xref: /openbmc/linux/fs/efs/super.c (revision 2c64e9cb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * super.c
4  *
5  * Copyright (c) 1999 Al Smith
6  *
7  * Portions derived from work (c) 1995,1996 Christian Vogelgsang.
8  */
9 
10 #include <linux/init.h>
11 #include <linux/module.h>
12 #include <linux/exportfs.h>
13 #include <linux/slab.h>
14 #include <linux/buffer_head.h>
15 #include <linux/vfs.h>
16 
17 #include "efs.h"
18 #include <linux/efs_vh.h>
19 #include <linux/efs_fs_sb.h>
20 
21 static int efs_statfs(struct dentry *dentry, struct kstatfs *buf);
22 static int efs_fill_super(struct super_block *s, void *d, int silent);
23 
24 static struct dentry *efs_mount(struct file_system_type *fs_type,
25 	int flags, const char *dev_name, void *data)
26 {
27 	return mount_bdev(fs_type, flags, dev_name, data, efs_fill_super);
28 }
29 
30 static void efs_kill_sb(struct super_block *s)
31 {
32 	struct efs_sb_info *sbi = SUPER_INFO(s);
33 	kill_block_super(s);
34 	kfree(sbi);
35 }
36 
37 static struct file_system_type efs_fs_type = {
38 	.owner		= THIS_MODULE,
39 	.name		= "efs",
40 	.mount		= efs_mount,
41 	.kill_sb	= efs_kill_sb,
42 	.fs_flags	= FS_REQUIRES_DEV,
43 };
44 MODULE_ALIAS_FS("efs");
45 
46 static struct pt_types sgi_pt_types[] = {
47 	{0x00,		"SGI vh"},
48 	{0x01,		"SGI trkrepl"},
49 	{0x02,		"SGI secrepl"},
50 	{0x03,		"SGI raw"},
51 	{0x04,		"SGI bsd"},
52 	{SGI_SYSV,	"SGI sysv"},
53 	{0x06,		"SGI vol"},
54 	{SGI_EFS,	"SGI efs"},
55 	{0x08,		"SGI lv"},
56 	{0x09,		"SGI rlv"},
57 	{0x0A,		"SGI xfs"},
58 	{0x0B,		"SGI xfslog"},
59 	{0x0C,		"SGI xlv"},
60 	{0x82,		"Linux swap"},
61 	{0x83,		"Linux native"},
62 	{0,		NULL}
63 };
64 
65 
66 static struct kmem_cache * efs_inode_cachep;
67 
68 static struct inode *efs_alloc_inode(struct super_block *sb)
69 {
70 	struct efs_inode_info *ei;
71 	ei = kmem_cache_alloc(efs_inode_cachep, GFP_KERNEL);
72 	if (!ei)
73 		return NULL;
74 	return &ei->vfs_inode;
75 }
76 
77 static void efs_free_inode(struct inode *inode)
78 {
79 	kmem_cache_free(efs_inode_cachep, INODE_INFO(inode));
80 }
81 
82 static void init_once(void *foo)
83 {
84 	struct efs_inode_info *ei = (struct efs_inode_info *) foo;
85 
86 	inode_init_once(&ei->vfs_inode);
87 }
88 
89 static int __init init_inodecache(void)
90 {
91 	efs_inode_cachep = kmem_cache_create("efs_inode_cache",
92 				sizeof(struct efs_inode_info), 0,
93 				SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
94 				SLAB_ACCOUNT, init_once);
95 	if (efs_inode_cachep == NULL)
96 		return -ENOMEM;
97 	return 0;
98 }
99 
100 static void destroy_inodecache(void)
101 {
102 	/*
103 	 * Make sure all delayed rcu free inodes are flushed before we
104 	 * destroy cache.
105 	 */
106 	rcu_barrier();
107 	kmem_cache_destroy(efs_inode_cachep);
108 }
109 
110 static int efs_remount(struct super_block *sb, int *flags, char *data)
111 {
112 	sync_filesystem(sb);
113 	*flags |= SB_RDONLY;
114 	return 0;
115 }
116 
117 static const struct super_operations efs_superblock_operations = {
118 	.alloc_inode	= efs_alloc_inode,
119 	.free_inode	= efs_free_inode,
120 	.statfs		= efs_statfs,
121 	.remount_fs	= efs_remount,
122 };
123 
124 static const struct export_operations efs_export_ops = {
125 	.fh_to_dentry	= efs_fh_to_dentry,
126 	.fh_to_parent	= efs_fh_to_parent,
127 	.get_parent	= efs_get_parent,
128 };
129 
130 static int __init init_efs_fs(void) {
131 	int err;
132 	pr_info(EFS_VERSION" - http://aeschi.ch.eu.org/efs/\n");
133 	err = init_inodecache();
134 	if (err)
135 		goto out1;
136 	err = register_filesystem(&efs_fs_type);
137 	if (err)
138 		goto out;
139 	return 0;
140 out:
141 	destroy_inodecache();
142 out1:
143 	return err;
144 }
145 
146 static void __exit exit_efs_fs(void) {
147 	unregister_filesystem(&efs_fs_type);
148 	destroy_inodecache();
149 }
150 
151 module_init(init_efs_fs)
152 module_exit(exit_efs_fs)
153 
154 static efs_block_t efs_validate_vh(struct volume_header *vh) {
155 	int		i;
156 	__be32		cs, *ui;
157 	int		csum;
158 	efs_block_t	sblock = 0; /* shuts up gcc */
159 	struct pt_types	*pt_entry;
160 	int		pt_type, slice = -1;
161 
162 	if (be32_to_cpu(vh->vh_magic) != VHMAGIC) {
163 		/*
164 		 * assume that we're dealing with a partition and allow
165 		 * read_super() to try and detect a valid superblock
166 		 * on the next block.
167 		 */
168 		return 0;
169 	}
170 
171 	ui = ((__be32 *) (vh + 1)) - 1;
172 	for(csum = 0; ui >= ((__be32 *) vh);) {
173 		cs = *ui--;
174 		csum += be32_to_cpu(cs);
175 	}
176 	if (csum) {
177 		pr_warn("SGI disklabel: checksum bad, label corrupted\n");
178 		return 0;
179 	}
180 
181 #ifdef DEBUG
182 	pr_debug("bf: \"%16s\"\n", vh->vh_bootfile);
183 
184 	for(i = 0; i < NVDIR; i++) {
185 		int	j;
186 		char	name[VDNAMESIZE+1];
187 
188 		for(j = 0; j < VDNAMESIZE; j++) {
189 			name[j] = vh->vh_vd[i].vd_name[j];
190 		}
191 		name[j] = (char) 0;
192 
193 		if (name[0]) {
194 			pr_debug("vh: %8s block: 0x%08x size: 0x%08x\n",
195 				name, (int) be32_to_cpu(vh->vh_vd[i].vd_lbn),
196 				(int) be32_to_cpu(vh->vh_vd[i].vd_nbytes));
197 		}
198 	}
199 #endif
200 
201 	for(i = 0; i < NPARTAB; i++) {
202 		pt_type = (int) be32_to_cpu(vh->vh_pt[i].pt_type);
203 		for(pt_entry = sgi_pt_types; pt_entry->pt_name; pt_entry++) {
204 			if (pt_type == pt_entry->pt_type) break;
205 		}
206 #ifdef DEBUG
207 		if (be32_to_cpu(vh->vh_pt[i].pt_nblks)) {
208 			pr_debug("pt %2d: start: %08d size: %08d type: 0x%02x (%s)\n",
209 				 i, (int)be32_to_cpu(vh->vh_pt[i].pt_firstlbn),
210 				 (int)be32_to_cpu(vh->vh_pt[i].pt_nblks),
211 				 pt_type, (pt_entry->pt_name) ?
212 				 pt_entry->pt_name : "unknown");
213 		}
214 #endif
215 		if (IS_EFS(pt_type)) {
216 			sblock = be32_to_cpu(vh->vh_pt[i].pt_firstlbn);
217 			slice = i;
218 		}
219 	}
220 
221 	if (slice == -1) {
222 		pr_notice("partition table contained no EFS partitions\n");
223 #ifdef DEBUG
224 	} else {
225 		pr_info("using slice %d (type %s, offset 0x%x)\n", slice,
226 			(pt_entry->pt_name) ? pt_entry->pt_name : "unknown",
227 			sblock);
228 #endif
229 	}
230 	return sblock;
231 }
232 
233 static int efs_validate_super(struct efs_sb_info *sb, struct efs_super *super) {
234 
235 	if (!IS_EFS_MAGIC(be32_to_cpu(super->fs_magic)))
236 		return -1;
237 
238 	sb->fs_magic     = be32_to_cpu(super->fs_magic);
239 	sb->total_blocks = be32_to_cpu(super->fs_size);
240 	sb->first_block  = be32_to_cpu(super->fs_firstcg);
241 	sb->group_size   = be32_to_cpu(super->fs_cgfsize);
242 	sb->data_free    = be32_to_cpu(super->fs_tfree);
243 	sb->inode_free   = be32_to_cpu(super->fs_tinode);
244 	sb->inode_blocks = be16_to_cpu(super->fs_cgisize);
245 	sb->total_groups = be16_to_cpu(super->fs_ncg);
246 
247 	return 0;
248 }
249 
250 static int efs_fill_super(struct super_block *s, void *d, int silent)
251 {
252 	struct efs_sb_info *sb;
253 	struct buffer_head *bh;
254 	struct inode *root;
255 
256  	sb = kzalloc(sizeof(struct efs_sb_info), GFP_KERNEL);
257 	if (!sb)
258 		return -ENOMEM;
259 	s->s_fs_info = sb;
260 
261 	s->s_magic		= EFS_SUPER_MAGIC;
262 	if (!sb_set_blocksize(s, EFS_BLOCKSIZE)) {
263 		pr_err("device does not support %d byte blocks\n",
264 			EFS_BLOCKSIZE);
265 		return -EINVAL;
266 	}
267 
268 	/* read the vh (volume header) block */
269 	bh = sb_bread(s, 0);
270 
271 	if (!bh) {
272 		pr_err("cannot read volume header\n");
273 		return -EIO;
274 	}
275 
276 	/*
277 	 * if this returns zero then we didn't find any partition table.
278 	 * this isn't (yet) an error - just assume for the moment that
279 	 * the device is valid and go on to search for a superblock.
280 	 */
281 	sb->fs_start = efs_validate_vh((struct volume_header *) bh->b_data);
282 	brelse(bh);
283 
284 	if (sb->fs_start == -1) {
285 		return -EINVAL;
286 	}
287 
288 	bh = sb_bread(s, sb->fs_start + EFS_SUPER);
289 	if (!bh) {
290 		pr_err("cannot read superblock\n");
291 		return -EIO;
292 	}
293 
294 	if (efs_validate_super(sb, (struct efs_super *) bh->b_data)) {
295 #ifdef DEBUG
296 		pr_warn("invalid superblock at block %u\n",
297 			sb->fs_start + EFS_SUPER);
298 #endif
299 		brelse(bh);
300 		return -EINVAL;
301 	}
302 	brelse(bh);
303 
304 	if (!sb_rdonly(s)) {
305 #ifdef DEBUG
306 		pr_info("forcing read-only mode\n");
307 #endif
308 		s->s_flags |= SB_RDONLY;
309 	}
310 	s->s_op   = &efs_superblock_operations;
311 	s->s_export_op = &efs_export_ops;
312 	root = efs_iget(s, EFS_ROOTINODE);
313 	if (IS_ERR(root)) {
314 		pr_err("get root inode failed\n");
315 		return PTR_ERR(root);
316 	}
317 
318 	s->s_root = d_make_root(root);
319 	if (!(s->s_root)) {
320 		pr_err("get root dentry failed\n");
321 		return -ENOMEM;
322 	}
323 
324 	return 0;
325 }
326 
327 static int efs_statfs(struct dentry *dentry, struct kstatfs *buf) {
328 	struct super_block *sb = dentry->d_sb;
329 	struct efs_sb_info *sbi = SUPER_INFO(sb);
330 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
331 
332 	buf->f_type    = EFS_SUPER_MAGIC;	/* efs magic number */
333 	buf->f_bsize   = EFS_BLOCKSIZE;		/* blocksize */
334 	buf->f_blocks  = sbi->total_groups *	/* total data blocks */
335 			(sbi->group_size - sbi->inode_blocks);
336 	buf->f_bfree   = sbi->data_free;	/* free data blocks */
337 	buf->f_bavail  = sbi->data_free;	/* free blocks for non-root */
338 	buf->f_files   = sbi->total_groups *	/* total inodes */
339 			sbi->inode_blocks *
340 			(EFS_BLOCKSIZE / sizeof(struct efs_dinode));
341 	buf->f_ffree   = sbi->inode_free;	/* free inodes */
342 	buf->f_fsid.val[0] = (u32)id;
343 	buf->f_fsid.val[1] = (u32)(id >> 32);
344 	buf->f_namelen = EFS_MAXNAMELEN;	/* max filename length */
345 
346 	return 0;
347 }
348 
349