1 /* 2 * fs/eventfd.c 3 * 4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 5 * 6 */ 7 8 #include <linux/file.h> 9 #include <linux/poll.h> 10 #include <linux/init.h> 11 #include <linux/fs.h> 12 #include <linux/sched.h> 13 #include <linux/kernel.h> 14 #include <linux/slab.h> 15 #include <linux/list.h> 16 #include <linux/spinlock.h> 17 #include <linux/anon_inodes.h> 18 #include <linux/syscalls.h> 19 #include <linux/export.h> 20 #include <linux/kref.h> 21 #include <linux/eventfd.h> 22 #include <linux/proc_fs.h> 23 #include <linux/seq_file.h> 24 25 struct eventfd_ctx { 26 struct kref kref; 27 wait_queue_head_t wqh; 28 /* 29 * Every time that a write(2) is performed on an eventfd, the 30 * value of the __u64 being written is added to "count" and a 31 * wakeup is performed on "wqh". A read(2) will return the "count" 32 * value to userspace, and will reset "count" to zero. The kernel 33 * side eventfd_signal() also, adds to the "count" counter and 34 * issue a wakeup. 35 */ 36 __u64 count; 37 unsigned int flags; 38 }; 39 40 /** 41 * eventfd_signal - Adds @n to the eventfd counter. 42 * @ctx: [in] Pointer to the eventfd context. 43 * @n: [in] Value of the counter to be added to the eventfd internal counter. 44 * The value cannot be negative. 45 * 46 * This function is supposed to be called by the kernel in paths that do not 47 * allow sleeping. In this function we allow the counter to reach the ULLONG_MAX 48 * value, and we signal this as overflow condition by returning a POLLERR 49 * to poll(2). 50 * 51 * Returns the amount by which the counter was incremented. This will be less 52 * than @n if the counter has overflowed. 53 */ 54 __u64 eventfd_signal(struct eventfd_ctx *ctx, __u64 n) 55 { 56 unsigned long flags; 57 58 spin_lock_irqsave(&ctx->wqh.lock, flags); 59 if (ULLONG_MAX - ctx->count < n) 60 n = ULLONG_MAX - ctx->count; 61 ctx->count += n; 62 if (waitqueue_active(&ctx->wqh)) 63 wake_up_locked_poll(&ctx->wqh, POLLIN); 64 spin_unlock_irqrestore(&ctx->wqh.lock, flags); 65 66 return n; 67 } 68 EXPORT_SYMBOL_GPL(eventfd_signal); 69 70 static void eventfd_free_ctx(struct eventfd_ctx *ctx) 71 { 72 kfree(ctx); 73 } 74 75 static void eventfd_free(struct kref *kref) 76 { 77 struct eventfd_ctx *ctx = container_of(kref, struct eventfd_ctx, kref); 78 79 eventfd_free_ctx(ctx); 80 } 81 82 /** 83 * eventfd_ctx_get - Acquires a reference to the internal eventfd context. 84 * @ctx: [in] Pointer to the eventfd context. 85 * 86 * Returns: In case of success, returns a pointer to the eventfd context. 87 */ 88 struct eventfd_ctx *eventfd_ctx_get(struct eventfd_ctx *ctx) 89 { 90 kref_get(&ctx->kref); 91 return ctx; 92 } 93 EXPORT_SYMBOL_GPL(eventfd_ctx_get); 94 95 /** 96 * eventfd_ctx_put - Releases a reference to the internal eventfd context. 97 * @ctx: [in] Pointer to eventfd context. 98 * 99 * The eventfd context reference must have been previously acquired either 100 * with eventfd_ctx_get() or eventfd_ctx_fdget(). 101 */ 102 void eventfd_ctx_put(struct eventfd_ctx *ctx) 103 { 104 kref_put(&ctx->kref, eventfd_free); 105 } 106 EXPORT_SYMBOL_GPL(eventfd_ctx_put); 107 108 static int eventfd_release(struct inode *inode, struct file *file) 109 { 110 struct eventfd_ctx *ctx = file->private_data; 111 112 wake_up_poll(&ctx->wqh, POLLHUP); 113 eventfd_ctx_put(ctx); 114 return 0; 115 } 116 117 static unsigned int eventfd_poll(struct file *file, poll_table *wait) 118 { 119 struct eventfd_ctx *ctx = file->private_data; 120 unsigned int events = 0; 121 u64 count; 122 123 poll_wait(file, &ctx->wqh, wait); 124 125 /* 126 * All writes to ctx->count occur within ctx->wqh.lock. This read 127 * can be done outside ctx->wqh.lock because we know that poll_wait 128 * takes that lock (through add_wait_queue) if our caller will sleep. 129 * 130 * The read _can_ therefore seep into add_wait_queue's critical 131 * section, but cannot move above it! add_wait_queue's spin_lock acts 132 * as an acquire barrier and ensures that the read be ordered properly 133 * against the writes. The following CAN happen and is safe: 134 * 135 * poll write 136 * ----------------- ------------ 137 * lock ctx->wqh.lock (in poll_wait) 138 * count = ctx->count 139 * __add_wait_queue 140 * unlock ctx->wqh.lock 141 * lock ctx->qwh.lock 142 * ctx->count += n 143 * if (waitqueue_active) 144 * wake_up_locked_poll 145 * unlock ctx->qwh.lock 146 * eventfd_poll returns 0 147 * 148 * but the following, which would miss a wakeup, cannot happen: 149 * 150 * poll write 151 * ----------------- ------------ 152 * count = ctx->count (INVALID!) 153 * lock ctx->qwh.lock 154 * ctx->count += n 155 * **waitqueue_active is false** 156 * **no wake_up_locked_poll!** 157 * unlock ctx->qwh.lock 158 * lock ctx->wqh.lock (in poll_wait) 159 * __add_wait_queue 160 * unlock ctx->wqh.lock 161 * eventfd_poll returns 0 162 */ 163 count = READ_ONCE(ctx->count); 164 165 if (count > 0) 166 events |= POLLIN; 167 if (count == ULLONG_MAX) 168 events |= POLLERR; 169 if (ULLONG_MAX - 1 > count) 170 events |= POLLOUT; 171 172 return events; 173 } 174 175 static void eventfd_ctx_do_read(struct eventfd_ctx *ctx, __u64 *cnt) 176 { 177 *cnt = (ctx->flags & EFD_SEMAPHORE) ? 1 : ctx->count; 178 ctx->count -= *cnt; 179 } 180 181 /** 182 * eventfd_ctx_remove_wait_queue - Read the current counter and removes wait queue. 183 * @ctx: [in] Pointer to eventfd context. 184 * @wait: [in] Wait queue to be removed. 185 * @cnt: [out] Pointer to the 64-bit counter value. 186 * 187 * Returns %0 if successful, or the following error codes: 188 * 189 * -EAGAIN : The operation would have blocked. 190 * 191 * This is used to atomically remove a wait queue entry from the eventfd wait 192 * queue head, and read/reset the counter value. 193 */ 194 int eventfd_ctx_remove_wait_queue(struct eventfd_ctx *ctx, wait_queue_t *wait, 195 __u64 *cnt) 196 { 197 unsigned long flags; 198 199 spin_lock_irqsave(&ctx->wqh.lock, flags); 200 eventfd_ctx_do_read(ctx, cnt); 201 __remove_wait_queue(&ctx->wqh, wait); 202 if (*cnt != 0 && waitqueue_active(&ctx->wqh)) 203 wake_up_locked_poll(&ctx->wqh, POLLOUT); 204 spin_unlock_irqrestore(&ctx->wqh.lock, flags); 205 206 return *cnt != 0 ? 0 : -EAGAIN; 207 } 208 EXPORT_SYMBOL_GPL(eventfd_ctx_remove_wait_queue); 209 210 /** 211 * eventfd_ctx_read - Reads the eventfd counter or wait if it is zero. 212 * @ctx: [in] Pointer to eventfd context. 213 * @no_wait: [in] Different from zero if the operation should not block. 214 * @cnt: [out] Pointer to the 64-bit counter value. 215 * 216 * Returns %0 if successful, or the following error codes: 217 * 218 * -EAGAIN : The operation would have blocked but @no_wait was non-zero. 219 * -ERESTARTSYS : A signal interrupted the wait operation. 220 * 221 * If @no_wait is zero, the function might sleep until the eventfd internal 222 * counter becomes greater than zero. 223 */ 224 ssize_t eventfd_ctx_read(struct eventfd_ctx *ctx, int no_wait, __u64 *cnt) 225 { 226 ssize_t res; 227 DECLARE_WAITQUEUE(wait, current); 228 229 spin_lock_irq(&ctx->wqh.lock); 230 *cnt = 0; 231 res = -EAGAIN; 232 if (ctx->count > 0) 233 res = 0; 234 else if (!no_wait) { 235 __add_wait_queue(&ctx->wqh, &wait); 236 for (;;) { 237 set_current_state(TASK_INTERRUPTIBLE); 238 if (ctx->count > 0) { 239 res = 0; 240 break; 241 } 242 if (signal_pending(current)) { 243 res = -ERESTARTSYS; 244 break; 245 } 246 spin_unlock_irq(&ctx->wqh.lock); 247 schedule(); 248 spin_lock_irq(&ctx->wqh.lock); 249 } 250 __remove_wait_queue(&ctx->wqh, &wait); 251 __set_current_state(TASK_RUNNING); 252 } 253 if (likely(res == 0)) { 254 eventfd_ctx_do_read(ctx, cnt); 255 if (waitqueue_active(&ctx->wqh)) 256 wake_up_locked_poll(&ctx->wqh, POLLOUT); 257 } 258 spin_unlock_irq(&ctx->wqh.lock); 259 260 return res; 261 } 262 EXPORT_SYMBOL_GPL(eventfd_ctx_read); 263 264 static ssize_t eventfd_read(struct file *file, char __user *buf, size_t count, 265 loff_t *ppos) 266 { 267 struct eventfd_ctx *ctx = file->private_data; 268 ssize_t res; 269 __u64 cnt; 270 271 if (count < sizeof(cnt)) 272 return -EINVAL; 273 res = eventfd_ctx_read(ctx, file->f_flags & O_NONBLOCK, &cnt); 274 if (res < 0) 275 return res; 276 277 return put_user(cnt, (__u64 __user *) buf) ? -EFAULT : sizeof(cnt); 278 } 279 280 static ssize_t eventfd_write(struct file *file, const char __user *buf, size_t count, 281 loff_t *ppos) 282 { 283 struct eventfd_ctx *ctx = file->private_data; 284 ssize_t res; 285 __u64 ucnt; 286 DECLARE_WAITQUEUE(wait, current); 287 288 if (count < sizeof(ucnt)) 289 return -EINVAL; 290 if (copy_from_user(&ucnt, buf, sizeof(ucnt))) 291 return -EFAULT; 292 if (ucnt == ULLONG_MAX) 293 return -EINVAL; 294 spin_lock_irq(&ctx->wqh.lock); 295 res = -EAGAIN; 296 if (ULLONG_MAX - ctx->count > ucnt) 297 res = sizeof(ucnt); 298 else if (!(file->f_flags & O_NONBLOCK)) { 299 __add_wait_queue(&ctx->wqh, &wait); 300 for (res = 0;;) { 301 set_current_state(TASK_INTERRUPTIBLE); 302 if (ULLONG_MAX - ctx->count > ucnt) { 303 res = sizeof(ucnt); 304 break; 305 } 306 if (signal_pending(current)) { 307 res = -ERESTARTSYS; 308 break; 309 } 310 spin_unlock_irq(&ctx->wqh.lock); 311 schedule(); 312 spin_lock_irq(&ctx->wqh.lock); 313 } 314 __remove_wait_queue(&ctx->wqh, &wait); 315 __set_current_state(TASK_RUNNING); 316 } 317 if (likely(res > 0)) { 318 ctx->count += ucnt; 319 if (waitqueue_active(&ctx->wqh)) 320 wake_up_locked_poll(&ctx->wqh, POLLIN); 321 } 322 spin_unlock_irq(&ctx->wqh.lock); 323 324 return res; 325 } 326 327 #ifdef CONFIG_PROC_FS 328 static void eventfd_show_fdinfo(struct seq_file *m, struct file *f) 329 { 330 struct eventfd_ctx *ctx = f->private_data; 331 332 spin_lock_irq(&ctx->wqh.lock); 333 seq_printf(m, "eventfd-count: %16llx\n", 334 (unsigned long long)ctx->count); 335 spin_unlock_irq(&ctx->wqh.lock); 336 } 337 #endif 338 339 static const struct file_operations eventfd_fops = { 340 #ifdef CONFIG_PROC_FS 341 .show_fdinfo = eventfd_show_fdinfo, 342 #endif 343 .release = eventfd_release, 344 .poll = eventfd_poll, 345 .read = eventfd_read, 346 .write = eventfd_write, 347 .llseek = noop_llseek, 348 }; 349 350 /** 351 * eventfd_fget - Acquire a reference of an eventfd file descriptor. 352 * @fd: [in] Eventfd file descriptor. 353 * 354 * Returns a pointer to the eventfd file structure in case of success, or the 355 * following error pointer: 356 * 357 * -EBADF : Invalid @fd file descriptor. 358 * -EINVAL : The @fd file descriptor is not an eventfd file. 359 */ 360 struct file *eventfd_fget(int fd) 361 { 362 struct file *file; 363 364 file = fget(fd); 365 if (!file) 366 return ERR_PTR(-EBADF); 367 if (file->f_op != &eventfd_fops) { 368 fput(file); 369 return ERR_PTR(-EINVAL); 370 } 371 372 return file; 373 } 374 EXPORT_SYMBOL_GPL(eventfd_fget); 375 376 /** 377 * eventfd_ctx_fdget - Acquires a reference to the internal eventfd context. 378 * @fd: [in] Eventfd file descriptor. 379 * 380 * Returns a pointer to the internal eventfd context, otherwise the error 381 * pointers returned by the following functions: 382 * 383 * eventfd_fget 384 */ 385 struct eventfd_ctx *eventfd_ctx_fdget(int fd) 386 { 387 struct eventfd_ctx *ctx; 388 struct fd f = fdget(fd); 389 if (!f.file) 390 return ERR_PTR(-EBADF); 391 ctx = eventfd_ctx_fileget(f.file); 392 fdput(f); 393 return ctx; 394 } 395 EXPORT_SYMBOL_GPL(eventfd_ctx_fdget); 396 397 /** 398 * eventfd_ctx_fileget - Acquires a reference to the internal eventfd context. 399 * @file: [in] Eventfd file pointer. 400 * 401 * Returns a pointer to the internal eventfd context, otherwise the error 402 * pointer: 403 * 404 * -EINVAL : The @fd file descriptor is not an eventfd file. 405 */ 406 struct eventfd_ctx *eventfd_ctx_fileget(struct file *file) 407 { 408 if (file->f_op != &eventfd_fops) 409 return ERR_PTR(-EINVAL); 410 411 return eventfd_ctx_get(file->private_data); 412 } 413 EXPORT_SYMBOL_GPL(eventfd_ctx_fileget); 414 415 /** 416 * eventfd_file_create - Creates an eventfd file pointer. 417 * @count: Initial eventfd counter value. 418 * @flags: Flags for the eventfd file. 419 * 420 * This function creates an eventfd file pointer, w/out installing it into 421 * the fd table. This is useful when the eventfd file is used during the 422 * initialization of data structures that require extra setup after the eventfd 423 * creation. So the eventfd creation is split into the file pointer creation 424 * phase, and the file descriptor installation phase. 425 * In this way races with userspace closing the newly installed file descriptor 426 * can be avoided. 427 * Returns an eventfd file pointer, or a proper error pointer. 428 */ 429 struct file *eventfd_file_create(unsigned int count, int flags) 430 { 431 struct file *file; 432 struct eventfd_ctx *ctx; 433 434 /* Check the EFD_* constants for consistency. */ 435 BUILD_BUG_ON(EFD_CLOEXEC != O_CLOEXEC); 436 BUILD_BUG_ON(EFD_NONBLOCK != O_NONBLOCK); 437 438 if (flags & ~EFD_FLAGS_SET) 439 return ERR_PTR(-EINVAL); 440 441 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 442 if (!ctx) 443 return ERR_PTR(-ENOMEM); 444 445 kref_init(&ctx->kref); 446 init_waitqueue_head(&ctx->wqh); 447 ctx->count = count; 448 ctx->flags = flags; 449 450 file = anon_inode_getfile("[eventfd]", &eventfd_fops, ctx, 451 O_RDWR | (flags & EFD_SHARED_FCNTL_FLAGS)); 452 if (IS_ERR(file)) 453 eventfd_free_ctx(ctx); 454 455 return file; 456 } 457 458 SYSCALL_DEFINE2(eventfd2, unsigned int, count, int, flags) 459 { 460 int fd, error; 461 struct file *file; 462 463 error = get_unused_fd_flags(flags & EFD_SHARED_FCNTL_FLAGS); 464 if (error < 0) 465 return error; 466 fd = error; 467 468 file = eventfd_file_create(count, flags); 469 if (IS_ERR(file)) { 470 error = PTR_ERR(file); 471 goto err_put_unused_fd; 472 } 473 fd_install(fd, file); 474 475 return fd; 476 477 err_put_unused_fd: 478 put_unused_fd(fd); 479 480 return error; 481 } 482 483 SYSCALL_DEFINE1(eventfd, unsigned int, count) 484 { 485 return sys_eventfd2(count, 0); 486 } 487 488