xref: /openbmc/linux/fs/eventpoll.c (revision 0d456bad)
1 /*
2  *  fs/eventpoll.c (Efficient event retrieval implementation)
3  *  Copyright (C) 2001,...,2009	 Davide Libenzi
4  *
5  *  This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation; either version 2 of the License, or
8  *  (at your option) any later version.
9  *
10  *  Davide Libenzi <davidel@xmailserver.org>
11  *
12  */
13 
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/device.h>
37 #include <asm/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <linux/atomic.h>
41 #include <linux/proc_fs.h>
42 #include <linux/seq_file.h>
43 
44 /*
45  * LOCKING:
46  * There are three level of locking required by epoll :
47  *
48  * 1) epmutex (mutex)
49  * 2) ep->mtx (mutex)
50  * 3) ep->lock (spinlock)
51  *
52  * The acquire order is the one listed above, from 1 to 3.
53  * We need a spinlock (ep->lock) because we manipulate objects
54  * from inside the poll callback, that might be triggered from
55  * a wake_up() that in turn might be called from IRQ context.
56  * So we can't sleep inside the poll callback and hence we need
57  * a spinlock. During the event transfer loop (from kernel to
58  * user space) we could end up sleeping due a copy_to_user(), so
59  * we need a lock that will allow us to sleep. This lock is a
60  * mutex (ep->mtx). It is acquired during the event transfer loop,
61  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
62  * Then we also need a global mutex to serialize eventpoll_release_file()
63  * and ep_free().
64  * This mutex is acquired by ep_free() during the epoll file
65  * cleanup path and it is also acquired by eventpoll_release_file()
66  * if a file has been pushed inside an epoll set and it is then
67  * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
68  * It is also acquired when inserting an epoll fd onto another epoll
69  * fd. We do this so that we walk the epoll tree and ensure that this
70  * insertion does not create a cycle of epoll file descriptors, which
71  * could lead to deadlock. We need a global mutex to prevent two
72  * simultaneous inserts (A into B and B into A) from racing and
73  * constructing a cycle without either insert observing that it is
74  * going to.
75  * It is necessary to acquire multiple "ep->mtx"es at once in the
76  * case when one epoll fd is added to another. In this case, we
77  * always acquire the locks in the order of nesting (i.e. after
78  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
79  * before e2->mtx). Since we disallow cycles of epoll file
80  * descriptors, this ensures that the mutexes are well-ordered. In
81  * order to communicate this nesting to lockdep, when walking a tree
82  * of epoll file descriptors, we use the current recursion depth as
83  * the lockdep subkey.
84  * It is possible to drop the "ep->mtx" and to use the global
85  * mutex "epmutex" (together with "ep->lock") to have it working,
86  * but having "ep->mtx" will make the interface more scalable.
87  * Events that require holding "epmutex" are very rare, while for
88  * normal operations the epoll private "ep->mtx" will guarantee
89  * a better scalability.
90  */
91 
92 /* Epoll private bits inside the event mask */
93 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET)
94 
95 /* Maximum number of nesting allowed inside epoll sets */
96 #define EP_MAX_NESTS 4
97 
98 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
99 
100 #define EP_UNACTIVE_PTR ((void *) -1L)
101 
102 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
103 
104 struct epoll_filefd {
105 	struct file *file;
106 	int fd;
107 };
108 
109 /*
110  * Structure used to track possible nested calls, for too deep recursions
111  * and loop cycles.
112  */
113 struct nested_call_node {
114 	struct list_head llink;
115 	void *cookie;
116 	void *ctx;
117 };
118 
119 /*
120  * This structure is used as collector for nested calls, to check for
121  * maximum recursion dept and loop cycles.
122  */
123 struct nested_calls {
124 	struct list_head tasks_call_list;
125 	spinlock_t lock;
126 };
127 
128 /*
129  * Each file descriptor added to the eventpoll interface will
130  * have an entry of this type linked to the "rbr" RB tree.
131  */
132 struct epitem {
133 	/* RB tree node used to link this structure to the eventpoll RB tree */
134 	struct rb_node rbn;
135 
136 	/* List header used to link this structure to the eventpoll ready list */
137 	struct list_head rdllink;
138 
139 	/*
140 	 * Works together "struct eventpoll"->ovflist in keeping the
141 	 * single linked chain of items.
142 	 */
143 	struct epitem *next;
144 
145 	/* The file descriptor information this item refers to */
146 	struct epoll_filefd ffd;
147 
148 	/* Number of active wait queue attached to poll operations */
149 	int nwait;
150 
151 	/* List containing poll wait queues */
152 	struct list_head pwqlist;
153 
154 	/* The "container" of this item */
155 	struct eventpoll *ep;
156 
157 	/* List header used to link this item to the "struct file" items list */
158 	struct list_head fllink;
159 
160 	/* wakeup_source used when EPOLLWAKEUP is set */
161 	struct wakeup_source *ws;
162 
163 	/* The structure that describe the interested events and the source fd */
164 	struct epoll_event event;
165 };
166 
167 /*
168  * This structure is stored inside the "private_data" member of the file
169  * structure and represents the main data structure for the eventpoll
170  * interface.
171  */
172 struct eventpoll {
173 	/* Protect the access to this structure */
174 	spinlock_t lock;
175 
176 	/*
177 	 * This mutex is used to ensure that files are not removed
178 	 * while epoll is using them. This is held during the event
179 	 * collection loop, the file cleanup path, the epoll file exit
180 	 * code and the ctl operations.
181 	 */
182 	struct mutex mtx;
183 
184 	/* Wait queue used by sys_epoll_wait() */
185 	wait_queue_head_t wq;
186 
187 	/* Wait queue used by file->poll() */
188 	wait_queue_head_t poll_wait;
189 
190 	/* List of ready file descriptors */
191 	struct list_head rdllist;
192 
193 	/* RB tree root used to store monitored fd structs */
194 	struct rb_root rbr;
195 
196 	/*
197 	 * This is a single linked list that chains all the "struct epitem" that
198 	 * happened while transferring ready events to userspace w/out
199 	 * holding ->lock.
200 	 */
201 	struct epitem *ovflist;
202 
203 	/* wakeup_source used when ep_scan_ready_list is running */
204 	struct wakeup_source *ws;
205 
206 	/* The user that created the eventpoll descriptor */
207 	struct user_struct *user;
208 
209 	struct file *file;
210 
211 	/* used to optimize loop detection check */
212 	int visited;
213 	struct list_head visited_list_link;
214 };
215 
216 /* Wait structure used by the poll hooks */
217 struct eppoll_entry {
218 	/* List header used to link this structure to the "struct epitem" */
219 	struct list_head llink;
220 
221 	/* The "base" pointer is set to the container "struct epitem" */
222 	struct epitem *base;
223 
224 	/*
225 	 * Wait queue item that will be linked to the target file wait
226 	 * queue head.
227 	 */
228 	wait_queue_t wait;
229 
230 	/* The wait queue head that linked the "wait" wait queue item */
231 	wait_queue_head_t *whead;
232 };
233 
234 /* Wrapper struct used by poll queueing */
235 struct ep_pqueue {
236 	poll_table pt;
237 	struct epitem *epi;
238 };
239 
240 /* Used by the ep_send_events() function as callback private data */
241 struct ep_send_events_data {
242 	int maxevents;
243 	struct epoll_event __user *events;
244 };
245 
246 /*
247  * Configuration options available inside /proc/sys/fs/epoll/
248  */
249 /* Maximum number of epoll watched descriptors, per user */
250 static long max_user_watches __read_mostly;
251 
252 /*
253  * This mutex is used to serialize ep_free() and eventpoll_release_file().
254  */
255 static DEFINE_MUTEX(epmutex);
256 
257 /* Used to check for epoll file descriptor inclusion loops */
258 static struct nested_calls poll_loop_ncalls;
259 
260 /* Used for safe wake up implementation */
261 static struct nested_calls poll_safewake_ncalls;
262 
263 /* Used to call file's f_op->poll() under the nested calls boundaries */
264 static struct nested_calls poll_readywalk_ncalls;
265 
266 /* Slab cache used to allocate "struct epitem" */
267 static struct kmem_cache *epi_cache __read_mostly;
268 
269 /* Slab cache used to allocate "struct eppoll_entry" */
270 static struct kmem_cache *pwq_cache __read_mostly;
271 
272 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
273 static LIST_HEAD(visited_list);
274 
275 /*
276  * List of files with newly added links, where we may need to limit the number
277  * of emanating paths. Protected by the epmutex.
278  */
279 static LIST_HEAD(tfile_check_list);
280 
281 #ifdef CONFIG_SYSCTL
282 
283 #include <linux/sysctl.h>
284 
285 static long zero;
286 static long long_max = LONG_MAX;
287 
288 ctl_table epoll_table[] = {
289 	{
290 		.procname	= "max_user_watches",
291 		.data		= &max_user_watches,
292 		.maxlen		= sizeof(max_user_watches),
293 		.mode		= 0644,
294 		.proc_handler	= proc_doulongvec_minmax,
295 		.extra1		= &zero,
296 		.extra2		= &long_max,
297 	},
298 	{ }
299 };
300 #endif /* CONFIG_SYSCTL */
301 
302 static const struct file_operations eventpoll_fops;
303 
304 static inline int is_file_epoll(struct file *f)
305 {
306 	return f->f_op == &eventpoll_fops;
307 }
308 
309 /* Setup the structure that is used as key for the RB tree */
310 static inline void ep_set_ffd(struct epoll_filefd *ffd,
311 			      struct file *file, int fd)
312 {
313 	ffd->file = file;
314 	ffd->fd = fd;
315 }
316 
317 /* Compare RB tree keys */
318 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
319 			     struct epoll_filefd *p2)
320 {
321 	return (p1->file > p2->file ? +1:
322 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
323 }
324 
325 /* Tells us if the item is currently linked */
326 static inline int ep_is_linked(struct list_head *p)
327 {
328 	return !list_empty(p);
329 }
330 
331 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_t *p)
332 {
333 	return container_of(p, struct eppoll_entry, wait);
334 }
335 
336 /* Get the "struct epitem" from a wait queue pointer */
337 static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
338 {
339 	return container_of(p, struct eppoll_entry, wait)->base;
340 }
341 
342 /* Get the "struct epitem" from an epoll queue wrapper */
343 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
344 {
345 	return container_of(p, struct ep_pqueue, pt)->epi;
346 }
347 
348 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
349 static inline int ep_op_has_event(int op)
350 {
351 	return op != EPOLL_CTL_DEL;
352 }
353 
354 /* Initialize the poll safe wake up structure */
355 static void ep_nested_calls_init(struct nested_calls *ncalls)
356 {
357 	INIT_LIST_HEAD(&ncalls->tasks_call_list);
358 	spin_lock_init(&ncalls->lock);
359 }
360 
361 /**
362  * ep_events_available - Checks if ready events might be available.
363  *
364  * @ep: Pointer to the eventpoll context.
365  *
366  * Returns: Returns a value different than zero if ready events are available,
367  *          or zero otherwise.
368  */
369 static inline int ep_events_available(struct eventpoll *ep)
370 {
371 	return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
372 }
373 
374 /**
375  * ep_call_nested - Perform a bound (possibly) nested call, by checking
376  *                  that the recursion limit is not exceeded, and that
377  *                  the same nested call (by the meaning of same cookie) is
378  *                  no re-entered.
379  *
380  * @ncalls: Pointer to the nested_calls structure to be used for this call.
381  * @max_nests: Maximum number of allowed nesting calls.
382  * @nproc: Nested call core function pointer.
383  * @priv: Opaque data to be passed to the @nproc callback.
384  * @cookie: Cookie to be used to identify this nested call.
385  * @ctx: This instance context.
386  *
387  * Returns: Returns the code returned by the @nproc callback, or -1 if
388  *          the maximum recursion limit has been exceeded.
389  */
390 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
391 			  int (*nproc)(void *, void *, int), void *priv,
392 			  void *cookie, void *ctx)
393 {
394 	int error, call_nests = 0;
395 	unsigned long flags;
396 	struct list_head *lsthead = &ncalls->tasks_call_list;
397 	struct nested_call_node *tncur;
398 	struct nested_call_node tnode;
399 
400 	spin_lock_irqsave(&ncalls->lock, flags);
401 
402 	/*
403 	 * Try to see if the current task is already inside this wakeup call.
404 	 * We use a list here, since the population inside this set is always
405 	 * very much limited.
406 	 */
407 	list_for_each_entry(tncur, lsthead, llink) {
408 		if (tncur->ctx == ctx &&
409 		    (tncur->cookie == cookie || ++call_nests > max_nests)) {
410 			/*
411 			 * Ops ... loop detected or maximum nest level reached.
412 			 * We abort this wake by breaking the cycle itself.
413 			 */
414 			error = -1;
415 			goto out_unlock;
416 		}
417 	}
418 
419 	/* Add the current task and cookie to the list */
420 	tnode.ctx = ctx;
421 	tnode.cookie = cookie;
422 	list_add(&tnode.llink, lsthead);
423 
424 	spin_unlock_irqrestore(&ncalls->lock, flags);
425 
426 	/* Call the nested function */
427 	error = (*nproc)(priv, cookie, call_nests);
428 
429 	/* Remove the current task from the list */
430 	spin_lock_irqsave(&ncalls->lock, flags);
431 	list_del(&tnode.llink);
432 out_unlock:
433 	spin_unlock_irqrestore(&ncalls->lock, flags);
434 
435 	return error;
436 }
437 
438 /*
439  * As described in commit 0ccf831cb lockdep: annotate epoll
440  * the use of wait queues used by epoll is done in a very controlled
441  * manner. Wake ups can nest inside each other, but are never done
442  * with the same locking. For example:
443  *
444  *   dfd = socket(...);
445  *   efd1 = epoll_create();
446  *   efd2 = epoll_create();
447  *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
448  *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
449  *
450  * When a packet arrives to the device underneath "dfd", the net code will
451  * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
452  * callback wakeup entry on that queue, and the wake_up() performed by the
453  * "dfd" net code will end up in ep_poll_callback(). At this point epoll
454  * (efd1) notices that it may have some event ready, so it needs to wake up
455  * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
456  * that ends up in another wake_up(), after having checked about the
457  * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
458  * avoid stack blasting.
459  *
460  * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
461  * this special case of epoll.
462  */
463 #ifdef CONFIG_DEBUG_LOCK_ALLOC
464 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
465 				     unsigned long events, int subclass)
466 {
467 	unsigned long flags;
468 
469 	spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
470 	wake_up_locked_poll(wqueue, events);
471 	spin_unlock_irqrestore(&wqueue->lock, flags);
472 }
473 #else
474 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
475 				     unsigned long events, int subclass)
476 {
477 	wake_up_poll(wqueue, events);
478 }
479 #endif
480 
481 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
482 {
483 	ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
484 			  1 + call_nests);
485 	return 0;
486 }
487 
488 /*
489  * Perform a safe wake up of the poll wait list. The problem is that
490  * with the new callback'd wake up system, it is possible that the
491  * poll callback is reentered from inside the call to wake_up() done
492  * on the poll wait queue head. The rule is that we cannot reenter the
493  * wake up code from the same task more than EP_MAX_NESTS times,
494  * and we cannot reenter the same wait queue head at all. This will
495  * enable to have a hierarchy of epoll file descriptor of no more than
496  * EP_MAX_NESTS deep.
497  */
498 static void ep_poll_safewake(wait_queue_head_t *wq)
499 {
500 	int this_cpu = get_cpu();
501 
502 	ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
503 		       ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
504 
505 	put_cpu();
506 }
507 
508 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
509 {
510 	wait_queue_head_t *whead;
511 
512 	rcu_read_lock();
513 	/* If it is cleared by POLLFREE, it should be rcu-safe */
514 	whead = rcu_dereference(pwq->whead);
515 	if (whead)
516 		remove_wait_queue(whead, &pwq->wait);
517 	rcu_read_unlock();
518 }
519 
520 /*
521  * This function unregisters poll callbacks from the associated file
522  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
523  * ep_free).
524  */
525 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
526 {
527 	struct list_head *lsthead = &epi->pwqlist;
528 	struct eppoll_entry *pwq;
529 
530 	while (!list_empty(lsthead)) {
531 		pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
532 
533 		list_del(&pwq->llink);
534 		ep_remove_wait_queue(pwq);
535 		kmem_cache_free(pwq_cache, pwq);
536 	}
537 }
538 
539 /**
540  * ep_scan_ready_list - Scans the ready list in a way that makes possible for
541  *                      the scan code, to call f_op->poll(). Also allows for
542  *                      O(NumReady) performance.
543  *
544  * @ep: Pointer to the epoll private data structure.
545  * @sproc: Pointer to the scan callback.
546  * @priv: Private opaque data passed to the @sproc callback.
547  * @depth: The current depth of recursive f_op->poll calls.
548  *
549  * Returns: The same integer error code returned by the @sproc callback.
550  */
551 static int ep_scan_ready_list(struct eventpoll *ep,
552 			      int (*sproc)(struct eventpoll *,
553 					   struct list_head *, void *),
554 			      void *priv,
555 			      int depth)
556 {
557 	int error, pwake = 0;
558 	unsigned long flags;
559 	struct epitem *epi, *nepi;
560 	LIST_HEAD(txlist);
561 
562 	/*
563 	 * We need to lock this because we could be hit by
564 	 * eventpoll_release_file() and epoll_ctl().
565 	 */
566 	mutex_lock_nested(&ep->mtx, depth);
567 
568 	/*
569 	 * Steal the ready list, and re-init the original one to the
570 	 * empty list. Also, set ep->ovflist to NULL so that events
571 	 * happening while looping w/out locks, are not lost. We cannot
572 	 * have the poll callback to queue directly on ep->rdllist,
573 	 * because we want the "sproc" callback to be able to do it
574 	 * in a lockless way.
575 	 */
576 	spin_lock_irqsave(&ep->lock, flags);
577 	list_splice_init(&ep->rdllist, &txlist);
578 	ep->ovflist = NULL;
579 	spin_unlock_irqrestore(&ep->lock, flags);
580 
581 	/*
582 	 * Now call the callback function.
583 	 */
584 	error = (*sproc)(ep, &txlist, priv);
585 
586 	spin_lock_irqsave(&ep->lock, flags);
587 	/*
588 	 * During the time we spent inside the "sproc" callback, some
589 	 * other events might have been queued by the poll callback.
590 	 * We re-insert them inside the main ready-list here.
591 	 */
592 	for (nepi = ep->ovflist; (epi = nepi) != NULL;
593 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
594 		/*
595 		 * We need to check if the item is already in the list.
596 		 * During the "sproc" callback execution time, items are
597 		 * queued into ->ovflist but the "txlist" might already
598 		 * contain them, and the list_splice() below takes care of them.
599 		 */
600 		if (!ep_is_linked(&epi->rdllink)) {
601 			list_add_tail(&epi->rdllink, &ep->rdllist);
602 			__pm_stay_awake(epi->ws);
603 		}
604 	}
605 	/*
606 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
607 	 * releasing the lock, events will be queued in the normal way inside
608 	 * ep->rdllist.
609 	 */
610 	ep->ovflist = EP_UNACTIVE_PTR;
611 
612 	/*
613 	 * Quickly re-inject items left on "txlist".
614 	 */
615 	list_splice(&txlist, &ep->rdllist);
616 	__pm_relax(ep->ws);
617 
618 	if (!list_empty(&ep->rdllist)) {
619 		/*
620 		 * Wake up (if active) both the eventpoll wait list and
621 		 * the ->poll() wait list (delayed after we release the lock).
622 		 */
623 		if (waitqueue_active(&ep->wq))
624 			wake_up_locked(&ep->wq);
625 		if (waitqueue_active(&ep->poll_wait))
626 			pwake++;
627 	}
628 	spin_unlock_irqrestore(&ep->lock, flags);
629 
630 	mutex_unlock(&ep->mtx);
631 
632 	/* We have to call this outside the lock */
633 	if (pwake)
634 		ep_poll_safewake(&ep->poll_wait);
635 
636 	return error;
637 }
638 
639 /*
640  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
641  * all the associated resources. Must be called with "mtx" held.
642  */
643 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
644 {
645 	unsigned long flags;
646 	struct file *file = epi->ffd.file;
647 
648 	/*
649 	 * Removes poll wait queue hooks. We _have_ to do this without holding
650 	 * the "ep->lock" otherwise a deadlock might occur. This because of the
651 	 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
652 	 * queue head lock when unregistering the wait queue. The wakeup callback
653 	 * will run by holding the wait queue head lock and will call our callback
654 	 * that will try to get "ep->lock".
655 	 */
656 	ep_unregister_pollwait(ep, epi);
657 
658 	/* Remove the current item from the list of epoll hooks */
659 	spin_lock(&file->f_lock);
660 	if (ep_is_linked(&epi->fllink))
661 		list_del_init(&epi->fllink);
662 	spin_unlock(&file->f_lock);
663 
664 	rb_erase(&epi->rbn, &ep->rbr);
665 
666 	spin_lock_irqsave(&ep->lock, flags);
667 	if (ep_is_linked(&epi->rdllink))
668 		list_del_init(&epi->rdllink);
669 	spin_unlock_irqrestore(&ep->lock, flags);
670 
671 	wakeup_source_unregister(epi->ws);
672 
673 	/* At this point it is safe to free the eventpoll item */
674 	kmem_cache_free(epi_cache, epi);
675 
676 	atomic_long_dec(&ep->user->epoll_watches);
677 
678 	return 0;
679 }
680 
681 static void ep_free(struct eventpoll *ep)
682 {
683 	struct rb_node *rbp;
684 	struct epitem *epi;
685 
686 	/* We need to release all tasks waiting for these file */
687 	if (waitqueue_active(&ep->poll_wait))
688 		ep_poll_safewake(&ep->poll_wait);
689 
690 	/*
691 	 * We need to lock this because we could be hit by
692 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
693 	 * We do not need to hold "ep->mtx" here because the epoll file
694 	 * is on the way to be removed and no one has references to it
695 	 * anymore. The only hit might come from eventpoll_release_file() but
696 	 * holding "epmutex" is sufficient here.
697 	 */
698 	mutex_lock(&epmutex);
699 
700 	/*
701 	 * Walks through the whole tree by unregistering poll callbacks.
702 	 */
703 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
704 		epi = rb_entry(rbp, struct epitem, rbn);
705 
706 		ep_unregister_pollwait(ep, epi);
707 	}
708 
709 	/*
710 	 * Walks through the whole tree by freeing each "struct epitem". At this
711 	 * point we are sure no poll callbacks will be lingering around, and also by
712 	 * holding "epmutex" we can be sure that no file cleanup code will hit
713 	 * us during this operation. So we can avoid the lock on "ep->lock".
714 	 */
715 	while ((rbp = rb_first(&ep->rbr)) != NULL) {
716 		epi = rb_entry(rbp, struct epitem, rbn);
717 		ep_remove(ep, epi);
718 	}
719 
720 	mutex_unlock(&epmutex);
721 	mutex_destroy(&ep->mtx);
722 	free_uid(ep->user);
723 	wakeup_source_unregister(ep->ws);
724 	kfree(ep);
725 }
726 
727 static int ep_eventpoll_release(struct inode *inode, struct file *file)
728 {
729 	struct eventpoll *ep = file->private_data;
730 
731 	if (ep)
732 		ep_free(ep);
733 
734 	return 0;
735 }
736 
737 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
738 			       void *priv)
739 {
740 	struct epitem *epi, *tmp;
741 	poll_table pt;
742 
743 	init_poll_funcptr(&pt, NULL);
744 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
745 		pt._key = epi->event.events;
746 		if (epi->ffd.file->f_op->poll(epi->ffd.file, &pt) &
747 		    epi->event.events)
748 			return POLLIN | POLLRDNORM;
749 		else {
750 			/*
751 			 * Item has been dropped into the ready list by the poll
752 			 * callback, but it's not actually ready, as far as
753 			 * caller requested events goes. We can remove it here.
754 			 */
755 			__pm_relax(epi->ws);
756 			list_del_init(&epi->rdllink);
757 		}
758 	}
759 
760 	return 0;
761 }
762 
763 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
764 {
765 	return ep_scan_ready_list(priv, ep_read_events_proc, NULL, call_nests + 1);
766 }
767 
768 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
769 {
770 	int pollflags;
771 	struct eventpoll *ep = file->private_data;
772 
773 	/* Insert inside our poll wait queue */
774 	poll_wait(file, &ep->poll_wait, wait);
775 
776 	/*
777 	 * Proceed to find out if wanted events are really available inside
778 	 * the ready list. This need to be done under ep_call_nested()
779 	 * supervision, since the call to f_op->poll() done on listed files
780 	 * could re-enter here.
781 	 */
782 	pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
783 				   ep_poll_readyevents_proc, ep, ep, current);
784 
785 	return pollflags != -1 ? pollflags : 0;
786 }
787 
788 #ifdef CONFIG_PROC_FS
789 static int ep_show_fdinfo(struct seq_file *m, struct file *f)
790 {
791 	struct eventpoll *ep = f->private_data;
792 	struct rb_node *rbp;
793 	int ret = 0;
794 
795 	mutex_lock(&ep->mtx);
796 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
797 		struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
798 
799 		ret = seq_printf(m, "tfd: %8d events: %8x data: %16llx\n",
800 				 epi->ffd.fd, epi->event.events,
801 				 (long long)epi->event.data);
802 		if (ret)
803 			break;
804 	}
805 	mutex_unlock(&ep->mtx);
806 
807 	return ret;
808 }
809 #endif
810 
811 /* File callbacks that implement the eventpoll file behaviour */
812 static const struct file_operations eventpoll_fops = {
813 #ifdef CONFIG_PROC_FS
814 	.show_fdinfo	= ep_show_fdinfo,
815 #endif
816 	.release	= ep_eventpoll_release,
817 	.poll		= ep_eventpoll_poll,
818 	.llseek		= noop_llseek,
819 };
820 
821 /*
822  * This is called from eventpoll_release() to unlink files from the eventpoll
823  * interface. We need to have this facility to cleanup correctly files that are
824  * closed without being removed from the eventpoll interface.
825  */
826 void eventpoll_release_file(struct file *file)
827 {
828 	struct list_head *lsthead = &file->f_ep_links;
829 	struct eventpoll *ep;
830 	struct epitem *epi;
831 
832 	/*
833 	 * We don't want to get "file->f_lock" because it is not
834 	 * necessary. It is not necessary because we're in the "struct file"
835 	 * cleanup path, and this means that no one is using this file anymore.
836 	 * So, for example, epoll_ctl() cannot hit here since if we reach this
837 	 * point, the file counter already went to zero and fget() would fail.
838 	 * The only hit might come from ep_free() but by holding the mutex
839 	 * will correctly serialize the operation. We do need to acquire
840 	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
841 	 * from anywhere but ep_free().
842 	 *
843 	 * Besides, ep_remove() acquires the lock, so we can't hold it here.
844 	 */
845 	mutex_lock(&epmutex);
846 
847 	while (!list_empty(lsthead)) {
848 		epi = list_first_entry(lsthead, struct epitem, fllink);
849 
850 		ep = epi->ep;
851 		list_del_init(&epi->fllink);
852 		mutex_lock_nested(&ep->mtx, 0);
853 		ep_remove(ep, epi);
854 		mutex_unlock(&ep->mtx);
855 	}
856 
857 	mutex_unlock(&epmutex);
858 }
859 
860 static int ep_alloc(struct eventpoll **pep)
861 {
862 	int error;
863 	struct user_struct *user;
864 	struct eventpoll *ep;
865 
866 	user = get_current_user();
867 	error = -ENOMEM;
868 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
869 	if (unlikely(!ep))
870 		goto free_uid;
871 
872 	spin_lock_init(&ep->lock);
873 	mutex_init(&ep->mtx);
874 	init_waitqueue_head(&ep->wq);
875 	init_waitqueue_head(&ep->poll_wait);
876 	INIT_LIST_HEAD(&ep->rdllist);
877 	ep->rbr = RB_ROOT;
878 	ep->ovflist = EP_UNACTIVE_PTR;
879 	ep->user = user;
880 
881 	*pep = ep;
882 
883 	return 0;
884 
885 free_uid:
886 	free_uid(user);
887 	return error;
888 }
889 
890 /*
891  * Search the file inside the eventpoll tree. The RB tree operations
892  * are protected by the "mtx" mutex, and ep_find() must be called with
893  * "mtx" held.
894  */
895 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
896 {
897 	int kcmp;
898 	struct rb_node *rbp;
899 	struct epitem *epi, *epir = NULL;
900 	struct epoll_filefd ffd;
901 
902 	ep_set_ffd(&ffd, file, fd);
903 	for (rbp = ep->rbr.rb_node; rbp; ) {
904 		epi = rb_entry(rbp, struct epitem, rbn);
905 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
906 		if (kcmp > 0)
907 			rbp = rbp->rb_right;
908 		else if (kcmp < 0)
909 			rbp = rbp->rb_left;
910 		else {
911 			epir = epi;
912 			break;
913 		}
914 	}
915 
916 	return epir;
917 }
918 
919 /*
920  * This is the callback that is passed to the wait queue wakeup
921  * mechanism. It is called by the stored file descriptors when they
922  * have events to report.
923  */
924 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
925 {
926 	int pwake = 0;
927 	unsigned long flags;
928 	struct epitem *epi = ep_item_from_wait(wait);
929 	struct eventpoll *ep = epi->ep;
930 
931 	if ((unsigned long)key & POLLFREE) {
932 		ep_pwq_from_wait(wait)->whead = NULL;
933 		/*
934 		 * whead = NULL above can race with ep_remove_wait_queue()
935 		 * which can do another remove_wait_queue() after us, so we
936 		 * can't use __remove_wait_queue(). whead->lock is held by
937 		 * the caller.
938 		 */
939 		list_del_init(&wait->task_list);
940 	}
941 
942 	spin_lock_irqsave(&ep->lock, flags);
943 
944 	/*
945 	 * If the event mask does not contain any poll(2) event, we consider the
946 	 * descriptor to be disabled. This condition is likely the effect of the
947 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
948 	 * until the next EPOLL_CTL_MOD will be issued.
949 	 */
950 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
951 		goto out_unlock;
952 
953 	/*
954 	 * Check the events coming with the callback. At this stage, not
955 	 * every device reports the events in the "key" parameter of the
956 	 * callback. We need to be able to handle both cases here, hence the
957 	 * test for "key" != NULL before the event match test.
958 	 */
959 	if (key && !((unsigned long) key & epi->event.events))
960 		goto out_unlock;
961 
962 	/*
963 	 * If we are transferring events to userspace, we can hold no locks
964 	 * (because we're accessing user memory, and because of linux f_op->poll()
965 	 * semantics). All the events that happen during that period of time are
966 	 * chained in ep->ovflist and requeued later on.
967 	 */
968 	if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
969 		if (epi->next == EP_UNACTIVE_PTR) {
970 			epi->next = ep->ovflist;
971 			ep->ovflist = epi;
972 			if (epi->ws) {
973 				/*
974 				 * Activate ep->ws since epi->ws may get
975 				 * deactivated at any time.
976 				 */
977 				__pm_stay_awake(ep->ws);
978 			}
979 
980 		}
981 		goto out_unlock;
982 	}
983 
984 	/* If this file is already in the ready list we exit soon */
985 	if (!ep_is_linked(&epi->rdllink)) {
986 		list_add_tail(&epi->rdllink, &ep->rdllist);
987 		__pm_stay_awake(epi->ws);
988 	}
989 
990 	/*
991 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
992 	 * wait list.
993 	 */
994 	if (waitqueue_active(&ep->wq))
995 		wake_up_locked(&ep->wq);
996 	if (waitqueue_active(&ep->poll_wait))
997 		pwake++;
998 
999 out_unlock:
1000 	spin_unlock_irqrestore(&ep->lock, flags);
1001 
1002 	/* We have to call this outside the lock */
1003 	if (pwake)
1004 		ep_poll_safewake(&ep->poll_wait);
1005 
1006 	return 1;
1007 }
1008 
1009 /*
1010  * This is the callback that is used to add our wait queue to the
1011  * target file wakeup lists.
1012  */
1013 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1014 				 poll_table *pt)
1015 {
1016 	struct epitem *epi = ep_item_from_epqueue(pt);
1017 	struct eppoll_entry *pwq;
1018 
1019 	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1020 		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1021 		pwq->whead = whead;
1022 		pwq->base = epi;
1023 		add_wait_queue(whead, &pwq->wait);
1024 		list_add_tail(&pwq->llink, &epi->pwqlist);
1025 		epi->nwait++;
1026 	} else {
1027 		/* We have to signal that an error occurred */
1028 		epi->nwait = -1;
1029 	}
1030 }
1031 
1032 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1033 {
1034 	int kcmp;
1035 	struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
1036 	struct epitem *epic;
1037 
1038 	while (*p) {
1039 		parent = *p;
1040 		epic = rb_entry(parent, struct epitem, rbn);
1041 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1042 		if (kcmp > 0)
1043 			p = &parent->rb_right;
1044 		else
1045 			p = &parent->rb_left;
1046 	}
1047 	rb_link_node(&epi->rbn, parent, p);
1048 	rb_insert_color(&epi->rbn, &ep->rbr);
1049 }
1050 
1051 
1052 
1053 #define PATH_ARR_SIZE 5
1054 /*
1055  * These are the number paths of length 1 to 5, that we are allowing to emanate
1056  * from a single file of interest. For example, we allow 1000 paths of length
1057  * 1, to emanate from each file of interest. This essentially represents the
1058  * potential wakeup paths, which need to be limited in order to avoid massive
1059  * uncontrolled wakeup storms. The common use case should be a single ep which
1060  * is connected to n file sources. In this case each file source has 1 path
1061  * of length 1. Thus, the numbers below should be more than sufficient. These
1062  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1063  * and delete can't add additional paths. Protected by the epmutex.
1064  */
1065 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1066 static int path_count[PATH_ARR_SIZE];
1067 
1068 static int path_count_inc(int nests)
1069 {
1070 	/* Allow an arbitrary number of depth 1 paths */
1071 	if (nests == 0)
1072 		return 0;
1073 
1074 	if (++path_count[nests] > path_limits[nests])
1075 		return -1;
1076 	return 0;
1077 }
1078 
1079 static void path_count_init(void)
1080 {
1081 	int i;
1082 
1083 	for (i = 0; i < PATH_ARR_SIZE; i++)
1084 		path_count[i] = 0;
1085 }
1086 
1087 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1088 {
1089 	int error = 0;
1090 	struct file *file = priv;
1091 	struct file *child_file;
1092 	struct epitem *epi;
1093 
1094 	list_for_each_entry(epi, &file->f_ep_links, fllink) {
1095 		child_file = epi->ep->file;
1096 		if (is_file_epoll(child_file)) {
1097 			if (list_empty(&child_file->f_ep_links)) {
1098 				if (path_count_inc(call_nests)) {
1099 					error = -1;
1100 					break;
1101 				}
1102 			} else {
1103 				error = ep_call_nested(&poll_loop_ncalls,
1104 							EP_MAX_NESTS,
1105 							reverse_path_check_proc,
1106 							child_file, child_file,
1107 							current);
1108 			}
1109 			if (error != 0)
1110 				break;
1111 		} else {
1112 			printk(KERN_ERR "reverse_path_check_proc: "
1113 				"file is not an ep!\n");
1114 		}
1115 	}
1116 	return error;
1117 }
1118 
1119 /**
1120  * reverse_path_check - The tfile_check_list is list of file *, which have
1121  *                      links that are proposed to be newly added. We need to
1122  *                      make sure that those added links don't add too many
1123  *                      paths such that we will spend all our time waking up
1124  *                      eventpoll objects.
1125  *
1126  * Returns: Returns zero if the proposed links don't create too many paths,
1127  *	    -1 otherwise.
1128  */
1129 static int reverse_path_check(void)
1130 {
1131 	int error = 0;
1132 	struct file *current_file;
1133 
1134 	/* let's call this for all tfiles */
1135 	list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1136 		path_count_init();
1137 		error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1138 					reverse_path_check_proc, current_file,
1139 					current_file, current);
1140 		if (error)
1141 			break;
1142 	}
1143 	return error;
1144 }
1145 
1146 static int ep_create_wakeup_source(struct epitem *epi)
1147 {
1148 	const char *name;
1149 
1150 	if (!epi->ep->ws) {
1151 		epi->ep->ws = wakeup_source_register("eventpoll");
1152 		if (!epi->ep->ws)
1153 			return -ENOMEM;
1154 	}
1155 
1156 	name = epi->ffd.file->f_path.dentry->d_name.name;
1157 	epi->ws = wakeup_source_register(name);
1158 	if (!epi->ws)
1159 		return -ENOMEM;
1160 
1161 	return 0;
1162 }
1163 
1164 static void ep_destroy_wakeup_source(struct epitem *epi)
1165 {
1166 	wakeup_source_unregister(epi->ws);
1167 	epi->ws = NULL;
1168 }
1169 
1170 /*
1171  * Must be called with "mtx" held.
1172  */
1173 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
1174 		     struct file *tfile, int fd)
1175 {
1176 	int error, revents, pwake = 0;
1177 	unsigned long flags;
1178 	long user_watches;
1179 	struct epitem *epi;
1180 	struct ep_pqueue epq;
1181 
1182 	user_watches = atomic_long_read(&ep->user->epoll_watches);
1183 	if (unlikely(user_watches >= max_user_watches))
1184 		return -ENOSPC;
1185 	if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1186 		return -ENOMEM;
1187 
1188 	/* Item initialization follow here ... */
1189 	INIT_LIST_HEAD(&epi->rdllink);
1190 	INIT_LIST_HEAD(&epi->fllink);
1191 	INIT_LIST_HEAD(&epi->pwqlist);
1192 	epi->ep = ep;
1193 	ep_set_ffd(&epi->ffd, tfile, fd);
1194 	epi->event = *event;
1195 	epi->nwait = 0;
1196 	epi->next = EP_UNACTIVE_PTR;
1197 	if (epi->event.events & EPOLLWAKEUP) {
1198 		error = ep_create_wakeup_source(epi);
1199 		if (error)
1200 			goto error_create_wakeup_source;
1201 	} else {
1202 		epi->ws = NULL;
1203 	}
1204 
1205 	/* Initialize the poll table using the queue callback */
1206 	epq.epi = epi;
1207 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1208 	epq.pt._key = event->events;
1209 
1210 	/*
1211 	 * Attach the item to the poll hooks and get current event bits.
1212 	 * We can safely use the file* here because its usage count has
1213 	 * been increased by the caller of this function. Note that after
1214 	 * this operation completes, the poll callback can start hitting
1215 	 * the new item.
1216 	 */
1217 	revents = tfile->f_op->poll(tfile, &epq.pt);
1218 
1219 	/*
1220 	 * We have to check if something went wrong during the poll wait queue
1221 	 * install process. Namely an allocation for a wait queue failed due
1222 	 * high memory pressure.
1223 	 */
1224 	error = -ENOMEM;
1225 	if (epi->nwait < 0)
1226 		goto error_unregister;
1227 
1228 	/* Add the current item to the list of active epoll hook for this file */
1229 	spin_lock(&tfile->f_lock);
1230 	list_add_tail(&epi->fllink, &tfile->f_ep_links);
1231 	spin_unlock(&tfile->f_lock);
1232 
1233 	/*
1234 	 * Add the current item to the RB tree. All RB tree operations are
1235 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1236 	 */
1237 	ep_rbtree_insert(ep, epi);
1238 
1239 	/* now check if we've created too many backpaths */
1240 	error = -EINVAL;
1241 	if (reverse_path_check())
1242 		goto error_remove_epi;
1243 
1244 	/* We have to drop the new item inside our item list to keep track of it */
1245 	spin_lock_irqsave(&ep->lock, flags);
1246 
1247 	/* If the file is already "ready" we drop it inside the ready list */
1248 	if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
1249 		list_add_tail(&epi->rdllink, &ep->rdllist);
1250 		__pm_stay_awake(epi->ws);
1251 
1252 		/* Notify waiting tasks that events are available */
1253 		if (waitqueue_active(&ep->wq))
1254 			wake_up_locked(&ep->wq);
1255 		if (waitqueue_active(&ep->poll_wait))
1256 			pwake++;
1257 	}
1258 
1259 	spin_unlock_irqrestore(&ep->lock, flags);
1260 
1261 	atomic_long_inc(&ep->user->epoll_watches);
1262 
1263 	/* We have to call this outside the lock */
1264 	if (pwake)
1265 		ep_poll_safewake(&ep->poll_wait);
1266 
1267 	return 0;
1268 
1269 error_remove_epi:
1270 	spin_lock(&tfile->f_lock);
1271 	if (ep_is_linked(&epi->fllink))
1272 		list_del_init(&epi->fllink);
1273 	spin_unlock(&tfile->f_lock);
1274 
1275 	rb_erase(&epi->rbn, &ep->rbr);
1276 
1277 error_unregister:
1278 	ep_unregister_pollwait(ep, epi);
1279 
1280 	/*
1281 	 * We need to do this because an event could have been arrived on some
1282 	 * allocated wait queue. Note that we don't care about the ep->ovflist
1283 	 * list, since that is used/cleaned only inside a section bound by "mtx".
1284 	 * And ep_insert() is called with "mtx" held.
1285 	 */
1286 	spin_lock_irqsave(&ep->lock, flags);
1287 	if (ep_is_linked(&epi->rdllink))
1288 		list_del_init(&epi->rdllink);
1289 	spin_unlock_irqrestore(&ep->lock, flags);
1290 
1291 	wakeup_source_unregister(epi->ws);
1292 
1293 error_create_wakeup_source:
1294 	kmem_cache_free(epi_cache, epi);
1295 
1296 	return error;
1297 }
1298 
1299 /*
1300  * Modify the interest event mask by dropping an event if the new mask
1301  * has a match in the current file status. Must be called with "mtx" held.
1302  */
1303 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1304 {
1305 	int pwake = 0;
1306 	unsigned int revents;
1307 	poll_table pt;
1308 
1309 	init_poll_funcptr(&pt, NULL);
1310 
1311 	/*
1312 	 * Set the new event interest mask before calling f_op->poll();
1313 	 * otherwise we might miss an event that happens between the
1314 	 * f_op->poll() call and the new event set registering.
1315 	 */
1316 	epi->event.events = event->events;
1317 	pt._key = event->events;
1318 	epi->event.data = event->data; /* protected by mtx */
1319 	if (epi->event.events & EPOLLWAKEUP) {
1320 		if (!epi->ws)
1321 			ep_create_wakeup_source(epi);
1322 	} else if (epi->ws) {
1323 		ep_destroy_wakeup_source(epi);
1324 	}
1325 
1326 	/*
1327 	 * Get current event bits. We can safely use the file* here because
1328 	 * its usage count has been increased by the caller of this function.
1329 	 */
1330 	revents = epi->ffd.file->f_op->poll(epi->ffd.file, &pt);
1331 
1332 	/*
1333 	 * If the item is "hot" and it is not registered inside the ready
1334 	 * list, push it inside.
1335 	 */
1336 	if (revents & event->events) {
1337 		spin_lock_irq(&ep->lock);
1338 		if (!ep_is_linked(&epi->rdllink)) {
1339 			list_add_tail(&epi->rdllink, &ep->rdllist);
1340 			__pm_stay_awake(epi->ws);
1341 
1342 			/* Notify waiting tasks that events are available */
1343 			if (waitqueue_active(&ep->wq))
1344 				wake_up_locked(&ep->wq);
1345 			if (waitqueue_active(&ep->poll_wait))
1346 				pwake++;
1347 		}
1348 		spin_unlock_irq(&ep->lock);
1349 	}
1350 
1351 	/* We have to call this outside the lock */
1352 	if (pwake)
1353 		ep_poll_safewake(&ep->poll_wait);
1354 
1355 	return 0;
1356 }
1357 
1358 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1359 			       void *priv)
1360 {
1361 	struct ep_send_events_data *esed = priv;
1362 	int eventcnt;
1363 	unsigned int revents;
1364 	struct epitem *epi;
1365 	struct epoll_event __user *uevent;
1366 	poll_table pt;
1367 
1368 	init_poll_funcptr(&pt, NULL);
1369 
1370 	/*
1371 	 * We can loop without lock because we are passed a task private list.
1372 	 * Items cannot vanish during the loop because ep_scan_ready_list() is
1373 	 * holding "mtx" during this call.
1374 	 */
1375 	for (eventcnt = 0, uevent = esed->events;
1376 	     !list_empty(head) && eventcnt < esed->maxevents;) {
1377 		epi = list_first_entry(head, struct epitem, rdllink);
1378 
1379 		/*
1380 		 * Activate ep->ws before deactivating epi->ws to prevent
1381 		 * triggering auto-suspend here (in case we reactive epi->ws
1382 		 * below).
1383 		 *
1384 		 * This could be rearranged to delay the deactivation of epi->ws
1385 		 * instead, but then epi->ws would temporarily be out of sync
1386 		 * with ep_is_linked().
1387 		 */
1388 		if (epi->ws && epi->ws->active)
1389 			__pm_stay_awake(ep->ws);
1390 		__pm_relax(epi->ws);
1391 		list_del_init(&epi->rdllink);
1392 
1393 		pt._key = epi->event.events;
1394 		revents = epi->ffd.file->f_op->poll(epi->ffd.file, &pt) &
1395 			epi->event.events;
1396 
1397 		/*
1398 		 * If the event mask intersect the caller-requested one,
1399 		 * deliver the event to userspace. Again, ep_scan_ready_list()
1400 		 * is holding "mtx", so no operations coming from userspace
1401 		 * can change the item.
1402 		 */
1403 		if (revents) {
1404 			if (__put_user(revents, &uevent->events) ||
1405 			    __put_user(epi->event.data, &uevent->data)) {
1406 				list_add(&epi->rdllink, head);
1407 				__pm_stay_awake(epi->ws);
1408 				return eventcnt ? eventcnt : -EFAULT;
1409 			}
1410 			eventcnt++;
1411 			uevent++;
1412 			if (epi->event.events & EPOLLONESHOT)
1413 				epi->event.events &= EP_PRIVATE_BITS;
1414 			else if (!(epi->event.events & EPOLLET)) {
1415 				/*
1416 				 * If this file has been added with Level
1417 				 * Trigger mode, we need to insert back inside
1418 				 * the ready list, so that the next call to
1419 				 * epoll_wait() will check again the events
1420 				 * availability. At this point, no one can insert
1421 				 * into ep->rdllist besides us. The epoll_ctl()
1422 				 * callers are locked out by
1423 				 * ep_scan_ready_list() holding "mtx" and the
1424 				 * poll callback will queue them in ep->ovflist.
1425 				 */
1426 				list_add_tail(&epi->rdllink, &ep->rdllist);
1427 				__pm_stay_awake(epi->ws);
1428 			}
1429 		}
1430 	}
1431 
1432 	return eventcnt;
1433 }
1434 
1435 static int ep_send_events(struct eventpoll *ep,
1436 			  struct epoll_event __user *events, int maxevents)
1437 {
1438 	struct ep_send_events_data esed;
1439 
1440 	esed.maxevents = maxevents;
1441 	esed.events = events;
1442 
1443 	return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0);
1444 }
1445 
1446 static inline struct timespec ep_set_mstimeout(long ms)
1447 {
1448 	struct timespec now, ts = {
1449 		.tv_sec = ms / MSEC_PER_SEC,
1450 		.tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1451 	};
1452 
1453 	ktime_get_ts(&now);
1454 	return timespec_add_safe(now, ts);
1455 }
1456 
1457 /**
1458  * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1459  *           event buffer.
1460  *
1461  * @ep: Pointer to the eventpoll context.
1462  * @events: Pointer to the userspace buffer where the ready events should be
1463  *          stored.
1464  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1465  * @timeout: Maximum timeout for the ready events fetch operation, in
1466  *           milliseconds. If the @timeout is zero, the function will not block,
1467  *           while if the @timeout is less than zero, the function will block
1468  *           until at least one event has been retrieved (or an error
1469  *           occurred).
1470  *
1471  * Returns: Returns the number of ready events which have been fetched, or an
1472  *          error code, in case of error.
1473  */
1474 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1475 		   int maxevents, long timeout)
1476 {
1477 	int res = 0, eavail, timed_out = 0;
1478 	unsigned long flags;
1479 	long slack = 0;
1480 	wait_queue_t wait;
1481 	ktime_t expires, *to = NULL;
1482 
1483 	if (timeout > 0) {
1484 		struct timespec end_time = ep_set_mstimeout(timeout);
1485 
1486 		slack = select_estimate_accuracy(&end_time);
1487 		to = &expires;
1488 		*to = timespec_to_ktime(end_time);
1489 	} else if (timeout == 0) {
1490 		/*
1491 		 * Avoid the unnecessary trip to the wait queue loop, if the
1492 		 * caller specified a non blocking operation.
1493 		 */
1494 		timed_out = 1;
1495 		spin_lock_irqsave(&ep->lock, flags);
1496 		goto check_events;
1497 	}
1498 
1499 fetch_events:
1500 	spin_lock_irqsave(&ep->lock, flags);
1501 
1502 	if (!ep_events_available(ep)) {
1503 		/*
1504 		 * We don't have any available event to return to the caller.
1505 		 * We need to sleep here, and we will be wake up by
1506 		 * ep_poll_callback() when events will become available.
1507 		 */
1508 		init_waitqueue_entry(&wait, current);
1509 		__add_wait_queue_exclusive(&ep->wq, &wait);
1510 
1511 		for (;;) {
1512 			/*
1513 			 * We don't want to sleep if the ep_poll_callback() sends us
1514 			 * a wakeup in between. That's why we set the task state
1515 			 * to TASK_INTERRUPTIBLE before doing the checks.
1516 			 */
1517 			set_current_state(TASK_INTERRUPTIBLE);
1518 			if (ep_events_available(ep) || timed_out)
1519 				break;
1520 			if (signal_pending(current)) {
1521 				res = -EINTR;
1522 				break;
1523 			}
1524 
1525 			spin_unlock_irqrestore(&ep->lock, flags);
1526 			if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1527 				timed_out = 1;
1528 
1529 			spin_lock_irqsave(&ep->lock, flags);
1530 		}
1531 		__remove_wait_queue(&ep->wq, &wait);
1532 
1533 		set_current_state(TASK_RUNNING);
1534 	}
1535 check_events:
1536 	/* Is it worth to try to dig for events ? */
1537 	eavail = ep_events_available(ep);
1538 
1539 	spin_unlock_irqrestore(&ep->lock, flags);
1540 
1541 	/*
1542 	 * Try to transfer events to user space. In case we get 0 events and
1543 	 * there's still timeout left over, we go trying again in search of
1544 	 * more luck.
1545 	 */
1546 	if (!res && eavail &&
1547 	    !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1548 		goto fetch_events;
1549 
1550 	return res;
1551 }
1552 
1553 /**
1554  * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1555  *                      API, to verify that adding an epoll file inside another
1556  *                      epoll structure, does not violate the constraints, in
1557  *                      terms of closed loops, or too deep chains (which can
1558  *                      result in excessive stack usage).
1559  *
1560  * @priv: Pointer to the epoll file to be currently checked.
1561  * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1562  *          data structure pointer.
1563  * @call_nests: Current dept of the @ep_call_nested() call stack.
1564  *
1565  * Returns: Returns zero if adding the epoll @file inside current epoll
1566  *          structure @ep does not violate the constraints, or -1 otherwise.
1567  */
1568 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1569 {
1570 	int error = 0;
1571 	struct file *file = priv;
1572 	struct eventpoll *ep = file->private_data;
1573 	struct eventpoll *ep_tovisit;
1574 	struct rb_node *rbp;
1575 	struct epitem *epi;
1576 
1577 	mutex_lock_nested(&ep->mtx, call_nests + 1);
1578 	ep->visited = 1;
1579 	list_add(&ep->visited_list_link, &visited_list);
1580 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1581 		epi = rb_entry(rbp, struct epitem, rbn);
1582 		if (unlikely(is_file_epoll(epi->ffd.file))) {
1583 			ep_tovisit = epi->ffd.file->private_data;
1584 			if (ep_tovisit->visited)
1585 				continue;
1586 			error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1587 					ep_loop_check_proc, epi->ffd.file,
1588 					ep_tovisit, current);
1589 			if (error != 0)
1590 				break;
1591 		} else {
1592 			/*
1593 			 * If we've reached a file that is not associated with
1594 			 * an ep, then we need to check if the newly added
1595 			 * links are going to add too many wakeup paths. We do
1596 			 * this by adding it to the tfile_check_list, if it's
1597 			 * not already there, and calling reverse_path_check()
1598 			 * during ep_insert().
1599 			 */
1600 			if (list_empty(&epi->ffd.file->f_tfile_llink))
1601 				list_add(&epi->ffd.file->f_tfile_llink,
1602 					 &tfile_check_list);
1603 		}
1604 	}
1605 	mutex_unlock(&ep->mtx);
1606 
1607 	return error;
1608 }
1609 
1610 /**
1611  * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1612  *                 another epoll file (represented by @ep) does not create
1613  *                 closed loops or too deep chains.
1614  *
1615  * @ep: Pointer to the epoll private data structure.
1616  * @file: Pointer to the epoll file to be checked.
1617  *
1618  * Returns: Returns zero if adding the epoll @file inside current epoll
1619  *          structure @ep does not violate the constraints, or -1 otherwise.
1620  */
1621 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1622 {
1623 	int ret;
1624 	struct eventpoll *ep_cur, *ep_next;
1625 
1626 	ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1627 			      ep_loop_check_proc, file, ep, current);
1628 	/* clear visited list */
1629 	list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
1630 							visited_list_link) {
1631 		ep_cur->visited = 0;
1632 		list_del(&ep_cur->visited_list_link);
1633 	}
1634 	return ret;
1635 }
1636 
1637 static void clear_tfile_check_list(void)
1638 {
1639 	struct file *file;
1640 
1641 	/* first clear the tfile_check_list */
1642 	while (!list_empty(&tfile_check_list)) {
1643 		file = list_first_entry(&tfile_check_list, struct file,
1644 					f_tfile_llink);
1645 		list_del_init(&file->f_tfile_llink);
1646 	}
1647 	INIT_LIST_HEAD(&tfile_check_list);
1648 }
1649 
1650 /*
1651  * Open an eventpoll file descriptor.
1652  */
1653 SYSCALL_DEFINE1(epoll_create1, int, flags)
1654 {
1655 	int error, fd;
1656 	struct eventpoll *ep = NULL;
1657 	struct file *file;
1658 
1659 	/* Check the EPOLL_* constant for consistency.  */
1660 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1661 
1662 	if (flags & ~EPOLL_CLOEXEC)
1663 		return -EINVAL;
1664 	/*
1665 	 * Create the internal data structure ("struct eventpoll").
1666 	 */
1667 	error = ep_alloc(&ep);
1668 	if (error < 0)
1669 		return error;
1670 	/*
1671 	 * Creates all the items needed to setup an eventpoll file. That is,
1672 	 * a file structure and a free file descriptor.
1673 	 */
1674 	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1675 	if (fd < 0) {
1676 		error = fd;
1677 		goto out_free_ep;
1678 	}
1679 	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1680 				 O_RDWR | (flags & O_CLOEXEC));
1681 	if (IS_ERR(file)) {
1682 		error = PTR_ERR(file);
1683 		goto out_free_fd;
1684 	}
1685 	ep->file = file;
1686 	fd_install(fd, file);
1687 	return fd;
1688 
1689 out_free_fd:
1690 	put_unused_fd(fd);
1691 out_free_ep:
1692 	ep_free(ep);
1693 	return error;
1694 }
1695 
1696 SYSCALL_DEFINE1(epoll_create, int, size)
1697 {
1698 	if (size <= 0)
1699 		return -EINVAL;
1700 
1701 	return sys_epoll_create1(0);
1702 }
1703 
1704 /*
1705  * The following function implements the controller interface for
1706  * the eventpoll file that enables the insertion/removal/change of
1707  * file descriptors inside the interest set.
1708  */
1709 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1710 		struct epoll_event __user *, event)
1711 {
1712 	int error;
1713 	int did_lock_epmutex = 0;
1714 	struct file *file, *tfile;
1715 	struct eventpoll *ep;
1716 	struct epitem *epi;
1717 	struct epoll_event epds;
1718 
1719 	error = -EFAULT;
1720 	if (ep_op_has_event(op) &&
1721 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
1722 		goto error_return;
1723 
1724 	/* Get the "struct file *" for the eventpoll file */
1725 	error = -EBADF;
1726 	file = fget(epfd);
1727 	if (!file)
1728 		goto error_return;
1729 
1730 	/* Get the "struct file *" for the target file */
1731 	tfile = fget(fd);
1732 	if (!tfile)
1733 		goto error_fput;
1734 
1735 	/* The target file descriptor must support poll */
1736 	error = -EPERM;
1737 	if (!tfile->f_op || !tfile->f_op->poll)
1738 		goto error_tgt_fput;
1739 
1740 	/* Check if EPOLLWAKEUP is allowed */
1741 	if ((epds.events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND))
1742 		epds.events &= ~EPOLLWAKEUP;
1743 
1744 	/*
1745 	 * We have to check that the file structure underneath the file descriptor
1746 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
1747 	 * adding an epoll file descriptor inside itself.
1748 	 */
1749 	error = -EINVAL;
1750 	if (file == tfile || !is_file_epoll(file))
1751 		goto error_tgt_fput;
1752 
1753 	/*
1754 	 * At this point it is safe to assume that the "private_data" contains
1755 	 * our own data structure.
1756 	 */
1757 	ep = file->private_data;
1758 
1759 	/*
1760 	 * When we insert an epoll file descriptor, inside another epoll file
1761 	 * descriptor, there is the change of creating closed loops, which are
1762 	 * better be handled here, than in more critical paths. While we are
1763 	 * checking for loops we also determine the list of files reachable
1764 	 * and hang them on the tfile_check_list, so we can check that we
1765 	 * haven't created too many possible wakeup paths.
1766 	 *
1767 	 * We need to hold the epmutex across both ep_insert and ep_remove
1768 	 * b/c we want to make sure we are looking at a coherent view of
1769 	 * epoll network.
1770 	 */
1771 	if (op == EPOLL_CTL_ADD || op == EPOLL_CTL_DEL) {
1772 		mutex_lock(&epmutex);
1773 		did_lock_epmutex = 1;
1774 	}
1775 	if (op == EPOLL_CTL_ADD) {
1776 		if (is_file_epoll(tfile)) {
1777 			error = -ELOOP;
1778 			if (ep_loop_check(ep, tfile) != 0) {
1779 				clear_tfile_check_list();
1780 				goto error_tgt_fput;
1781 			}
1782 		} else
1783 			list_add(&tfile->f_tfile_llink, &tfile_check_list);
1784 	}
1785 
1786 	mutex_lock_nested(&ep->mtx, 0);
1787 
1788 	/*
1789 	 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1790 	 * above, we can be sure to be able to use the item looked up by
1791 	 * ep_find() till we release the mutex.
1792 	 */
1793 	epi = ep_find(ep, tfile, fd);
1794 
1795 	error = -EINVAL;
1796 	switch (op) {
1797 	case EPOLL_CTL_ADD:
1798 		if (!epi) {
1799 			epds.events |= POLLERR | POLLHUP;
1800 			error = ep_insert(ep, &epds, tfile, fd);
1801 		} else
1802 			error = -EEXIST;
1803 		clear_tfile_check_list();
1804 		break;
1805 	case EPOLL_CTL_DEL:
1806 		if (epi)
1807 			error = ep_remove(ep, epi);
1808 		else
1809 			error = -ENOENT;
1810 		break;
1811 	case EPOLL_CTL_MOD:
1812 		if (epi) {
1813 			epds.events |= POLLERR | POLLHUP;
1814 			error = ep_modify(ep, epi, &epds);
1815 		} else
1816 			error = -ENOENT;
1817 		break;
1818 	}
1819 	mutex_unlock(&ep->mtx);
1820 
1821 error_tgt_fput:
1822 	if (did_lock_epmutex)
1823 		mutex_unlock(&epmutex);
1824 
1825 	fput(tfile);
1826 error_fput:
1827 	fput(file);
1828 error_return:
1829 
1830 	return error;
1831 }
1832 
1833 /*
1834  * Implement the event wait interface for the eventpoll file. It is the kernel
1835  * part of the user space epoll_wait(2).
1836  */
1837 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
1838 		int, maxevents, int, timeout)
1839 {
1840 	int error;
1841 	struct fd f;
1842 	struct eventpoll *ep;
1843 
1844 	/* The maximum number of event must be greater than zero */
1845 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1846 		return -EINVAL;
1847 
1848 	/* Verify that the area passed by the user is writeable */
1849 	if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event)))
1850 		return -EFAULT;
1851 
1852 	/* Get the "struct file *" for the eventpoll file */
1853 	f = fdget(epfd);
1854 	if (!f.file)
1855 		return -EBADF;
1856 
1857 	/*
1858 	 * We have to check that the file structure underneath the fd
1859 	 * the user passed to us _is_ an eventpoll file.
1860 	 */
1861 	error = -EINVAL;
1862 	if (!is_file_epoll(f.file))
1863 		goto error_fput;
1864 
1865 	/*
1866 	 * At this point it is safe to assume that the "private_data" contains
1867 	 * our own data structure.
1868 	 */
1869 	ep = f.file->private_data;
1870 
1871 	/* Time to fish for events ... */
1872 	error = ep_poll(ep, events, maxevents, timeout);
1873 
1874 error_fput:
1875 	fdput(f);
1876 	return error;
1877 }
1878 
1879 /*
1880  * Implement the event wait interface for the eventpoll file. It is the kernel
1881  * part of the user space epoll_pwait(2).
1882  */
1883 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
1884 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
1885 		size_t, sigsetsize)
1886 {
1887 	int error;
1888 	sigset_t ksigmask, sigsaved;
1889 
1890 	/*
1891 	 * If the caller wants a certain signal mask to be set during the wait,
1892 	 * we apply it here.
1893 	 */
1894 	if (sigmask) {
1895 		if (sigsetsize != sizeof(sigset_t))
1896 			return -EINVAL;
1897 		if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
1898 			return -EFAULT;
1899 		sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
1900 		sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1901 	}
1902 
1903 	error = sys_epoll_wait(epfd, events, maxevents, timeout);
1904 
1905 	/*
1906 	 * If we changed the signal mask, we need to restore the original one.
1907 	 * In case we've got a signal while waiting, we do not restore the
1908 	 * signal mask yet, and we allow do_signal() to deliver the signal on
1909 	 * the way back to userspace, before the signal mask is restored.
1910 	 */
1911 	if (sigmask) {
1912 		if (error == -EINTR) {
1913 			memcpy(&current->saved_sigmask, &sigsaved,
1914 			       sizeof(sigsaved));
1915 			set_restore_sigmask();
1916 		} else
1917 			sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1918 	}
1919 
1920 	return error;
1921 }
1922 
1923 static int __init eventpoll_init(void)
1924 {
1925 	struct sysinfo si;
1926 
1927 	si_meminfo(&si);
1928 	/*
1929 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
1930 	 */
1931 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
1932 		EP_ITEM_COST;
1933 	BUG_ON(max_user_watches < 0);
1934 
1935 	/*
1936 	 * Initialize the structure used to perform epoll file descriptor
1937 	 * inclusion loops checks.
1938 	 */
1939 	ep_nested_calls_init(&poll_loop_ncalls);
1940 
1941 	/* Initialize the structure used to perform safe poll wait head wake ups */
1942 	ep_nested_calls_init(&poll_safewake_ncalls);
1943 
1944 	/* Initialize the structure used to perform file's f_op->poll() calls */
1945 	ep_nested_calls_init(&poll_readywalk_ncalls);
1946 
1947 	/* Allocates slab cache used to allocate "struct epitem" items */
1948 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
1949 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1950 
1951 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
1952 	pwq_cache = kmem_cache_create("eventpoll_pwq",
1953 			sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
1954 
1955 	return 0;
1956 }
1957 fs_initcall(eventpoll_init);
1958