xref: /openbmc/linux/fs/efs/super.c (revision 8e9356c6)
1 /*
2  * super.c
3  *
4  * Copyright (c) 1999 Al Smith
5  *
6  * Portions derived from work (c) 1995,1996 Christian Vogelgsang.
7  */
8 
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/exportfs.h>
12 #include <linux/slab.h>
13 #include <linux/buffer_head.h>
14 #include <linux/vfs.h>
15 
16 #include "efs.h"
17 #include <linux/efs_vh.h>
18 #include <linux/efs_fs_sb.h>
19 
20 static int efs_statfs(struct dentry *dentry, struct kstatfs *buf);
21 static int efs_fill_super(struct super_block *s, void *d, int silent);
22 
23 static struct dentry *efs_mount(struct file_system_type *fs_type,
24 	int flags, const char *dev_name, void *data)
25 {
26 	return mount_bdev(fs_type, flags, dev_name, data, efs_fill_super);
27 }
28 
29 static void efs_kill_sb(struct super_block *s)
30 {
31 	struct efs_sb_info *sbi = SUPER_INFO(s);
32 	kill_block_super(s);
33 	kfree(sbi);
34 }
35 
36 static struct file_system_type efs_fs_type = {
37 	.owner		= THIS_MODULE,
38 	.name		= "efs",
39 	.mount		= efs_mount,
40 	.kill_sb	= efs_kill_sb,
41 	.fs_flags	= FS_REQUIRES_DEV,
42 };
43 MODULE_ALIAS_FS("efs");
44 
45 static struct pt_types sgi_pt_types[] = {
46 	{0x00,		"SGI vh"},
47 	{0x01,		"SGI trkrepl"},
48 	{0x02,		"SGI secrepl"},
49 	{0x03,		"SGI raw"},
50 	{0x04,		"SGI bsd"},
51 	{SGI_SYSV,	"SGI sysv"},
52 	{0x06,		"SGI vol"},
53 	{SGI_EFS,	"SGI efs"},
54 	{0x08,		"SGI lv"},
55 	{0x09,		"SGI rlv"},
56 	{0x0A,		"SGI xfs"},
57 	{0x0B,		"SGI xfslog"},
58 	{0x0C,		"SGI xlv"},
59 	{0x82,		"Linux swap"},
60 	{0x83,		"Linux native"},
61 	{0,		NULL}
62 };
63 
64 
65 static struct kmem_cache * efs_inode_cachep;
66 
67 static struct inode *efs_alloc_inode(struct super_block *sb)
68 {
69 	struct efs_inode_info *ei;
70 	ei = (struct efs_inode_info *)kmem_cache_alloc(efs_inode_cachep, GFP_KERNEL);
71 	if (!ei)
72 		return NULL;
73 	return &ei->vfs_inode;
74 }
75 
76 static void efs_i_callback(struct rcu_head *head)
77 {
78 	struct inode *inode = container_of(head, struct inode, i_rcu);
79 	kmem_cache_free(efs_inode_cachep, INODE_INFO(inode));
80 }
81 
82 static void efs_destroy_inode(struct inode *inode)
83 {
84 	call_rcu(&inode->i_rcu, efs_i_callback);
85 }
86 
87 static void init_once(void *foo)
88 {
89 	struct efs_inode_info *ei = (struct efs_inode_info *) foo;
90 
91 	inode_init_once(&ei->vfs_inode);
92 }
93 
94 static int init_inodecache(void)
95 {
96 	efs_inode_cachep = kmem_cache_create("efs_inode_cache",
97 				sizeof(struct efs_inode_info),
98 				0, SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD,
99 				init_once);
100 	if (efs_inode_cachep == NULL)
101 		return -ENOMEM;
102 	return 0;
103 }
104 
105 static void destroy_inodecache(void)
106 {
107 	/*
108 	 * Make sure all delayed rcu free inodes are flushed before we
109 	 * destroy cache.
110 	 */
111 	rcu_barrier();
112 	kmem_cache_destroy(efs_inode_cachep);
113 }
114 
115 static int efs_remount(struct super_block *sb, int *flags, char *data)
116 {
117 	*flags |= MS_RDONLY;
118 	return 0;
119 }
120 
121 static const struct super_operations efs_superblock_operations = {
122 	.alloc_inode	= efs_alloc_inode,
123 	.destroy_inode	= efs_destroy_inode,
124 	.statfs		= efs_statfs,
125 	.remount_fs	= efs_remount,
126 };
127 
128 static const struct export_operations efs_export_ops = {
129 	.fh_to_dentry	= efs_fh_to_dentry,
130 	.fh_to_parent	= efs_fh_to_parent,
131 	.get_parent	= efs_get_parent,
132 };
133 
134 static int __init init_efs_fs(void) {
135 	int err;
136 	printk("EFS: "EFS_VERSION" - http://aeschi.ch.eu.org/efs/\n");
137 	err = init_inodecache();
138 	if (err)
139 		goto out1;
140 	err = register_filesystem(&efs_fs_type);
141 	if (err)
142 		goto out;
143 	return 0;
144 out:
145 	destroy_inodecache();
146 out1:
147 	return err;
148 }
149 
150 static void __exit exit_efs_fs(void) {
151 	unregister_filesystem(&efs_fs_type);
152 	destroy_inodecache();
153 }
154 
155 module_init(init_efs_fs)
156 module_exit(exit_efs_fs)
157 
158 static efs_block_t efs_validate_vh(struct volume_header *vh) {
159 	int		i;
160 	__be32		cs, *ui;
161 	int		csum;
162 	efs_block_t	sblock = 0; /* shuts up gcc */
163 	struct pt_types	*pt_entry;
164 	int		pt_type, slice = -1;
165 
166 	if (be32_to_cpu(vh->vh_magic) != VHMAGIC) {
167 		/*
168 		 * assume that we're dealing with a partition and allow
169 		 * read_super() to try and detect a valid superblock
170 		 * on the next block.
171 		 */
172 		return 0;
173 	}
174 
175 	ui = ((__be32 *) (vh + 1)) - 1;
176 	for(csum = 0; ui >= ((__be32 *) vh);) {
177 		cs = *ui--;
178 		csum += be32_to_cpu(cs);
179 	}
180 	if (csum) {
181 		printk(KERN_INFO "EFS: SGI disklabel: checksum bad, label corrupted\n");
182 		return 0;
183 	}
184 
185 #ifdef DEBUG
186 	printk(KERN_DEBUG "EFS: bf: \"%16s\"\n", vh->vh_bootfile);
187 
188 	for(i = 0; i < NVDIR; i++) {
189 		int	j;
190 		char	name[VDNAMESIZE+1];
191 
192 		for(j = 0; j < VDNAMESIZE; j++) {
193 			name[j] = vh->vh_vd[i].vd_name[j];
194 		}
195 		name[j] = (char) 0;
196 
197 		if (name[0]) {
198 			printk(KERN_DEBUG "EFS: vh: %8s block: 0x%08x size: 0x%08x\n",
199 				name,
200 				(int) be32_to_cpu(vh->vh_vd[i].vd_lbn),
201 				(int) be32_to_cpu(vh->vh_vd[i].vd_nbytes));
202 		}
203 	}
204 #endif
205 
206 	for(i = 0; i < NPARTAB; i++) {
207 		pt_type = (int) be32_to_cpu(vh->vh_pt[i].pt_type);
208 		for(pt_entry = sgi_pt_types; pt_entry->pt_name; pt_entry++) {
209 			if (pt_type == pt_entry->pt_type) break;
210 		}
211 #ifdef DEBUG
212 		if (be32_to_cpu(vh->vh_pt[i].pt_nblks)) {
213 			printk(KERN_DEBUG "EFS: pt %2d: start: %08d size: %08d type: 0x%02x (%s)\n",
214 				i,
215 				(int) be32_to_cpu(vh->vh_pt[i].pt_firstlbn),
216 				(int) be32_to_cpu(vh->vh_pt[i].pt_nblks),
217 				pt_type,
218 				(pt_entry->pt_name) ? pt_entry->pt_name : "unknown");
219 		}
220 #endif
221 		if (IS_EFS(pt_type)) {
222 			sblock = be32_to_cpu(vh->vh_pt[i].pt_firstlbn);
223 			slice = i;
224 		}
225 	}
226 
227 	if (slice == -1) {
228 		printk(KERN_NOTICE "EFS: partition table contained no EFS partitions\n");
229 #ifdef DEBUG
230 	} else {
231 		printk(KERN_INFO "EFS: using slice %d (type %s, offset 0x%x)\n",
232 			slice,
233 			(pt_entry->pt_name) ? pt_entry->pt_name : "unknown",
234 			sblock);
235 #endif
236 	}
237 	return sblock;
238 }
239 
240 static int efs_validate_super(struct efs_sb_info *sb, struct efs_super *super) {
241 
242 	if (!IS_EFS_MAGIC(be32_to_cpu(super->fs_magic)))
243 		return -1;
244 
245 	sb->fs_magic     = be32_to_cpu(super->fs_magic);
246 	sb->total_blocks = be32_to_cpu(super->fs_size);
247 	sb->first_block  = be32_to_cpu(super->fs_firstcg);
248 	sb->group_size   = be32_to_cpu(super->fs_cgfsize);
249 	sb->data_free    = be32_to_cpu(super->fs_tfree);
250 	sb->inode_free   = be32_to_cpu(super->fs_tinode);
251 	sb->inode_blocks = be16_to_cpu(super->fs_cgisize);
252 	sb->total_groups = be16_to_cpu(super->fs_ncg);
253 
254 	return 0;
255 }
256 
257 static int efs_fill_super(struct super_block *s, void *d, int silent)
258 {
259 	struct efs_sb_info *sb;
260 	struct buffer_head *bh;
261 	struct inode *root;
262 
263  	sb = kzalloc(sizeof(struct efs_sb_info), GFP_KERNEL);
264 	if (!sb)
265 		return -ENOMEM;
266 	s->s_fs_info = sb;
267 
268 	s->s_magic		= EFS_SUPER_MAGIC;
269 	if (!sb_set_blocksize(s, EFS_BLOCKSIZE)) {
270 		printk(KERN_ERR "EFS: device does not support %d byte blocks\n",
271 			EFS_BLOCKSIZE);
272 		return -EINVAL;
273 	}
274 
275 	/* read the vh (volume header) block */
276 	bh = sb_bread(s, 0);
277 
278 	if (!bh) {
279 		printk(KERN_ERR "EFS: cannot read volume header\n");
280 		return -EINVAL;
281 	}
282 
283 	/*
284 	 * if this returns zero then we didn't find any partition table.
285 	 * this isn't (yet) an error - just assume for the moment that
286 	 * the device is valid and go on to search for a superblock.
287 	 */
288 	sb->fs_start = efs_validate_vh((struct volume_header *) bh->b_data);
289 	brelse(bh);
290 
291 	if (sb->fs_start == -1) {
292 		return -EINVAL;
293 	}
294 
295 	bh = sb_bread(s, sb->fs_start + EFS_SUPER);
296 	if (!bh) {
297 		printk(KERN_ERR "EFS: cannot read superblock\n");
298 		return -EINVAL;
299 	}
300 
301 	if (efs_validate_super(sb, (struct efs_super *) bh->b_data)) {
302 #ifdef DEBUG
303 		printk(KERN_WARNING "EFS: invalid superblock at block %u\n", sb->fs_start + EFS_SUPER);
304 #endif
305 		brelse(bh);
306 		return -EINVAL;
307 	}
308 	brelse(bh);
309 
310 	if (!(s->s_flags & MS_RDONLY)) {
311 #ifdef DEBUG
312 		printk(KERN_INFO "EFS: forcing read-only mode\n");
313 #endif
314 		s->s_flags |= MS_RDONLY;
315 	}
316 	s->s_op   = &efs_superblock_operations;
317 	s->s_export_op = &efs_export_ops;
318 	root = efs_iget(s, EFS_ROOTINODE);
319 	if (IS_ERR(root)) {
320 		printk(KERN_ERR "EFS: get root inode failed\n");
321 		return PTR_ERR(root);
322 	}
323 
324 	s->s_root = d_make_root(root);
325 	if (!(s->s_root)) {
326 		printk(KERN_ERR "EFS: get root dentry failed\n");
327 		return -ENOMEM;
328 	}
329 
330 	return 0;
331 }
332 
333 static int efs_statfs(struct dentry *dentry, struct kstatfs *buf) {
334 	struct super_block *sb = dentry->d_sb;
335 	struct efs_sb_info *sbi = SUPER_INFO(sb);
336 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
337 
338 	buf->f_type    = EFS_SUPER_MAGIC;	/* efs magic number */
339 	buf->f_bsize   = EFS_BLOCKSIZE;		/* blocksize */
340 	buf->f_blocks  = sbi->total_groups *	/* total data blocks */
341 			(sbi->group_size - sbi->inode_blocks);
342 	buf->f_bfree   = sbi->data_free;	/* free data blocks */
343 	buf->f_bavail  = sbi->data_free;	/* free blocks for non-root */
344 	buf->f_files   = sbi->total_groups *	/* total inodes */
345 			sbi->inode_blocks *
346 			(EFS_BLOCKSIZE / sizeof(struct efs_dinode));
347 	buf->f_ffree   = sbi->inode_free;	/* free inodes */
348 	buf->f_fsid.val[0] = (u32)id;
349 	buf->f_fsid.val[1] = (u32)(id >> 32);
350 	buf->f_namelen = EFS_MAXNAMELEN;	/* max filename length */
351 
352 	return 0;
353 }
354 
355