xref: /openbmc/linux/fs/ecryptfs/read_write.c (revision 7896b631)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 2007 International Business Machines Corp.
5  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License as
9  * published by the Free Software Foundation; either version 2 of the
10  * License, or (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
20  * 02111-1307, USA.
21  */
22 
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include "ecryptfs_kernel.h"
26 
27 /**
28  * ecryptfs_write_lower
29  * @ecryptfs_inode: The eCryptfs inode
30  * @data: Data to write
31  * @offset: Byte offset in the lower file to which to write the data
32  * @size: Number of bytes from @data to write at @offset in the lower
33  *        file
34  *
35  * Write data to the lower file.
36  *
37  * Returns zero on success; non-zero on error
38  */
39 int ecryptfs_write_lower(struct inode *ecryptfs_inode, char *data,
40 			 loff_t offset, size_t size)
41 {
42 	struct ecryptfs_inode_info *inode_info;
43 	ssize_t octets_written;
44 	mm_segment_t fs_save;
45 	int rc = 0;
46 
47 	inode_info = ecryptfs_inode_to_private(ecryptfs_inode);
48 	mutex_lock(&inode_info->lower_file_mutex);
49 	BUG_ON(!inode_info->lower_file);
50 	inode_info->lower_file->f_pos = offset;
51 	fs_save = get_fs();
52 	set_fs(get_ds());
53 	octets_written = vfs_write(inode_info->lower_file, data, size,
54 				   &inode_info->lower_file->f_pos);
55 	set_fs(fs_save);
56 	if (octets_written < 0) {
57 		printk(KERN_ERR "%s: octets_written = [%td]; "
58 		       "expected [%td]\n", __FUNCTION__, octets_written, size);
59 		rc = -EINVAL;
60 	}
61 	mutex_unlock(&inode_info->lower_file_mutex);
62 	mark_inode_dirty_sync(ecryptfs_inode);
63 	return rc;
64 }
65 
66 /**
67  * ecryptfs_write_lower_page_segment
68  * @ecryptfs_inode: The eCryptfs inode
69  * @page_for_lower: The page containing the data to be written to the
70  *                  lower file
71  * @offset_in_page: The offset in the @page_for_lower from which to
72  *                  start writing the data
73  * @size: The amount of data from @page_for_lower to write to the
74  *        lower file
75  *
76  * Determines the byte offset in the file for the given page and
77  * offset within the page, maps the page, and makes the call to write
78  * the contents of @page_for_lower to the lower inode.
79  *
80  * Returns zero on success; non-zero otherwise
81  */
82 int ecryptfs_write_lower_page_segment(struct inode *ecryptfs_inode,
83 				      struct page *page_for_lower,
84 				      size_t offset_in_page, size_t size)
85 {
86 	char *virt;
87 	loff_t offset;
88 	int rc;
89 
90 	offset = ((((loff_t)page_for_lower->index) << PAGE_CACHE_SHIFT)
91 		  + offset_in_page);
92 	virt = kmap(page_for_lower);
93 	rc = ecryptfs_write_lower(ecryptfs_inode, virt, offset, size);
94 	kunmap(page_for_lower);
95 	return rc;
96 }
97 
98 /**
99  * ecryptfs_write
100  * @ecryptfs_file: The eCryptfs file into which to write
101  * @data: Virtual address where data to write is located
102  * @offset: Offset in the eCryptfs file at which to begin writing the
103  *          data from @data
104  * @size: The number of bytes to write from @data
105  *
106  * Write an arbitrary amount of data to an arbitrary location in the
107  * eCryptfs inode page cache. This is done on a page-by-page, and then
108  * by an extent-by-extent, basis; individual extents are encrypted and
109  * written to the lower page cache (via VFS writes). This function
110  * takes care of all the address translation to locations in the lower
111  * filesystem; it also handles truncate events, writing out zeros
112  * where necessary.
113  *
114  * Returns zero on success; non-zero otherwise
115  */
116 int ecryptfs_write(struct file *ecryptfs_file, char *data, loff_t offset,
117 		   size_t size)
118 {
119 	struct page *ecryptfs_page;
120 	char *ecryptfs_page_virt;
121 	loff_t ecryptfs_file_size =
122 		i_size_read(ecryptfs_file->f_dentry->d_inode);
123 	loff_t data_offset = 0;
124 	loff_t pos;
125 	int rc = 0;
126 
127 	/*
128 	 * if we are writing beyond current size, then start pos
129 	 * at the current size - we'll fill in zeros from there.
130 	 */
131 	if (offset > ecryptfs_file_size)
132 		pos = ecryptfs_file_size;
133 	else
134 		pos = offset;
135 	while (pos < (offset + size)) {
136 		pgoff_t ecryptfs_page_idx = (pos >> PAGE_CACHE_SHIFT);
137 		size_t start_offset_in_page = (pos & ~PAGE_CACHE_MASK);
138 		size_t num_bytes = (PAGE_CACHE_SIZE - start_offset_in_page);
139 		size_t total_remaining_bytes = ((offset + size) - pos);
140 
141 		if (num_bytes > total_remaining_bytes)
142 			num_bytes = total_remaining_bytes;
143 		if (pos < offset) {
144 			/* remaining zeros to write, up to destination offset */
145 			size_t total_remaining_zeros = (offset - pos);
146 
147 			if (num_bytes > total_remaining_zeros)
148 				num_bytes = total_remaining_zeros;
149 		}
150 		ecryptfs_page = ecryptfs_get_locked_page(ecryptfs_file,
151 							 ecryptfs_page_idx);
152 		if (IS_ERR(ecryptfs_page)) {
153 			rc = PTR_ERR(ecryptfs_page);
154 			printk(KERN_ERR "%s: Error getting page at "
155 			       "index [%ld] from eCryptfs inode "
156 			       "mapping; rc = [%d]\n", __FUNCTION__,
157 			       ecryptfs_page_idx, rc);
158 			goto out;
159 		}
160 		if (start_offset_in_page) {
161 			/* Read in the page from the lower
162 			 * into the eCryptfs inode page cache,
163 			 * decrypting */
164 			rc = ecryptfs_decrypt_page(ecryptfs_page);
165 			if (rc) {
166 				printk(KERN_ERR "%s: Error decrypting "
167 				       "page; rc = [%d]\n",
168 				       __FUNCTION__, rc);
169 				ClearPageUptodate(ecryptfs_page);
170 				page_cache_release(ecryptfs_page);
171 				goto out;
172 			}
173 		}
174 		ecryptfs_page_virt = kmap_atomic(ecryptfs_page, KM_USER0);
175 
176 		/*
177 		 * pos: where we're now writing, offset: where the request was
178 		 * If current pos is before request, we are filling zeros
179 		 * If we are at or beyond request, we are writing the *data*
180 		 * If we're in a fresh page beyond eof, zero it in either case
181 		 */
182 		if (pos < offset || !start_offset_in_page) {
183 			/* We are extending past the previous end of the file.
184 			 * Fill in zero values to the end of the page */
185 			memset(((char *)ecryptfs_page_virt
186 				+ start_offset_in_page), 0,
187 				PAGE_CACHE_SIZE - start_offset_in_page);
188 		}
189 
190 		/* pos >= offset, we are now writing the data request */
191 		if (pos >= offset) {
192 			memcpy(((char *)ecryptfs_page_virt
193 				+ start_offset_in_page),
194 			       (data + data_offset), num_bytes);
195 			data_offset += num_bytes;
196 		}
197 		kunmap_atomic(ecryptfs_page_virt, KM_USER0);
198 		flush_dcache_page(ecryptfs_page);
199 		SetPageUptodate(ecryptfs_page);
200 		unlock_page(ecryptfs_page);
201 		rc = ecryptfs_encrypt_page(ecryptfs_page);
202 		page_cache_release(ecryptfs_page);
203 		if (rc) {
204 			printk(KERN_ERR "%s: Error encrypting "
205 			       "page; rc = [%d]\n", __FUNCTION__, rc);
206 			goto out;
207 		}
208 		pos += num_bytes;
209 	}
210 	if ((offset + size) > ecryptfs_file_size) {
211 		i_size_write(ecryptfs_file->f_dentry->d_inode, (offset + size));
212 		rc = ecryptfs_write_inode_size_to_metadata(
213 			ecryptfs_file->f_dentry->d_inode);
214 		if (rc) {
215 			printk(KERN_ERR	"Problem with "
216 			       "ecryptfs_write_inode_size_to_metadata; "
217 			       "rc = [%d]\n", rc);
218 			goto out;
219 		}
220 	}
221 out:
222 	return rc;
223 }
224 
225 /**
226  * ecryptfs_read_lower
227  * @data: The read data is stored here by this function
228  * @offset: Byte offset in the lower file from which to read the data
229  * @size: Number of bytes to read from @offset of the lower file and
230  *        store into @data
231  * @ecryptfs_inode: The eCryptfs inode
232  *
233  * Read @size bytes of data at byte offset @offset from the lower
234  * inode into memory location @data.
235  *
236  * Returns zero on success; non-zero on error
237  */
238 int ecryptfs_read_lower(char *data, loff_t offset, size_t size,
239 			struct inode *ecryptfs_inode)
240 {
241 	struct ecryptfs_inode_info *inode_info =
242 		ecryptfs_inode_to_private(ecryptfs_inode);
243 	ssize_t octets_read;
244 	mm_segment_t fs_save;
245 	int rc = 0;
246 
247 	mutex_lock(&inode_info->lower_file_mutex);
248 	BUG_ON(!inode_info->lower_file);
249 	inode_info->lower_file->f_pos = offset;
250 	fs_save = get_fs();
251 	set_fs(get_ds());
252 	octets_read = vfs_read(inode_info->lower_file, data, size,
253 			       &inode_info->lower_file->f_pos);
254 	set_fs(fs_save);
255 	if (octets_read < 0) {
256 		printk(KERN_ERR "%s: octets_read = [%td]; "
257 		       "expected [%td]\n", __FUNCTION__, octets_read, size);
258 		rc = -EINVAL;
259 	}
260 	mutex_unlock(&inode_info->lower_file_mutex);
261 	return rc;
262 }
263 
264 /**
265  * ecryptfs_read_lower_page_segment
266  * @page_for_ecryptfs: The page into which data for eCryptfs will be
267  *                     written
268  * @offset_in_page: Offset in @page_for_ecryptfs from which to start
269  *                  writing
270  * @size: The number of bytes to write into @page_for_ecryptfs
271  * @ecryptfs_inode: The eCryptfs inode
272  *
273  * Determines the byte offset in the file for the given page and
274  * offset within the page, maps the page, and makes the call to read
275  * the contents of @page_for_ecryptfs from the lower inode.
276  *
277  * Returns zero on success; non-zero otherwise
278  */
279 int ecryptfs_read_lower_page_segment(struct page *page_for_ecryptfs,
280 				     pgoff_t page_index,
281 				     size_t offset_in_page, size_t size,
282 				     struct inode *ecryptfs_inode)
283 {
284 	char *virt;
285 	loff_t offset;
286 	int rc;
287 
288 	offset = ((((loff_t)page_index) << PAGE_CACHE_SHIFT) + offset_in_page);
289 	virt = kmap(page_for_ecryptfs);
290 	rc = ecryptfs_read_lower(virt, offset, size, ecryptfs_inode);
291 	kunmap(page_for_ecryptfs);
292 	flush_dcache_page(page_for_ecryptfs);
293 	return rc;
294 }
295 
296 #if 0
297 /**
298  * ecryptfs_read
299  * @data: The virtual address into which to write the data read (and
300  *        possibly decrypted) from the lower file
301  * @offset: The offset in the decrypted view of the file from which to
302  *          read into @data
303  * @size: The number of bytes to read into @data
304  * @ecryptfs_file: The eCryptfs file from which to read
305  *
306  * Read an arbitrary amount of data from an arbitrary location in the
307  * eCryptfs page cache. This is done on an extent-by-extent basis;
308  * individual extents are decrypted and read from the lower page
309  * cache (via VFS reads). This function takes care of all the
310  * address translation to locations in the lower filesystem.
311  *
312  * Returns zero on success; non-zero otherwise
313  */
314 int ecryptfs_read(char *data, loff_t offset, size_t size,
315 		  struct file *ecryptfs_file)
316 {
317 	struct page *ecryptfs_page;
318 	char *ecryptfs_page_virt;
319 	loff_t ecryptfs_file_size =
320 		i_size_read(ecryptfs_file->f_dentry->d_inode);
321 	loff_t data_offset = 0;
322 	loff_t pos;
323 	int rc = 0;
324 
325 	if ((offset + size) > ecryptfs_file_size) {
326 		rc = -EINVAL;
327 		printk(KERN_ERR "%s: Attempt to read data past the end of the "
328 			"file; offset = [%lld]; size = [%td]; "
329 		       "ecryptfs_file_size = [%lld]\n",
330 		       __FUNCTION__, offset, size, ecryptfs_file_size);
331 		goto out;
332 	}
333 	pos = offset;
334 	while (pos < (offset + size)) {
335 		pgoff_t ecryptfs_page_idx = (pos >> PAGE_CACHE_SHIFT);
336 		size_t start_offset_in_page = (pos & ~PAGE_CACHE_MASK);
337 		size_t num_bytes = (PAGE_CACHE_SIZE - start_offset_in_page);
338 		size_t total_remaining_bytes = ((offset + size) - pos);
339 
340 		if (num_bytes > total_remaining_bytes)
341 			num_bytes = total_remaining_bytes;
342 		ecryptfs_page = ecryptfs_get_locked_page(ecryptfs_file,
343 							 ecryptfs_page_idx);
344 		if (IS_ERR(ecryptfs_page)) {
345 			rc = PTR_ERR(ecryptfs_page);
346 			printk(KERN_ERR "%s: Error getting page at "
347 			       "index [%ld] from eCryptfs inode "
348 			       "mapping; rc = [%d]\n", __FUNCTION__,
349 			       ecryptfs_page_idx, rc);
350 			goto out;
351 		}
352 		rc = ecryptfs_decrypt_page(ecryptfs_page);
353 		if (rc) {
354 			printk(KERN_ERR "%s: Error decrypting "
355 			       "page; rc = [%d]\n", __FUNCTION__, rc);
356 			ClearPageUptodate(ecryptfs_page);
357 			page_cache_release(ecryptfs_page);
358 			goto out;
359 		}
360 		ecryptfs_page_virt = kmap_atomic(ecryptfs_page, KM_USER0);
361 		memcpy((data + data_offset),
362 		       ((char *)ecryptfs_page_virt + start_offset_in_page),
363 		       num_bytes);
364 		kunmap_atomic(ecryptfs_page_virt, KM_USER0);
365 		flush_dcache_page(ecryptfs_page);
366 		SetPageUptodate(ecryptfs_page);
367 		unlock_page(ecryptfs_page);
368 		page_cache_release(ecryptfs_page);
369 		pos += num_bytes;
370 		data_offset += num_bytes;
371 	}
372 out:
373 	return rc;
374 }
375 #endif  /*  0  */
376