xref: /openbmc/linux/fs/ecryptfs/read_write.c (revision ecba1060)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 2007 International Business Machines Corp.
5  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License as
9  * published by the Free Software Foundation; either version 2 of the
10  * License, or (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
20  * 02111-1307, USA.
21  */
22 
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include "ecryptfs_kernel.h"
26 
27 /**
28  * ecryptfs_write_lower
29  * @ecryptfs_inode: The eCryptfs inode
30  * @data: Data to write
31  * @offset: Byte offset in the lower file to which to write the data
32  * @size: Number of bytes from @data to write at @offset in the lower
33  *        file
34  *
35  * Write data to the lower file.
36  *
37  * Returns zero on success; non-zero on error
38  */
39 int ecryptfs_write_lower(struct inode *ecryptfs_inode, char *data,
40 			 loff_t offset, size_t size)
41 {
42 	struct ecryptfs_inode_info *inode_info;
43 	ssize_t octets_written;
44 	mm_segment_t fs_save;
45 	int rc = 0;
46 
47 	inode_info = ecryptfs_inode_to_private(ecryptfs_inode);
48 	mutex_lock(&inode_info->lower_file_mutex);
49 	BUG_ON(!inode_info->lower_file);
50 	inode_info->lower_file->f_pos = offset;
51 	fs_save = get_fs();
52 	set_fs(get_ds());
53 	octets_written = vfs_write(inode_info->lower_file, data, size,
54 				   &inode_info->lower_file->f_pos);
55 	set_fs(fs_save);
56 	if (octets_written < 0) {
57 		printk(KERN_ERR "%s: octets_written = [%td]; "
58 		       "expected [%td]\n", __func__, octets_written, size);
59 		rc = -EINVAL;
60 	}
61 	mutex_unlock(&inode_info->lower_file_mutex);
62 	mark_inode_dirty_sync(ecryptfs_inode);
63 	return rc;
64 }
65 
66 /**
67  * ecryptfs_write_lower_page_segment
68  * @ecryptfs_inode: The eCryptfs inode
69  * @page_for_lower: The page containing the data to be written to the
70  *                  lower file
71  * @offset_in_page: The offset in the @page_for_lower from which to
72  *                  start writing the data
73  * @size: The amount of data from @page_for_lower to write to the
74  *        lower file
75  *
76  * Determines the byte offset in the file for the given page and
77  * offset within the page, maps the page, and makes the call to write
78  * the contents of @page_for_lower to the lower inode.
79  *
80  * Returns zero on success; non-zero otherwise
81  */
82 int ecryptfs_write_lower_page_segment(struct inode *ecryptfs_inode,
83 				      struct page *page_for_lower,
84 				      size_t offset_in_page, size_t size)
85 {
86 	char *virt;
87 	loff_t offset;
88 	int rc;
89 
90 	offset = ((((loff_t)page_for_lower->index) << PAGE_CACHE_SHIFT)
91 		  + offset_in_page);
92 	virt = kmap(page_for_lower);
93 	rc = ecryptfs_write_lower(ecryptfs_inode, virt, offset, size);
94 	kunmap(page_for_lower);
95 	return rc;
96 }
97 
98 /**
99  * ecryptfs_write
100  * @ecryptfs_file: The eCryptfs file into which to write
101  * @data: Virtual address where data to write is located
102  * @offset: Offset in the eCryptfs file at which to begin writing the
103  *          data from @data
104  * @size: The number of bytes to write from @data
105  *
106  * Write an arbitrary amount of data to an arbitrary location in the
107  * eCryptfs inode page cache. This is done on a page-by-page, and then
108  * by an extent-by-extent, basis; individual extents are encrypted and
109  * written to the lower page cache (via VFS writes). This function
110  * takes care of all the address translation to locations in the lower
111  * filesystem; it also handles truncate events, writing out zeros
112  * where necessary.
113  *
114  * Returns zero on success; non-zero otherwise
115  */
116 int ecryptfs_write(struct file *ecryptfs_file, char *data, loff_t offset,
117 		   size_t size)
118 {
119 	struct page *ecryptfs_page;
120 	struct ecryptfs_crypt_stat *crypt_stat;
121 	struct inode *ecryptfs_inode = ecryptfs_file->f_dentry->d_inode;
122 	char *ecryptfs_page_virt;
123 	loff_t ecryptfs_file_size = i_size_read(ecryptfs_inode);
124 	loff_t data_offset = 0;
125 	loff_t pos;
126 	int rc = 0;
127 
128 	crypt_stat = &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
129 	/*
130 	 * if we are writing beyond current size, then start pos
131 	 * at the current size - we'll fill in zeros from there.
132 	 */
133 	if (offset > ecryptfs_file_size)
134 		pos = ecryptfs_file_size;
135 	else
136 		pos = offset;
137 	while (pos < (offset + size)) {
138 		pgoff_t ecryptfs_page_idx = (pos >> PAGE_CACHE_SHIFT);
139 		size_t start_offset_in_page = (pos & ~PAGE_CACHE_MASK);
140 		size_t num_bytes = (PAGE_CACHE_SIZE - start_offset_in_page);
141 		size_t total_remaining_bytes = ((offset + size) - pos);
142 
143 		if (num_bytes > total_remaining_bytes)
144 			num_bytes = total_remaining_bytes;
145 		if (pos < offset) {
146 			/* remaining zeros to write, up to destination offset */
147 			size_t total_remaining_zeros = (offset - pos);
148 
149 			if (num_bytes > total_remaining_zeros)
150 				num_bytes = total_remaining_zeros;
151 		}
152 		ecryptfs_page = ecryptfs_get_locked_page(ecryptfs_file,
153 							 ecryptfs_page_idx);
154 		if (IS_ERR(ecryptfs_page)) {
155 			rc = PTR_ERR(ecryptfs_page);
156 			printk(KERN_ERR "%s: Error getting page at "
157 			       "index [%ld] from eCryptfs inode "
158 			       "mapping; rc = [%d]\n", __func__,
159 			       ecryptfs_page_idx, rc);
160 			goto out;
161 		}
162 		ecryptfs_page_virt = kmap_atomic(ecryptfs_page, KM_USER0);
163 
164 		/*
165 		 * pos: where we're now writing, offset: where the request was
166 		 * If current pos is before request, we are filling zeros
167 		 * If we are at or beyond request, we are writing the *data*
168 		 * If we're in a fresh page beyond eof, zero it in either case
169 		 */
170 		if (pos < offset || !start_offset_in_page) {
171 			/* We are extending past the previous end of the file.
172 			 * Fill in zero values to the end of the page */
173 			memset(((char *)ecryptfs_page_virt
174 				+ start_offset_in_page), 0,
175 				PAGE_CACHE_SIZE - start_offset_in_page);
176 		}
177 
178 		/* pos >= offset, we are now writing the data request */
179 		if (pos >= offset) {
180 			memcpy(((char *)ecryptfs_page_virt
181 				+ start_offset_in_page),
182 			       (data + data_offset), num_bytes);
183 			data_offset += num_bytes;
184 		}
185 		kunmap_atomic(ecryptfs_page_virt, KM_USER0);
186 		flush_dcache_page(ecryptfs_page);
187 		SetPageUptodate(ecryptfs_page);
188 		unlock_page(ecryptfs_page);
189 		if (crypt_stat->flags & ECRYPTFS_ENCRYPTED)
190 			rc = ecryptfs_encrypt_page(ecryptfs_page);
191 		else
192 			rc = ecryptfs_write_lower_page_segment(ecryptfs_inode,
193 						ecryptfs_page,
194 						start_offset_in_page,
195 						data_offset);
196 		page_cache_release(ecryptfs_page);
197 		if (rc) {
198 			printk(KERN_ERR "%s: Error encrypting "
199 			       "page; rc = [%d]\n", __func__, rc);
200 			goto out;
201 		}
202 		pos += num_bytes;
203 	}
204 	if ((offset + size) > ecryptfs_file_size) {
205 		i_size_write(ecryptfs_inode, (offset + size));
206 		if (crypt_stat->flags & ECRYPTFS_ENCRYPTED) {
207 			rc = ecryptfs_write_inode_size_to_metadata(
208 								ecryptfs_inode);
209 			if (rc) {
210 				printk(KERN_ERR	"Problem with "
211 				       "ecryptfs_write_inode_size_to_metadata; "
212 				       "rc = [%d]\n", rc);
213 				goto out;
214 			}
215 		}
216 	}
217 out:
218 	return rc;
219 }
220 
221 /**
222  * ecryptfs_read_lower
223  * @data: The read data is stored here by this function
224  * @offset: Byte offset in the lower file from which to read the data
225  * @size: Number of bytes to read from @offset of the lower file and
226  *        store into @data
227  * @ecryptfs_inode: The eCryptfs inode
228  *
229  * Read @size bytes of data at byte offset @offset from the lower
230  * inode into memory location @data.
231  *
232  * Returns zero on success; non-zero on error
233  */
234 int ecryptfs_read_lower(char *data, loff_t offset, size_t size,
235 			struct inode *ecryptfs_inode)
236 {
237 	struct ecryptfs_inode_info *inode_info =
238 		ecryptfs_inode_to_private(ecryptfs_inode);
239 	ssize_t octets_read;
240 	mm_segment_t fs_save;
241 	int rc = 0;
242 
243 	mutex_lock(&inode_info->lower_file_mutex);
244 	BUG_ON(!inode_info->lower_file);
245 	inode_info->lower_file->f_pos = offset;
246 	fs_save = get_fs();
247 	set_fs(get_ds());
248 	octets_read = vfs_read(inode_info->lower_file, data, size,
249 			       &inode_info->lower_file->f_pos);
250 	set_fs(fs_save);
251 	if (octets_read < 0) {
252 		printk(KERN_ERR "%s: octets_read = [%td]; "
253 		       "expected [%td]\n", __func__, octets_read, size);
254 		rc = -EINVAL;
255 	}
256 	mutex_unlock(&inode_info->lower_file_mutex);
257 	return rc;
258 }
259 
260 /**
261  * ecryptfs_read_lower_page_segment
262  * @page_for_ecryptfs: The page into which data for eCryptfs will be
263  *                     written
264  * @offset_in_page: Offset in @page_for_ecryptfs from which to start
265  *                  writing
266  * @size: The number of bytes to write into @page_for_ecryptfs
267  * @ecryptfs_inode: The eCryptfs inode
268  *
269  * Determines the byte offset in the file for the given page and
270  * offset within the page, maps the page, and makes the call to read
271  * the contents of @page_for_ecryptfs from the lower inode.
272  *
273  * Returns zero on success; non-zero otherwise
274  */
275 int ecryptfs_read_lower_page_segment(struct page *page_for_ecryptfs,
276 				     pgoff_t page_index,
277 				     size_t offset_in_page, size_t size,
278 				     struct inode *ecryptfs_inode)
279 {
280 	char *virt;
281 	loff_t offset;
282 	int rc;
283 
284 	offset = ((((loff_t)page_index) << PAGE_CACHE_SHIFT) + offset_in_page);
285 	virt = kmap(page_for_ecryptfs);
286 	rc = ecryptfs_read_lower(virt, offset, size, ecryptfs_inode);
287 	kunmap(page_for_ecryptfs);
288 	flush_dcache_page(page_for_ecryptfs);
289 	return rc;
290 }
291 
292 #if 0
293 /**
294  * ecryptfs_read
295  * @data: The virtual address into which to write the data read (and
296  *        possibly decrypted) from the lower file
297  * @offset: The offset in the decrypted view of the file from which to
298  *          read into @data
299  * @size: The number of bytes to read into @data
300  * @ecryptfs_file: The eCryptfs file from which to read
301  *
302  * Read an arbitrary amount of data from an arbitrary location in the
303  * eCryptfs page cache. This is done on an extent-by-extent basis;
304  * individual extents are decrypted and read from the lower page
305  * cache (via VFS reads). This function takes care of all the
306  * address translation to locations in the lower filesystem.
307  *
308  * Returns zero on success; non-zero otherwise
309  */
310 int ecryptfs_read(char *data, loff_t offset, size_t size,
311 		  struct file *ecryptfs_file)
312 {
313 	struct page *ecryptfs_page;
314 	char *ecryptfs_page_virt;
315 	loff_t ecryptfs_file_size =
316 		i_size_read(ecryptfs_file->f_dentry->d_inode);
317 	loff_t data_offset = 0;
318 	loff_t pos;
319 	int rc = 0;
320 
321 	if ((offset + size) > ecryptfs_file_size) {
322 		rc = -EINVAL;
323 		printk(KERN_ERR "%s: Attempt to read data past the end of the "
324 			"file; offset = [%lld]; size = [%td]; "
325 		       "ecryptfs_file_size = [%lld]\n",
326 		       __func__, offset, size, ecryptfs_file_size);
327 		goto out;
328 	}
329 	pos = offset;
330 	while (pos < (offset + size)) {
331 		pgoff_t ecryptfs_page_idx = (pos >> PAGE_CACHE_SHIFT);
332 		size_t start_offset_in_page = (pos & ~PAGE_CACHE_MASK);
333 		size_t num_bytes = (PAGE_CACHE_SIZE - start_offset_in_page);
334 		size_t total_remaining_bytes = ((offset + size) - pos);
335 
336 		if (num_bytes > total_remaining_bytes)
337 			num_bytes = total_remaining_bytes;
338 		ecryptfs_page = ecryptfs_get_locked_page(ecryptfs_file,
339 							 ecryptfs_page_idx);
340 		if (IS_ERR(ecryptfs_page)) {
341 			rc = PTR_ERR(ecryptfs_page);
342 			printk(KERN_ERR "%s: Error getting page at "
343 			       "index [%ld] from eCryptfs inode "
344 			       "mapping; rc = [%d]\n", __func__,
345 			       ecryptfs_page_idx, rc);
346 			goto out;
347 		}
348 		ecryptfs_page_virt = kmap_atomic(ecryptfs_page, KM_USER0);
349 		memcpy((data + data_offset),
350 		       ((char *)ecryptfs_page_virt + start_offset_in_page),
351 		       num_bytes);
352 		kunmap_atomic(ecryptfs_page_virt, KM_USER0);
353 		flush_dcache_page(ecryptfs_page);
354 		SetPageUptodate(ecryptfs_page);
355 		unlock_page(ecryptfs_page);
356 		page_cache_release(ecryptfs_page);
357 		pos += num_bytes;
358 		data_offset += num_bytes;
359 	}
360 out:
361 	return rc;
362 }
363 #endif  /*  0  */
364