xref: /openbmc/linux/fs/erofs/zdata.c (revision 967c28b2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2018 HUAWEI, Inc.
4  *             https://www.huawei.com/
5  * Copyright (C) 2022 Alibaba Cloud
6  */
7 #include "compress.h"
8 #include <linux/psi.h>
9 #include <linux/cpuhotplug.h>
10 #include <trace/events/erofs.h>
11 
12 #define Z_EROFS_PCLUSTER_MAX_PAGES	(Z_EROFS_PCLUSTER_MAX_SIZE / PAGE_SIZE)
13 #define Z_EROFS_INLINE_BVECS		2
14 
15 /*
16  * let's leave a type here in case of introducing
17  * another tagged pointer later.
18  */
19 typedef void *z_erofs_next_pcluster_t;
20 
21 struct z_erofs_bvec {
22 	struct page *page;
23 	int offset;
24 	unsigned int end;
25 };
26 
27 #define __Z_EROFS_BVSET(name, total) \
28 struct name { \
29 	/* point to the next page which contains the following bvecs */ \
30 	struct page *nextpage; \
31 	struct z_erofs_bvec bvec[total]; \
32 }
33 __Z_EROFS_BVSET(z_erofs_bvset,);
34 __Z_EROFS_BVSET(z_erofs_bvset_inline, Z_EROFS_INLINE_BVECS);
35 
36 /*
37  * Structure fields follow one of the following exclusion rules.
38  *
39  * I: Modifiable by initialization/destruction paths and read-only
40  *    for everyone else;
41  *
42  * L: Field should be protected by the pcluster lock;
43  *
44  * A: Field should be accessed / updated in atomic for parallelized code.
45  */
46 struct z_erofs_pcluster {
47 	struct erofs_workgroup obj;
48 	struct mutex lock;
49 
50 	/* A: point to next chained pcluster or TAILs */
51 	z_erofs_next_pcluster_t next;
52 
53 	/* L: the maximum decompression size of this round */
54 	unsigned int length;
55 
56 	/* L: total number of bvecs */
57 	unsigned int vcnt;
58 
59 	/* I: page offset of start position of decompression */
60 	unsigned short pageofs_out;
61 
62 	/* I: page offset of inline compressed data */
63 	unsigned short pageofs_in;
64 
65 	union {
66 		/* L: inline a certain number of bvec for bootstrap */
67 		struct z_erofs_bvset_inline bvset;
68 
69 		/* I: can be used to free the pcluster by RCU. */
70 		struct rcu_head rcu;
71 	};
72 
73 	union {
74 		/* I: physical cluster size in pages */
75 		unsigned short pclusterpages;
76 
77 		/* I: tailpacking inline compressed size */
78 		unsigned short tailpacking_size;
79 	};
80 
81 	/* I: compression algorithm format */
82 	unsigned char algorithmformat;
83 
84 	/* L: whether partial decompression or not */
85 	bool partial;
86 
87 	/* L: indicate several pageofs_outs or not */
88 	bool multibases;
89 
90 	/* A: compressed bvecs (can be cached or inplaced pages) */
91 	struct z_erofs_bvec compressed_bvecs[];
92 };
93 
94 /* let's avoid the valid 32-bit kernel addresses */
95 
96 /* the end of a chain of pclusters */
97 #define Z_EROFS_PCLUSTER_TAIL           ((void *)0x5F0ECAFE)
98 #define Z_EROFS_PCLUSTER_NIL            (NULL)
99 
100 struct z_erofs_decompressqueue {
101 	struct super_block *sb;
102 	atomic_t pending_bios;
103 	z_erofs_next_pcluster_t head;
104 
105 	union {
106 		struct completion done;
107 		struct work_struct work;
108 		struct kthread_work kthread_work;
109 	} u;
110 	bool eio, sync;
111 };
112 
113 static inline bool z_erofs_is_inline_pcluster(struct z_erofs_pcluster *pcl)
114 {
115 	return !pcl->obj.index;
116 }
117 
118 static inline unsigned int z_erofs_pclusterpages(struct z_erofs_pcluster *pcl)
119 {
120 	if (z_erofs_is_inline_pcluster(pcl))
121 		return 1;
122 	return pcl->pclusterpages;
123 }
124 
125 /*
126  * bit 30: I/O error occurred on this page
127  * bit 0 - 29: remaining parts to complete this page
128  */
129 #define Z_EROFS_PAGE_EIO			(1 << 30)
130 
131 static inline void z_erofs_onlinepage_init(struct page *page)
132 {
133 	union {
134 		atomic_t o;
135 		unsigned long v;
136 	} u = { .o = ATOMIC_INIT(1) };
137 
138 	set_page_private(page, u.v);
139 	smp_wmb();
140 	SetPagePrivate(page);
141 }
142 
143 static inline void z_erofs_onlinepage_split(struct page *page)
144 {
145 	atomic_inc((atomic_t *)&page->private);
146 }
147 
148 static inline void z_erofs_page_mark_eio(struct page *page)
149 {
150 	int orig;
151 
152 	do {
153 		orig = atomic_read((atomic_t *)&page->private);
154 	} while (atomic_cmpxchg((atomic_t *)&page->private, orig,
155 				orig | Z_EROFS_PAGE_EIO) != orig);
156 }
157 
158 static inline void z_erofs_onlinepage_endio(struct page *page)
159 {
160 	unsigned int v;
161 
162 	DBG_BUGON(!PagePrivate(page));
163 	v = atomic_dec_return((atomic_t *)&page->private);
164 	if (!(v & ~Z_EROFS_PAGE_EIO)) {
165 		set_page_private(page, 0);
166 		ClearPagePrivate(page);
167 		if (!(v & Z_EROFS_PAGE_EIO))
168 			SetPageUptodate(page);
169 		unlock_page(page);
170 	}
171 }
172 
173 #define Z_EROFS_ONSTACK_PAGES		32
174 
175 /*
176  * since pclustersize is variable for big pcluster feature, introduce slab
177  * pools implementation for different pcluster sizes.
178  */
179 struct z_erofs_pcluster_slab {
180 	struct kmem_cache *slab;
181 	unsigned int maxpages;
182 	char name[48];
183 };
184 
185 #define _PCLP(n) { .maxpages = n }
186 
187 static struct z_erofs_pcluster_slab pcluster_pool[] __read_mostly = {
188 	_PCLP(1), _PCLP(4), _PCLP(16), _PCLP(64), _PCLP(128),
189 	_PCLP(Z_EROFS_PCLUSTER_MAX_PAGES)
190 };
191 
192 struct z_erofs_bvec_iter {
193 	struct page *bvpage;
194 	struct z_erofs_bvset *bvset;
195 	unsigned int nr, cur;
196 };
197 
198 static struct page *z_erofs_bvec_iter_end(struct z_erofs_bvec_iter *iter)
199 {
200 	if (iter->bvpage)
201 		kunmap_local(iter->bvset);
202 	return iter->bvpage;
203 }
204 
205 static struct page *z_erofs_bvset_flip(struct z_erofs_bvec_iter *iter)
206 {
207 	unsigned long base = (unsigned long)((struct z_erofs_bvset *)0)->bvec;
208 	/* have to access nextpage in advance, otherwise it will be unmapped */
209 	struct page *nextpage = iter->bvset->nextpage;
210 	struct page *oldpage;
211 
212 	DBG_BUGON(!nextpage);
213 	oldpage = z_erofs_bvec_iter_end(iter);
214 	iter->bvpage = nextpage;
215 	iter->bvset = kmap_local_page(nextpage);
216 	iter->nr = (PAGE_SIZE - base) / sizeof(struct z_erofs_bvec);
217 	iter->cur = 0;
218 	return oldpage;
219 }
220 
221 static void z_erofs_bvec_iter_begin(struct z_erofs_bvec_iter *iter,
222 				    struct z_erofs_bvset_inline *bvset,
223 				    unsigned int bootstrap_nr,
224 				    unsigned int cur)
225 {
226 	*iter = (struct z_erofs_bvec_iter) {
227 		.nr = bootstrap_nr,
228 		.bvset = (struct z_erofs_bvset *)bvset,
229 	};
230 
231 	while (cur > iter->nr) {
232 		cur -= iter->nr;
233 		z_erofs_bvset_flip(iter);
234 	}
235 	iter->cur = cur;
236 }
237 
238 static int z_erofs_bvec_enqueue(struct z_erofs_bvec_iter *iter,
239 				struct z_erofs_bvec *bvec,
240 				struct page **candidate_bvpage,
241 				struct page **pagepool)
242 {
243 	if (iter->cur >= iter->nr) {
244 		struct page *nextpage = *candidate_bvpage;
245 
246 		if (!nextpage) {
247 			nextpage = erofs_allocpage(pagepool, GFP_NOFS);
248 			if (!nextpage)
249 				return -ENOMEM;
250 			set_page_private(nextpage, Z_EROFS_SHORTLIVED_PAGE);
251 		}
252 		DBG_BUGON(iter->bvset->nextpage);
253 		iter->bvset->nextpage = nextpage;
254 		z_erofs_bvset_flip(iter);
255 
256 		iter->bvset->nextpage = NULL;
257 		*candidate_bvpage = NULL;
258 	}
259 	iter->bvset->bvec[iter->cur++] = *bvec;
260 	return 0;
261 }
262 
263 static void z_erofs_bvec_dequeue(struct z_erofs_bvec_iter *iter,
264 				 struct z_erofs_bvec *bvec,
265 				 struct page **old_bvpage)
266 {
267 	if (iter->cur == iter->nr)
268 		*old_bvpage = z_erofs_bvset_flip(iter);
269 	else
270 		*old_bvpage = NULL;
271 	*bvec = iter->bvset->bvec[iter->cur++];
272 }
273 
274 static void z_erofs_destroy_pcluster_pool(void)
275 {
276 	int i;
277 
278 	for (i = 0; i < ARRAY_SIZE(pcluster_pool); ++i) {
279 		if (!pcluster_pool[i].slab)
280 			continue;
281 		kmem_cache_destroy(pcluster_pool[i].slab);
282 		pcluster_pool[i].slab = NULL;
283 	}
284 }
285 
286 static int z_erofs_create_pcluster_pool(void)
287 {
288 	struct z_erofs_pcluster_slab *pcs;
289 	struct z_erofs_pcluster *a;
290 	unsigned int size;
291 
292 	for (pcs = pcluster_pool;
293 	     pcs < pcluster_pool + ARRAY_SIZE(pcluster_pool); ++pcs) {
294 		size = struct_size(a, compressed_bvecs, pcs->maxpages);
295 
296 		sprintf(pcs->name, "erofs_pcluster-%u", pcs->maxpages);
297 		pcs->slab = kmem_cache_create(pcs->name, size, 0,
298 					      SLAB_RECLAIM_ACCOUNT, NULL);
299 		if (pcs->slab)
300 			continue;
301 
302 		z_erofs_destroy_pcluster_pool();
303 		return -ENOMEM;
304 	}
305 	return 0;
306 }
307 
308 static struct z_erofs_pcluster *z_erofs_alloc_pcluster(unsigned int nrpages)
309 {
310 	int i;
311 
312 	for (i = 0; i < ARRAY_SIZE(pcluster_pool); ++i) {
313 		struct z_erofs_pcluster_slab *pcs = pcluster_pool + i;
314 		struct z_erofs_pcluster *pcl;
315 
316 		if (nrpages > pcs->maxpages)
317 			continue;
318 
319 		pcl = kmem_cache_zalloc(pcs->slab, GFP_NOFS);
320 		if (!pcl)
321 			return ERR_PTR(-ENOMEM);
322 		pcl->pclusterpages = nrpages;
323 		return pcl;
324 	}
325 	return ERR_PTR(-EINVAL);
326 }
327 
328 static void z_erofs_free_pcluster(struct z_erofs_pcluster *pcl)
329 {
330 	unsigned int pclusterpages = z_erofs_pclusterpages(pcl);
331 	int i;
332 
333 	for (i = 0; i < ARRAY_SIZE(pcluster_pool); ++i) {
334 		struct z_erofs_pcluster_slab *pcs = pcluster_pool + i;
335 
336 		if (pclusterpages > pcs->maxpages)
337 			continue;
338 
339 		kmem_cache_free(pcs->slab, pcl);
340 		return;
341 	}
342 	DBG_BUGON(1);
343 }
344 
345 static struct workqueue_struct *z_erofs_workqueue __read_mostly;
346 
347 #ifdef CONFIG_EROFS_FS_PCPU_KTHREAD
348 static struct kthread_worker __rcu **z_erofs_pcpu_workers;
349 
350 static void erofs_destroy_percpu_workers(void)
351 {
352 	struct kthread_worker *worker;
353 	unsigned int cpu;
354 
355 	for_each_possible_cpu(cpu) {
356 		worker = rcu_dereference_protected(
357 					z_erofs_pcpu_workers[cpu], 1);
358 		rcu_assign_pointer(z_erofs_pcpu_workers[cpu], NULL);
359 		if (worker)
360 			kthread_destroy_worker(worker);
361 	}
362 	kfree(z_erofs_pcpu_workers);
363 }
364 
365 static struct kthread_worker *erofs_init_percpu_worker(int cpu)
366 {
367 	struct kthread_worker *worker =
368 		kthread_create_worker_on_cpu(cpu, 0, "erofs_worker/%u", cpu);
369 
370 	if (IS_ERR(worker))
371 		return worker;
372 	if (IS_ENABLED(CONFIG_EROFS_FS_PCPU_KTHREAD_HIPRI))
373 		sched_set_fifo_low(worker->task);
374 	return worker;
375 }
376 
377 static int erofs_init_percpu_workers(void)
378 {
379 	struct kthread_worker *worker;
380 	unsigned int cpu;
381 
382 	z_erofs_pcpu_workers = kcalloc(num_possible_cpus(),
383 			sizeof(struct kthread_worker *), GFP_ATOMIC);
384 	if (!z_erofs_pcpu_workers)
385 		return -ENOMEM;
386 
387 	for_each_online_cpu(cpu) {	/* could miss cpu{off,on}line? */
388 		worker = erofs_init_percpu_worker(cpu);
389 		if (!IS_ERR(worker))
390 			rcu_assign_pointer(z_erofs_pcpu_workers[cpu], worker);
391 	}
392 	return 0;
393 }
394 #else
395 static inline void erofs_destroy_percpu_workers(void) {}
396 static inline int erofs_init_percpu_workers(void) { return 0; }
397 #endif
398 
399 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_EROFS_FS_PCPU_KTHREAD)
400 static DEFINE_SPINLOCK(z_erofs_pcpu_worker_lock);
401 static enum cpuhp_state erofs_cpuhp_state;
402 
403 static int erofs_cpu_online(unsigned int cpu)
404 {
405 	struct kthread_worker *worker, *old;
406 
407 	worker = erofs_init_percpu_worker(cpu);
408 	if (IS_ERR(worker))
409 		return PTR_ERR(worker);
410 
411 	spin_lock(&z_erofs_pcpu_worker_lock);
412 	old = rcu_dereference_protected(z_erofs_pcpu_workers[cpu],
413 			lockdep_is_held(&z_erofs_pcpu_worker_lock));
414 	if (!old)
415 		rcu_assign_pointer(z_erofs_pcpu_workers[cpu], worker);
416 	spin_unlock(&z_erofs_pcpu_worker_lock);
417 	if (old)
418 		kthread_destroy_worker(worker);
419 	return 0;
420 }
421 
422 static int erofs_cpu_offline(unsigned int cpu)
423 {
424 	struct kthread_worker *worker;
425 
426 	spin_lock(&z_erofs_pcpu_worker_lock);
427 	worker = rcu_dereference_protected(z_erofs_pcpu_workers[cpu],
428 			lockdep_is_held(&z_erofs_pcpu_worker_lock));
429 	rcu_assign_pointer(z_erofs_pcpu_workers[cpu], NULL);
430 	spin_unlock(&z_erofs_pcpu_worker_lock);
431 
432 	synchronize_rcu();
433 	if (worker)
434 		kthread_destroy_worker(worker);
435 	return 0;
436 }
437 
438 static int erofs_cpu_hotplug_init(void)
439 {
440 	int state;
441 
442 	state = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
443 			"fs/erofs:online", erofs_cpu_online, erofs_cpu_offline);
444 	if (state < 0)
445 		return state;
446 
447 	erofs_cpuhp_state = state;
448 	return 0;
449 }
450 
451 static void erofs_cpu_hotplug_destroy(void)
452 {
453 	if (erofs_cpuhp_state)
454 		cpuhp_remove_state_nocalls(erofs_cpuhp_state);
455 }
456 #else /* !CONFIG_HOTPLUG_CPU || !CONFIG_EROFS_FS_PCPU_KTHREAD */
457 static inline int erofs_cpu_hotplug_init(void) { return 0; }
458 static inline void erofs_cpu_hotplug_destroy(void) {}
459 #endif
460 
461 void z_erofs_exit_zip_subsystem(void)
462 {
463 	erofs_cpu_hotplug_destroy();
464 	erofs_destroy_percpu_workers();
465 	destroy_workqueue(z_erofs_workqueue);
466 	z_erofs_destroy_pcluster_pool();
467 }
468 
469 int __init z_erofs_init_zip_subsystem(void)
470 {
471 	int err = z_erofs_create_pcluster_pool();
472 
473 	if (err)
474 		goto out_error_pcluster_pool;
475 
476 	z_erofs_workqueue = alloc_workqueue("erofs_worker",
477 			WQ_UNBOUND | WQ_HIGHPRI, num_possible_cpus());
478 	if (!z_erofs_workqueue) {
479 		err = -ENOMEM;
480 		goto out_error_workqueue_init;
481 	}
482 
483 	err = erofs_init_percpu_workers();
484 	if (err)
485 		goto out_error_pcpu_worker;
486 
487 	err = erofs_cpu_hotplug_init();
488 	if (err < 0)
489 		goto out_error_cpuhp_init;
490 	return err;
491 
492 out_error_cpuhp_init:
493 	erofs_destroy_percpu_workers();
494 out_error_pcpu_worker:
495 	destroy_workqueue(z_erofs_workqueue);
496 out_error_workqueue_init:
497 	z_erofs_destroy_pcluster_pool();
498 out_error_pcluster_pool:
499 	return err;
500 }
501 
502 enum z_erofs_pclustermode {
503 	Z_EROFS_PCLUSTER_INFLIGHT,
504 	/*
505 	 * a weak form of Z_EROFS_PCLUSTER_FOLLOWED, the difference is that it
506 	 * could be dispatched into bypass queue later due to uptodated managed
507 	 * pages. All related online pages cannot be reused for inplace I/O (or
508 	 * bvpage) since it can be directly decoded without I/O submission.
509 	 */
510 	Z_EROFS_PCLUSTER_FOLLOWED_NOINPLACE,
511 	/*
512 	 * The current collection has been linked with the owned chain, and
513 	 * could also be linked with the remaining collections, which means
514 	 * if the processing page is the tail page of the collection, thus
515 	 * the current collection can safely use the whole page (since
516 	 * the previous collection is under control) for in-place I/O, as
517 	 * illustrated below:
518 	 *  ________________________________________________________________
519 	 * |  tail (partial) page |          head (partial) page           |
520 	 * |  (of the current cl) |      (of the previous collection)      |
521 	 * |                      |                                        |
522 	 * |__PCLUSTER_FOLLOWED___|___________PCLUSTER_FOLLOWED____________|
523 	 *
524 	 * [  (*) the above page can be used as inplace I/O.               ]
525 	 */
526 	Z_EROFS_PCLUSTER_FOLLOWED,
527 };
528 
529 struct z_erofs_decompress_frontend {
530 	struct inode *const inode;
531 	struct erofs_map_blocks map;
532 	struct z_erofs_bvec_iter biter;
533 
534 	struct page *pagepool;
535 	struct page *candidate_bvpage;
536 	struct z_erofs_pcluster *pcl;
537 	z_erofs_next_pcluster_t owned_head;
538 	enum z_erofs_pclustermode mode;
539 
540 	/* used for applying cache strategy on the fly */
541 	bool backmost;
542 	erofs_off_t headoffset;
543 
544 	/* a pointer used to pick up inplace I/O pages */
545 	unsigned int icur;
546 };
547 
548 #define DECOMPRESS_FRONTEND_INIT(__i) { \
549 	.inode = __i, .owned_head = Z_EROFS_PCLUSTER_TAIL, \
550 	.mode = Z_EROFS_PCLUSTER_FOLLOWED, .backmost = true }
551 
552 static bool z_erofs_should_alloc_cache(struct z_erofs_decompress_frontend *fe)
553 {
554 	unsigned int cachestrategy = EROFS_I_SB(fe->inode)->opt.cache_strategy;
555 
556 	if (cachestrategy <= EROFS_ZIP_CACHE_DISABLED)
557 		return false;
558 
559 	if (fe->backmost)
560 		return true;
561 
562 	if (cachestrategy >= EROFS_ZIP_CACHE_READAROUND &&
563 	    fe->map.m_la < fe->headoffset)
564 		return true;
565 
566 	return false;
567 }
568 
569 static void z_erofs_bind_cache(struct z_erofs_decompress_frontend *fe)
570 {
571 	struct address_space *mc = MNGD_MAPPING(EROFS_I_SB(fe->inode));
572 	struct z_erofs_pcluster *pcl = fe->pcl;
573 	bool shouldalloc = z_erofs_should_alloc_cache(fe);
574 	bool standalone = true;
575 	/*
576 	 * optimistic allocation without direct reclaim since inplace I/O
577 	 * can be used if low memory otherwise.
578 	 */
579 	gfp_t gfp = (mapping_gfp_mask(mc) & ~__GFP_DIRECT_RECLAIM) |
580 			__GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
581 	unsigned int i;
582 
583 	if (fe->mode < Z_EROFS_PCLUSTER_FOLLOWED)
584 		return;
585 
586 	for (i = 0; i < pcl->pclusterpages; ++i) {
587 		struct page *page;
588 		void *t;	/* mark pages just found for debugging */
589 		struct page *newpage = NULL;
590 
591 		/* the compressed page was loaded before */
592 		if (READ_ONCE(pcl->compressed_bvecs[i].page))
593 			continue;
594 
595 		page = find_get_page(mc, pcl->obj.index + i);
596 
597 		if (page) {
598 			t = (void *)((unsigned long)page | 1);
599 		} else {
600 			/* I/O is needed, no possible to decompress directly */
601 			standalone = false;
602 			if (!shouldalloc)
603 				continue;
604 
605 			/*
606 			 * try to use cached I/O if page allocation
607 			 * succeeds or fallback to in-place I/O instead
608 			 * to avoid any direct reclaim.
609 			 */
610 			newpage = erofs_allocpage(&fe->pagepool, gfp);
611 			if (!newpage)
612 				continue;
613 			set_page_private(newpage, Z_EROFS_PREALLOCATED_PAGE);
614 			t = (void *)((unsigned long)newpage | 1);
615 		}
616 
617 		if (!cmpxchg_relaxed(&pcl->compressed_bvecs[i].page, NULL, t))
618 			continue;
619 
620 		if (page)
621 			put_page(page);
622 		else if (newpage)
623 			erofs_pagepool_add(&fe->pagepool, newpage);
624 	}
625 
626 	/*
627 	 * don't do inplace I/O if all compressed pages are available in
628 	 * managed cache since it can be moved to the bypass queue instead.
629 	 */
630 	if (standalone)
631 		fe->mode = Z_EROFS_PCLUSTER_FOLLOWED_NOINPLACE;
632 }
633 
634 /* called by erofs_shrinker to get rid of all compressed_pages */
635 int erofs_try_to_free_all_cached_pages(struct erofs_sb_info *sbi,
636 				       struct erofs_workgroup *grp)
637 {
638 	struct z_erofs_pcluster *const pcl =
639 		container_of(grp, struct z_erofs_pcluster, obj);
640 	int i;
641 
642 	DBG_BUGON(z_erofs_is_inline_pcluster(pcl));
643 	/*
644 	 * refcount of workgroup is now freezed as 1,
645 	 * therefore no need to worry about available decompression users.
646 	 */
647 	for (i = 0; i < pcl->pclusterpages; ++i) {
648 		struct page *page = pcl->compressed_bvecs[i].page;
649 
650 		if (!page)
651 			continue;
652 
653 		/* block other users from reclaiming or migrating the page */
654 		if (!trylock_page(page))
655 			return -EBUSY;
656 
657 		if (!erofs_page_is_managed(sbi, page))
658 			continue;
659 
660 		/* barrier is implied in the following 'unlock_page' */
661 		WRITE_ONCE(pcl->compressed_bvecs[i].page, NULL);
662 		detach_page_private(page);
663 		unlock_page(page);
664 	}
665 	return 0;
666 }
667 
668 int erofs_try_to_free_cached_page(struct page *page)
669 {
670 	struct z_erofs_pcluster *const pcl = (void *)page_private(page);
671 	int ret, i;
672 
673 	if (!erofs_workgroup_try_to_freeze(&pcl->obj, 1))
674 		return 0;
675 
676 	ret = 0;
677 	DBG_BUGON(z_erofs_is_inline_pcluster(pcl));
678 	for (i = 0; i < pcl->pclusterpages; ++i) {
679 		if (pcl->compressed_bvecs[i].page == page) {
680 			WRITE_ONCE(pcl->compressed_bvecs[i].page, NULL);
681 			ret = 1;
682 			break;
683 		}
684 	}
685 	erofs_workgroup_unfreeze(&pcl->obj, 1);
686 	if (ret)
687 		detach_page_private(page);
688 	return ret;
689 }
690 
691 static bool z_erofs_try_inplace_io(struct z_erofs_decompress_frontend *fe,
692 				   struct z_erofs_bvec *bvec)
693 {
694 	struct z_erofs_pcluster *const pcl = fe->pcl;
695 
696 	while (fe->icur > 0) {
697 		if (!cmpxchg(&pcl->compressed_bvecs[--fe->icur].page,
698 			     NULL, bvec->page)) {
699 			pcl->compressed_bvecs[fe->icur] = *bvec;
700 			return true;
701 		}
702 	}
703 	return false;
704 }
705 
706 /* callers must be with pcluster lock held */
707 static int z_erofs_attach_page(struct z_erofs_decompress_frontend *fe,
708 			       struct z_erofs_bvec *bvec, bool exclusive)
709 {
710 	int ret;
711 
712 	if (exclusive) {
713 		/* give priority for inplaceio to use file pages first */
714 		if (z_erofs_try_inplace_io(fe, bvec))
715 			return 0;
716 		/* otherwise, check if it can be used as a bvpage */
717 		if (fe->mode >= Z_EROFS_PCLUSTER_FOLLOWED &&
718 		    !fe->candidate_bvpage)
719 			fe->candidate_bvpage = bvec->page;
720 	}
721 	ret = z_erofs_bvec_enqueue(&fe->biter, bvec, &fe->candidate_bvpage,
722 				   &fe->pagepool);
723 	fe->pcl->vcnt += (ret >= 0);
724 	return ret;
725 }
726 
727 static void z_erofs_try_to_claim_pcluster(struct z_erofs_decompress_frontend *f)
728 {
729 	struct z_erofs_pcluster *pcl = f->pcl;
730 	z_erofs_next_pcluster_t *owned_head = &f->owned_head;
731 
732 	/* type 1, nil pcluster (this pcluster doesn't belong to any chain.) */
733 	if (cmpxchg(&pcl->next, Z_EROFS_PCLUSTER_NIL,
734 		    *owned_head) == Z_EROFS_PCLUSTER_NIL) {
735 		*owned_head = &pcl->next;
736 		/* so we can attach this pcluster to our submission chain. */
737 		f->mode = Z_EROFS_PCLUSTER_FOLLOWED;
738 		return;
739 	}
740 
741 	/* type 2, it belongs to an ongoing chain */
742 	f->mode = Z_EROFS_PCLUSTER_INFLIGHT;
743 }
744 
745 static int z_erofs_register_pcluster(struct z_erofs_decompress_frontend *fe)
746 {
747 	struct erofs_map_blocks *map = &fe->map;
748 	bool ztailpacking = map->m_flags & EROFS_MAP_META;
749 	struct z_erofs_pcluster *pcl;
750 	struct erofs_workgroup *grp;
751 	int err;
752 
753 	if (!(map->m_flags & EROFS_MAP_ENCODED) ||
754 	    (!ztailpacking && !(map->m_pa >> PAGE_SHIFT))) {
755 		DBG_BUGON(1);
756 		return -EFSCORRUPTED;
757 	}
758 
759 	/* no available pcluster, let's allocate one */
760 	pcl = z_erofs_alloc_pcluster(ztailpacking ? 1 :
761 				     map->m_plen >> PAGE_SHIFT);
762 	if (IS_ERR(pcl))
763 		return PTR_ERR(pcl);
764 
765 	atomic_set(&pcl->obj.refcount, 1);
766 	pcl->algorithmformat = map->m_algorithmformat;
767 	pcl->length = 0;
768 	pcl->partial = true;
769 
770 	/* new pclusters should be claimed as type 1, primary and followed */
771 	pcl->next = fe->owned_head;
772 	pcl->pageofs_out = map->m_la & ~PAGE_MASK;
773 	fe->mode = Z_EROFS_PCLUSTER_FOLLOWED;
774 
775 	/*
776 	 * lock all primary followed works before visible to others
777 	 * and mutex_trylock *never* fails for a new pcluster.
778 	 */
779 	mutex_init(&pcl->lock);
780 	DBG_BUGON(!mutex_trylock(&pcl->lock));
781 
782 	if (ztailpacking) {
783 		pcl->obj.index = 0;	/* which indicates ztailpacking */
784 		pcl->pageofs_in = erofs_blkoff(fe->inode->i_sb, map->m_pa);
785 		pcl->tailpacking_size = map->m_plen;
786 	} else {
787 		pcl->obj.index = map->m_pa >> PAGE_SHIFT;
788 
789 		grp = erofs_insert_workgroup(fe->inode->i_sb, &pcl->obj);
790 		if (IS_ERR(grp)) {
791 			err = PTR_ERR(grp);
792 			goto err_out;
793 		}
794 
795 		if (grp != &pcl->obj) {
796 			fe->pcl = container_of(grp,
797 					struct z_erofs_pcluster, obj);
798 			err = -EEXIST;
799 			goto err_out;
800 		}
801 	}
802 	fe->owned_head = &pcl->next;
803 	fe->pcl = pcl;
804 	return 0;
805 
806 err_out:
807 	mutex_unlock(&pcl->lock);
808 	z_erofs_free_pcluster(pcl);
809 	return err;
810 }
811 
812 static int z_erofs_collector_begin(struct z_erofs_decompress_frontend *fe)
813 {
814 	struct erofs_map_blocks *map = &fe->map;
815 	struct erofs_workgroup *grp = NULL;
816 	int ret;
817 
818 	DBG_BUGON(fe->pcl);
819 
820 	/* must be Z_EROFS_PCLUSTER_TAIL or pointed to previous pcluster */
821 	DBG_BUGON(fe->owned_head == Z_EROFS_PCLUSTER_NIL);
822 
823 	if (!(map->m_flags & EROFS_MAP_META)) {
824 		grp = erofs_find_workgroup(fe->inode->i_sb,
825 					   map->m_pa >> PAGE_SHIFT);
826 	} else if ((map->m_pa & ~PAGE_MASK) + map->m_plen > PAGE_SIZE) {
827 		DBG_BUGON(1);
828 		return -EFSCORRUPTED;
829 	}
830 
831 	if (grp) {
832 		fe->pcl = container_of(grp, struct z_erofs_pcluster, obj);
833 		ret = -EEXIST;
834 	} else {
835 		ret = z_erofs_register_pcluster(fe);
836 	}
837 
838 	if (ret == -EEXIST) {
839 		mutex_lock(&fe->pcl->lock);
840 		z_erofs_try_to_claim_pcluster(fe);
841 	} else if (ret) {
842 		return ret;
843 	}
844 	z_erofs_bvec_iter_begin(&fe->biter, &fe->pcl->bvset,
845 				Z_EROFS_INLINE_BVECS, fe->pcl->vcnt);
846 	/* since file-backed online pages are traversed in reverse order */
847 	fe->icur = z_erofs_pclusterpages(fe->pcl);
848 	return 0;
849 }
850 
851 /*
852  * keep in mind that no referenced pclusters will be freed
853  * only after a RCU grace period.
854  */
855 static void z_erofs_rcu_callback(struct rcu_head *head)
856 {
857 	z_erofs_free_pcluster(container_of(head,
858 			struct z_erofs_pcluster, rcu));
859 }
860 
861 void erofs_workgroup_free_rcu(struct erofs_workgroup *grp)
862 {
863 	struct z_erofs_pcluster *const pcl =
864 		container_of(grp, struct z_erofs_pcluster, obj);
865 
866 	call_rcu(&pcl->rcu, z_erofs_rcu_callback);
867 }
868 
869 static bool z_erofs_collector_end(struct z_erofs_decompress_frontend *fe)
870 {
871 	struct z_erofs_pcluster *pcl = fe->pcl;
872 
873 	if (!pcl)
874 		return false;
875 
876 	z_erofs_bvec_iter_end(&fe->biter);
877 	mutex_unlock(&pcl->lock);
878 
879 	if (fe->candidate_bvpage)
880 		fe->candidate_bvpage = NULL;
881 
882 	/*
883 	 * if all pending pages are added, don't hold its reference
884 	 * any longer if the pcluster isn't hosted by ourselves.
885 	 */
886 	if (fe->mode < Z_EROFS_PCLUSTER_FOLLOWED_NOINPLACE)
887 		erofs_workgroup_put(&pcl->obj);
888 
889 	fe->pcl = NULL;
890 	return true;
891 }
892 
893 static int z_erofs_read_fragment(struct inode *inode, erofs_off_t pos,
894 				 struct page *page, unsigned int pageofs,
895 				 unsigned int len)
896 {
897 	struct super_block *sb = inode->i_sb;
898 	struct inode *packed_inode = EROFS_I_SB(inode)->packed_inode;
899 	struct erofs_buf buf = __EROFS_BUF_INITIALIZER;
900 	u8 *src, *dst;
901 	unsigned int i, cnt;
902 
903 	if (!packed_inode)
904 		return -EFSCORRUPTED;
905 
906 	buf.inode = packed_inode;
907 	pos += EROFS_I(inode)->z_fragmentoff;
908 	for (i = 0; i < len; i += cnt) {
909 		cnt = min_t(unsigned int, len - i,
910 			    sb->s_blocksize - erofs_blkoff(sb, pos));
911 		src = erofs_bread(&buf, erofs_blknr(sb, pos), EROFS_KMAP);
912 		if (IS_ERR(src)) {
913 			erofs_put_metabuf(&buf);
914 			return PTR_ERR(src);
915 		}
916 
917 		dst = kmap_local_page(page);
918 		memcpy(dst + pageofs + i, src + erofs_blkoff(sb, pos), cnt);
919 		kunmap_local(dst);
920 		pos += cnt;
921 	}
922 	erofs_put_metabuf(&buf);
923 	return 0;
924 }
925 
926 static int z_erofs_do_read_page(struct z_erofs_decompress_frontend *fe,
927 				struct page *page)
928 {
929 	struct inode *const inode = fe->inode;
930 	struct erofs_map_blocks *const map = &fe->map;
931 	const loff_t offset = page_offset(page);
932 	bool tight = true, exclusive;
933 	unsigned int cur, end, spiltted;
934 	int err = 0;
935 
936 	/* register locked file pages as online pages in pack */
937 	z_erofs_onlinepage_init(page);
938 
939 	spiltted = 0;
940 	end = PAGE_SIZE;
941 repeat:
942 	cur = end - 1;
943 
944 	if (offset + cur < map->m_la ||
945 	    offset + cur >= map->m_la + map->m_llen) {
946 		if (z_erofs_collector_end(fe))
947 			fe->backmost = false;
948 		map->m_la = offset + cur;
949 		map->m_llen = 0;
950 		err = z_erofs_map_blocks_iter(inode, map, 0);
951 		if (err)
952 			goto out;
953 	} else {
954 		if (fe->pcl)
955 			goto hitted;
956 		/* didn't get a valid pcluster previously (very rare) */
957 	}
958 
959 	if (!(map->m_flags & EROFS_MAP_MAPPED) ||
960 	    map->m_flags & EROFS_MAP_FRAGMENT)
961 		goto hitted;
962 
963 	err = z_erofs_collector_begin(fe);
964 	if (err)
965 		goto out;
966 
967 	if (z_erofs_is_inline_pcluster(fe->pcl)) {
968 		void *mp;
969 
970 		mp = erofs_read_metabuf(&fe->map.buf, inode->i_sb,
971 					erofs_blknr(inode->i_sb, map->m_pa),
972 					EROFS_NO_KMAP);
973 		if (IS_ERR(mp)) {
974 			err = PTR_ERR(mp);
975 			erofs_err(inode->i_sb,
976 				  "failed to get inline page, err %d", err);
977 			goto out;
978 		}
979 		get_page(fe->map.buf.page);
980 		WRITE_ONCE(fe->pcl->compressed_bvecs[0].page,
981 			   fe->map.buf.page);
982 		fe->mode = Z_EROFS_PCLUSTER_FOLLOWED_NOINPLACE;
983 	} else {
984 		/* bind cache first when cached decompression is preferred */
985 		z_erofs_bind_cache(fe);
986 	}
987 hitted:
988 	/*
989 	 * Ensure the current partial page belongs to this submit chain rather
990 	 * than other concurrent submit chains or the noio(bypass) chain since
991 	 * those chains are handled asynchronously thus the page cannot be used
992 	 * for inplace I/O or bvpage (should be processed in a strict order.)
993 	 */
994 	tight &= (fe->mode > Z_EROFS_PCLUSTER_FOLLOWED_NOINPLACE);
995 
996 	cur = end - min_t(unsigned int, offset + end - map->m_la, end);
997 	if (!(map->m_flags & EROFS_MAP_MAPPED)) {
998 		zero_user_segment(page, cur, end);
999 		goto next_part;
1000 	}
1001 	if (map->m_flags & EROFS_MAP_FRAGMENT) {
1002 		unsigned int pageofs, skip, len;
1003 
1004 		if (offset > map->m_la) {
1005 			pageofs = 0;
1006 			skip = offset - map->m_la;
1007 		} else {
1008 			pageofs = map->m_la & ~PAGE_MASK;
1009 			skip = 0;
1010 		}
1011 		len = min_t(unsigned int, map->m_llen - skip, end - cur);
1012 		err = z_erofs_read_fragment(inode, skip, page, pageofs, len);
1013 		if (err)
1014 			goto out;
1015 		++spiltted;
1016 		tight = false;
1017 		goto next_part;
1018 	}
1019 
1020 	exclusive = (!cur && (!spiltted || tight));
1021 	if (cur)
1022 		tight &= (fe->mode >= Z_EROFS_PCLUSTER_FOLLOWED);
1023 
1024 	err = z_erofs_attach_page(fe, &((struct z_erofs_bvec) {
1025 					.page = page,
1026 					.offset = offset - map->m_la,
1027 					.end = end,
1028 				  }), exclusive);
1029 	if (err)
1030 		goto out;
1031 
1032 	z_erofs_onlinepage_split(page);
1033 	/* bump up the number of spiltted parts of a page */
1034 	++spiltted;
1035 	if (fe->pcl->pageofs_out != (map->m_la & ~PAGE_MASK))
1036 		fe->pcl->multibases = true;
1037 	if (fe->pcl->length < offset + end - map->m_la) {
1038 		fe->pcl->length = offset + end - map->m_la;
1039 		fe->pcl->pageofs_out = map->m_la & ~PAGE_MASK;
1040 	}
1041 	if ((map->m_flags & EROFS_MAP_FULL_MAPPED) &&
1042 	    !(map->m_flags & EROFS_MAP_PARTIAL_REF) &&
1043 	    fe->pcl->length == map->m_llen)
1044 		fe->pcl->partial = false;
1045 next_part:
1046 	/* shorten the remaining extent to update progress */
1047 	map->m_llen = offset + cur - map->m_la;
1048 	map->m_flags &= ~EROFS_MAP_FULL_MAPPED;
1049 
1050 	end = cur;
1051 	if (end > 0)
1052 		goto repeat;
1053 
1054 out:
1055 	if (err)
1056 		z_erofs_page_mark_eio(page);
1057 	z_erofs_onlinepage_endio(page);
1058 	return err;
1059 }
1060 
1061 static bool z_erofs_is_sync_decompress(struct erofs_sb_info *sbi,
1062 				       unsigned int readahead_pages)
1063 {
1064 	/* auto: enable for read_folio, disable for readahead */
1065 	if ((sbi->opt.sync_decompress == EROFS_SYNC_DECOMPRESS_AUTO) &&
1066 	    !readahead_pages)
1067 		return true;
1068 
1069 	if ((sbi->opt.sync_decompress == EROFS_SYNC_DECOMPRESS_FORCE_ON) &&
1070 	    (readahead_pages <= sbi->opt.max_sync_decompress_pages))
1071 		return true;
1072 
1073 	return false;
1074 }
1075 
1076 static bool z_erofs_page_is_invalidated(struct page *page)
1077 {
1078 	return !page->mapping && !z_erofs_is_shortlived_page(page);
1079 }
1080 
1081 struct z_erofs_decompress_backend {
1082 	struct page *onstack_pages[Z_EROFS_ONSTACK_PAGES];
1083 	struct super_block *sb;
1084 	struct z_erofs_pcluster *pcl;
1085 
1086 	/* pages with the longest decompressed length for deduplication */
1087 	struct page **decompressed_pages;
1088 	/* pages to keep the compressed data */
1089 	struct page **compressed_pages;
1090 
1091 	struct list_head decompressed_secondary_bvecs;
1092 	struct page **pagepool;
1093 	unsigned int onstack_used, nr_pages;
1094 };
1095 
1096 struct z_erofs_bvec_item {
1097 	struct z_erofs_bvec bvec;
1098 	struct list_head list;
1099 };
1100 
1101 static void z_erofs_do_decompressed_bvec(struct z_erofs_decompress_backend *be,
1102 					 struct z_erofs_bvec *bvec)
1103 {
1104 	struct z_erofs_bvec_item *item;
1105 
1106 	if (!((bvec->offset + be->pcl->pageofs_out) & ~PAGE_MASK)) {
1107 		unsigned int pgnr;
1108 
1109 		pgnr = (bvec->offset + be->pcl->pageofs_out) >> PAGE_SHIFT;
1110 		DBG_BUGON(pgnr >= be->nr_pages);
1111 		if (!be->decompressed_pages[pgnr]) {
1112 			be->decompressed_pages[pgnr] = bvec->page;
1113 			return;
1114 		}
1115 	}
1116 
1117 	/* (cold path) one pcluster is requested multiple times */
1118 	item = kmalloc(sizeof(*item), GFP_KERNEL | __GFP_NOFAIL);
1119 	item->bvec = *bvec;
1120 	list_add(&item->list, &be->decompressed_secondary_bvecs);
1121 }
1122 
1123 static void z_erofs_fill_other_copies(struct z_erofs_decompress_backend *be,
1124 				      int err)
1125 {
1126 	unsigned int off0 = be->pcl->pageofs_out;
1127 	struct list_head *p, *n;
1128 
1129 	list_for_each_safe(p, n, &be->decompressed_secondary_bvecs) {
1130 		struct z_erofs_bvec_item *bvi;
1131 		unsigned int end, cur;
1132 		void *dst, *src;
1133 
1134 		bvi = container_of(p, struct z_erofs_bvec_item, list);
1135 		cur = bvi->bvec.offset < 0 ? -bvi->bvec.offset : 0;
1136 		end = min_t(unsigned int, be->pcl->length - bvi->bvec.offset,
1137 			    bvi->bvec.end);
1138 		dst = kmap_local_page(bvi->bvec.page);
1139 		while (cur < end) {
1140 			unsigned int pgnr, scur, len;
1141 
1142 			pgnr = (bvi->bvec.offset + cur + off0) >> PAGE_SHIFT;
1143 			DBG_BUGON(pgnr >= be->nr_pages);
1144 
1145 			scur = bvi->bvec.offset + cur -
1146 					((pgnr << PAGE_SHIFT) - off0);
1147 			len = min_t(unsigned int, end - cur, PAGE_SIZE - scur);
1148 			if (!be->decompressed_pages[pgnr]) {
1149 				err = -EFSCORRUPTED;
1150 				cur += len;
1151 				continue;
1152 			}
1153 			src = kmap_local_page(be->decompressed_pages[pgnr]);
1154 			memcpy(dst + cur, src + scur, len);
1155 			kunmap_local(src);
1156 			cur += len;
1157 		}
1158 		kunmap_local(dst);
1159 		if (err)
1160 			z_erofs_page_mark_eio(bvi->bvec.page);
1161 		z_erofs_onlinepage_endio(bvi->bvec.page);
1162 		list_del(p);
1163 		kfree(bvi);
1164 	}
1165 }
1166 
1167 static void z_erofs_parse_out_bvecs(struct z_erofs_decompress_backend *be)
1168 {
1169 	struct z_erofs_pcluster *pcl = be->pcl;
1170 	struct z_erofs_bvec_iter biter;
1171 	struct page *old_bvpage;
1172 	int i;
1173 
1174 	z_erofs_bvec_iter_begin(&biter, &pcl->bvset, Z_EROFS_INLINE_BVECS, 0);
1175 	for (i = 0; i < pcl->vcnt; ++i) {
1176 		struct z_erofs_bvec bvec;
1177 
1178 		z_erofs_bvec_dequeue(&biter, &bvec, &old_bvpage);
1179 
1180 		if (old_bvpage)
1181 			z_erofs_put_shortlivedpage(be->pagepool, old_bvpage);
1182 
1183 		DBG_BUGON(z_erofs_page_is_invalidated(bvec.page));
1184 		z_erofs_do_decompressed_bvec(be, &bvec);
1185 	}
1186 
1187 	old_bvpage = z_erofs_bvec_iter_end(&biter);
1188 	if (old_bvpage)
1189 		z_erofs_put_shortlivedpage(be->pagepool, old_bvpage);
1190 }
1191 
1192 static int z_erofs_parse_in_bvecs(struct z_erofs_decompress_backend *be,
1193 				  bool *overlapped)
1194 {
1195 	struct z_erofs_pcluster *pcl = be->pcl;
1196 	unsigned int pclusterpages = z_erofs_pclusterpages(pcl);
1197 	int i, err = 0;
1198 
1199 	*overlapped = false;
1200 	for (i = 0; i < pclusterpages; ++i) {
1201 		struct z_erofs_bvec *bvec = &pcl->compressed_bvecs[i];
1202 		struct page *page = bvec->page;
1203 
1204 		/* compressed pages ought to be present before decompressing */
1205 		if (!page) {
1206 			DBG_BUGON(1);
1207 			continue;
1208 		}
1209 		be->compressed_pages[i] = page;
1210 
1211 		if (z_erofs_is_inline_pcluster(pcl)) {
1212 			if (!PageUptodate(page))
1213 				err = -EIO;
1214 			continue;
1215 		}
1216 
1217 		DBG_BUGON(z_erofs_page_is_invalidated(page));
1218 		if (!z_erofs_is_shortlived_page(page)) {
1219 			if (erofs_page_is_managed(EROFS_SB(be->sb), page)) {
1220 				if (!PageUptodate(page))
1221 					err = -EIO;
1222 				continue;
1223 			}
1224 			z_erofs_do_decompressed_bvec(be, bvec);
1225 			*overlapped = true;
1226 		}
1227 	}
1228 
1229 	if (err)
1230 		return err;
1231 	return 0;
1232 }
1233 
1234 static int z_erofs_decompress_pcluster(struct z_erofs_decompress_backend *be,
1235 				       int err)
1236 {
1237 	struct erofs_sb_info *const sbi = EROFS_SB(be->sb);
1238 	struct z_erofs_pcluster *pcl = be->pcl;
1239 	unsigned int pclusterpages = z_erofs_pclusterpages(pcl);
1240 	const struct z_erofs_decompressor *decompressor =
1241 				&erofs_decompressors[pcl->algorithmformat];
1242 	unsigned int i, inputsize;
1243 	int err2;
1244 	struct page *page;
1245 	bool overlapped;
1246 
1247 	mutex_lock(&pcl->lock);
1248 	be->nr_pages = PAGE_ALIGN(pcl->length + pcl->pageofs_out) >> PAGE_SHIFT;
1249 
1250 	/* allocate (de)compressed page arrays if cannot be kept on stack */
1251 	be->decompressed_pages = NULL;
1252 	be->compressed_pages = NULL;
1253 	be->onstack_used = 0;
1254 	if (be->nr_pages <= Z_EROFS_ONSTACK_PAGES) {
1255 		be->decompressed_pages = be->onstack_pages;
1256 		be->onstack_used = be->nr_pages;
1257 		memset(be->decompressed_pages, 0,
1258 		       sizeof(struct page *) * be->nr_pages);
1259 	}
1260 
1261 	if (pclusterpages + be->onstack_used <= Z_EROFS_ONSTACK_PAGES)
1262 		be->compressed_pages = be->onstack_pages + be->onstack_used;
1263 
1264 	if (!be->decompressed_pages)
1265 		be->decompressed_pages =
1266 			kvcalloc(be->nr_pages, sizeof(struct page *),
1267 				 GFP_KERNEL | __GFP_NOFAIL);
1268 	if (!be->compressed_pages)
1269 		be->compressed_pages =
1270 			kvcalloc(pclusterpages, sizeof(struct page *),
1271 				 GFP_KERNEL | __GFP_NOFAIL);
1272 
1273 	z_erofs_parse_out_bvecs(be);
1274 	err2 = z_erofs_parse_in_bvecs(be, &overlapped);
1275 	if (err2)
1276 		err = err2;
1277 	if (err)
1278 		goto out;
1279 
1280 	if (z_erofs_is_inline_pcluster(pcl))
1281 		inputsize = pcl->tailpacking_size;
1282 	else
1283 		inputsize = pclusterpages * PAGE_SIZE;
1284 
1285 	err = decompressor->decompress(&(struct z_erofs_decompress_req) {
1286 					.sb = be->sb,
1287 					.in = be->compressed_pages,
1288 					.out = be->decompressed_pages,
1289 					.pageofs_in = pcl->pageofs_in,
1290 					.pageofs_out = pcl->pageofs_out,
1291 					.inputsize = inputsize,
1292 					.outputsize = pcl->length,
1293 					.alg = pcl->algorithmformat,
1294 					.inplace_io = overlapped,
1295 					.partial_decoding = pcl->partial,
1296 					.fillgaps = pcl->multibases,
1297 				 }, be->pagepool);
1298 
1299 out:
1300 	/* must handle all compressed pages before actual file pages */
1301 	if (z_erofs_is_inline_pcluster(pcl)) {
1302 		page = pcl->compressed_bvecs[0].page;
1303 		WRITE_ONCE(pcl->compressed_bvecs[0].page, NULL);
1304 		put_page(page);
1305 	} else {
1306 		for (i = 0; i < pclusterpages; ++i) {
1307 			page = pcl->compressed_bvecs[i].page;
1308 
1309 			if (erofs_page_is_managed(sbi, page))
1310 				continue;
1311 
1312 			/* recycle all individual short-lived pages */
1313 			(void)z_erofs_put_shortlivedpage(be->pagepool, page);
1314 			WRITE_ONCE(pcl->compressed_bvecs[i].page, NULL);
1315 		}
1316 	}
1317 	if (be->compressed_pages < be->onstack_pages ||
1318 	    be->compressed_pages >= be->onstack_pages + Z_EROFS_ONSTACK_PAGES)
1319 		kvfree(be->compressed_pages);
1320 	z_erofs_fill_other_copies(be, err);
1321 
1322 	for (i = 0; i < be->nr_pages; ++i) {
1323 		page = be->decompressed_pages[i];
1324 		if (!page)
1325 			continue;
1326 
1327 		DBG_BUGON(z_erofs_page_is_invalidated(page));
1328 
1329 		/* recycle all individual short-lived pages */
1330 		if (z_erofs_put_shortlivedpage(be->pagepool, page))
1331 			continue;
1332 		if (err)
1333 			z_erofs_page_mark_eio(page);
1334 		z_erofs_onlinepage_endio(page);
1335 	}
1336 
1337 	if (be->decompressed_pages != be->onstack_pages)
1338 		kvfree(be->decompressed_pages);
1339 
1340 	pcl->length = 0;
1341 	pcl->partial = true;
1342 	pcl->multibases = false;
1343 	pcl->bvset.nextpage = NULL;
1344 	pcl->vcnt = 0;
1345 
1346 	/* pcluster lock MUST be taken before the following line */
1347 	WRITE_ONCE(pcl->next, Z_EROFS_PCLUSTER_NIL);
1348 	mutex_unlock(&pcl->lock);
1349 	return err;
1350 }
1351 
1352 static void z_erofs_decompress_queue(const struct z_erofs_decompressqueue *io,
1353 				     struct page **pagepool)
1354 {
1355 	struct z_erofs_decompress_backend be = {
1356 		.sb = io->sb,
1357 		.pagepool = pagepool,
1358 		.decompressed_secondary_bvecs =
1359 			LIST_HEAD_INIT(be.decompressed_secondary_bvecs),
1360 	};
1361 	z_erofs_next_pcluster_t owned = io->head;
1362 
1363 	while (owned != Z_EROFS_PCLUSTER_TAIL) {
1364 		DBG_BUGON(owned == Z_EROFS_PCLUSTER_NIL);
1365 
1366 		be.pcl = container_of(owned, struct z_erofs_pcluster, next);
1367 		owned = READ_ONCE(be.pcl->next);
1368 
1369 		z_erofs_decompress_pcluster(&be, io->eio ? -EIO : 0);
1370 		erofs_workgroup_put(&be.pcl->obj);
1371 	}
1372 }
1373 
1374 static void z_erofs_decompressqueue_work(struct work_struct *work)
1375 {
1376 	struct z_erofs_decompressqueue *bgq =
1377 		container_of(work, struct z_erofs_decompressqueue, u.work);
1378 	struct page *pagepool = NULL;
1379 
1380 	DBG_BUGON(bgq->head == Z_EROFS_PCLUSTER_TAIL);
1381 	z_erofs_decompress_queue(bgq, &pagepool);
1382 	erofs_release_pages(&pagepool);
1383 	kvfree(bgq);
1384 }
1385 
1386 #ifdef CONFIG_EROFS_FS_PCPU_KTHREAD
1387 static void z_erofs_decompressqueue_kthread_work(struct kthread_work *work)
1388 {
1389 	z_erofs_decompressqueue_work((struct work_struct *)work);
1390 }
1391 #endif
1392 
1393 static void z_erofs_decompress_kickoff(struct z_erofs_decompressqueue *io,
1394 				       int bios)
1395 {
1396 	struct erofs_sb_info *const sbi = EROFS_SB(io->sb);
1397 
1398 	/* wake up the caller thread for sync decompression */
1399 	if (io->sync) {
1400 		if (!atomic_add_return(bios, &io->pending_bios))
1401 			complete(&io->u.done);
1402 		return;
1403 	}
1404 
1405 	if (atomic_add_return(bios, &io->pending_bios))
1406 		return;
1407 	/* Use (kthread_)work and sync decompression for atomic contexts only */
1408 	if (in_atomic() || irqs_disabled()) {
1409 #ifdef CONFIG_EROFS_FS_PCPU_KTHREAD
1410 		struct kthread_worker *worker;
1411 
1412 		rcu_read_lock();
1413 		worker = rcu_dereference(
1414 				z_erofs_pcpu_workers[raw_smp_processor_id()]);
1415 		if (!worker) {
1416 			INIT_WORK(&io->u.work, z_erofs_decompressqueue_work);
1417 			queue_work(z_erofs_workqueue, &io->u.work);
1418 		} else {
1419 			kthread_queue_work(worker, &io->u.kthread_work);
1420 		}
1421 		rcu_read_unlock();
1422 #else
1423 		queue_work(z_erofs_workqueue, &io->u.work);
1424 #endif
1425 		/* enable sync decompression for readahead */
1426 		if (sbi->opt.sync_decompress == EROFS_SYNC_DECOMPRESS_AUTO)
1427 			sbi->opt.sync_decompress = EROFS_SYNC_DECOMPRESS_FORCE_ON;
1428 		return;
1429 	}
1430 	z_erofs_decompressqueue_work(&io->u.work);
1431 }
1432 
1433 static struct page *pickup_page_for_submission(struct z_erofs_pcluster *pcl,
1434 					       unsigned int nr,
1435 					       struct page **pagepool,
1436 					       struct address_space *mc)
1437 {
1438 	const pgoff_t index = pcl->obj.index;
1439 	gfp_t gfp = mapping_gfp_mask(mc);
1440 	bool tocache = false;
1441 
1442 	struct address_space *mapping;
1443 	struct page *oldpage, *page;
1444 	int justfound;
1445 
1446 repeat:
1447 	page = READ_ONCE(pcl->compressed_bvecs[nr].page);
1448 	oldpage = page;
1449 
1450 	if (!page)
1451 		goto out_allocpage;
1452 
1453 	justfound = (unsigned long)page & 1UL;
1454 	page = (struct page *)((unsigned long)page & ~1UL);
1455 
1456 	/*
1457 	 * preallocated cached pages, which is used to avoid direct reclaim
1458 	 * otherwise, it will go inplace I/O path instead.
1459 	 */
1460 	if (page->private == Z_EROFS_PREALLOCATED_PAGE) {
1461 		WRITE_ONCE(pcl->compressed_bvecs[nr].page, page);
1462 		set_page_private(page, 0);
1463 		tocache = true;
1464 		goto out_tocache;
1465 	}
1466 	mapping = READ_ONCE(page->mapping);
1467 
1468 	/*
1469 	 * file-backed online pages in plcuster are all locked steady,
1470 	 * therefore it is impossible for `mapping' to be NULL.
1471 	 */
1472 	if (mapping && mapping != mc)
1473 		/* ought to be unmanaged pages */
1474 		goto out;
1475 
1476 	/* directly return for shortlived page as well */
1477 	if (z_erofs_is_shortlived_page(page))
1478 		goto out;
1479 
1480 	lock_page(page);
1481 
1482 	/* only true if page reclaim goes wrong, should never happen */
1483 	DBG_BUGON(justfound && PagePrivate(page));
1484 
1485 	/* the page is still in manage cache */
1486 	if (page->mapping == mc) {
1487 		WRITE_ONCE(pcl->compressed_bvecs[nr].page, page);
1488 
1489 		if (!PagePrivate(page)) {
1490 			/*
1491 			 * impossible to be !PagePrivate(page) for
1492 			 * the current restriction as well if
1493 			 * the page is already in compressed_bvecs[].
1494 			 */
1495 			DBG_BUGON(!justfound);
1496 
1497 			justfound = 0;
1498 			set_page_private(page, (unsigned long)pcl);
1499 			SetPagePrivate(page);
1500 		}
1501 
1502 		/* no need to submit io if it is already up-to-date */
1503 		if (PageUptodate(page)) {
1504 			unlock_page(page);
1505 			page = NULL;
1506 		}
1507 		goto out;
1508 	}
1509 
1510 	/*
1511 	 * the managed page has been truncated, it's unsafe to
1512 	 * reuse this one, let's allocate a new cache-managed page.
1513 	 */
1514 	DBG_BUGON(page->mapping);
1515 	DBG_BUGON(!justfound);
1516 
1517 	tocache = true;
1518 	unlock_page(page);
1519 	put_page(page);
1520 out_allocpage:
1521 	page = erofs_allocpage(pagepool, gfp | __GFP_NOFAIL);
1522 	if (oldpage != cmpxchg(&pcl->compressed_bvecs[nr].page,
1523 			       oldpage, page)) {
1524 		erofs_pagepool_add(pagepool, page);
1525 		cond_resched();
1526 		goto repeat;
1527 	}
1528 out_tocache:
1529 	if (!tocache || add_to_page_cache_lru(page, mc, index + nr, gfp)) {
1530 		/* turn into temporary page if fails (1 ref) */
1531 		set_page_private(page, Z_EROFS_SHORTLIVED_PAGE);
1532 		goto out;
1533 	}
1534 	attach_page_private(page, pcl);
1535 	/* drop a refcount added by allocpage (then we have 2 refs here) */
1536 	put_page(page);
1537 
1538 out:	/* the only exit (for tracing and debugging) */
1539 	return page;
1540 }
1541 
1542 static struct z_erofs_decompressqueue *jobqueue_init(struct super_block *sb,
1543 			      struct z_erofs_decompressqueue *fgq, bool *fg)
1544 {
1545 	struct z_erofs_decompressqueue *q;
1546 
1547 	if (fg && !*fg) {
1548 		q = kvzalloc(sizeof(*q), GFP_KERNEL | __GFP_NOWARN);
1549 		if (!q) {
1550 			*fg = true;
1551 			goto fg_out;
1552 		}
1553 #ifdef CONFIG_EROFS_FS_PCPU_KTHREAD
1554 		kthread_init_work(&q->u.kthread_work,
1555 				  z_erofs_decompressqueue_kthread_work);
1556 #else
1557 		INIT_WORK(&q->u.work, z_erofs_decompressqueue_work);
1558 #endif
1559 	} else {
1560 fg_out:
1561 		q = fgq;
1562 		init_completion(&fgq->u.done);
1563 		atomic_set(&fgq->pending_bios, 0);
1564 		q->eio = false;
1565 		q->sync = true;
1566 	}
1567 	q->sb = sb;
1568 	q->head = Z_EROFS_PCLUSTER_TAIL;
1569 	return q;
1570 }
1571 
1572 /* define decompression jobqueue types */
1573 enum {
1574 	JQ_BYPASS,
1575 	JQ_SUBMIT,
1576 	NR_JOBQUEUES,
1577 };
1578 
1579 static void move_to_bypass_jobqueue(struct z_erofs_pcluster *pcl,
1580 				    z_erofs_next_pcluster_t qtail[],
1581 				    z_erofs_next_pcluster_t owned_head)
1582 {
1583 	z_erofs_next_pcluster_t *const submit_qtail = qtail[JQ_SUBMIT];
1584 	z_erofs_next_pcluster_t *const bypass_qtail = qtail[JQ_BYPASS];
1585 
1586 	WRITE_ONCE(pcl->next, Z_EROFS_PCLUSTER_TAIL);
1587 
1588 	WRITE_ONCE(*submit_qtail, owned_head);
1589 	WRITE_ONCE(*bypass_qtail, &pcl->next);
1590 
1591 	qtail[JQ_BYPASS] = &pcl->next;
1592 }
1593 
1594 static void z_erofs_decompressqueue_endio(struct bio *bio)
1595 {
1596 	struct z_erofs_decompressqueue *q = bio->bi_private;
1597 	blk_status_t err = bio->bi_status;
1598 	struct bio_vec *bvec;
1599 	struct bvec_iter_all iter_all;
1600 
1601 	bio_for_each_segment_all(bvec, bio, iter_all) {
1602 		struct page *page = bvec->bv_page;
1603 
1604 		DBG_BUGON(PageUptodate(page));
1605 		DBG_BUGON(z_erofs_page_is_invalidated(page));
1606 
1607 		if (erofs_page_is_managed(EROFS_SB(q->sb), page)) {
1608 			if (!err)
1609 				SetPageUptodate(page);
1610 			unlock_page(page);
1611 		}
1612 	}
1613 	if (err)
1614 		q->eio = true;
1615 	z_erofs_decompress_kickoff(q, -1);
1616 	bio_put(bio);
1617 }
1618 
1619 static void z_erofs_submit_queue(struct z_erofs_decompress_frontend *f,
1620 				 struct z_erofs_decompressqueue *fgq,
1621 				 bool *force_fg, bool readahead)
1622 {
1623 	struct super_block *sb = f->inode->i_sb;
1624 	struct address_space *mc = MNGD_MAPPING(EROFS_SB(sb));
1625 	z_erofs_next_pcluster_t qtail[NR_JOBQUEUES];
1626 	struct z_erofs_decompressqueue *q[NR_JOBQUEUES];
1627 	z_erofs_next_pcluster_t owned_head = f->owned_head;
1628 	/* bio is NULL initially, so no need to initialize last_{index,bdev} */
1629 	pgoff_t last_index;
1630 	struct block_device *last_bdev;
1631 	unsigned int nr_bios = 0;
1632 	struct bio *bio = NULL;
1633 	unsigned long pflags;
1634 	int memstall = 0;
1635 
1636 	/*
1637 	 * if managed cache is enabled, bypass jobqueue is needed,
1638 	 * no need to read from device for all pclusters in this queue.
1639 	 */
1640 	q[JQ_BYPASS] = jobqueue_init(sb, fgq + JQ_BYPASS, NULL);
1641 	q[JQ_SUBMIT] = jobqueue_init(sb, fgq + JQ_SUBMIT, force_fg);
1642 
1643 	qtail[JQ_BYPASS] = &q[JQ_BYPASS]->head;
1644 	qtail[JQ_SUBMIT] = &q[JQ_SUBMIT]->head;
1645 
1646 	/* by default, all need io submission */
1647 	q[JQ_SUBMIT]->head = owned_head;
1648 
1649 	do {
1650 		struct erofs_map_dev mdev;
1651 		struct z_erofs_pcluster *pcl;
1652 		pgoff_t cur, end;
1653 		unsigned int i = 0;
1654 		bool bypass = true;
1655 
1656 		DBG_BUGON(owned_head == Z_EROFS_PCLUSTER_NIL);
1657 		pcl = container_of(owned_head, struct z_erofs_pcluster, next);
1658 		owned_head = READ_ONCE(pcl->next);
1659 
1660 		if (z_erofs_is_inline_pcluster(pcl)) {
1661 			move_to_bypass_jobqueue(pcl, qtail, owned_head);
1662 			continue;
1663 		}
1664 
1665 		/* no device id here, thus it will always succeed */
1666 		mdev = (struct erofs_map_dev) {
1667 			.m_pa = erofs_pos(sb, pcl->obj.index),
1668 		};
1669 		(void)erofs_map_dev(sb, &mdev);
1670 
1671 		cur = erofs_blknr(sb, mdev.m_pa);
1672 		end = cur + pcl->pclusterpages;
1673 
1674 		do {
1675 			struct page *page;
1676 
1677 			page = pickup_page_for_submission(pcl, i++,
1678 					&f->pagepool, mc);
1679 			if (!page)
1680 				continue;
1681 
1682 			if (bio && (cur != last_index + 1 ||
1683 				    last_bdev != mdev.m_bdev)) {
1684 submit_bio_retry:
1685 				submit_bio(bio);
1686 				if (memstall) {
1687 					psi_memstall_leave(&pflags);
1688 					memstall = 0;
1689 				}
1690 				bio = NULL;
1691 			}
1692 
1693 			if (unlikely(PageWorkingset(page)) && !memstall) {
1694 				psi_memstall_enter(&pflags);
1695 				memstall = 1;
1696 			}
1697 
1698 			if (!bio) {
1699 				bio = bio_alloc(mdev.m_bdev, BIO_MAX_VECS,
1700 						REQ_OP_READ, GFP_NOIO);
1701 				bio->bi_end_io = z_erofs_decompressqueue_endio;
1702 
1703 				last_bdev = mdev.m_bdev;
1704 				bio->bi_iter.bi_sector = (sector_t)cur <<
1705 					(sb->s_blocksize_bits - 9);
1706 				bio->bi_private = q[JQ_SUBMIT];
1707 				if (readahead)
1708 					bio->bi_opf |= REQ_RAHEAD;
1709 				++nr_bios;
1710 			}
1711 
1712 			if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
1713 				goto submit_bio_retry;
1714 
1715 			last_index = cur;
1716 			bypass = false;
1717 		} while (++cur < end);
1718 
1719 		if (!bypass)
1720 			qtail[JQ_SUBMIT] = &pcl->next;
1721 		else
1722 			move_to_bypass_jobqueue(pcl, qtail, owned_head);
1723 	} while (owned_head != Z_EROFS_PCLUSTER_TAIL);
1724 
1725 	if (bio) {
1726 		submit_bio(bio);
1727 		if (memstall)
1728 			psi_memstall_leave(&pflags);
1729 	}
1730 
1731 	/*
1732 	 * although background is preferred, no one is pending for submission.
1733 	 * don't issue decompression but drop it directly instead.
1734 	 */
1735 	if (!*force_fg && !nr_bios) {
1736 		kvfree(q[JQ_SUBMIT]);
1737 		return;
1738 	}
1739 	z_erofs_decompress_kickoff(q[JQ_SUBMIT], nr_bios);
1740 }
1741 
1742 static void z_erofs_runqueue(struct z_erofs_decompress_frontend *f,
1743 			     bool force_fg, bool ra)
1744 {
1745 	struct z_erofs_decompressqueue io[NR_JOBQUEUES];
1746 
1747 	if (f->owned_head == Z_EROFS_PCLUSTER_TAIL)
1748 		return;
1749 	z_erofs_submit_queue(f, io, &force_fg, ra);
1750 
1751 	/* handle bypass queue (no i/o pclusters) immediately */
1752 	z_erofs_decompress_queue(&io[JQ_BYPASS], &f->pagepool);
1753 
1754 	if (!force_fg)
1755 		return;
1756 
1757 	/* wait until all bios are completed */
1758 	wait_for_completion_io(&io[JQ_SUBMIT].u.done);
1759 
1760 	/* handle synchronous decompress queue in the caller context */
1761 	z_erofs_decompress_queue(&io[JQ_SUBMIT], &f->pagepool);
1762 }
1763 
1764 /*
1765  * Since partial uptodate is still unimplemented for now, we have to use
1766  * approximate readmore strategies as a start.
1767  */
1768 static void z_erofs_pcluster_readmore(struct z_erofs_decompress_frontend *f,
1769 		struct readahead_control *rac, bool backmost)
1770 {
1771 	struct inode *inode = f->inode;
1772 	struct erofs_map_blocks *map = &f->map;
1773 	erofs_off_t cur, end, headoffset = f->headoffset;
1774 	int err;
1775 
1776 	if (backmost) {
1777 		if (rac)
1778 			end = headoffset + readahead_length(rac) - 1;
1779 		else
1780 			end = headoffset + PAGE_SIZE - 1;
1781 		map->m_la = end;
1782 		err = z_erofs_map_blocks_iter(inode, map,
1783 					      EROFS_GET_BLOCKS_READMORE);
1784 		if (err)
1785 			return;
1786 
1787 		/* expand ra for the trailing edge if readahead */
1788 		if (rac) {
1789 			cur = round_up(map->m_la + map->m_llen, PAGE_SIZE);
1790 			readahead_expand(rac, headoffset, cur - headoffset);
1791 			return;
1792 		}
1793 		end = round_up(end, PAGE_SIZE);
1794 	} else {
1795 		end = round_up(map->m_la, PAGE_SIZE);
1796 
1797 		if (!map->m_llen)
1798 			return;
1799 	}
1800 
1801 	cur = map->m_la + map->m_llen - 1;
1802 	while (cur >= end) {
1803 		pgoff_t index = cur >> PAGE_SHIFT;
1804 		struct page *page;
1805 
1806 		page = erofs_grab_cache_page_nowait(inode->i_mapping, index);
1807 		if (page) {
1808 			if (PageUptodate(page)) {
1809 				unlock_page(page);
1810 			} else {
1811 				err = z_erofs_do_read_page(f, page);
1812 				if (err)
1813 					erofs_err(inode->i_sb,
1814 						  "readmore error at page %lu @ nid %llu",
1815 						  index, EROFS_I(inode)->nid);
1816 			}
1817 			put_page(page);
1818 		}
1819 
1820 		if (cur < PAGE_SIZE)
1821 			break;
1822 		cur = (index << PAGE_SHIFT) - 1;
1823 	}
1824 }
1825 
1826 static int z_erofs_read_folio(struct file *file, struct folio *folio)
1827 {
1828 	struct page *page = &folio->page;
1829 	struct inode *const inode = page->mapping->host;
1830 	struct erofs_sb_info *const sbi = EROFS_I_SB(inode);
1831 	struct z_erofs_decompress_frontend f = DECOMPRESS_FRONTEND_INIT(inode);
1832 	int err;
1833 
1834 	trace_erofs_readpage(page, false);
1835 	f.headoffset = (erofs_off_t)page->index << PAGE_SHIFT;
1836 
1837 	z_erofs_pcluster_readmore(&f, NULL, true);
1838 	err = z_erofs_do_read_page(&f, page);
1839 	z_erofs_pcluster_readmore(&f, NULL, false);
1840 	(void)z_erofs_collector_end(&f);
1841 
1842 	/* if some compressed cluster ready, need submit them anyway */
1843 	z_erofs_runqueue(&f, z_erofs_is_sync_decompress(sbi, 0), false);
1844 
1845 	if (err)
1846 		erofs_err(inode->i_sb, "failed to read, err [%d]", err);
1847 
1848 	erofs_put_metabuf(&f.map.buf);
1849 	erofs_release_pages(&f.pagepool);
1850 	return err;
1851 }
1852 
1853 static void z_erofs_readahead(struct readahead_control *rac)
1854 {
1855 	struct inode *const inode = rac->mapping->host;
1856 	struct erofs_sb_info *const sbi = EROFS_I_SB(inode);
1857 	struct z_erofs_decompress_frontend f = DECOMPRESS_FRONTEND_INIT(inode);
1858 	struct page *head = NULL, *page;
1859 	unsigned int nr_pages;
1860 
1861 	f.headoffset = readahead_pos(rac);
1862 
1863 	z_erofs_pcluster_readmore(&f, rac, true);
1864 	nr_pages = readahead_count(rac);
1865 	trace_erofs_readpages(inode, readahead_index(rac), nr_pages, false);
1866 
1867 	while ((page = readahead_page(rac))) {
1868 		set_page_private(page, (unsigned long)head);
1869 		head = page;
1870 	}
1871 
1872 	while (head) {
1873 		struct page *page = head;
1874 		int err;
1875 
1876 		/* traversal in reverse order */
1877 		head = (void *)page_private(page);
1878 
1879 		err = z_erofs_do_read_page(&f, page);
1880 		if (err)
1881 			erofs_err(inode->i_sb,
1882 				  "readahead error at page %lu @ nid %llu",
1883 				  page->index, EROFS_I(inode)->nid);
1884 		put_page(page);
1885 	}
1886 	z_erofs_pcluster_readmore(&f, rac, false);
1887 	(void)z_erofs_collector_end(&f);
1888 
1889 	z_erofs_runqueue(&f, z_erofs_is_sync_decompress(sbi, nr_pages), true);
1890 	erofs_put_metabuf(&f.map.buf);
1891 	erofs_release_pages(&f.pagepool);
1892 }
1893 
1894 const struct address_space_operations z_erofs_aops = {
1895 	.read_folio = z_erofs_read_folio,
1896 	.readahead = z_erofs_readahead,
1897 };
1898