xref: /openbmc/linux/fs/ecryptfs/super.c (revision fa0d7e3d)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 1997-2003 Erez Zadok
5  * Copyright (C) 2001-2003 Stony Brook University
6  * Copyright (C) 2004-2006 International Business Machines Corp.
7  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8  *              Michael C. Thompson <mcthomps@us.ibm.com>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23  * 02111-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/mount.h>
28 #include <linux/key.h>
29 #include <linux/slab.h>
30 #include <linux/seq_file.h>
31 #include <linux/file.h>
32 #include <linux/crypto.h>
33 #include "ecryptfs_kernel.h"
34 
35 struct kmem_cache *ecryptfs_inode_info_cache;
36 
37 /**
38  * ecryptfs_alloc_inode - allocate an ecryptfs inode
39  * @sb: Pointer to the ecryptfs super block
40  *
41  * Called to bring an inode into existence.
42  *
43  * Only handle allocation, setting up structures should be done in
44  * ecryptfs_read_inode. This is because the kernel, between now and
45  * then, will 0 out the private data pointer.
46  *
47  * Returns a pointer to a newly allocated inode, NULL otherwise
48  */
49 static struct inode *ecryptfs_alloc_inode(struct super_block *sb)
50 {
51 	struct ecryptfs_inode_info *inode_info;
52 	struct inode *inode = NULL;
53 
54 	inode_info = kmem_cache_alloc(ecryptfs_inode_info_cache, GFP_KERNEL);
55 	if (unlikely(!inode_info))
56 		goto out;
57 	ecryptfs_init_crypt_stat(&inode_info->crypt_stat);
58 	mutex_init(&inode_info->lower_file_mutex);
59 	inode_info->lower_file = NULL;
60 	inode = &inode_info->vfs_inode;
61 out:
62 	return inode;
63 }
64 
65 static void ecryptfs_i_callback(struct rcu_head *head)
66 {
67 	struct inode *inode = container_of(head, struct inode, i_rcu);
68 	struct ecryptfs_inode_info *inode_info;
69 	inode_info = ecryptfs_inode_to_private(inode);
70 
71 	INIT_LIST_HEAD(&inode->i_dentry);
72 	kmem_cache_free(ecryptfs_inode_info_cache, inode_info);
73 }
74 
75 /**
76  * ecryptfs_destroy_inode
77  * @inode: The ecryptfs inode
78  *
79  * This is used during the final destruction of the inode.  All
80  * allocation of memory related to the inode, including allocated
81  * memory in the crypt_stat struct, will be released here. This
82  * function also fput()'s the persistent file for the lower inode.
83  * There should be no chance that this deallocation will be missed.
84  */
85 static void ecryptfs_destroy_inode(struct inode *inode)
86 {
87 	struct ecryptfs_inode_info *inode_info;
88 
89 	inode_info = ecryptfs_inode_to_private(inode);
90 	if (inode_info->lower_file) {
91 		struct dentry *lower_dentry =
92 			inode_info->lower_file->f_dentry;
93 
94 		BUG_ON(!lower_dentry);
95 		if (lower_dentry->d_inode) {
96 			fput(inode_info->lower_file);
97 			inode_info->lower_file = NULL;
98 		}
99 	}
100 	ecryptfs_destroy_crypt_stat(&inode_info->crypt_stat);
101 	call_rcu(&inode->i_rcu, ecryptfs_i_callback);
102 }
103 
104 /**
105  * ecryptfs_init_inode
106  * @inode: The ecryptfs inode
107  *
108  * Set up the ecryptfs inode.
109  */
110 void ecryptfs_init_inode(struct inode *inode, struct inode *lower_inode)
111 {
112 	ecryptfs_set_inode_lower(inode, lower_inode);
113 	inode->i_ino = lower_inode->i_ino;
114 	inode->i_version++;
115 	inode->i_op = &ecryptfs_main_iops;
116 	inode->i_fop = &ecryptfs_main_fops;
117 	inode->i_mapping->a_ops = &ecryptfs_aops;
118 }
119 
120 /**
121  * ecryptfs_statfs
122  * @sb: The ecryptfs super block
123  * @buf: The struct kstatfs to fill in with stats
124  *
125  * Get the filesystem statistics. Currently, we let this pass right through
126  * to the lower filesystem and take no action ourselves.
127  */
128 static int ecryptfs_statfs(struct dentry *dentry, struct kstatfs *buf)
129 {
130 	struct dentry *lower_dentry = ecryptfs_dentry_to_lower(dentry);
131 
132 	if (!lower_dentry->d_sb->s_op->statfs)
133 		return -ENOSYS;
134 	return lower_dentry->d_sb->s_op->statfs(lower_dentry, buf);
135 }
136 
137 /**
138  * ecryptfs_evict_inode
139  * @inode - The ecryptfs inode
140  *
141  * Called by iput() when the inode reference count reached zero
142  * and the inode is not hashed anywhere.  Used to clear anything
143  * that needs to be, before the inode is completely destroyed and put
144  * on the inode free list. We use this to drop out reference to the
145  * lower inode.
146  */
147 static void ecryptfs_evict_inode(struct inode *inode)
148 {
149 	truncate_inode_pages(&inode->i_data, 0);
150 	end_writeback(inode);
151 	iput(ecryptfs_inode_to_lower(inode));
152 }
153 
154 /**
155  * ecryptfs_show_options
156  *
157  * Prints the mount options for a given superblock.
158  * Returns zero; does not fail.
159  */
160 static int ecryptfs_show_options(struct seq_file *m, struct vfsmount *mnt)
161 {
162 	struct super_block *sb = mnt->mnt_sb;
163 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
164 		&ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
165 	struct ecryptfs_global_auth_tok *walker;
166 
167 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
168 	list_for_each_entry(walker,
169 			    &mount_crypt_stat->global_auth_tok_list,
170 			    mount_crypt_stat_list) {
171 		if (walker->flags & ECRYPTFS_AUTH_TOK_FNEK)
172 			seq_printf(m, ",ecryptfs_fnek_sig=%s", walker->sig);
173 		else
174 			seq_printf(m, ",ecryptfs_sig=%s", walker->sig);
175 	}
176 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
177 
178 	seq_printf(m, ",ecryptfs_cipher=%s",
179 		mount_crypt_stat->global_default_cipher_name);
180 
181 	if (mount_crypt_stat->global_default_cipher_key_size)
182 		seq_printf(m, ",ecryptfs_key_bytes=%zd",
183 			   mount_crypt_stat->global_default_cipher_key_size);
184 	if (mount_crypt_stat->flags & ECRYPTFS_PLAINTEXT_PASSTHROUGH_ENABLED)
185 		seq_printf(m, ",ecryptfs_passthrough");
186 	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
187 		seq_printf(m, ",ecryptfs_xattr_metadata");
188 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
189 		seq_printf(m, ",ecryptfs_encrypted_view");
190 	if (mount_crypt_stat->flags & ECRYPTFS_UNLINK_SIGS)
191 		seq_printf(m, ",ecryptfs_unlink_sigs");
192 	if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY)
193 		seq_printf(m, ",ecryptfs_mount_auth_tok_only");
194 
195 	return 0;
196 }
197 
198 const struct super_operations ecryptfs_sops = {
199 	.alloc_inode = ecryptfs_alloc_inode,
200 	.destroy_inode = ecryptfs_destroy_inode,
201 	.drop_inode = generic_delete_inode,
202 	.statfs = ecryptfs_statfs,
203 	.remount_fs = NULL,
204 	.evict_inode = ecryptfs_evict_inode,
205 	.show_options = ecryptfs_show_options
206 };
207