xref: /openbmc/linux/fs/efs/super.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * super.c
3  *
4  * Copyright (c) 1999 Al Smith
5  *
6  * Portions derived from work (c) 1995,1996 Christian Vogelgsang.
7  */
8 
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/exportfs.h>
12 #include <linux/slab.h>
13 #include <linux/buffer_head.h>
14 #include <linux/vfs.h>
15 
16 #include "efs.h"
17 #include <linux/efs_vh.h>
18 #include <linux/efs_fs_sb.h>
19 
20 static int efs_statfs(struct dentry *dentry, struct kstatfs *buf);
21 static int efs_fill_super(struct super_block *s, void *d, int silent);
22 
23 static struct dentry *efs_mount(struct file_system_type *fs_type,
24 	int flags, const char *dev_name, void *data)
25 {
26 	return mount_bdev(fs_type, flags, dev_name, data, efs_fill_super);
27 }
28 
29 static struct file_system_type efs_fs_type = {
30 	.owner		= THIS_MODULE,
31 	.name		= "efs",
32 	.mount		= efs_mount,
33 	.kill_sb	= kill_block_super,
34 	.fs_flags	= FS_REQUIRES_DEV,
35 };
36 
37 static struct pt_types sgi_pt_types[] = {
38 	{0x00,		"SGI vh"},
39 	{0x01,		"SGI trkrepl"},
40 	{0x02,		"SGI secrepl"},
41 	{0x03,		"SGI raw"},
42 	{0x04,		"SGI bsd"},
43 	{SGI_SYSV,	"SGI sysv"},
44 	{0x06,		"SGI vol"},
45 	{SGI_EFS,	"SGI efs"},
46 	{0x08,		"SGI lv"},
47 	{0x09,		"SGI rlv"},
48 	{0x0A,		"SGI xfs"},
49 	{0x0B,		"SGI xfslog"},
50 	{0x0C,		"SGI xlv"},
51 	{0x82,		"Linux swap"},
52 	{0x83,		"Linux native"},
53 	{0,		NULL}
54 };
55 
56 
57 static struct kmem_cache * efs_inode_cachep;
58 
59 static struct inode *efs_alloc_inode(struct super_block *sb)
60 {
61 	struct efs_inode_info *ei;
62 	ei = (struct efs_inode_info *)kmem_cache_alloc(efs_inode_cachep, GFP_KERNEL);
63 	if (!ei)
64 		return NULL;
65 	return &ei->vfs_inode;
66 }
67 
68 static void efs_i_callback(struct rcu_head *head)
69 {
70 	struct inode *inode = container_of(head, struct inode, i_rcu);
71 	INIT_LIST_HEAD(&inode->i_dentry);
72 	kmem_cache_free(efs_inode_cachep, INODE_INFO(inode));
73 }
74 
75 static void efs_destroy_inode(struct inode *inode)
76 {
77 	call_rcu(&inode->i_rcu, efs_i_callback);
78 }
79 
80 static void init_once(void *foo)
81 {
82 	struct efs_inode_info *ei = (struct efs_inode_info *) foo;
83 
84 	inode_init_once(&ei->vfs_inode);
85 }
86 
87 static int init_inodecache(void)
88 {
89 	efs_inode_cachep = kmem_cache_create("efs_inode_cache",
90 				sizeof(struct efs_inode_info),
91 				0, SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD,
92 				init_once);
93 	if (efs_inode_cachep == NULL)
94 		return -ENOMEM;
95 	return 0;
96 }
97 
98 static void destroy_inodecache(void)
99 {
100 	kmem_cache_destroy(efs_inode_cachep);
101 }
102 
103 static void efs_put_super(struct super_block *s)
104 {
105 	kfree(s->s_fs_info);
106 	s->s_fs_info = NULL;
107 }
108 
109 static int efs_remount(struct super_block *sb, int *flags, char *data)
110 {
111 	*flags |= MS_RDONLY;
112 	return 0;
113 }
114 
115 static const struct super_operations efs_superblock_operations = {
116 	.alloc_inode	= efs_alloc_inode,
117 	.destroy_inode	= efs_destroy_inode,
118 	.put_super	= efs_put_super,
119 	.statfs		= efs_statfs,
120 	.remount_fs	= efs_remount,
121 };
122 
123 static const struct export_operations efs_export_ops = {
124 	.fh_to_dentry	= efs_fh_to_dentry,
125 	.fh_to_parent	= efs_fh_to_parent,
126 	.get_parent	= efs_get_parent,
127 };
128 
129 static int __init init_efs_fs(void) {
130 	int err;
131 	printk("EFS: "EFS_VERSION" - http://aeschi.ch.eu.org/efs/\n");
132 	err = init_inodecache();
133 	if (err)
134 		goto out1;
135 	err = register_filesystem(&efs_fs_type);
136 	if (err)
137 		goto out;
138 	return 0;
139 out:
140 	destroy_inodecache();
141 out1:
142 	return err;
143 }
144 
145 static void __exit exit_efs_fs(void) {
146 	unregister_filesystem(&efs_fs_type);
147 	destroy_inodecache();
148 }
149 
150 module_init(init_efs_fs)
151 module_exit(exit_efs_fs)
152 
153 static efs_block_t efs_validate_vh(struct volume_header *vh) {
154 	int		i;
155 	__be32		cs, *ui;
156 	int		csum;
157 	efs_block_t	sblock = 0; /* shuts up gcc */
158 	struct pt_types	*pt_entry;
159 	int		pt_type, slice = -1;
160 
161 	if (be32_to_cpu(vh->vh_magic) != VHMAGIC) {
162 		/*
163 		 * assume that we're dealing with a partition and allow
164 		 * read_super() to try and detect a valid superblock
165 		 * on the next block.
166 		 */
167 		return 0;
168 	}
169 
170 	ui = ((__be32 *) (vh + 1)) - 1;
171 	for(csum = 0; ui >= ((__be32 *) vh);) {
172 		cs = *ui--;
173 		csum += be32_to_cpu(cs);
174 	}
175 	if (csum) {
176 		printk(KERN_INFO "EFS: SGI disklabel: checksum bad, label corrupted\n");
177 		return 0;
178 	}
179 
180 #ifdef DEBUG
181 	printk(KERN_DEBUG "EFS: bf: \"%16s\"\n", vh->vh_bootfile);
182 
183 	for(i = 0; i < NVDIR; i++) {
184 		int	j;
185 		char	name[VDNAMESIZE+1];
186 
187 		for(j = 0; j < VDNAMESIZE; j++) {
188 			name[j] = vh->vh_vd[i].vd_name[j];
189 		}
190 		name[j] = (char) 0;
191 
192 		if (name[0]) {
193 			printk(KERN_DEBUG "EFS: vh: %8s block: 0x%08x size: 0x%08x\n",
194 				name,
195 				(int) be32_to_cpu(vh->vh_vd[i].vd_lbn),
196 				(int) be32_to_cpu(vh->vh_vd[i].vd_nbytes));
197 		}
198 	}
199 #endif
200 
201 	for(i = 0; i < NPARTAB; i++) {
202 		pt_type = (int) be32_to_cpu(vh->vh_pt[i].pt_type);
203 		for(pt_entry = sgi_pt_types; pt_entry->pt_name; pt_entry++) {
204 			if (pt_type == pt_entry->pt_type) break;
205 		}
206 #ifdef DEBUG
207 		if (be32_to_cpu(vh->vh_pt[i].pt_nblks)) {
208 			printk(KERN_DEBUG "EFS: pt %2d: start: %08d size: %08d type: 0x%02x (%s)\n",
209 				i,
210 				(int) be32_to_cpu(vh->vh_pt[i].pt_firstlbn),
211 				(int) be32_to_cpu(vh->vh_pt[i].pt_nblks),
212 				pt_type,
213 				(pt_entry->pt_name) ? pt_entry->pt_name : "unknown");
214 		}
215 #endif
216 		if (IS_EFS(pt_type)) {
217 			sblock = be32_to_cpu(vh->vh_pt[i].pt_firstlbn);
218 			slice = i;
219 		}
220 	}
221 
222 	if (slice == -1) {
223 		printk(KERN_NOTICE "EFS: partition table contained no EFS partitions\n");
224 #ifdef DEBUG
225 	} else {
226 		printk(KERN_INFO "EFS: using slice %d (type %s, offset 0x%x)\n",
227 			slice,
228 			(pt_entry->pt_name) ? pt_entry->pt_name : "unknown",
229 			sblock);
230 #endif
231 	}
232 	return sblock;
233 }
234 
235 static int efs_validate_super(struct efs_sb_info *sb, struct efs_super *super) {
236 
237 	if (!IS_EFS_MAGIC(be32_to_cpu(super->fs_magic)))
238 		return -1;
239 
240 	sb->fs_magic     = be32_to_cpu(super->fs_magic);
241 	sb->total_blocks = be32_to_cpu(super->fs_size);
242 	sb->first_block  = be32_to_cpu(super->fs_firstcg);
243 	sb->group_size   = be32_to_cpu(super->fs_cgfsize);
244 	sb->data_free    = be32_to_cpu(super->fs_tfree);
245 	sb->inode_free   = be32_to_cpu(super->fs_tinode);
246 	sb->inode_blocks = be16_to_cpu(super->fs_cgisize);
247 	sb->total_groups = be16_to_cpu(super->fs_ncg);
248 
249 	return 0;
250 }
251 
252 static int efs_fill_super(struct super_block *s, void *d, int silent)
253 {
254 	struct efs_sb_info *sb;
255 	struct buffer_head *bh;
256 	struct inode *root;
257 	int ret = -EINVAL;
258 
259  	sb = kzalloc(sizeof(struct efs_sb_info), GFP_KERNEL);
260 	if (!sb)
261 		return -ENOMEM;
262 	s->s_fs_info = sb;
263 
264 	s->s_magic		= EFS_SUPER_MAGIC;
265 	if (!sb_set_blocksize(s, EFS_BLOCKSIZE)) {
266 		printk(KERN_ERR "EFS: device does not support %d byte blocks\n",
267 			EFS_BLOCKSIZE);
268 		goto out_no_fs_ul;
269 	}
270 
271 	/* read the vh (volume header) block */
272 	bh = sb_bread(s, 0);
273 
274 	if (!bh) {
275 		printk(KERN_ERR "EFS: cannot read volume header\n");
276 		goto out_no_fs_ul;
277 	}
278 
279 	/*
280 	 * if this returns zero then we didn't find any partition table.
281 	 * this isn't (yet) an error - just assume for the moment that
282 	 * the device is valid and go on to search for a superblock.
283 	 */
284 	sb->fs_start = efs_validate_vh((struct volume_header *) bh->b_data);
285 	brelse(bh);
286 
287 	if (sb->fs_start == -1) {
288 		goto out_no_fs_ul;
289 	}
290 
291 	bh = sb_bread(s, sb->fs_start + EFS_SUPER);
292 	if (!bh) {
293 		printk(KERN_ERR "EFS: cannot read superblock\n");
294 		goto out_no_fs_ul;
295 	}
296 
297 	if (efs_validate_super(sb, (struct efs_super *) bh->b_data)) {
298 #ifdef DEBUG
299 		printk(KERN_WARNING "EFS: invalid superblock at block %u\n", sb->fs_start + EFS_SUPER);
300 #endif
301 		brelse(bh);
302 		goto out_no_fs_ul;
303 	}
304 	brelse(bh);
305 
306 	if (!(s->s_flags & MS_RDONLY)) {
307 #ifdef DEBUG
308 		printk(KERN_INFO "EFS: forcing read-only mode\n");
309 #endif
310 		s->s_flags |= MS_RDONLY;
311 	}
312 	s->s_op   = &efs_superblock_operations;
313 	s->s_export_op = &efs_export_ops;
314 	root = efs_iget(s, EFS_ROOTINODE);
315 	if (IS_ERR(root)) {
316 		printk(KERN_ERR "EFS: get root inode failed\n");
317 		ret = PTR_ERR(root);
318 		goto out_no_fs;
319 	}
320 
321 	s->s_root = d_alloc_root(root);
322 	if (!(s->s_root)) {
323 		printk(KERN_ERR "EFS: get root dentry failed\n");
324 		iput(root);
325 		ret = -ENOMEM;
326 		goto out_no_fs;
327 	}
328 
329 	return 0;
330 
331 out_no_fs_ul:
332 out_no_fs:
333 	s->s_fs_info = NULL;
334 	kfree(sb);
335 	return ret;
336 }
337 
338 static int efs_statfs(struct dentry *dentry, struct kstatfs *buf) {
339 	struct super_block *sb = dentry->d_sb;
340 	struct efs_sb_info *sbi = SUPER_INFO(sb);
341 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
342 
343 	buf->f_type    = EFS_SUPER_MAGIC;	/* efs magic number */
344 	buf->f_bsize   = EFS_BLOCKSIZE;		/* blocksize */
345 	buf->f_blocks  = sbi->total_groups *	/* total data blocks */
346 			(sbi->group_size - sbi->inode_blocks);
347 	buf->f_bfree   = sbi->data_free;	/* free data blocks */
348 	buf->f_bavail  = sbi->data_free;	/* free blocks for non-root */
349 	buf->f_files   = sbi->total_groups *	/* total inodes */
350 			sbi->inode_blocks *
351 			(EFS_BLOCKSIZE / sizeof(struct efs_dinode));
352 	buf->f_ffree   = sbi->inode_free;	/* free inodes */
353 	buf->f_fsid.val[0] = (u32)id;
354 	buf->f_fsid.val[1] = (u32)(id >> 32);
355 	buf->f_namelen = EFS_MAXNAMELEN;	/* max filename length */
356 
357 	return 0;
358 }
359 
360