1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * fs/eventpoll.c (Efficient event retrieval implementation)
4 * Copyright (C) 2001,...,2009 Davide Libenzi
5 *
6 * Davide Libenzi <davidel@xmailserver.org>
7 */
8
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/uaccess.h>
33 #include <asm/io.h>
34 #include <asm/mman.h>
35 #include <linux/atomic.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/compat.h>
39 #include <linux/rculist.h>
40 #include <net/busy_poll.h>
41
42 /*
43 * LOCKING:
44 * There are three level of locking required by epoll :
45 *
46 * 1) epnested_mutex (mutex)
47 * 2) ep->mtx (mutex)
48 * 3) ep->lock (rwlock)
49 *
50 * The acquire order is the one listed above, from 1 to 3.
51 * We need a rwlock (ep->lock) because we manipulate objects
52 * from inside the poll callback, that might be triggered from
53 * a wake_up() that in turn might be called from IRQ context.
54 * So we can't sleep inside the poll callback and hence we need
55 * a spinlock. During the event transfer loop (from kernel to
56 * user space) we could end up sleeping due a copy_to_user(), so
57 * we need a lock that will allow us to sleep. This lock is a
58 * mutex (ep->mtx). It is acquired during the event transfer loop,
59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60 * The epnested_mutex is acquired when inserting an epoll fd onto another
61 * epoll fd. We do this so that we walk the epoll tree and ensure that this
62 * insertion does not create a cycle of epoll file descriptors, which
63 * could lead to deadlock. We need a global mutex to prevent two
64 * simultaneous inserts (A into B and B into A) from racing and
65 * constructing a cycle without either insert observing that it is
66 * going to.
67 * It is necessary to acquire multiple "ep->mtx"es at once in the
68 * case when one epoll fd is added to another. In this case, we
69 * always acquire the locks in the order of nesting (i.e. after
70 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
71 * before e2->mtx). Since we disallow cycles of epoll file
72 * descriptors, this ensures that the mutexes are well-ordered. In
73 * order to communicate this nesting to lockdep, when walking a tree
74 * of epoll file descriptors, we use the current recursion depth as
75 * the lockdep subkey.
76 * It is possible to drop the "ep->mtx" and to use the global
77 * mutex "epnested_mutex" (together with "ep->lock") to have it working,
78 * but having "ep->mtx" will make the interface more scalable.
79 * Events that require holding "epnested_mutex" are very rare, while for
80 * normal operations the epoll private "ep->mtx" will guarantee
81 * a better scalability.
82 */
83
84 /* Epoll private bits inside the event mask */
85 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
86
87 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
88
89 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
90 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
91
92 /* Maximum number of nesting allowed inside epoll sets */
93 #define EP_MAX_NESTS 4
94
95 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
96
97 #define EP_UNACTIVE_PTR ((void *) -1L)
98
99 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
100
101 struct epoll_filefd {
102 struct file *file;
103 int fd;
104 } __packed;
105
106 /* Wait structure used by the poll hooks */
107 struct eppoll_entry {
108 /* List header used to link this structure to the "struct epitem" */
109 struct eppoll_entry *next;
110
111 /* The "base" pointer is set to the container "struct epitem" */
112 struct epitem *base;
113
114 /*
115 * Wait queue item that will be linked to the target file wait
116 * queue head.
117 */
118 wait_queue_entry_t wait;
119
120 /* The wait queue head that linked the "wait" wait queue item */
121 wait_queue_head_t *whead;
122 };
123
124 /*
125 * Each file descriptor added to the eventpoll interface will
126 * have an entry of this type linked to the "rbr" RB tree.
127 * Avoid increasing the size of this struct, there can be many thousands
128 * of these on a server and we do not want this to take another cache line.
129 */
130 struct epitem {
131 union {
132 /* RB tree node links this structure to the eventpoll RB tree */
133 struct rb_node rbn;
134 /* Used to free the struct epitem */
135 struct rcu_head rcu;
136 };
137
138 /* List header used to link this structure to the eventpoll ready list */
139 struct list_head rdllink;
140
141 /*
142 * Works together "struct eventpoll"->ovflist in keeping the
143 * single linked chain of items.
144 */
145 struct epitem *next;
146
147 /* The file descriptor information this item refers to */
148 struct epoll_filefd ffd;
149
150 /*
151 * Protected by file->f_lock, true for to-be-released epitem already
152 * removed from the "struct file" items list; together with
153 * eventpoll->refcount orchestrates "struct eventpoll" disposal
154 */
155 bool dying;
156
157 /* List containing poll wait queues */
158 struct eppoll_entry *pwqlist;
159
160 /* The "container" of this item */
161 struct eventpoll *ep;
162
163 /* List header used to link this item to the "struct file" items list */
164 struct hlist_node fllink;
165
166 /* wakeup_source used when EPOLLWAKEUP is set */
167 struct wakeup_source __rcu *ws;
168
169 /* The structure that describe the interested events and the source fd */
170 struct epoll_event event;
171 };
172
173 /*
174 * This structure is stored inside the "private_data" member of the file
175 * structure and represents the main data structure for the eventpoll
176 * interface.
177 */
178 struct eventpoll {
179 /*
180 * This mutex is used to ensure that files are not removed
181 * while epoll is using them. This is held during the event
182 * collection loop, the file cleanup path, the epoll file exit
183 * code and the ctl operations.
184 */
185 struct mutex mtx;
186
187 /* Wait queue used by sys_epoll_wait() */
188 wait_queue_head_t wq;
189
190 /* Wait queue used by file->poll() */
191 wait_queue_head_t poll_wait;
192
193 /* List of ready file descriptors */
194 struct list_head rdllist;
195
196 /* Lock which protects rdllist and ovflist */
197 rwlock_t lock;
198
199 /* RB tree root used to store monitored fd structs */
200 struct rb_root_cached rbr;
201
202 /*
203 * This is a single linked list that chains all the "struct epitem" that
204 * happened while transferring ready events to userspace w/out
205 * holding ->lock.
206 */
207 struct epitem *ovflist;
208
209 /* wakeup_source used when ep_scan_ready_list is running */
210 struct wakeup_source *ws;
211
212 /* The user that created the eventpoll descriptor */
213 struct user_struct *user;
214
215 struct file *file;
216
217 /* used to optimize loop detection check */
218 u64 gen;
219 struct hlist_head refs;
220
221 /*
222 * usage count, used together with epitem->dying to
223 * orchestrate the disposal of this struct
224 */
225 refcount_t refcount;
226
227 #ifdef CONFIG_NET_RX_BUSY_POLL
228 /* used to track busy poll napi_id */
229 unsigned int napi_id;
230 #endif
231
232 #ifdef CONFIG_DEBUG_LOCK_ALLOC
233 /* tracks wakeup nests for lockdep validation */
234 u8 nests;
235 #endif
236 };
237
238 /* Wrapper struct used by poll queueing */
239 struct ep_pqueue {
240 poll_table pt;
241 struct epitem *epi;
242 };
243
244 /*
245 * Configuration options available inside /proc/sys/fs/epoll/
246 */
247 /* Maximum number of epoll watched descriptors, per user */
248 static long max_user_watches __read_mostly;
249
250 /* Used for cycles detection */
251 static DEFINE_MUTEX(epnested_mutex);
252
253 static u64 loop_check_gen = 0;
254
255 /* Used to check for epoll file descriptor inclusion loops */
256 static struct eventpoll *inserting_into;
257
258 /* Slab cache used to allocate "struct epitem" */
259 static struct kmem_cache *epi_cache __read_mostly;
260
261 /* Slab cache used to allocate "struct eppoll_entry" */
262 static struct kmem_cache *pwq_cache __read_mostly;
263
264 /*
265 * List of files with newly added links, where we may need to limit the number
266 * of emanating paths. Protected by the epnested_mutex.
267 */
268 struct epitems_head {
269 struct hlist_head epitems;
270 struct epitems_head *next;
271 };
272 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR;
273
274 static struct kmem_cache *ephead_cache __read_mostly;
275
free_ephead(struct epitems_head * head)276 static inline void free_ephead(struct epitems_head *head)
277 {
278 if (head)
279 kmem_cache_free(ephead_cache, head);
280 }
281
list_file(struct file * file)282 static void list_file(struct file *file)
283 {
284 struct epitems_head *head;
285
286 head = container_of(file->f_ep, struct epitems_head, epitems);
287 if (!head->next) {
288 head->next = tfile_check_list;
289 tfile_check_list = head;
290 }
291 }
292
unlist_file(struct epitems_head * head)293 static void unlist_file(struct epitems_head *head)
294 {
295 struct epitems_head *to_free = head;
296 struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems));
297 if (p) {
298 struct epitem *epi= container_of(p, struct epitem, fllink);
299 spin_lock(&epi->ffd.file->f_lock);
300 if (!hlist_empty(&head->epitems))
301 to_free = NULL;
302 head->next = NULL;
303 spin_unlock(&epi->ffd.file->f_lock);
304 }
305 free_ephead(to_free);
306 }
307
308 #ifdef CONFIG_SYSCTL
309
310 #include <linux/sysctl.h>
311
312 static long long_zero;
313 static long long_max = LONG_MAX;
314
315 static struct ctl_table epoll_table[] = {
316 {
317 .procname = "max_user_watches",
318 .data = &max_user_watches,
319 .maxlen = sizeof(max_user_watches),
320 .mode = 0644,
321 .proc_handler = proc_doulongvec_minmax,
322 .extra1 = &long_zero,
323 .extra2 = &long_max,
324 },
325 { }
326 };
327
epoll_sysctls_init(void)328 static void __init epoll_sysctls_init(void)
329 {
330 register_sysctl("fs/epoll", epoll_table);
331 }
332 #else
333 #define epoll_sysctls_init() do { } while (0)
334 #endif /* CONFIG_SYSCTL */
335
336 static const struct file_operations eventpoll_fops;
337
is_file_epoll(struct file * f)338 static inline int is_file_epoll(struct file *f)
339 {
340 return f->f_op == &eventpoll_fops;
341 }
342
343 /* Setup the structure that is used as key for the RB tree */
ep_set_ffd(struct epoll_filefd * ffd,struct file * file,int fd)344 static inline void ep_set_ffd(struct epoll_filefd *ffd,
345 struct file *file, int fd)
346 {
347 ffd->file = file;
348 ffd->fd = fd;
349 }
350
351 /* Compare RB tree keys */
ep_cmp_ffd(struct epoll_filefd * p1,struct epoll_filefd * p2)352 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
353 struct epoll_filefd *p2)
354 {
355 return (p1->file > p2->file ? +1:
356 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
357 }
358
359 /* Tells us if the item is currently linked */
ep_is_linked(struct epitem * epi)360 static inline int ep_is_linked(struct epitem *epi)
361 {
362 return !list_empty(&epi->rdllink);
363 }
364
ep_pwq_from_wait(wait_queue_entry_t * p)365 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
366 {
367 return container_of(p, struct eppoll_entry, wait);
368 }
369
370 /* Get the "struct epitem" from a wait queue pointer */
ep_item_from_wait(wait_queue_entry_t * p)371 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
372 {
373 return container_of(p, struct eppoll_entry, wait)->base;
374 }
375
376 /**
377 * ep_events_available - Checks if ready events might be available.
378 *
379 * @ep: Pointer to the eventpoll context.
380 *
381 * Return: a value different than %zero if ready events are available,
382 * or %zero otherwise.
383 */
ep_events_available(struct eventpoll * ep)384 static inline int ep_events_available(struct eventpoll *ep)
385 {
386 return !list_empty_careful(&ep->rdllist) ||
387 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
388 }
389
390 #ifdef CONFIG_NET_RX_BUSY_POLL
ep_busy_loop_end(void * p,unsigned long start_time)391 static bool ep_busy_loop_end(void *p, unsigned long start_time)
392 {
393 struct eventpoll *ep = p;
394
395 return ep_events_available(ep) || busy_loop_timeout(start_time);
396 }
397
398 /*
399 * Busy poll if globally on and supporting sockets found && no events,
400 * busy loop will return if need_resched or ep_events_available.
401 *
402 * we must do our busy polling with irqs enabled
403 */
ep_busy_loop(struct eventpoll * ep,int nonblock)404 static bool ep_busy_loop(struct eventpoll *ep, int nonblock)
405 {
406 unsigned int napi_id = READ_ONCE(ep->napi_id);
407
408 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) {
409 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, false,
410 BUSY_POLL_BUDGET);
411 if (ep_events_available(ep))
412 return true;
413 /*
414 * Busy poll timed out. Drop NAPI ID for now, we can add
415 * it back in when we have moved a socket with a valid NAPI
416 * ID onto the ready list.
417 */
418 ep->napi_id = 0;
419 return false;
420 }
421 return false;
422 }
423
424 /*
425 * Set epoll busy poll NAPI ID from sk.
426 */
ep_set_busy_poll_napi_id(struct epitem * epi)427 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
428 {
429 struct eventpoll *ep;
430 unsigned int napi_id;
431 struct socket *sock;
432 struct sock *sk;
433
434 if (!net_busy_loop_on())
435 return;
436
437 sock = sock_from_file(epi->ffd.file);
438 if (!sock)
439 return;
440
441 sk = sock->sk;
442 if (!sk)
443 return;
444
445 napi_id = READ_ONCE(sk->sk_napi_id);
446 ep = epi->ep;
447
448 /* Non-NAPI IDs can be rejected
449 * or
450 * Nothing to do if we already have this ID
451 */
452 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
453 return;
454
455 /* record NAPI ID for use in next busy poll */
456 ep->napi_id = napi_id;
457 }
458
459 #else
460
ep_busy_loop(struct eventpoll * ep,int nonblock)461 static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock)
462 {
463 return false;
464 }
465
ep_set_busy_poll_napi_id(struct epitem * epi)466 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
467 {
468 }
469
470 #endif /* CONFIG_NET_RX_BUSY_POLL */
471
472 /*
473 * As described in commit 0ccf831cb lockdep: annotate epoll
474 * the use of wait queues used by epoll is done in a very controlled
475 * manner. Wake ups can nest inside each other, but are never done
476 * with the same locking. For example:
477 *
478 * dfd = socket(...);
479 * efd1 = epoll_create();
480 * efd2 = epoll_create();
481 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
482 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
483 *
484 * When a packet arrives to the device underneath "dfd", the net code will
485 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
486 * callback wakeup entry on that queue, and the wake_up() performed by the
487 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
488 * (efd1) notices that it may have some event ready, so it needs to wake up
489 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
490 * that ends up in another wake_up(), after having checked about the
491 * recursion constraints. That are, no more than EP_MAX_NESTS, to avoid
492 * stack blasting.
493 *
494 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
495 * this special case of epoll.
496 */
497 #ifdef CONFIG_DEBUG_LOCK_ALLOC
498
ep_poll_safewake(struct eventpoll * ep,struct epitem * epi,unsigned pollflags)499 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
500 unsigned pollflags)
501 {
502 struct eventpoll *ep_src;
503 unsigned long flags;
504 u8 nests = 0;
505
506 /*
507 * To set the subclass or nesting level for spin_lock_irqsave_nested()
508 * it might be natural to create a per-cpu nest count. However, since
509 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
510 * schedule() in the -rt kernel, the per-cpu variable are no longer
511 * protected. Thus, we are introducing a per eventpoll nest field.
512 * If we are not being call from ep_poll_callback(), epi is NULL and
513 * we are at the first level of nesting, 0. Otherwise, we are being
514 * called from ep_poll_callback() and if a previous wakeup source is
515 * not an epoll file itself, we are at depth 1 since the wakeup source
516 * is depth 0. If the wakeup source is a previous epoll file in the
517 * wakeup chain then we use its nests value and record ours as
518 * nests + 1. The previous epoll file nests value is stable since its
519 * already holding its own poll_wait.lock.
520 */
521 if (epi) {
522 if ((is_file_epoll(epi->ffd.file))) {
523 ep_src = epi->ffd.file->private_data;
524 nests = ep_src->nests;
525 } else {
526 nests = 1;
527 }
528 }
529 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
530 ep->nests = nests + 1;
531 wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags);
532 ep->nests = 0;
533 spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
534 }
535
536 #else
537
ep_poll_safewake(struct eventpoll * ep,struct epitem * epi,__poll_t pollflags)538 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
539 __poll_t pollflags)
540 {
541 wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags);
542 }
543
544 #endif
545
ep_remove_wait_queue(struct eppoll_entry * pwq)546 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
547 {
548 wait_queue_head_t *whead;
549
550 rcu_read_lock();
551 /*
552 * If it is cleared by POLLFREE, it should be rcu-safe.
553 * If we read NULL we need a barrier paired with
554 * smp_store_release() in ep_poll_callback(), otherwise
555 * we rely on whead->lock.
556 */
557 whead = smp_load_acquire(&pwq->whead);
558 if (whead)
559 remove_wait_queue(whead, &pwq->wait);
560 rcu_read_unlock();
561 }
562
563 /*
564 * This function unregisters poll callbacks from the associated file
565 * descriptor. Must be called with "mtx" held.
566 */
ep_unregister_pollwait(struct eventpoll * ep,struct epitem * epi)567 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
568 {
569 struct eppoll_entry **p = &epi->pwqlist;
570 struct eppoll_entry *pwq;
571
572 while ((pwq = *p) != NULL) {
573 *p = pwq->next;
574 ep_remove_wait_queue(pwq);
575 kmem_cache_free(pwq_cache, pwq);
576 }
577 }
578
579 /* call only when ep->mtx is held */
ep_wakeup_source(struct epitem * epi)580 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
581 {
582 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
583 }
584
585 /* call only when ep->mtx is held */
ep_pm_stay_awake(struct epitem * epi)586 static inline void ep_pm_stay_awake(struct epitem *epi)
587 {
588 struct wakeup_source *ws = ep_wakeup_source(epi);
589
590 if (ws)
591 __pm_stay_awake(ws);
592 }
593
ep_has_wakeup_source(struct epitem * epi)594 static inline bool ep_has_wakeup_source(struct epitem *epi)
595 {
596 return rcu_access_pointer(epi->ws) ? true : false;
597 }
598
599 /* call when ep->mtx cannot be held (ep_poll_callback) */
ep_pm_stay_awake_rcu(struct epitem * epi)600 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
601 {
602 struct wakeup_source *ws;
603
604 rcu_read_lock();
605 ws = rcu_dereference(epi->ws);
606 if (ws)
607 __pm_stay_awake(ws);
608 rcu_read_unlock();
609 }
610
611
612 /*
613 * ep->mutex needs to be held because we could be hit by
614 * eventpoll_release_file() and epoll_ctl().
615 */
ep_start_scan(struct eventpoll * ep,struct list_head * txlist)616 static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist)
617 {
618 /*
619 * Steal the ready list, and re-init the original one to the
620 * empty list. Also, set ep->ovflist to NULL so that events
621 * happening while looping w/out locks, are not lost. We cannot
622 * have the poll callback to queue directly on ep->rdllist,
623 * because we want the "sproc" callback to be able to do it
624 * in a lockless way.
625 */
626 lockdep_assert_irqs_enabled();
627 write_lock_irq(&ep->lock);
628 list_splice_init(&ep->rdllist, txlist);
629 WRITE_ONCE(ep->ovflist, NULL);
630 write_unlock_irq(&ep->lock);
631 }
632
ep_done_scan(struct eventpoll * ep,struct list_head * txlist)633 static void ep_done_scan(struct eventpoll *ep,
634 struct list_head *txlist)
635 {
636 struct epitem *epi, *nepi;
637
638 write_lock_irq(&ep->lock);
639 /*
640 * During the time we spent inside the "sproc" callback, some
641 * other events might have been queued by the poll callback.
642 * We re-insert them inside the main ready-list here.
643 */
644 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
645 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
646 /*
647 * We need to check if the item is already in the list.
648 * During the "sproc" callback execution time, items are
649 * queued into ->ovflist but the "txlist" might already
650 * contain them, and the list_splice() below takes care of them.
651 */
652 if (!ep_is_linked(epi)) {
653 /*
654 * ->ovflist is LIFO, so we have to reverse it in order
655 * to keep in FIFO.
656 */
657 list_add(&epi->rdllink, &ep->rdllist);
658 ep_pm_stay_awake(epi);
659 }
660 }
661 /*
662 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
663 * releasing the lock, events will be queued in the normal way inside
664 * ep->rdllist.
665 */
666 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
667
668 /*
669 * Quickly re-inject items left on "txlist".
670 */
671 list_splice(txlist, &ep->rdllist);
672 __pm_relax(ep->ws);
673
674 if (!list_empty(&ep->rdllist)) {
675 if (waitqueue_active(&ep->wq))
676 wake_up(&ep->wq);
677 }
678
679 write_unlock_irq(&ep->lock);
680 }
681
epi_rcu_free(struct rcu_head * head)682 static void epi_rcu_free(struct rcu_head *head)
683 {
684 struct epitem *epi = container_of(head, struct epitem, rcu);
685 kmem_cache_free(epi_cache, epi);
686 }
687
ep_get(struct eventpoll * ep)688 static void ep_get(struct eventpoll *ep)
689 {
690 refcount_inc(&ep->refcount);
691 }
692
693 /*
694 * Returns true if the event poll can be disposed
695 */
ep_refcount_dec_and_test(struct eventpoll * ep)696 static bool ep_refcount_dec_and_test(struct eventpoll *ep)
697 {
698 if (!refcount_dec_and_test(&ep->refcount))
699 return false;
700
701 WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.rb_root));
702 return true;
703 }
704
ep_free(struct eventpoll * ep)705 static void ep_free(struct eventpoll *ep)
706 {
707 mutex_destroy(&ep->mtx);
708 free_uid(ep->user);
709 wakeup_source_unregister(ep->ws);
710 kfree(ep);
711 }
712
713 /*
714 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
715 * all the associated resources. Must be called with "mtx" held.
716 * If the dying flag is set, do the removal only if force is true.
717 * This prevents ep_clear_and_put() from dropping all the ep references
718 * while running concurrently with eventpoll_release_file().
719 * Returns true if the eventpoll can be disposed.
720 */
__ep_remove(struct eventpoll * ep,struct epitem * epi,bool force)721 static bool __ep_remove(struct eventpoll *ep, struct epitem *epi, bool force)
722 {
723 struct file *file = epi->ffd.file;
724 struct epitems_head *to_free;
725 struct hlist_head *head;
726
727 lockdep_assert_irqs_enabled();
728
729 /*
730 * Removes poll wait queue hooks.
731 */
732 ep_unregister_pollwait(ep, epi);
733
734 /* Remove the current item from the list of epoll hooks */
735 spin_lock(&file->f_lock);
736 if (epi->dying && !force) {
737 spin_unlock(&file->f_lock);
738 return false;
739 }
740
741 to_free = NULL;
742 head = file->f_ep;
743 if (head->first == &epi->fllink && !epi->fllink.next) {
744 file->f_ep = NULL;
745 if (!is_file_epoll(file)) {
746 struct epitems_head *v;
747 v = container_of(head, struct epitems_head, epitems);
748 if (!smp_load_acquire(&v->next))
749 to_free = v;
750 }
751 }
752 hlist_del_rcu(&epi->fllink);
753 spin_unlock(&file->f_lock);
754 free_ephead(to_free);
755
756 rb_erase_cached(&epi->rbn, &ep->rbr);
757
758 write_lock_irq(&ep->lock);
759 if (ep_is_linked(epi))
760 list_del_init(&epi->rdllink);
761 write_unlock_irq(&ep->lock);
762
763 wakeup_source_unregister(ep_wakeup_source(epi));
764 /*
765 * At this point it is safe to free the eventpoll item. Use the union
766 * field epi->rcu, since we are trying to minimize the size of
767 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
768 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
769 * use of the rbn field.
770 */
771 call_rcu(&epi->rcu, epi_rcu_free);
772
773 percpu_counter_dec(&ep->user->epoll_watches);
774 return ep_refcount_dec_and_test(ep);
775 }
776
777 /*
778 * ep_remove variant for callers owing an additional reference to the ep
779 */
ep_remove_safe(struct eventpoll * ep,struct epitem * epi)780 static void ep_remove_safe(struct eventpoll *ep, struct epitem *epi)
781 {
782 WARN_ON_ONCE(__ep_remove(ep, epi, false));
783 }
784
ep_clear_and_put(struct eventpoll * ep)785 static void ep_clear_and_put(struct eventpoll *ep)
786 {
787 struct rb_node *rbp, *next;
788 struct epitem *epi;
789 bool dispose;
790
791 /* We need to release all tasks waiting for these file */
792 if (waitqueue_active(&ep->poll_wait))
793 ep_poll_safewake(ep, NULL, 0);
794
795 mutex_lock(&ep->mtx);
796
797 /*
798 * Walks through the whole tree by unregistering poll callbacks.
799 */
800 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
801 epi = rb_entry(rbp, struct epitem, rbn);
802
803 ep_unregister_pollwait(ep, epi);
804 cond_resched();
805 }
806
807 /*
808 * Walks through the whole tree and try to free each "struct epitem".
809 * Note that ep_remove_safe() will not remove the epitem in case of a
810 * racing eventpoll_release_file(); the latter will do the removal.
811 * At this point we are sure no poll callbacks will be lingering around.
812 * Since we still own a reference to the eventpoll struct, the loop can't
813 * dispose it.
814 */
815 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = next) {
816 next = rb_next(rbp);
817 epi = rb_entry(rbp, struct epitem, rbn);
818 ep_remove_safe(ep, epi);
819 cond_resched();
820 }
821
822 dispose = ep_refcount_dec_and_test(ep);
823 mutex_unlock(&ep->mtx);
824
825 if (dispose)
826 ep_free(ep);
827 }
828
ep_eventpoll_release(struct inode * inode,struct file * file)829 static int ep_eventpoll_release(struct inode *inode, struct file *file)
830 {
831 struct eventpoll *ep = file->private_data;
832
833 if (ep)
834 ep_clear_and_put(ep);
835
836 return 0;
837 }
838
839 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth);
840
__ep_eventpoll_poll(struct file * file,poll_table * wait,int depth)841 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth)
842 {
843 struct eventpoll *ep = file->private_data;
844 LIST_HEAD(txlist);
845 struct epitem *epi, *tmp;
846 poll_table pt;
847 __poll_t res = 0;
848
849 init_poll_funcptr(&pt, NULL);
850
851 /* Insert inside our poll wait queue */
852 poll_wait(file, &ep->poll_wait, wait);
853
854 /*
855 * Proceed to find out if wanted events are really available inside
856 * the ready list.
857 */
858 mutex_lock_nested(&ep->mtx, depth);
859 ep_start_scan(ep, &txlist);
860 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
861 if (ep_item_poll(epi, &pt, depth + 1)) {
862 res = EPOLLIN | EPOLLRDNORM;
863 break;
864 } else {
865 /*
866 * Item has been dropped into the ready list by the poll
867 * callback, but it's not actually ready, as far as
868 * caller requested events goes. We can remove it here.
869 */
870 __pm_relax(ep_wakeup_source(epi));
871 list_del_init(&epi->rdllink);
872 }
873 }
874 ep_done_scan(ep, &txlist);
875 mutex_unlock(&ep->mtx);
876 return res;
877 }
878
879 /*
880 * The ffd.file pointer may be in the process of being torn down due to
881 * being closed, but we may not have finished eventpoll_release() yet.
882 *
883 * Normally, even with the atomic_long_inc_not_zero, the file may have
884 * been free'd and then gotten re-allocated to something else (since
885 * files are not RCU-delayed, they are SLAB_TYPESAFE_BY_RCU).
886 *
887 * But for epoll, users hold the ep->mtx mutex, and as such any file in
888 * the process of being free'd will block in eventpoll_release_file()
889 * and thus the underlying file allocation will not be free'd, and the
890 * file re-use cannot happen.
891 *
892 * For the same reason we can avoid a rcu_read_lock() around the
893 * operation - 'ffd.file' cannot go away even if the refcount has
894 * reached zero (but we must still not call out to ->poll() functions
895 * etc).
896 */
epi_fget(const struct epitem * epi)897 static struct file *epi_fget(const struct epitem *epi)
898 {
899 struct file *file;
900
901 file = epi->ffd.file;
902 if (!atomic_long_inc_not_zero(&file->f_count))
903 file = NULL;
904 return file;
905 }
906
907 /*
908 * Differs from ep_eventpoll_poll() in that internal callers already have
909 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
910 * is correctly annotated.
911 */
ep_item_poll(const struct epitem * epi,poll_table * pt,int depth)912 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
913 int depth)
914 {
915 struct file *file = epi_fget(epi);
916 __poll_t res;
917
918 /*
919 * We could return EPOLLERR | EPOLLHUP or something, but let's
920 * treat this more as "file doesn't exist, poll didn't happen".
921 */
922 if (!file)
923 return 0;
924
925 pt->_key = epi->event.events;
926 if (!is_file_epoll(file))
927 res = vfs_poll(file, pt);
928 else
929 res = __ep_eventpoll_poll(file, pt, depth);
930 fput(file);
931 return res & epi->event.events;
932 }
933
ep_eventpoll_poll(struct file * file,poll_table * wait)934 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
935 {
936 return __ep_eventpoll_poll(file, wait, 0);
937 }
938
939 #ifdef CONFIG_PROC_FS
ep_show_fdinfo(struct seq_file * m,struct file * f)940 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
941 {
942 struct eventpoll *ep = f->private_data;
943 struct rb_node *rbp;
944
945 mutex_lock(&ep->mtx);
946 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
947 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
948 struct inode *inode = file_inode(epi->ffd.file);
949
950 seq_printf(m, "tfd: %8d events: %8x data: %16llx "
951 " pos:%lli ino:%lx sdev:%x\n",
952 epi->ffd.fd, epi->event.events,
953 (long long)epi->event.data,
954 (long long)epi->ffd.file->f_pos,
955 inode->i_ino, inode->i_sb->s_dev);
956 if (seq_has_overflowed(m))
957 break;
958 }
959 mutex_unlock(&ep->mtx);
960 }
961 #endif
962
963 /* File callbacks that implement the eventpoll file behaviour */
964 static const struct file_operations eventpoll_fops = {
965 #ifdef CONFIG_PROC_FS
966 .show_fdinfo = ep_show_fdinfo,
967 #endif
968 .release = ep_eventpoll_release,
969 .poll = ep_eventpoll_poll,
970 .llseek = noop_llseek,
971 };
972
973 /*
974 * This is called from eventpoll_release() to unlink files from the eventpoll
975 * interface. We need to have this facility to cleanup correctly files that are
976 * closed without being removed from the eventpoll interface.
977 */
eventpoll_release_file(struct file * file)978 void eventpoll_release_file(struct file *file)
979 {
980 struct eventpoll *ep;
981 struct epitem *epi;
982 bool dispose;
983
984 /*
985 * Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from
986 * touching the epitems list before eventpoll_release_file() can access
987 * the ep->mtx.
988 */
989 again:
990 spin_lock(&file->f_lock);
991 if (file->f_ep && file->f_ep->first) {
992 epi = hlist_entry(file->f_ep->first, struct epitem, fllink);
993 epi->dying = true;
994 spin_unlock(&file->f_lock);
995
996 /*
997 * ep access is safe as we still own a reference to the ep
998 * struct
999 */
1000 ep = epi->ep;
1001 mutex_lock(&ep->mtx);
1002 dispose = __ep_remove(ep, epi, true);
1003 mutex_unlock(&ep->mtx);
1004
1005 if (dispose)
1006 ep_free(ep);
1007 goto again;
1008 }
1009 spin_unlock(&file->f_lock);
1010 }
1011
ep_alloc(struct eventpoll ** pep)1012 static int ep_alloc(struct eventpoll **pep)
1013 {
1014 struct eventpoll *ep;
1015
1016 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1017 if (unlikely(!ep))
1018 return -ENOMEM;
1019
1020 mutex_init(&ep->mtx);
1021 rwlock_init(&ep->lock);
1022 init_waitqueue_head(&ep->wq);
1023 init_waitqueue_head(&ep->poll_wait);
1024 INIT_LIST_HEAD(&ep->rdllist);
1025 ep->rbr = RB_ROOT_CACHED;
1026 ep->ovflist = EP_UNACTIVE_PTR;
1027 ep->user = get_current_user();
1028 refcount_set(&ep->refcount, 1);
1029
1030 *pep = ep;
1031
1032 return 0;
1033 }
1034
1035 /*
1036 * Search the file inside the eventpoll tree. The RB tree operations
1037 * are protected by the "mtx" mutex, and ep_find() must be called with
1038 * "mtx" held.
1039 */
ep_find(struct eventpoll * ep,struct file * file,int fd)1040 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1041 {
1042 int kcmp;
1043 struct rb_node *rbp;
1044 struct epitem *epi, *epir = NULL;
1045 struct epoll_filefd ffd;
1046
1047 ep_set_ffd(&ffd, file, fd);
1048 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1049 epi = rb_entry(rbp, struct epitem, rbn);
1050 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1051 if (kcmp > 0)
1052 rbp = rbp->rb_right;
1053 else if (kcmp < 0)
1054 rbp = rbp->rb_left;
1055 else {
1056 epir = epi;
1057 break;
1058 }
1059 }
1060
1061 return epir;
1062 }
1063
1064 #ifdef CONFIG_KCMP
ep_find_tfd(struct eventpoll * ep,int tfd,unsigned long toff)1065 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1066 {
1067 struct rb_node *rbp;
1068 struct epitem *epi;
1069
1070 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1071 epi = rb_entry(rbp, struct epitem, rbn);
1072 if (epi->ffd.fd == tfd) {
1073 if (toff == 0)
1074 return epi;
1075 else
1076 toff--;
1077 }
1078 cond_resched();
1079 }
1080
1081 return NULL;
1082 }
1083
get_epoll_tfile_raw_ptr(struct file * file,int tfd,unsigned long toff)1084 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1085 unsigned long toff)
1086 {
1087 struct file *file_raw;
1088 struct eventpoll *ep;
1089 struct epitem *epi;
1090
1091 if (!is_file_epoll(file))
1092 return ERR_PTR(-EINVAL);
1093
1094 ep = file->private_data;
1095
1096 mutex_lock(&ep->mtx);
1097 epi = ep_find_tfd(ep, tfd, toff);
1098 if (epi)
1099 file_raw = epi->ffd.file;
1100 else
1101 file_raw = ERR_PTR(-ENOENT);
1102 mutex_unlock(&ep->mtx);
1103
1104 return file_raw;
1105 }
1106 #endif /* CONFIG_KCMP */
1107
1108 /*
1109 * Adds a new entry to the tail of the list in a lockless way, i.e.
1110 * multiple CPUs are allowed to call this function concurrently.
1111 *
1112 * Beware: it is necessary to prevent any other modifications of the
1113 * existing list until all changes are completed, in other words
1114 * concurrent list_add_tail_lockless() calls should be protected
1115 * with a read lock, where write lock acts as a barrier which
1116 * makes sure all list_add_tail_lockless() calls are fully
1117 * completed.
1118 *
1119 * Also an element can be locklessly added to the list only in one
1120 * direction i.e. either to the tail or to the head, otherwise
1121 * concurrent access will corrupt the list.
1122 *
1123 * Return: %false if element has been already added to the list, %true
1124 * otherwise.
1125 */
list_add_tail_lockless(struct list_head * new,struct list_head * head)1126 static inline bool list_add_tail_lockless(struct list_head *new,
1127 struct list_head *head)
1128 {
1129 struct list_head *prev;
1130
1131 /*
1132 * This is simple 'new->next = head' operation, but cmpxchg()
1133 * is used in order to detect that same element has been just
1134 * added to the list from another CPU: the winner observes
1135 * new->next == new.
1136 */
1137 if (!try_cmpxchg(&new->next, &new, head))
1138 return false;
1139
1140 /*
1141 * Initially ->next of a new element must be updated with the head
1142 * (we are inserting to the tail) and only then pointers are atomically
1143 * exchanged. XCHG guarantees memory ordering, thus ->next should be
1144 * updated before pointers are actually swapped and pointers are
1145 * swapped before prev->next is updated.
1146 */
1147
1148 prev = xchg(&head->prev, new);
1149
1150 /*
1151 * It is safe to modify prev->next and new->prev, because a new element
1152 * is added only to the tail and new->next is updated before XCHG.
1153 */
1154
1155 prev->next = new;
1156 new->prev = prev;
1157
1158 return true;
1159 }
1160
1161 /*
1162 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1163 * i.e. multiple CPUs are allowed to call this function concurrently.
1164 *
1165 * Return: %false if epi element has been already chained, %true otherwise.
1166 */
chain_epi_lockless(struct epitem * epi)1167 static inline bool chain_epi_lockless(struct epitem *epi)
1168 {
1169 struct eventpoll *ep = epi->ep;
1170
1171 /* Fast preliminary check */
1172 if (epi->next != EP_UNACTIVE_PTR)
1173 return false;
1174
1175 /* Check that the same epi has not been just chained from another CPU */
1176 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1177 return false;
1178
1179 /* Atomically exchange tail */
1180 epi->next = xchg(&ep->ovflist, epi);
1181
1182 return true;
1183 }
1184
1185 /*
1186 * This is the callback that is passed to the wait queue wakeup
1187 * mechanism. It is called by the stored file descriptors when they
1188 * have events to report.
1189 *
1190 * This callback takes a read lock in order not to contend with concurrent
1191 * events from another file descriptor, thus all modifications to ->rdllist
1192 * or ->ovflist are lockless. Read lock is paired with the write lock from
1193 * ep_scan_ready_list(), which stops all list modifications and guarantees
1194 * that lists state is seen correctly.
1195 *
1196 * Another thing worth to mention is that ep_poll_callback() can be called
1197 * concurrently for the same @epi from different CPUs if poll table was inited
1198 * with several wait queues entries. Plural wakeup from different CPUs of a
1199 * single wait queue is serialized by wq.lock, but the case when multiple wait
1200 * queues are used should be detected accordingly. This is detected using
1201 * cmpxchg() operation.
1202 */
ep_poll_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1203 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1204 {
1205 int pwake = 0;
1206 struct epitem *epi = ep_item_from_wait(wait);
1207 struct eventpoll *ep = epi->ep;
1208 __poll_t pollflags = key_to_poll(key);
1209 unsigned long flags;
1210 int ewake = 0;
1211
1212 read_lock_irqsave(&ep->lock, flags);
1213
1214 ep_set_busy_poll_napi_id(epi);
1215
1216 /*
1217 * If the event mask does not contain any poll(2) event, we consider the
1218 * descriptor to be disabled. This condition is likely the effect of the
1219 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1220 * until the next EPOLL_CTL_MOD will be issued.
1221 */
1222 if (!(epi->event.events & ~EP_PRIVATE_BITS))
1223 goto out_unlock;
1224
1225 /*
1226 * Check the events coming with the callback. At this stage, not
1227 * every device reports the events in the "key" parameter of the
1228 * callback. We need to be able to handle both cases here, hence the
1229 * test for "key" != NULL before the event match test.
1230 */
1231 if (pollflags && !(pollflags & epi->event.events))
1232 goto out_unlock;
1233
1234 /*
1235 * If we are transferring events to userspace, we can hold no locks
1236 * (because we're accessing user memory, and because of linux f_op->poll()
1237 * semantics). All the events that happen during that period of time are
1238 * chained in ep->ovflist and requeued later on.
1239 */
1240 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1241 if (chain_epi_lockless(epi))
1242 ep_pm_stay_awake_rcu(epi);
1243 } else if (!ep_is_linked(epi)) {
1244 /* In the usual case, add event to ready list. */
1245 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1246 ep_pm_stay_awake_rcu(epi);
1247 }
1248
1249 /*
1250 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1251 * wait list.
1252 */
1253 if (waitqueue_active(&ep->wq)) {
1254 if ((epi->event.events & EPOLLEXCLUSIVE) &&
1255 !(pollflags & POLLFREE)) {
1256 switch (pollflags & EPOLLINOUT_BITS) {
1257 case EPOLLIN:
1258 if (epi->event.events & EPOLLIN)
1259 ewake = 1;
1260 break;
1261 case EPOLLOUT:
1262 if (epi->event.events & EPOLLOUT)
1263 ewake = 1;
1264 break;
1265 case 0:
1266 ewake = 1;
1267 break;
1268 }
1269 }
1270 wake_up(&ep->wq);
1271 }
1272 if (waitqueue_active(&ep->poll_wait))
1273 pwake++;
1274
1275 out_unlock:
1276 read_unlock_irqrestore(&ep->lock, flags);
1277
1278 /* We have to call this outside the lock */
1279 if (pwake)
1280 ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE);
1281
1282 if (!(epi->event.events & EPOLLEXCLUSIVE))
1283 ewake = 1;
1284
1285 if (pollflags & POLLFREE) {
1286 /*
1287 * If we race with ep_remove_wait_queue() it can miss
1288 * ->whead = NULL and do another remove_wait_queue() after
1289 * us, so we can't use __remove_wait_queue().
1290 */
1291 list_del_init(&wait->entry);
1292 /*
1293 * ->whead != NULL protects us from the race with
1294 * ep_clear_and_put() or ep_remove(), ep_remove_wait_queue()
1295 * takes whead->lock held by the caller. Once we nullify it,
1296 * nothing protects ep/epi or even wait.
1297 */
1298 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1299 }
1300
1301 return ewake;
1302 }
1303
1304 /*
1305 * This is the callback that is used to add our wait queue to the
1306 * target file wakeup lists.
1307 */
ep_ptable_queue_proc(struct file * file,wait_queue_head_t * whead,poll_table * pt)1308 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1309 poll_table *pt)
1310 {
1311 struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1312 struct epitem *epi = epq->epi;
1313 struct eppoll_entry *pwq;
1314
1315 if (unlikely(!epi)) // an earlier allocation has failed
1316 return;
1317
1318 pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1319 if (unlikely(!pwq)) {
1320 epq->epi = NULL;
1321 return;
1322 }
1323
1324 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1325 pwq->whead = whead;
1326 pwq->base = epi;
1327 if (epi->event.events & EPOLLEXCLUSIVE)
1328 add_wait_queue_exclusive(whead, &pwq->wait);
1329 else
1330 add_wait_queue(whead, &pwq->wait);
1331 pwq->next = epi->pwqlist;
1332 epi->pwqlist = pwq;
1333 }
1334
ep_rbtree_insert(struct eventpoll * ep,struct epitem * epi)1335 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1336 {
1337 int kcmp;
1338 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1339 struct epitem *epic;
1340 bool leftmost = true;
1341
1342 while (*p) {
1343 parent = *p;
1344 epic = rb_entry(parent, struct epitem, rbn);
1345 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1346 if (kcmp > 0) {
1347 p = &parent->rb_right;
1348 leftmost = false;
1349 } else
1350 p = &parent->rb_left;
1351 }
1352 rb_link_node(&epi->rbn, parent, p);
1353 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1354 }
1355
1356
1357
1358 #define PATH_ARR_SIZE 5
1359 /*
1360 * These are the number paths of length 1 to 5, that we are allowing to emanate
1361 * from a single file of interest. For example, we allow 1000 paths of length
1362 * 1, to emanate from each file of interest. This essentially represents the
1363 * potential wakeup paths, which need to be limited in order to avoid massive
1364 * uncontrolled wakeup storms. The common use case should be a single ep which
1365 * is connected to n file sources. In this case each file source has 1 path
1366 * of length 1. Thus, the numbers below should be more than sufficient. These
1367 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1368 * and delete can't add additional paths. Protected by the epnested_mutex.
1369 */
1370 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1371 static int path_count[PATH_ARR_SIZE];
1372
path_count_inc(int nests)1373 static int path_count_inc(int nests)
1374 {
1375 /* Allow an arbitrary number of depth 1 paths */
1376 if (nests == 0)
1377 return 0;
1378
1379 if (++path_count[nests] > path_limits[nests])
1380 return -1;
1381 return 0;
1382 }
1383
path_count_init(void)1384 static void path_count_init(void)
1385 {
1386 int i;
1387
1388 for (i = 0; i < PATH_ARR_SIZE; i++)
1389 path_count[i] = 0;
1390 }
1391
reverse_path_check_proc(struct hlist_head * refs,int depth)1392 static int reverse_path_check_proc(struct hlist_head *refs, int depth)
1393 {
1394 int error = 0;
1395 struct epitem *epi;
1396
1397 if (depth > EP_MAX_NESTS) /* too deep nesting */
1398 return -1;
1399
1400 /* CTL_DEL can remove links here, but that can't increase our count */
1401 hlist_for_each_entry_rcu(epi, refs, fllink) {
1402 struct hlist_head *refs = &epi->ep->refs;
1403 if (hlist_empty(refs))
1404 error = path_count_inc(depth);
1405 else
1406 error = reverse_path_check_proc(refs, depth + 1);
1407 if (error != 0)
1408 break;
1409 }
1410 return error;
1411 }
1412
1413 /**
1414 * reverse_path_check - The tfile_check_list is list of epitem_head, which have
1415 * links that are proposed to be newly added. We need to
1416 * make sure that those added links don't add too many
1417 * paths such that we will spend all our time waking up
1418 * eventpoll objects.
1419 *
1420 * Return: %zero if the proposed links don't create too many paths,
1421 * %-1 otherwise.
1422 */
reverse_path_check(void)1423 static int reverse_path_check(void)
1424 {
1425 struct epitems_head *p;
1426
1427 for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) {
1428 int error;
1429 path_count_init();
1430 rcu_read_lock();
1431 error = reverse_path_check_proc(&p->epitems, 0);
1432 rcu_read_unlock();
1433 if (error)
1434 return error;
1435 }
1436 return 0;
1437 }
1438
ep_create_wakeup_source(struct epitem * epi)1439 static int ep_create_wakeup_source(struct epitem *epi)
1440 {
1441 struct name_snapshot n;
1442 struct wakeup_source *ws;
1443
1444 if (!epi->ep->ws) {
1445 epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1446 if (!epi->ep->ws)
1447 return -ENOMEM;
1448 }
1449
1450 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1451 ws = wakeup_source_register(NULL, n.name.name);
1452 release_dentry_name_snapshot(&n);
1453
1454 if (!ws)
1455 return -ENOMEM;
1456 rcu_assign_pointer(epi->ws, ws);
1457
1458 return 0;
1459 }
1460
1461 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
ep_destroy_wakeup_source(struct epitem * epi)1462 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1463 {
1464 struct wakeup_source *ws = ep_wakeup_source(epi);
1465
1466 RCU_INIT_POINTER(epi->ws, NULL);
1467
1468 /*
1469 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1470 * used internally by wakeup_source_remove, too (called by
1471 * wakeup_source_unregister), so we cannot use call_rcu
1472 */
1473 synchronize_rcu();
1474 wakeup_source_unregister(ws);
1475 }
1476
attach_epitem(struct file * file,struct epitem * epi)1477 static int attach_epitem(struct file *file, struct epitem *epi)
1478 {
1479 struct epitems_head *to_free = NULL;
1480 struct hlist_head *head = NULL;
1481 struct eventpoll *ep = NULL;
1482
1483 if (is_file_epoll(file))
1484 ep = file->private_data;
1485
1486 if (ep) {
1487 head = &ep->refs;
1488 } else if (!READ_ONCE(file->f_ep)) {
1489 allocate:
1490 to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL);
1491 if (!to_free)
1492 return -ENOMEM;
1493 head = &to_free->epitems;
1494 }
1495 spin_lock(&file->f_lock);
1496 if (!file->f_ep) {
1497 if (unlikely(!head)) {
1498 spin_unlock(&file->f_lock);
1499 goto allocate;
1500 }
1501 file->f_ep = head;
1502 to_free = NULL;
1503 }
1504 hlist_add_head_rcu(&epi->fllink, file->f_ep);
1505 spin_unlock(&file->f_lock);
1506 free_ephead(to_free);
1507 return 0;
1508 }
1509
1510 /*
1511 * Must be called with "mtx" held.
1512 */
ep_insert(struct eventpoll * ep,const struct epoll_event * event,struct file * tfile,int fd,int full_check)1513 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1514 struct file *tfile, int fd, int full_check)
1515 {
1516 int error, pwake = 0;
1517 __poll_t revents;
1518 struct epitem *epi;
1519 struct ep_pqueue epq;
1520 struct eventpoll *tep = NULL;
1521
1522 if (is_file_epoll(tfile))
1523 tep = tfile->private_data;
1524
1525 lockdep_assert_irqs_enabled();
1526
1527 if (unlikely(percpu_counter_compare(&ep->user->epoll_watches,
1528 max_user_watches) >= 0))
1529 return -ENOSPC;
1530 percpu_counter_inc(&ep->user->epoll_watches);
1531
1532 if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) {
1533 percpu_counter_dec(&ep->user->epoll_watches);
1534 return -ENOMEM;
1535 }
1536
1537 /* Item initialization follow here ... */
1538 INIT_LIST_HEAD(&epi->rdllink);
1539 epi->ep = ep;
1540 ep_set_ffd(&epi->ffd, tfile, fd);
1541 epi->event = *event;
1542 epi->next = EP_UNACTIVE_PTR;
1543
1544 if (tep)
1545 mutex_lock_nested(&tep->mtx, 1);
1546 /* Add the current item to the list of active epoll hook for this file */
1547 if (unlikely(attach_epitem(tfile, epi) < 0)) {
1548 if (tep)
1549 mutex_unlock(&tep->mtx);
1550 kmem_cache_free(epi_cache, epi);
1551 percpu_counter_dec(&ep->user->epoll_watches);
1552 return -ENOMEM;
1553 }
1554
1555 if (full_check && !tep)
1556 list_file(tfile);
1557
1558 /*
1559 * Add the current item to the RB tree. All RB tree operations are
1560 * protected by "mtx", and ep_insert() is called with "mtx" held.
1561 */
1562 ep_rbtree_insert(ep, epi);
1563 if (tep)
1564 mutex_unlock(&tep->mtx);
1565
1566 /*
1567 * ep_remove_safe() calls in the later error paths can't lead to
1568 * ep_free() as the ep file itself still holds an ep reference.
1569 */
1570 ep_get(ep);
1571
1572 /* now check if we've created too many backpaths */
1573 if (unlikely(full_check && reverse_path_check())) {
1574 ep_remove_safe(ep, epi);
1575 return -EINVAL;
1576 }
1577
1578 if (epi->event.events & EPOLLWAKEUP) {
1579 error = ep_create_wakeup_source(epi);
1580 if (error) {
1581 ep_remove_safe(ep, epi);
1582 return error;
1583 }
1584 }
1585
1586 /* Initialize the poll table using the queue callback */
1587 epq.epi = epi;
1588 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1589
1590 /*
1591 * Attach the item to the poll hooks and get current event bits.
1592 * We can safely use the file* here because its usage count has
1593 * been increased by the caller of this function. Note that after
1594 * this operation completes, the poll callback can start hitting
1595 * the new item.
1596 */
1597 revents = ep_item_poll(epi, &epq.pt, 1);
1598
1599 /*
1600 * We have to check if something went wrong during the poll wait queue
1601 * install process. Namely an allocation for a wait queue failed due
1602 * high memory pressure.
1603 */
1604 if (unlikely(!epq.epi)) {
1605 ep_remove_safe(ep, epi);
1606 return -ENOMEM;
1607 }
1608
1609 /* We have to drop the new item inside our item list to keep track of it */
1610 write_lock_irq(&ep->lock);
1611
1612 /* record NAPI ID of new item if present */
1613 ep_set_busy_poll_napi_id(epi);
1614
1615 /* If the file is already "ready" we drop it inside the ready list */
1616 if (revents && !ep_is_linked(epi)) {
1617 list_add_tail(&epi->rdllink, &ep->rdllist);
1618 ep_pm_stay_awake(epi);
1619
1620 /* Notify waiting tasks that events are available */
1621 if (waitqueue_active(&ep->wq))
1622 wake_up(&ep->wq);
1623 if (waitqueue_active(&ep->poll_wait))
1624 pwake++;
1625 }
1626
1627 write_unlock_irq(&ep->lock);
1628
1629 /* We have to call this outside the lock */
1630 if (pwake)
1631 ep_poll_safewake(ep, NULL, 0);
1632
1633 return 0;
1634 }
1635
1636 /*
1637 * Modify the interest event mask by dropping an event if the new mask
1638 * has a match in the current file status. Must be called with "mtx" held.
1639 */
ep_modify(struct eventpoll * ep,struct epitem * epi,const struct epoll_event * event)1640 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1641 const struct epoll_event *event)
1642 {
1643 int pwake = 0;
1644 poll_table pt;
1645
1646 lockdep_assert_irqs_enabled();
1647
1648 init_poll_funcptr(&pt, NULL);
1649
1650 /*
1651 * Set the new event interest mask before calling f_op->poll();
1652 * otherwise we might miss an event that happens between the
1653 * f_op->poll() call and the new event set registering.
1654 */
1655 epi->event.events = event->events; /* need barrier below */
1656 epi->event.data = event->data; /* protected by mtx */
1657 if (epi->event.events & EPOLLWAKEUP) {
1658 if (!ep_has_wakeup_source(epi))
1659 ep_create_wakeup_source(epi);
1660 } else if (ep_has_wakeup_source(epi)) {
1661 ep_destroy_wakeup_source(epi);
1662 }
1663
1664 /*
1665 * The following barrier has two effects:
1666 *
1667 * 1) Flush epi changes above to other CPUs. This ensures
1668 * we do not miss events from ep_poll_callback if an
1669 * event occurs immediately after we call f_op->poll().
1670 * We need this because we did not take ep->lock while
1671 * changing epi above (but ep_poll_callback does take
1672 * ep->lock).
1673 *
1674 * 2) We also need to ensure we do not miss _past_ events
1675 * when calling f_op->poll(). This barrier also
1676 * pairs with the barrier in wq_has_sleeper (see
1677 * comments for wq_has_sleeper).
1678 *
1679 * This barrier will now guarantee ep_poll_callback or f_op->poll
1680 * (or both) will notice the readiness of an item.
1681 */
1682 smp_mb();
1683
1684 /*
1685 * Get current event bits. We can safely use the file* here because
1686 * its usage count has been increased by the caller of this function.
1687 * If the item is "hot" and it is not registered inside the ready
1688 * list, push it inside.
1689 */
1690 if (ep_item_poll(epi, &pt, 1)) {
1691 write_lock_irq(&ep->lock);
1692 if (!ep_is_linked(epi)) {
1693 list_add_tail(&epi->rdllink, &ep->rdllist);
1694 ep_pm_stay_awake(epi);
1695
1696 /* Notify waiting tasks that events are available */
1697 if (waitqueue_active(&ep->wq))
1698 wake_up(&ep->wq);
1699 if (waitqueue_active(&ep->poll_wait))
1700 pwake++;
1701 }
1702 write_unlock_irq(&ep->lock);
1703 }
1704
1705 /* We have to call this outside the lock */
1706 if (pwake)
1707 ep_poll_safewake(ep, NULL, 0);
1708
1709 return 0;
1710 }
1711
ep_send_events(struct eventpoll * ep,struct epoll_event __user * events,int maxevents)1712 static int ep_send_events(struct eventpoll *ep,
1713 struct epoll_event __user *events, int maxevents)
1714 {
1715 struct epitem *epi, *tmp;
1716 LIST_HEAD(txlist);
1717 poll_table pt;
1718 int res = 0;
1719
1720 /*
1721 * Always short-circuit for fatal signals to allow threads to make a
1722 * timely exit without the chance of finding more events available and
1723 * fetching repeatedly.
1724 */
1725 if (fatal_signal_pending(current))
1726 return -EINTR;
1727
1728 init_poll_funcptr(&pt, NULL);
1729
1730 mutex_lock(&ep->mtx);
1731 ep_start_scan(ep, &txlist);
1732
1733 /*
1734 * We can loop without lock because we are passed a task private list.
1735 * Items cannot vanish during the loop we are holding ep->mtx.
1736 */
1737 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
1738 struct wakeup_source *ws;
1739 __poll_t revents;
1740
1741 if (res >= maxevents)
1742 break;
1743
1744 /*
1745 * Activate ep->ws before deactivating epi->ws to prevent
1746 * triggering auto-suspend here (in case we reactive epi->ws
1747 * below).
1748 *
1749 * This could be rearranged to delay the deactivation of epi->ws
1750 * instead, but then epi->ws would temporarily be out of sync
1751 * with ep_is_linked().
1752 */
1753 ws = ep_wakeup_source(epi);
1754 if (ws) {
1755 if (ws->active)
1756 __pm_stay_awake(ep->ws);
1757 __pm_relax(ws);
1758 }
1759
1760 list_del_init(&epi->rdllink);
1761
1762 /*
1763 * If the event mask intersect the caller-requested one,
1764 * deliver the event to userspace. Again, we are holding ep->mtx,
1765 * so no operations coming from userspace can change the item.
1766 */
1767 revents = ep_item_poll(epi, &pt, 1);
1768 if (!revents)
1769 continue;
1770
1771 events = epoll_put_uevent(revents, epi->event.data, events);
1772 if (!events) {
1773 list_add(&epi->rdllink, &txlist);
1774 ep_pm_stay_awake(epi);
1775 if (!res)
1776 res = -EFAULT;
1777 break;
1778 }
1779 res++;
1780 if (epi->event.events & EPOLLONESHOT)
1781 epi->event.events &= EP_PRIVATE_BITS;
1782 else if (!(epi->event.events & EPOLLET)) {
1783 /*
1784 * If this file has been added with Level
1785 * Trigger mode, we need to insert back inside
1786 * the ready list, so that the next call to
1787 * epoll_wait() will check again the events
1788 * availability. At this point, no one can insert
1789 * into ep->rdllist besides us. The epoll_ctl()
1790 * callers are locked out by
1791 * ep_scan_ready_list() holding "mtx" and the
1792 * poll callback will queue them in ep->ovflist.
1793 */
1794 list_add_tail(&epi->rdllink, &ep->rdllist);
1795 ep_pm_stay_awake(epi);
1796 }
1797 }
1798 ep_done_scan(ep, &txlist);
1799 mutex_unlock(&ep->mtx);
1800
1801 return res;
1802 }
1803
ep_timeout_to_timespec(struct timespec64 * to,long ms)1804 static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms)
1805 {
1806 struct timespec64 now;
1807
1808 if (ms < 0)
1809 return NULL;
1810
1811 if (!ms) {
1812 to->tv_sec = 0;
1813 to->tv_nsec = 0;
1814 return to;
1815 }
1816
1817 to->tv_sec = ms / MSEC_PER_SEC;
1818 to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC);
1819
1820 ktime_get_ts64(&now);
1821 *to = timespec64_add_safe(now, *to);
1822 return to;
1823 }
1824
1825 /*
1826 * autoremove_wake_function, but remove even on failure to wake up, because we
1827 * know that default_wake_function/ttwu will only fail if the thread is already
1828 * woken, and in that case the ep_poll loop will remove the entry anyways, not
1829 * try to reuse it.
1830 */
ep_autoremove_wake_function(struct wait_queue_entry * wq_entry,unsigned int mode,int sync,void * key)1831 static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry,
1832 unsigned int mode, int sync, void *key)
1833 {
1834 int ret = default_wake_function(wq_entry, mode, sync, key);
1835
1836 /*
1837 * Pairs with list_empty_careful in ep_poll, and ensures future loop
1838 * iterations see the cause of this wakeup.
1839 */
1840 list_del_init_careful(&wq_entry->entry);
1841 return ret;
1842 }
1843
1844 /**
1845 * ep_poll - Retrieves ready events, and delivers them to the caller-supplied
1846 * event buffer.
1847 *
1848 * @ep: Pointer to the eventpoll context.
1849 * @events: Pointer to the userspace buffer where the ready events should be
1850 * stored.
1851 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1852 * @timeout: Maximum timeout for the ready events fetch operation, in
1853 * timespec. If the timeout is zero, the function will not block,
1854 * while if the @timeout ptr is NULL, the function will block
1855 * until at least one event has been retrieved (or an error
1856 * occurred).
1857 *
1858 * Return: the number of ready events which have been fetched, or an
1859 * error code, in case of error.
1860 */
ep_poll(struct eventpoll * ep,struct epoll_event __user * events,int maxevents,struct timespec64 * timeout)1861 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1862 int maxevents, struct timespec64 *timeout)
1863 {
1864 int res, eavail, timed_out = 0;
1865 u64 slack = 0;
1866 wait_queue_entry_t wait;
1867 ktime_t expires, *to = NULL;
1868
1869 lockdep_assert_irqs_enabled();
1870
1871 if (timeout && (timeout->tv_sec | timeout->tv_nsec)) {
1872 slack = select_estimate_accuracy(timeout);
1873 to = &expires;
1874 *to = timespec64_to_ktime(*timeout);
1875 } else if (timeout) {
1876 /*
1877 * Avoid the unnecessary trip to the wait queue loop, if the
1878 * caller specified a non blocking operation.
1879 */
1880 timed_out = 1;
1881 }
1882
1883 /*
1884 * This call is racy: We may or may not see events that are being added
1885 * to the ready list under the lock (e.g., in IRQ callbacks). For cases
1886 * with a non-zero timeout, this thread will check the ready list under
1887 * lock and will add to the wait queue. For cases with a zero
1888 * timeout, the user by definition should not care and will have to
1889 * recheck again.
1890 */
1891 eavail = ep_events_available(ep);
1892
1893 while (1) {
1894 if (eavail) {
1895 /*
1896 * Try to transfer events to user space. In case we get
1897 * 0 events and there's still timeout left over, we go
1898 * trying again in search of more luck.
1899 */
1900 res = ep_send_events(ep, events, maxevents);
1901 if (res)
1902 return res;
1903 }
1904
1905 if (timed_out)
1906 return 0;
1907
1908 eavail = ep_busy_loop(ep, timed_out);
1909 if (eavail)
1910 continue;
1911
1912 if (signal_pending(current))
1913 return -EINTR;
1914
1915 /*
1916 * Internally init_wait() uses autoremove_wake_function(),
1917 * thus wait entry is removed from the wait queue on each
1918 * wakeup. Why it is important? In case of several waiters
1919 * each new wakeup will hit the next waiter, giving it the
1920 * chance to harvest new event. Otherwise wakeup can be
1921 * lost. This is also good performance-wise, because on
1922 * normal wakeup path no need to call __remove_wait_queue()
1923 * explicitly, thus ep->lock is not taken, which halts the
1924 * event delivery.
1925 *
1926 * In fact, we now use an even more aggressive function that
1927 * unconditionally removes, because we don't reuse the wait
1928 * entry between loop iterations. This lets us also avoid the
1929 * performance issue if a process is killed, causing all of its
1930 * threads to wake up without being removed normally.
1931 */
1932 init_wait(&wait);
1933 wait.func = ep_autoremove_wake_function;
1934
1935 write_lock_irq(&ep->lock);
1936 /*
1937 * Barrierless variant, waitqueue_active() is called under
1938 * the same lock on wakeup ep_poll_callback() side, so it
1939 * is safe to avoid an explicit barrier.
1940 */
1941 __set_current_state(TASK_INTERRUPTIBLE);
1942
1943 /*
1944 * Do the final check under the lock. ep_scan_ready_list()
1945 * plays with two lists (->rdllist and ->ovflist) and there
1946 * is always a race when both lists are empty for short
1947 * period of time although events are pending, so lock is
1948 * important.
1949 */
1950 eavail = ep_events_available(ep);
1951 if (!eavail)
1952 __add_wait_queue_exclusive(&ep->wq, &wait);
1953
1954 write_unlock_irq(&ep->lock);
1955
1956 if (!eavail)
1957 timed_out = !schedule_hrtimeout_range(to, slack,
1958 HRTIMER_MODE_ABS);
1959 __set_current_state(TASK_RUNNING);
1960
1961 /*
1962 * We were woken up, thus go and try to harvest some events.
1963 * If timed out and still on the wait queue, recheck eavail
1964 * carefully under lock, below.
1965 */
1966 eavail = 1;
1967
1968 if (!list_empty_careful(&wait.entry)) {
1969 write_lock_irq(&ep->lock);
1970 /*
1971 * If the thread timed out and is not on the wait queue,
1972 * it means that the thread was woken up after its
1973 * timeout expired before it could reacquire the lock.
1974 * Thus, when wait.entry is empty, it needs to harvest
1975 * events.
1976 */
1977 if (timed_out)
1978 eavail = list_empty(&wait.entry);
1979 __remove_wait_queue(&ep->wq, &wait);
1980 write_unlock_irq(&ep->lock);
1981 }
1982 }
1983 }
1984
1985 /**
1986 * ep_loop_check_proc - verify that adding an epoll file inside another
1987 * epoll structure does not violate the constraints, in
1988 * terms of closed loops, or too deep chains (which can
1989 * result in excessive stack usage).
1990 *
1991 * @ep: the &struct eventpoll to be currently checked.
1992 * @depth: Current depth of the path being checked.
1993 *
1994 * Return: %zero if adding the epoll @file inside current epoll
1995 * structure @ep does not violate the constraints, or %-1 otherwise.
1996 */
ep_loop_check_proc(struct eventpoll * ep,int depth)1997 static int ep_loop_check_proc(struct eventpoll *ep, int depth)
1998 {
1999 int error = 0;
2000 struct rb_node *rbp;
2001 struct epitem *epi;
2002
2003 mutex_lock_nested(&ep->mtx, depth + 1);
2004 ep->gen = loop_check_gen;
2005 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
2006 epi = rb_entry(rbp, struct epitem, rbn);
2007 if (unlikely(is_file_epoll(epi->ffd.file))) {
2008 struct eventpoll *ep_tovisit;
2009 ep_tovisit = epi->ffd.file->private_data;
2010 if (ep_tovisit->gen == loop_check_gen)
2011 continue;
2012 if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS)
2013 error = -1;
2014 else
2015 error = ep_loop_check_proc(ep_tovisit, depth + 1);
2016 if (error != 0)
2017 break;
2018 } else {
2019 /*
2020 * If we've reached a file that is not associated with
2021 * an ep, then we need to check if the newly added
2022 * links are going to add too many wakeup paths. We do
2023 * this by adding it to the tfile_check_list, if it's
2024 * not already there, and calling reverse_path_check()
2025 * during ep_insert().
2026 */
2027 list_file(epi->ffd.file);
2028 }
2029 }
2030 mutex_unlock(&ep->mtx);
2031
2032 return error;
2033 }
2034
2035 /**
2036 * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
2037 * into another epoll file (represented by @ep) does not create
2038 * closed loops or too deep chains.
2039 *
2040 * @ep: Pointer to the epoll we are inserting into.
2041 * @to: Pointer to the epoll to be inserted.
2042 *
2043 * Return: %zero if adding the epoll @to inside the epoll @from
2044 * does not violate the constraints, or %-1 otherwise.
2045 */
ep_loop_check(struct eventpoll * ep,struct eventpoll * to)2046 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to)
2047 {
2048 inserting_into = ep;
2049 return ep_loop_check_proc(to, 0);
2050 }
2051
clear_tfile_check_list(void)2052 static void clear_tfile_check_list(void)
2053 {
2054 rcu_read_lock();
2055 while (tfile_check_list != EP_UNACTIVE_PTR) {
2056 struct epitems_head *head = tfile_check_list;
2057 tfile_check_list = head->next;
2058 unlist_file(head);
2059 }
2060 rcu_read_unlock();
2061 }
2062
2063 /*
2064 * Open an eventpoll file descriptor.
2065 */
do_epoll_create(int flags)2066 static int do_epoll_create(int flags)
2067 {
2068 int error, fd;
2069 struct eventpoll *ep = NULL;
2070 struct file *file;
2071
2072 /* Check the EPOLL_* constant for consistency. */
2073 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2074
2075 if (flags & ~EPOLL_CLOEXEC)
2076 return -EINVAL;
2077 /*
2078 * Create the internal data structure ("struct eventpoll").
2079 */
2080 error = ep_alloc(&ep);
2081 if (error < 0)
2082 return error;
2083 /*
2084 * Creates all the items needed to setup an eventpoll file. That is,
2085 * a file structure and a free file descriptor.
2086 */
2087 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2088 if (fd < 0) {
2089 error = fd;
2090 goto out_free_ep;
2091 }
2092 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2093 O_RDWR | (flags & O_CLOEXEC));
2094 if (IS_ERR(file)) {
2095 error = PTR_ERR(file);
2096 goto out_free_fd;
2097 }
2098 ep->file = file;
2099 fd_install(fd, file);
2100 return fd;
2101
2102 out_free_fd:
2103 put_unused_fd(fd);
2104 out_free_ep:
2105 ep_clear_and_put(ep);
2106 return error;
2107 }
2108
SYSCALL_DEFINE1(epoll_create1,int,flags)2109 SYSCALL_DEFINE1(epoll_create1, int, flags)
2110 {
2111 return do_epoll_create(flags);
2112 }
2113
SYSCALL_DEFINE1(epoll_create,int,size)2114 SYSCALL_DEFINE1(epoll_create, int, size)
2115 {
2116 if (size <= 0)
2117 return -EINVAL;
2118
2119 return do_epoll_create(0);
2120 }
2121
2122 #ifdef CONFIG_PM_SLEEP
ep_take_care_of_epollwakeup(struct epoll_event * epev)2123 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2124 {
2125 if ((epev->events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND))
2126 epev->events &= ~EPOLLWAKEUP;
2127 }
2128 #else
ep_take_care_of_epollwakeup(struct epoll_event * epev)2129 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2130 {
2131 epev->events &= ~EPOLLWAKEUP;
2132 }
2133 #endif
2134
epoll_mutex_lock(struct mutex * mutex,int depth,bool nonblock)2135 static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2136 bool nonblock)
2137 {
2138 if (!nonblock) {
2139 mutex_lock_nested(mutex, depth);
2140 return 0;
2141 }
2142 if (mutex_trylock(mutex))
2143 return 0;
2144 return -EAGAIN;
2145 }
2146
do_epoll_ctl(int epfd,int op,int fd,struct epoll_event * epds,bool nonblock)2147 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2148 bool nonblock)
2149 {
2150 int error;
2151 int full_check = 0;
2152 struct fd f, tf;
2153 struct eventpoll *ep;
2154 struct epitem *epi;
2155 struct eventpoll *tep = NULL;
2156
2157 error = -EBADF;
2158 f = fdget(epfd);
2159 if (!f.file)
2160 goto error_return;
2161
2162 /* Get the "struct file *" for the target file */
2163 tf = fdget(fd);
2164 if (!tf.file)
2165 goto error_fput;
2166
2167 /* The target file descriptor must support poll */
2168 error = -EPERM;
2169 if (!file_can_poll(tf.file))
2170 goto error_tgt_fput;
2171
2172 /* Check if EPOLLWAKEUP is allowed */
2173 if (ep_op_has_event(op))
2174 ep_take_care_of_epollwakeup(epds);
2175
2176 /*
2177 * We have to check that the file structure underneath the file descriptor
2178 * the user passed to us _is_ an eventpoll file. And also we do not permit
2179 * adding an epoll file descriptor inside itself.
2180 */
2181 error = -EINVAL;
2182 if (f.file == tf.file || !is_file_epoll(f.file))
2183 goto error_tgt_fput;
2184
2185 /*
2186 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2187 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2188 * Also, we do not currently supported nested exclusive wakeups.
2189 */
2190 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2191 if (op == EPOLL_CTL_MOD)
2192 goto error_tgt_fput;
2193 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2194 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2195 goto error_tgt_fput;
2196 }
2197
2198 /*
2199 * At this point it is safe to assume that the "private_data" contains
2200 * our own data structure.
2201 */
2202 ep = f.file->private_data;
2203
2204 /*
2205 * When we insert an epoll file descriptor inside another epoll file
2206 * descriptor, there is the chance of creating closed loops, which are
2207 * better be handled here, than in more critical paths. While we are
2208 * checking for loops we also determine the list of files reachable
2209 * and hang them on the tfile_check_list, so we can check that we
2210 * haven't created too many possible wakeup paths.
2211 *
2212 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2213 * the epoll file descriptor is attaching directly to a wakeup source,
2214 * unless the epoll file descriptor is nested. The purpose of taking the
2215 * 'epnested_mutex' on add is to prevent complex toplogies such as loops and
2216 * deep wakeup paths from forming in parallel through multiple
2217 * EPOLL_CTL_ADD operations.
2218 */
2219 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2220 if (error)
2221 goto error_tgt_fput;
2222 if (op == EPOLL_CTL_ADD) {
2223 if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen ||
2224 is_file_epoll(tf.file)) {
2225 mutex_unlock(&ep->mtx);
2226 error = epoll_mutex_lock(&epnested_mutex, 0, nonblock);
2227 if (error)
2228 goto error_tgt_fput;
2229 loop_check_gen++;
2230 full_check = 1;
2231 if (is_file_epoll(tf.file)) {
2232 tep = tf.file->private_data;
2233 error = -ELOOP;
2234 if (ep_loop_check(ep, tep) != 0)
2235 goto error_tgt_fput;
2236 }
2237 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2238 if (error)
2239 goto error_tgt_fput;
2240 }
2241 }
2242
2243 /*
2244 * Try to lookup the file inside our RB tree. Since we grabbed "mtx"
2245 * above, we can be sure to be able to use the item looked up by
2246 * ep_find() till we release the mutex.
2247 */
2248 epi = ep_find(ep, tf.file, fd);
2249
2250 error = -EINVAL;
2251 switch (op) {
2252 case EPOLL_CTL_ADD:
2253 if (!epi) {
2254 epds->events |= EPOLLERR | EPOLLHUP;
2255 error = ep_insert(ep, epds, tf.file, fd, full_check);
2256 } else
2257 error = -EEXIST;
2258 break;
2259 case EPOLL_CTL_DEL:
2260 if (epi) {
2261 /*
2262 * The eventpoll itself is still alive: the refcount
2263 * can't go to zero here.
2264 */
2265 ep_remove_safe(ep, epi);
2266 error = 0;
2267 } else {
2268 error = -ENOENT;
2269 }
2270 break;
2271 case EPOLL_CTL_MOD:
2272 if (epi) {
2273 if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2274 epds->events |= EPOLLERR | EPOLLHUP;
2275 error = ep_modify(ep, epi, epds);
2276 }
2277 } else
2278 error = -ENOENT;
2279 break;
2280 }
2281 mutex_unlock(&ep->mtx);
2282
2283 error_tgt_fput:
2284 if (full_check) {
2285 clear_tfile_check_list();
2286 loop_check_gen++;
2287 mutex_unlock(&epnested_mutex);
2288 }
2289
2290 fdput(tf);
2291 error_fput:
2292 fdput(f);
2293 error_return:
2294
2295 return error;
2296 }
2297
2298 /*
2299 * The following function implements the controller interface for
2300 * the eventpoll file that enables the insertion/removal/change of
2301 * file descriptors inside the interest set.
2302 */
SYSCALL_DEFINE4(epoll_ctl,int,epfd,int,op,int,fd,struct epoll_event __user *,event)2303 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2304 struct epoll_event __user *, event)
2305 {
2306 struct epoll_event epds;
2307
2308 if (ep_op_has_event(op) &&
2309 copy_from_user(&epds, event, sizeof(struct epoll_event)))
2310 return -EFAULT;
2311
2312 return do_epoll_ctl(epfd, op, fd, &epds, false);
2313 }
2314
2315 /*
2316 * Implement the event wait interface for the eventpoll file. It is the kernel
2317 * part of the user space epoll_wait(2).
2318 */
do_epoll_wait(int epfd,struct epoll_event __user * events,int maxevents,struct timespec64 * to)2319 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2320 int maxevents, struct timespec64 *to)
2321 {
2322 int error;
2323 struct fd f;
2324 struct eventpoll *ep;
2325
2326 /* The maximum number of event must be greater than zero */
2327 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2328 return -EINVAL;
2329
2330 /* Verify that the area passed by the user is writeable */
2331 if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2332 return -EFAULT;
2333
2334 /* Get the "struct file *" for the eventpoll file */
2335 f = fdget(epfd);
2336 if (!f.file)
2337 return -EBADF;
2338
2339 /*
2340 * We have to check that the file structure underneath the fd
2341 * the user passed to us _is_ an eventpoll file.
2342 */
2343 error = -EINVAL;
2344 if (!is_file_epoll(f.file))
2345 goto error_fput;
2346
2347 /*
2348 * At this point it is safe to assume that the "private_data" contains
2349 * our own data structure.
2350 */
2351 ep = f.file->private_data;
2352
2353 /* Time to fish for events ... */
2354 error = ep_poll(ep, events, maxevents, to);
2355
2356 error_fput:
2357 fdput(f);
2358 return error;
2359 }
2360
SYSCALL_DEFINE4(epoll_wait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout)2361 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2362 int, maxevents, int, timeout)
2363 {
2364 struct timespec64 to;
2365
2366 return do_epoll_wait(epfd, events, maxevents,
2367 ep_timeout_to_timespec(&to, timeout));
2368 }
2369
2370 /*
2371 * Implement the event wait interface for the eventpoll file. It is the kernel
2372 * part of the user space epoll_pwait(2).
2373 */
do_epoll_pwait(int epfd,struct epoll_event __user * events,int maxevents,struct timespec64 * to,const sigset_t __user * sigmask,size_t sigsetsize)2374 static int do_epoll_pwait(int epfd, struct epoll_event __user *events,
2375 int maxevents, struct timespec64 *to,
2376 const sigset_t __user *sigmask, size_t sigsetsize)
2377 {
2378 int error;
2379
2380 /*
2381 * If the caller wants a certain signal mask to be set during the wait,
2382 * we apply it here.
2383 */
2384 error = set_user_sigmask(sigmask, sigsetsize);
2385 if (error)
2386 return error;
2387
2388 error = do_epoll_wait(epfd, events, maxevents, to);
2389
2390 restore_saved_sigmask_unless(error == -EINTR);
2391
2392 return error;
2393 }
2394
SYSCALL_DEFINE6(epoll_pwait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout,const sigset_t __user *,sigmask,size_t,sigsetsize)2395 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2396 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2397 size_t, sigsetsize)
2398 {
2399 struct timespec64 to;
2400
2401 return do_epoll_pwait(epfd, events, maxevents,
2402 ep_timeout_to_timespec(&to, timeout),
2403 sigmask, sigsetsize);
2404 }
2405
SYSCALL_DEFINE6(epoll_pwait2,int,epfd,struct epoll_event __user *,events,int,maxevents,const struct __kernel_timespec __user *,timeout,const sigset_t __user *,sigmask,size_t,sigsetsize)2406 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events,
2407 int, maxevents, const struct __kernel_timespec __user *, timeout,
2408 const sigset_t __user *, sigmask, size_t, sigsetsize)
2409 {
2410 struct timespec64 ts, *to = NULL;
2411
2412 if (timeout) {
2413 if (get_timespec64(&ts, timeout))
2414 return -EFAULT;
2415 to = &ts;
2416 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2417 return -EINVAL;
2418 }
2419
2420 return do_epoll_pwait(epfd, events, maxevents, to,
2421 sigmask, sigsetsize);
2422 }
2423
2424 #ifdef CONFIG_COMPAT
do_compat_epoll_pwait(int epfd,struct epoll_event __user * events,int maxevents,struct timespec64 * timeout,const compat_sigset_t __user * sigmask,compat_size_t sigsetsize)2425 static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events,
2426 int maxevents, struct timespec64 *timeout,
2427 const compat_sigset_t __user *sigmask,
2428 compat_size_t sigsetsize)
2429 {
2430 long err;
2431
2432 /*
2433 * If the caller wants a certain signal mask to be set during the wait,
2434 * we apply it here.
2435 */
2436 err = set_compat_user_sigmask(sigmask, sigsetsize);
2437 if (err)
2438 return err;
2439
2440 err = do_epoll_wait(epfd, events, maxevents, timeout);
2441
2442 restore_saved_sigmask_unless(err == -EINTR);
2443
2444 return err;
2445 }
2446
COMPAT_SYSCALL_DEFINE6(epoll_pwait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout,const compat_sigset_t __user *,sigmask,compat_size_t,sigsetsize)2447 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2448 struct epoll_event __user *, events,
2449 int, maxevents, int, timeout,
2450 const compat_sigset_t __user *, sigmask,
2451 compat_size_t, sigsetsize)
2452 {
2453 struct timespec64 to;
2454
2455 return do_compat_epoll_pwait(epfd, events, maxevents,
2456 ep_timeout_to_timespec(&to, timeout),
2457 sigmask, sigsetsize);
2458 }
2459
COMPAT_SYSCALL_DEFINE6(epoll_pwait2,int,epfd,struct epoll_event __user *,events,int,maxevents,const struct __kernel_timespec __user *,timeout,const compat_sigset_t __user *,sigmask,compat_size_t,sigsetsize)2460 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd,
2461 struct epoll_event __user *, events,
2462 int, maxevents,
2463 const struct __kernel_timespec __user *, timeout,
2464 const compat_sigset_t __user *, sigmask,
2465 compat_size_t, sigsetsize)
2466 {
2467 struct timespec64 ts, *to = NULL;
2468
2469 if (timeout) {
2470 if (get_timespec64(&ts, timeout))
2471 return -EFAULT;
2472 to = &ts;
2473 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2474 return -EINVAL;
2475 }
2476
2477 return do_compat_epoll_pwait(epfd, events, maxevents, to,
2478 sigmask, sigsetsize);
2479 }
2480
2481 #endif
2482
eventpoll_init(void)2483 static int __init eventpoll_init(void)
2484 {
2485 struct sysinfo si;
2486
2487 si_meminfo(&si);
2488 /*
2489 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2490 */
2491 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2492 EP_ITEM_COST;
2493 BUG_ON(max_user_watches < 0);
2494
2495 /*
2496 * We can have many thousands of epitems, so prevent this from
2497 * using an extra cache line on 64-bit (and smaller) CPUs
2498 */
2499 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2500
2501 /* Allocates slab cache used to allocate "struct epitem" items */
2502 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2503 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2504
2505 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2506 pwq_cache = kmem_cache_create("eventpoll_pwq",
2507 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2508 epoll_sysctls_init();
2509
2510 ephead_cache = kmem_cache_create("ep_head",
2511 sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2512
2513 return 0;
2514 }
2515 fs_initcall(eventpoll_init);
2516