->nwait++;
1337 	} else {
1338 		/* We have to signal that an error occurred */
1339 		epi->nwait = -1;
1340 	}
1341 }
1342 
1343 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1344 {
1345 	int kcmp;
1346 	struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1347 	struct epitem *epic;
1348 	bool leftmost = true;
1349 
1350 	while (*p) {
1351 		parent = *p;
1352 		epic = rb_entry(parent, struct epitem, rbn);
1353 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1354 		if (kcmp > 0) {
1355 			p = &parent->rb_right;
1356 			leftmost = false;
1357 		} else
1358 			p = &parent->rb_left;
1359 	}
1360 	rb_link_node(&epi->rbn, parent, p);
1361 	rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1362 }
1363 
1364 
1365 
1366 #define PATH_ARR_SIZE 5
1367 /*
1368  * These are the number paths of length 1 to 5, that we are allowing to emanate
1369  * from a single file of interest. For example, we allow 1000 paths of length
1370  * 1, to emanate from each file of interest. This essentially represents the
1371  * potential wakeup paths, which need to be limited in order to avoid massive
1372  * uncontrolled wakeup storms. The common use case should be a single ep which
1373  * is connected to n file sources. In this case each file source has 1 path
1374  * of length 1. Thus, the numbers below should be more than sufficient. These
1375  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1376  * and delete can't add additional paths. Protected by the epmutex.
1377  */
1378 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1379 static int path_count[PATH_ARR_SIZE];
1380 
1381 static int path_count_inc(int nests)
1382 {
1383 	/* Allow an arbitrary number of depth 1 paths */
1384 	if (nests == 0)
1385 		return 0;
1386 
1387 	if (++path_count[nests] > path_limits[nests])
1388 		return -1;
1389 	return 0;
1390 }
1391 
1392 static void path_count_init(void)
1393 {
1394 	int i;
1395 
1396 	for (i = 0; i < PATH_ARR_SIZE; i++)
1397 		path_count[i] = 0;
1398 }
1399 
1400 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1401 {
1402 	int error = 0;
1403 	struct file *file = priv;
1404 	struct file *child_file;
1405 	struct epitem *epi;
1406 
1407 	/* CTL_DEL can remove links here, but that can't increase our count */
1408 	rcu_read_lock();
1409 	list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1410 		child_file = epi->ep->file;
1411 		if (is_file_epoll(child_file)) {
1412 			if (list_empty(&child_file->f_ep_links)) {
1413 				if (path_count_inc(call_nests)) {
1414 					error = -1;
1415 					break;
1416 				}
1417 			} else {
1418 				error = ep_call_nested(&poll_loop_ncalls,
1419 							reverse_path_check_proc,
1420 							child_file, child_file,
1421 							current);
1422 			}
1423 			if (error != 0)
1424 				break;
1425 		} else {
1426 			printk(KERN_ERR "reverse_path_check_proc: "
1427 				"file is not an ep!\n");
1428 		}
1429 	}
1430 	rcu_read_unlock();
1431 	return error;
1432 }
1433 
1434 /**
1435  * reverse_path_check - The tfile_check_list is list of file *, which have
1436  *                      links that are proposed to be newly added. We need to
1437  *                      make sure that those added links don't add too many
1438  *                      paths such that we will spend all our time waking up
1439  *                      eventpoll objects.
1440  *
1441  * Returns: Returns zero if the proposed links don't create too many paths,
1442  *	    -1 otherwise.
1443  */
1444 static int reverse_path_check(void)
1445 {
1446 	int error = 0;
1447 	struct file *current_file;
1448 
1449 	/* let's call this for all tfiles */
1450 	list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1451 		path_count_init();
1452 		error = ep_call_nested(&poll_loop_ncalls,
1453 					reverse_path_check_proc, current_file,
1454 					current_file, current);
1455 		if (error)
1456 			break;
1457 	}
1458 	return error;
1459 }
1460 
1461 static int ep_create_wakeup_source(struct epitem *epi)
1462 {
1463 	const char *name;
1464 	struct wakeup_source *ws;
1465 
1466 	if (!epi->ep->ws) {
1467 		epi->ep->ws = wakeup_source_register("eventpoll");
1468 		if (!epi->ep->ws)
1469 			return -ENOMEM;
1470 	}
1471 
1472 	name = epi->ffd.file->f_path.dentry->d_name.name;
1473 	ws = wakeup_source_register(name);
1474 
1475 	if (!ws)
1476 		return -ENOMEM;
1477 	rcu_assign_pointer(epi->ws, ws);
1478 
1479 	return 0;
1480 }
1481 
1482 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1483 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1484 {
1485 	struct wakeup_source *ws = ep_wakeup_source(epi);
1486 
1487 	RCU_INIT_POINTER(epi->ws, NULL);
1488 
1489 	/*
1490 	 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1491 	 * used internally by wakeup_source_remove, too (called by
1492 	 * wakeup_source_unregister), so we cannot use call_rcu
1493 	 */
1494 	synchronize_rcu();
1495 	wakeup_source_unregister(ws);
1496 }
1497 
1498 /*
1499  * Must be called with "mtx" held.
1500  */
1501 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1502 		     struct file *tfile, int fd, int full_check)
1503 {
1504 	int error, pwake = 0;
1505 	__poll_t revents;
1506 	long user_watches;
1507 	struct epitem *epi;
1508 	struct ep_pqueue epq;
1509 
1510 	lockdep_assert_irqs_enabled();
1511 
1512 	user_watches = atomic_long_read(&ep->user->epoll_watches);
1513 	if (unlikely(user_watches >= max_user_watches))
1514 		return -ENOSPC;
1515 	if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1516 		return -ENOMEM;
1517 
1518 	/* Item initialization follow here ... */
1519 	INIT_LIST_HEAD(&epi->rdllink);
1520 	INIT_LIST_HEAD(&epi->fllink);
1521 	INIT_LIST_HEAD(&epi->pwqlist);
1522 	epi->ep = ep;
1523 	ep_set_ffd(&epi->ffd, tfile, fd);
1524 	epi->event = *event;
1525 	epi->nwait = 0;
1526 	epi->next = EP_UNACTIVE_PTR;
1527 	if (epi->event.events & EPOLLWAKEUP) {
1528 		error = ep_create_wakeup_source(epi);
1529 		if (error)
1530 			goto error_create_wakeup_source;
1531 	} else {
1532 		RCU_INIT_POINTER(epi->ws, NULL);
1533 	}
1534 
1535 	/* Initialize the poll table using the queue callback */
1536 	epq.epi = epi;
1537 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1538 
1539 	/*
1540 	 * Attach the item to the poll hooks and get current event bits.
1541 	 * We can safely use the file* here because its usage count has
1542 	 * been increased by the caller of this function. Note that after
1543 	 * this operation completes, the poll callback can start hitting
1544 	 * the new item.
1545 	 */
1546 	revents = ep_item_poll(epi, &epq.pt, 1);
1547 
1548 	/*
1549 	 * We have to check if something went wrong during the poll wait queue
1550 	 * install process. Namely an allocation for a wait queue failed due
1551 	 * high memory pressure.
1552 	 */
1553 	error = -ENOMEM;
1554 	if (epi->nwait < 0)
1555 		goto error_unregister;
1556 
1557 	/* Add the current item to the list of active epoll hook for this file */
1558 	spin_lock(&tfile->f_lock);
1559 	list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1560 	spin_unlock(&tfile->f_lock);
1561 
1562 	/*
1563 	 * Add the current item to the RB tree. All RB tree operations are
1564 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1565 	 */
1566 	ep_rbtree_insert(ep, epi);
1567 
1568 	/* now check if we've created too many backpaths */
1569 	error = -EINVAL;
1570 	if (full_check && reverse_path_check())
1571 		goto error_remove_epi;
1572 
1573 	/* We have to drop the new item inside our item list to keep track of it */
1574 	write_lock_irq(&ep->lock);
1575 
1576 	/* record NAPI ID of new item if present */
1577 	ep_set_busy_poll_napi_id(epi);
1578 
1579 	/* If the file is already "ready" we drop it inside the ready list */
1580 	if (revents && !ep_is_linked(epi)) {
1581 		list_add_tail(&epi->rdllink, &ep->rdllist);
1582 		ep_pm_stay_awake(epi);
1583 
1584 		/* Notify waiting tasks that events are available */
1585 		if (waitqueue_active(&ep->wq))
1586 			wake_up(&ep->wq);
1587 		if (waitqueue_active(&ep->poll_wait))
1588 			pwake++;
1589 	}
1590 
1591 	write_unlock_irq(&ep->lock);
1592 
1593 	atomic_long_inc(&ep->user->epoll_watches);
1594 
1595 	/* We have to call this outside the lock */
1596 	if (pwake)
1597 		ep_poll_safewake(&ep->poll_wait);
1598 
1599 	return 0;
1600 
1601 error_remove_epi:
1602 	spin_lock(&tfile->f_lock);
1603 	list_del_rcu(&epi->fllink);
1604 	spin_unlock(&tfile->f_lock);
1605 
1606 	rb_erase_cached(&epi->rbn, &ep->rbr);
1607 
1608 error_unregister:
1609 	ep_unregister_pollwait(ep, epi);
1610 
1611 	/*
1612 	 * We need to do this because an event could have been arrived on some
1613 	 * allocated wait queue. Note that we don't care about the ep->ovflist
1614 	 * list, since that is used/cleaned only inside a section bound by "mtx".
1615 	 * And ep_insert() is called with "mtx" held.
1616 	 */
1617 	write_lock_irq(&ep->lock);
1618 	if (ep_is_linked(epi))
1619 		list_del_init(&epi->rdllink);
1620 	write_unlock_irq(&ep->lock);
1621 
1622 	wakeup_source_unregister(ep_wakeup_source(epi));
1623 
1624 error_create_wakeup_source:
1625 	kmem_cache_free(epi_cache, epi);
1626 
1627 	return error;
1628 }
1629 
1630 /*
1631  * Modify the interest event mask by dropping an event if the new mask
1632  * has a match in the current file status. Must be called with "mtx" held.
1633  */
1634 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1635 		     const struct epoll_event *event)
1636 {
1637 	int pwake = 0;
1638 	poll_table pt;
1639 
1640 	lockdep_assert_irqs_enabled();
1641 
1642 	init_poll_funcptr(&pt, NULL);
1643 
1644 	/*
1645 	 * Set the new event interest mask before calling f_op->poll();
1646 	 * otherwise we might miss an event that happens between the
1647 	 * f_op->poll() call and the new event set registering.
1648 	 */
1649 	epi->event.events = event->events; /* need barrier below */
1650 	epi->event.data = event->data; /* protected by mtx */
1651 	if (epi->event.events & EPOLLWAKEUP) {
1652 		if (!ep_has_wakeup_source(epi))
1653 			ep_create_wakeup_source(epi);
1654 	} else if (ep_has_wakeup_source(epi)) {
1655 		ep_destroy_wakeup_source(epi);
1656 	}
1657 
1658 	/*
1659 	 * The following barrier has two effects:
1660 	 *
1661 	 * 1) Flush epi changes above to other CPUs.  This ensures
1662 	 *    we do not miss events from ep_poll_callback if an
1663 	 *    event occurs immediately after we call f_op->poll().
1664 	 *    We need this because we did not take ep->lock while
1665 	 *    changing epi above (but ep_poll_callback does take
1666 	 *    ep->lock).
1667 	 *
1668 	 * 2) We also need to ensure we do not miss _past_ events
1669 	 *    when calling f_op->poll().  This barrier also
1670 	 *    pairs with the barrier in wq_has_sleeper (see
1671 	 *    comments for wq_has_sleeper).
1672 	 *
1673 	 * This barrier will now guarantee ep_poll_callback or f_op->poll
1674 	 * (or both) will notice the readiness of an item.
1675 	 */
1676 	smp_mb();
1677 
1678 	/*
1679 	 * Get current event bits. We can safely use the file* here because
1680 	 * its usage count has been increased by the caller of this function.
1681 	 * If the item is "hot" and it is not registered inside the ready
1682 	 * list, push it inside.
1683 	 */
1684 	if (ep_item_poll(epi, &pt, 1)) {
1685 		write_lock_irq(&ep->lock);
1686 		if (!ep_is_linked(epi)) {
1687 			list_add_tail(&epi->rdllink, &ep->rdllist);
1688 			ep_pm_stay_awake(epi);
1689 
1690 			/* Notify waiting tasks that events are available */
1691 			if (waitqueue_active(&ep->wq))
1692 				wake_up(&ep->wq);
1693 			if (waitqueue_active(&ep->poll_wait))
1694 				pwake++;
1695 		}
1696 		write_unlock_irq(&ep->lock);
1697 	}
1698 
1699 	/* We have to call this outside the lock */
1700 	if (pwake)
1701 		ep_poll_safewake(&ep->poll_wait);
1702 
1703 	return 0;
1704 }
1705 
1706 static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1707 			       void *priv)
1708 {
1709 	struct ep_send_events_data *esed = priv;
1710 	__poll_t revents;
1711 	struct epitem *epi, *tmp;
1712 	struct epoll_event __user *uevent = esed->events;
1713 	struct wakeup_source *ws;
1714 	poll_table pt;
1715 
1716 	init_poll_funcptr(&pt, NULL);
1717 	esed->res = 0;
1718 
1719 	/*
1720 	 * We can loop without lock because we are passed a task private list.
1721 	 * Items cannot vanish during the loop because ep_scan_ready_list() is
1722 	 * holding "mtx" during this call.
1723 	 */
1724 	lockdep_assert_held(&ep->mtx);
1725 
1726 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
1727 		if (esed->res >= esed->maxevents)
1728 			break;
1729 
1730 		/*
1731 		 * Activate ep->ws before deactivating epi->ws to prevent
1732 		 * triggering auto-suspend here (in case we reactive epi->ws
1733 		 * below).
1734 		 *
1735 		 * This could be rearranged to delay the deactivation of epi->ws
1736 		 * instead, but then epi->ws would temporarily be out of sync
1737 		 * with ep_is_linked().
1738 		 */
1739 		ws = ep_wakeup_source(epi);
1740 		if (ws) {
1741 			if (ws->active)
1742 				__pm_stay_awake(ep->ws);
1743 			__pm_relax(ws);
1744 		}
1745 
1746 		list_del_init(&epi->rdllink);
1747 
1748 		/*
1749 		 * If the event mask intersect the caller-requested one,
1750 		 * deliver the event to userspace. Again, ep_scan_ready_list()
1751 		 * is holding ep->mtx, so no operations coming from userspace
1752 		 * can change the item.
1753 		 */
1754 		revents = ep_item_poll(epi, &pt, 1);
1755 		if (!revents)
1756 			continue;
1757 
1758 		if (__put_user(revents, &uevent->events) ||
1759 		    __put_user(epi->event.data, &uevent->data)) {
1760 			list_add(&epi->rdllink, head);
1761 			ep_pm_stay_awake(epi);
1762 			if (!esed->res)
1763 				esed->res = -EFAULT;
1764 			return 0;
1765 		}
1766 		esed->res++;
1767 		uevent++;
1768 		if (epi->event.events & EPOLLONESHOT)
1769 			epi->event.events &= EP_PRIVATE_BITS;
1770 		else if (!(epi->event.events & EPOLLET)) {
1771 			/*
1772 			 * If this file has been added with Level
1773 			 * Trigger mode, we need to insert back inside
1774 			 * the ready list, so that the next call to
1775 			 * epoll_wait() will check again the events
1776 			 * availability. At this point, no one can insert
1777 			 * into ep->rdllist besides us. The epoll_ctl()
1778 			 * callers are locked out by
1779 			 * ep_scan_ready_list() holding "mtx" and the
1780 			 * poll callback will queue them in ep->ovflist.
1781 			 */
1782 			list_add_tail(&epi->rdllink, &ep->rdllist);
1783 			ep_pm_stay_awake(epi);
1784 		}
1785 	}
1786 
1787 	return 0;
1788 }
1789 
1790 static int ep_send_events(struct eventpoll *ep,
1791 			  struct epoll_event __user *events, int maxevents)
1792 {
1793 	struct ep_send_events_data esed;
1794 
1795 	esed.maxevents = maxevents;
1796 	esed.events = events;
1797 
1798 	ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1799 	return esed.res;
1800 }
1801 
1802 static inline struct timespec64 ep_set_mstimeout(long ms)
1803 {
1804 	struct timespec64 now, ts = {
1805 		.tv_sec = ms / MSEC_PER_SEC,
1806 		.tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1807 	};
1808 
1809 	ktime_get_ts64(&now);
1810 	return timespec64_add_safe(now, ts);
1811 }
1812 
1813 /**
1814  * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1815  *           event buffer.
1816  *
1817  * @ep: Pointer to the eventpoll context.
1818  * @events: Pointer to the userspace buffer where the ready events should be
1819  *          stored.
1820  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1821  * @timeout: Maximum timeout for the ready events fetch operation, in
1822  *           milliseconds. If the @timeout is zero, the function will not block,
1823  *           while if the @timeout is less than zero, the function will block
1824  *           until at least one event has been retrieved (or an error
1825  *           occurred).
1826  *
1827  * Returns: Returns the number of ready events which have been fetched, or an
1828  *          error code, in case of error.
1829  */
1830 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1831 		   int maxevents, long timeout)
1832 {
1833 	int res = 0, eavail, timed_out = 0;
1834 	u64 slack = 0;
1835 	bool waiter = false;
1836 	wait_queue_entry_t wait;
1837 	ktime_t expires, *to = NULL;
1838 
1839 	lockdep_assert_irqs_enabled();
1840 
1841 	if (timeout > 0) {
1842 		struct timespec64 end_time = ep_set_mstimeout(timeout);
1843 
1844 		slack = select_estimate_accuracy(&end_time);
1845 		to = &expires;
1846 		*to = timespec64_to_ktime(end_time);
1847 	} else if (timeout == 0) {
1848 		/*
1849 		 * Avoid the unnecessary trip to the wait queue loop, if the
1850 		 * caller specified a non blocking operation. We still need
1851 		 * lock because we could race and not see an epi being added
1852 		 * to the ready list while in irq callback. Thus incorrectly
1853 		 * returning 0 back to userspace.
1854 		 */
1855 		timed_out = 1;
1856 
1857 		write_lock_irq(&ep->lock);
1858 		eavail = ep_events_available(ep);
1859 		write_unlock_irq(&ep->lock);
1860 
1861 		goto send_events;
1862 	}
1863 
1864 fetch_events:
1865 
1866 	if (!ep_events_available(ep))
1867 		ep_busy_loop(ep, timed_out);
1868 
1869 	eavail = ep_events_available(ep);
1870 	if (eavail)
1871 		goto send_events;
1872 
1873 	/*
1874 	 * Busy poll timed out.  Drop NAPI ID for now, we can add
1875 	 * it back in when we have moved a socket with a valid NAPI
1876 	 * ID onto the ready list.
1877 	 */
1878 	ep_reset_busy_poll_napi_id(ep);
1879 
1880 	/*
1881 	 * We don't have any available event to return to the caller.  We need
1882 	 * to sleep here, and we will be woken by ep_poll_callback() when events
1883 	 * become available.
1884 	 */
1885 	if (!waiter) {
1886 		waiter = true;
1887 		init_waitqueue_entry(&wait, current);
1888 
1889 		spin_lock_irq(&ep->wq.lock);
1890 		__add_wait_queue_exclusive(&ep->wq, &wait);
1891 		spin_unlock_irq(&ep->wq.lock);
1892 	}
1893 
1894 	for (;;) {
1895 		/*
1896 		 * We don't want to sleep if the ep_poll_callback() sends us
1897 		 * a wakeup in between. That's why we set the task state
1898 		 * to TASK_INTERRUPTIBLE before doing the checks.
1899 		 */
1900 		set_current_state(TASK_INTERRUPTIBLE);
1901 		/*
1902 		 * Always short-circuit for fatal signals to allow
1903 		 * threads to make a timely exit without the chance of
1904 		 * finding more events available and fetching
1905 		 * repeatedly.
1906 		 */
1907 		if (fatal_signal_pending(current)) {
1908 			res = -EINTR;
1909 			break;
1910 		}
1911 
1912 		eavail = ep_events_available(ep);
1913 		if (eavail)
1914 			break;
1915 		if (signal_pending(current)) {
1916 			res = -EINTR;
1917 			break;
1918 		}
1919 
1920 		if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) {
1921 			timed_out = 1;
1922 			break;
1923 		}
1924 	}
1925 
1926 	__set_current_state(TASK_RUNNING);
1927 
1928 send_events:
1929 	/*
1930 	 * Try to transfer events to user space. In case we get 0 events and
1931 	 * there's still timeout left over, we go trying again in search of
1932 	 * more luck.
1933 	 */
1934 	if (!res && eavail &&
1935 	    !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1936 		goto fetch_events;
1937 
1938 	if (waiter) {
1939 		spin_lock_irq(&ep->wq.lock);
1940 		__remove_wait_queue(&ep->wq, &wait);
1941 		spin_unlock_irq(&ep->wq.lock);
1942 	}
1943 
1944 	return res;
1945 }
1946 
1947 /**
1948  * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1949  *                      API, to verify that adding an epoll file inside another
1950  *                      epoll structure, does not violate the constraints, in
1951  *                      terms of closed loops, or too deep chains (which can
1952  *                      result in excessive stack usage).
1953  *
1954  * @priv: Pointer to the epoll file to be currently checked.
1955  * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1956  *          data structure pointer.
1957  * @call_nests: Current dept of the @ep_call_nested() call stack.
1958  *
1959  * Returns: Returns zero if adding the epoll @file inside current epoll
1960  *          structure @ep does not violate the constraints, or -1 otherwise.
1961  */
1962 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1963 {
1964 	int error = 0;
1965 	struct file *file = priv;
1966 	struct eventpoll *ep = file->private_data;
1967 	struct eventpoll *ep_tovisit;
1968 	struct rb_node *rbp;
1969 	struct epitem *epi;
1970 
1971 	mutex_lock_nested(&ep->mtx, call_nests + 1);
1972 	ep->visited = 1;
1973 	list_add(&ep->visited_list_link, &visited_list);
1974 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1975 		epi = rb_entry(rbp, struct epitem, rbn);
1976 		if (unlikely(is_file_epoll(epi->ffd.file))) {
1977 			ep_tovisit = epi->ffd.file->private_data;
1978 			if (ep_tovisit->visited)
1979 				continue;
1980 			error = ep_call_nested(&poll_loop_ncalls,
1981 					ep_loop_check_proc, epi->ffd.file,
1982 					ep_tovisit, current);
1983 			if (error != 0)
1984 				break;
1985 		} else {
1986 			/*
1987 			 * If we've reached a file that is not associated with
1988 			 * an ep, then we need to check if the newly added
1989 			 * links are going to add too many wakeup paths. We do
1990 			 * this by adding it to the tfile_check_list, if it's
1991 			 * not already there, and calling reverse_path_check()
1992 			 * during ep_insert().
1993 			 */
1994 			if (list_empty(&epi->ffd.file->f_tfile_llink))
1995 				list_add(&epi->ffd.file->f_tfile_llink,
1996 					 &tfile_check_list);
1997 		}
1998 	}
1999 	mutex_unlock(&ep->mtx);
2000 
2001 	return error;
2002 }
2003 
2004 /**
2005  * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
2006  *                 another epoll file (represented by @ep) does not create
2007  *                 closed loops or too deep chains.
2008  *
2009  * @ep: Pointer to the epoll private data structure.
2010  * @file: Pointer to the epoll file to be checked.
2011  *
2012  * Returns: Returns zero if adding the epoll @file inside current epoll
2013  *          structure @ep does not violate the constraints, or -1 otherwise.
2014  */
2015 static int ep_loop_check(struct eventpoll *ep, struct file *file)
2016 {
2017 	int ret;
2018 	struct eventpoll *ep_cur, *ep_next;
2019 
2020 	ret = ep_call_nested(&poll_loop_ncalls,
2021 			      ep_loop_check_proc, file, ep, current);
2022 	/* clear visited list */
2023 	list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
2024 							visited_list_link) {
2025 		ep_cur->visited = 0;
2026 		list_del(&ep_cur->visited_list_link);
2027 	}
2028 	return ret;
2029 }
2030 
2031 static void clear_tfile_check_list(void)
2032 {
2033 	struct file *file;
2034 
2035 	/* first clear the tfile_check_list */
2036 	while (!list_empty(&tfile_check_list)) {
2037 		file = list_first_entry(&tfile_check_list, struct file,
2038 					f_tfile_llink);
2039 		list_del_init(&file->f_tfile_llink);
2040 	}
2041 	INIT_LIST_HEAD(&tfile_check_list);
2042 }
2043 
2044 /*
2045  * Open an eventpoll file descriptor.
2046  */
2047 static int do_epoll_create(int flags)
2048 {
2049 	int error, fd;
2050 	struct eventpoll *ep = NULL;
2051 	struct file *file;
2052 
2053 	/* Check the EPOLL_* constant for consistency.  */
2054 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2055 
2056 	if (flags & ~EPOLL_CLOEXEC)
2057 		return -EINVAL;
2058 	/*
2059 	 * Create the internal data structure ("struct eventpoll").
2060 	 */
2061 	error = ep_alloc(&ep);
2062 	if (error < 0)
2063 		return error;
2064 	/*
2065 	 * Creates all the items needed to setup an eventpoll file. That is,
2066 	 * a file structure and a free file descriptor.
2067 	 */
2068 	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2069 	if (fd < 0) {
2070 		error = fd;
2071 		goto out_free_ep;
2072 	}
2073 	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2074 				 O_RDWR | (flags & O_CLOEXEC));
2075 	if (IS_ERR(file)) {
2076 		error = PTR_ERR(file);
2077 		goto out_free_fd;
2078 	}
2079 	ep->file = file;
2080 	fd_install(fd, file);
2081 	return fd;
2082 
2083 out_free_fd:
2084 	put_unused_fd(fd);
2085 out_free_ep:
2086 	ep_free(ep);
2087 	return error;
2088 }
2089 
2090 SYSCALL_DEFINE1(epoll_create1, int, flags)
2091 {
2092 	return do_epoll_create(flags);
2093 }
2094 
2095 SYSCALL_DEFINE1(epoll_create, int, size)
2096 {
2097 	if (size <= 0)
2098 		return -EINVAL;
2099 
2100 	return do_epoll_create(0);
2101 }
2102 
2103 /*
2104  * The following function implements the controller interface for
2105  * the eventpoll file that enables the insertion/removal/change of
2106  * file descriptors inside the interest set.
2107  */
2108 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2109 		struct epoll_event __user *, event)
2110 {
2111 	int error;
2112 	int full_check = 0;
2113 	struct fd f, tf;
2114 	struct eventpoll *ep;
2115 	struct epitem *epi;
2116 	struct epoll_event epds;
2117 	struct eventpoll *tep = NULL;
2118 
2119 	error = -EFAULT;
2120 	if (ep_op_has_event(op) &&
2121 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
2122 		goto error_return;
2123 
2124 	error = -EBADF;
2125 	f = fdget(epfd);
2126 	if (!f.file)
2127 		goto error_return;
2128 
2129 	/* Get the "struct file *" for the target file */
2130 	tf = fdget(fd);
2131 	if (!tf.file)
2132 		goto error_fput;
2133 
2134 	/* The target file descriptor must support poll */
2135 	error = -EPERM;
2136 	if (!file_can_poll(tf.file))
2137 		goto error_tgt_fput;
2138 
2139 	/* Check if EPOLLWAKEUP is allowed */
2140 	if (ep_op_has_event(op))
2141 		ep_take_care_of_epollwakeup(&epds);
2142 
2143 	/*
2144 	 * We have to check that the file structure underneath the file descriptor
2145 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
2146 	 * adding an epoll file descriptor inside itself.
2147 	 */
2148 	error = -EINVAL;
2149 	if (f.file == tf.file || !is_file_epoll(f.file))
2150 		goto error_tgt_fput;
2151 
2152 	/*
2153 	 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2154 	 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2155 	 * Also, we do not currently supported nested exclusive wakeups.
2156 	 */
2157 	if (ep_op_has_event(op) && (epds.events & EPOLLEXCLUSIVE)) {
2158 		if (op == EPOLL_CTL_MOD)
2159 			goto error_tgt_fput;
2160 		if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2161 				(epds.events & ~EPOLLEXCLUSIVE_OK_BITS)))
2162 			goto error_tgt_fput;
2163 	}
2164 
2165 	/*
2166 	 * At this point it is safe to assume that the "private_data" contains
2167 	 * our own data structure.
2168 	 */
2169 	ep = f.file->private_data;
2170 
2171 	/*
2172 	 * When we insert an epoll file descriptor, inside another epoll file
2173 	 * descriptor, there is the change of creating closed loops, which are
2174 	 * better be handled here, than in more critical paths. While we are
2175 	 * checking for loops we also determine the list of files reachable
2176 	 * and hang them on the tfile_check_list, so we can check that we
2177 	 * haven't created too many possible wakeup paths.
2178 	 *
2179 	 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2180 	 * the epoll file descriptor is attaching directly to a wakeup source,
2181 	 * unless the epoll file descriptor is nested. The purpose of taking the
2182 	 * 'epmutex' on add is to prevent complex toplogies such as loops and
2183 	 * deep wakeup paths from forming in parallel through multiple
2184 	 * EPOLL_CTL_ADD operations.
2185 	 */
2186 	mutex_lock_nested(&ep->mtx, 0);
2187 	if (op == EPOLL_CTL_ADD) {
2188 		if (!list_empty(&f.file->f_ep_links) ||
2189 						is_file_epoll(tf.file)) {
2190 			full_check = 1;
2191 			mutex_unlock(&ep->mtx);
2192 			mutex_lock(&epmutex);
2193 			if (is_file_epoll(tf.file)) {
2194 				error = -ELOOP;
2195 				if (ep_loop_check(ep, tf.file) != 0) {
2196 					clear_tfile_check_list();
2197 					goto error_tgt_fput;
2198 				}
2199 			} else
2200 				list_add(&tf.file->f_tfile_llink,
2201 							&tfile_check_list);
2202 			mutex_lock_nested(&ep->mtx, 0);
2203 			if (is_file_epoll(tf.file)) {
2204 				tep = tf.file->private_data;
2205 				mutex_lock_nested(&tep->mtx, 1);
2206 			}
2207 		}
2208 	}
2209 
2210 	/*
2211 	 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2212 	 * above, we can be sure to be able to use the item looked up by
2213 	 * ep_find() till we release the mutex.
2214 	 */
2215 	epi = ep_find(ep, tf.file, fd);
2216 
2217 	error = -EINVAL;
2218 	switch (op) {
2219 	case EPOLL_CTL_ADD:
2220 		if (!epi) {
2221 			epds.events |= EPOLLERR | EPOLLHUP;
2222 			error = ep_insert(ep, &epds, tf.file, fd, full_check);
2223 		} else
2224 			error = -EEXIST;
2225 		if (full_check)
2226 			clear_tfile_check_list();
2227 		break;
2228 	case EPOLL_CTL_DEL:
2229 		if (epi)
2230 			error = ep_remove(ep, epi);
2231 		else
2232 			error = -ENOENT;
2233 		break;
2234 	case EPOLL_CTL_MOD:
2235 		if (epi) {
2236 			if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2237 				epds.events |= EPOLLERR | EPOLLHUP;
2238 				error = ep_modify(ep, epi, &epds);
2239 			}
2240 		} else
2241 			error = -ENOENT;
2242 		break;
2243 	}
2244 	if (tep != NULL)
2245 		mutex_unlock(&tep->mtx);
2246 	mutex_unlock(&ep->mtx);
2247 
2248 error_tgt_fput:
2249 	if (full_check)
2250 		mutex_unlock(&epmutex);
2251 
2252 	fdput(tf);
2253 error_fput:
2254 	fdput(f);
2255 error_return:
2256 
2257 	return error;
2258 }
2259 
2260 /*
2261  * Implement the event wait interface for the eventpoll file. It is the kernel
2262  * part of the user space epoll_wait(2).
2263  */
2264 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2265 			 int maxevents, int timeout)
2266 {
2267 	int error;
2268 	struct fd f;
2269 	struct eventpoll *ep;
2270 
2271 	/* The maximum number of event must be greater than zero */
2272 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2273 		return -EINVAL;
2274 
2275 	/* Verify that the area passed by the user is writeable */
2276 	if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2277 		return -EFAULT;
2278 
2279 	/* Get the "struct file *" for the eventpoll file */
2280 	f = fdget(epfd);
2281 	if (!f.file)
2282 		return -EBADF;
2283 
2284 	/*
2285 	 * We have to check that the file structure underneath the fd
2286 	 * the user passed to us _is_ an eventpoll file.
2287 	 */
2288 	error = -EINVAL;
2289 	if (!is_file_epoll(f.file))
2290 		goto error_fput;
2291 
2292 	/*
2293 	 * At this point it is safe to assume that the "private_data" contains
2294 	 * our own data structure.
2295 	 */
2296 	ep = f.file->private_data;
2297 
2298 	/* Time to fish for events ... */
2299 	error = ep_poll(ep, events, maxevents, timeout);
2300 
2301 error_fput:
2302 	fdput(f);
2303 	return error;
2304 }
2305 
2306 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2307 		int, maxevents, int, timeout)
2308 {
2309 	return do_epoll_wait(epfd, events, maxevents, timeout);
2310 }
2311 
2312 /*
2313  * Implement the event wait interface for the eventpoll file. It is the kernel
2314  * part of the user space epoll_pwait(2).
2315  */
2316 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2317 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2318 		size_t, sigsetsize)
2319 {
2320 	int error;
2321 	sigset_t ksigmask, sigsaved;
2322 
2323 	/*
2324 	 * If the caller wants a certain signal mask to be set during the wait,
2325 	 * we apply it here.
2326 	 */
2327 	error = set_user_sigmask(sigmask, &ksigmask, &sigsaved, sigsetsize);
2328 	if (error)
2329 		return error;
2330 
2331 	error = do_epoll_wait(epfd, events, maxevents, timeout);
2332 
2333 	restore_user_sigmask(sigmask, &sigsaved);
2334 
2335 	return error;
2336 }
2337 
2338 #ifdef CONFIG_COMPAT
2339 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2340 			struct epoll_event __user *, events,
2341 			int, maxevents, int, timeout,
2342 			const compat_sigset_t __user *, sigmask,
2343 			compat_size_t, sigsetsize)
2344 {
2345 	long err;
2346 	sigset_t ksigmask, sigsaved;
2347 
2348 	/*
2349 	 * If the caller wants a certain signal mask to be set during the wait,
2350 	 * we apply it here.
2351 	 */
2352 	err = set_compat_user_sigmask(sigmask, &ksigmask, &sigsaved, sigsetsize);
2353 	if (err)
2354 		return err;
2355 
2356 	err = do_epoll_wait(epfd, events, maxevents, timeout);
2357 
2358 	restore_user_sigmask(sigmask, &sigsaved);
2359 
2360 	return err;
2361 }
2362 #endif
2363 
2364 static int __init eventpoll_init(void)
2365 {
2366 	struct sysinfo si;
2367 
2368 	si_meminfo(&si);
2369 	/*
2370 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2371 	 */
2372 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2373 		EP_ITEM_COST;
2374 	BUG_ON(max_user_watches < 0);
2375 
2376 	/*
2377 	 * Initialize the structure used to perform epoll file descriptor
2378 	 * inclusion loops checks.
2379 	 */
2380 	ep_nested_calls_init(&poll_loop_ncalls);
2381 
2382 #ifdef CONFIG_DEBUG_LOCK_ALLOC
2383 	/* Initialize the structure used to perform safe poll wait head wake ups */
2384 	ep_nested_calls_init(&poll_safewake_ncalls);
2385 #endif
2386 
2387 	/*
2388 	 * We can have many thousands of epitems, so prevent this from
2389 	 * using an extra cache line on 64-bit (and smaller) CPUs
2390 	 */
2391 	BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2392 
2393 	/* Allocates slab cache used to allocate "struct epitem" items */
2394 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2395 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2396 
2397 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
2398 	pwq_cache = kmem_cache_create("eventpoll_pwq",
2399 		sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2400 
2401 	return 0;
2402 }
2403 fs_initcall(eventpoll_init);
2404