xref: /openbmc/linux/fs/ecryptfs/mmap.c (revision c21b37f6)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  * This is where eCryptfs coordinates the symmetric encryption and
4  * decryption of the file data as it passes between the lower
5  * encrypted file and the upper decrypted file.
6  *
7  * Copyright (C) 1997-2003 Erez Zadok
8  * Copyright (C) 2001-2003 Stony Brook University
9  * Copyright (C) 2004-2007 International Business Machines Corp.
10  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of the
15  * License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
25  * 02111-1307, USA.
26  */
27 
28 #include <linux/pagemap.h>
29 #include <linux/writeback.h>
30 #include <linux/page-flags.h>
31 #include <linux/mount.h>
32 #include <linux/file.h>
33 #include <linux/crypto.h>
34 #include <linux/scatterlist.h>
35 #include "ecryptfs_kernel.h"
36 
37 struct kmem_cache *ecryptfs_lower_page_cache;
38 
39 /**
40  * ecryptfs_get1page
41  *
42  * Get one page from cache or lower f/s, return error otherwise.
43  *
44  * Returns unlocked and up-to-date page (if ok), with increased
45  * refcnt.
46  */
47 static struct page *ecryptfs_get1page(struct file *file, int index)
48 {
49 	struct dentry *dentry;
50 	struct inode *inode;
51 	struct address_space *mapping;
52 
53 	dentry = file->f_path.dentry;
54 	inode = dentry->d_inode;
55 	mapping = inode->i_mapping;
56 	return read_mapping_page(mapping, index, (void *)file);
57 }
58 
59 /**
60  * ecryptfs_fill_zeros
61  * @file: The ecryptfs file
62  * @new_length: The new length of the data in the underlying file;
63  *              everything between the prior end of the file and the
64  *              new end of the file will be filled with zero's.
65  *              new_length must be greater than  current length
66  *
67  * Function for handling lseek-ing past the end of the file.
68  *
69  * This function does not support shrinking, only growing a file.
70  *
71  * Returns zero on success; non-zero otherwise.
72  */
73 int ecryptfs_fill_zeros(struct file *file, loff_t new_length)
74 {
75 	int rc = 0;
76 	struct dentry *dentry = file->f_path.dentry;
77 	struct inode *inode = dentry->d_inode;
78 	pgoff_t old_end_page_index = 0;
79 	pgoff_t index = old_end_page_index;
80 	int old_end_pos_in_page = -1;
81 	pgoff_t new_end_page_index;
82 	int new_end_pos_in_page;
83 	loff_t cur_length = i_size_read(inode);
84 
85 	if (cur_length != 0) {
86 		index = old_end_page_index =
87 		    ((cur_length - 1) >> PAGE_CACHE_SHIFT);
88 		old_end_pos_in_page = ((cur_length - 1) & ~PAGE_CACHE_MASK);
89 	}
90 	new_end_page_index = ((new_length - 1) >> PAGE_CACHE_SHIFT);
91 	new_end_pos_in_page = ((new_length - 1) & ~PAGE_CACHE_MASK);
92 	ecryptfs_printk(KERN_DEBUG, "old_end_page_index = [0x%.16x]; "
93 			"old_end_pos_in_page = [%d]; "
94 			"new_end_page_index = [0x%.16x]; "
95 			"new_end_pos_in_page = [%d]\n",
96 			old_end_page_index, old_end_pos_in_page,
97 			new_end_page_index, new_end_pos_in_page);
98 	if (old_end_page_index == new_end_page_index) {
99 		/* Start and end are in the same page; we just need to
100 		 * set a portion of the existing page to zero's */
101 		rc = ecryptfs_write_zeros(file, index,
102 					  (old_end_pos_in_page + 1),
103 					  (new_end_pos_in_page
104 					   - old_end_pos_in_page));
105 		if (rc)
106 			ecryptfs_printk(KERN_ERR, "ecryptfs_write_zeros("
107 					"file=[%p], "
108 					"index=[0x%.16x], "
109 					"old_end_pos_in_page=[d], "
110 					"(PAGE_CACHE_SIZE - new_end_pos_in_page"
111 					"=[%d]"
112 					")=[d]) returned [%d]\n", file, index,
113 					old_end_pos_in_page,
114 					new_end_pos_in_page,
115 					(PAGE_CACHE_SIZE - new_end_pos_in_page),
116 					rc);
117 		goto out;
118 	}
119 	/* Fill the remainder of the previous last page with zeros */
120 	rc = ecryptfs_write_zeros(file, index, (old_end_pos_in_page + 1),
121 			 ((PAGE_CACHE_SIZE - 1) - old_end_pos_in_page));
122 	if (rc) {
123 		ecryptfs_printk(KERN_ERR, "ecryptfs_write_zeros(file=[%p], "
124 				"index=[0x%.16x], old_end_pos_in_page=[d], "
125 				"(PAGE_CACHE_SIZE - old_end_pos_in_page)=[d]) "
126 				"returned [%d]\n", file, index,
127 				old_end_pos_in_page,
128 				(PAGE_CACHE_SIZE - old_end_pos_in_page), rc);
129 		goto out;
130 	}
131 	index++;
132 	while (index < new_end_page_index) {
133 		/* Fill all intermediate pages with zeros */
134 		rc = ecryptfs_write_zeros(file, index, 0, PAGE_CACHE_SIZE);
135 		if (rc) {
136 			ecryptfs_printk(KERN_ERR, "ecryptfs_write_zeros("
137 					"file=[%p], "
138 					"index=[0x%.16x], "
139 					"old_end_pos_in_page=[d], "
140 					"(PAGE_CACHE_SIZE - new_end_pos_in_page"
141 					"=[%d]"
142 					")=[d]) returned [%d]\n", file, index,
143 					old_end_pos_in_page,
144 					new_end_pos_in_page,
145 					(PAGE_CACHE_SIZE - new_end_pos_in_page),
146 					rc);
147 			goto out;
148 		}
149 		index++;
150 	}
151 	/* Fill the portion at the beginning of the last new page with
152 	 * zero's */
153 	rc = ecryptfs_write_zeros(file, index, 0, (new_end_pos_in_page + 1));
154 	if (rc) {
155 		ecryptfs_printk(KERN_ERR, "ecryptfs_write_zeros(file="
156 				"[%p], index=[0x%.16x], 0, "
157 				"new_end_pos_in_page=[%d]"
158 				"returned [%d]\n", file, index,
159 				new_end_pos_in_page, rc);
160 		goto out;
161 	}
162 out:
163 	return rc;
164 }
165 
166 /**
167  * ecryptfs_writepage
168  * @page: Page that is locked before this call is made
169  *
170  * Returns zero on success; non-zero otherwise
171  */
172 static int ecryptfs_writepage(struct page *page, struct writeback_control *wbc)
173 {
174 	struct ecryptfs_page_crypt_context ctx;
175 	int rc;
176 
177 	ctx.page = page;
178 	ctx.mode = ECRYPTFS_WRITEPAGE_MODE;
179 	ctx.param.wbc = wbc;
180 	rc = ecryptfs_encrypt_page(&ctx);
181 	if (rc) {
182 		ecryptfs_printk(KERN_WARNING, "Error encrypting "
183 				"page (upper index [0x%.16x])\n", page->index);
184 		ClearPageUptodate(page);
185 		goto out;
186 	}
187 	SetPageUptodate(page);
188 	unlock_page(page);
189 out:
190 	return rc;
191 }
192 
193 /**
194  * Reads the data from the lower file file at index lower_page_index
195  * and copies that data into page.
196  *
197  * @param page	Page to fill
198  * @param lower_page_index Index of the page in the lower file to get
199  */
200 int ecryptfs_do_readpage(struct file *file, struct page *page,
201 			 pgoff_t lower_page_index)
202 {
203 	int rc;
204 	struct dentry *dentry;
205 	struct file *lower_file;
206 	struct dentry *lower_dentry;
207 	struct inode *inode;
208 	struct inode *lower_inode;
209 	char *page_data;
210 	struct page *lower_page = NULL;
211 	char *lower_page_data;
212 	const struct address_space_operations *lower_a_ops;
213 
214 	dentry = file->f_path.dentry;
215 	lower_file = ecryptfs_file_to_lower(file);
216 	lower_dentry = ecryptfs_dentry_to_lower(dentry);
217 	inode = dentry->d_inode;
218 	lower_inode = ecryptfs_inode_to_lower(inode);
219 	lower_a_ops = lower_inode->i_mapping->a_ops;
220 	lower_page = read_cache_page(lower_inode->i_mapping, lower_page_index,
221 				     (filler_t *)lower_a_ops->readpage,
222 				     (void *)lower_file);
223 	if (IS_ERR(lower_page)) {
224 		rc = PTR_ERR(lower_page);
225 		lower_page = NULL;
226 		ecryptfs_printk(KERN_ERR, "Error reading from page cache\n");
227 		goto out;
228 	}
229 	page_data = kmap_atomic(page, KM_USER0);
230 	lower_page_data = kmap_atomic(lower_page, KM_USER1);
231 	memcpy(page_data, lower_page_data, PAGE_CACHE_SIZE);
232 	kunmap_atomic(lower_page_data, KM_USER1);
233 	kunmap_atomic(page_data, KM_USER0);
234 	flush_dcache_page(page);
235 	rc = 0;
236 out:
237 	if (likely(lower_page))
238 		page_cache_release(lower_page);
239 	if (rc == 0)
240 		SetPageUptodate(page);
241 	else
242 		ClearPageUptodate(page);
243 	return rc;
244 }
245 /**
246  *   Header Extent:
247  *     Octets 0-7:        Unencrypted file size (big-endian)
248  *     Octets 8-15:       eCryptfs special marker
249  *     Octets 16-19:      Flags
250  *      Octet 16:         File format version number (between 0 and 255)
251  *      Octets 17-18:     Reserved
252  *      Octet 19:         Bit 1 (lsb): Reserved
253  *                        Bit 2: Encrypted?
254  *                        Bits 3-8: Reserved
255  *     Octets 20-23:      Header extent size (big-endian)
256  *     Octets 24-25:      Number of header extents at front of file
257  *                        (big-endian)
258  *     Octet  26:         Begin RFC 2440 authentication token packet set
259  */
260 static void set_header_info(char *page_virt,
261 			    struct ecryptfs_crypt_stat *crypt_stat)
262 {
263 	size_t written;
264 	int save_num_header_extents_at_front =
265 		crypt_stat->num_header_extents_at_front;
266 
267 	crypt_stat->num_header_extents_at_front = 1;
268 	ecryptfs_write_header_metadata(page_virt + 20, crypt_stat, &written);
269 	crypt_stat->num_header_extents_at_front =
270 		save_num_header_extents_at_front;
271 }
272 
273 /**
274  * ecryptfs_readpage
275  * @file: This is an ecryptfs file
276  * @page: ecryptfs associated page to stick the read data into
277  *
278  * Read in a page, decrypting if necessary.
279  *
280  * Returns zero on success; non-zero on error.
281  */
282 static int ecryptfs_readpage(struct file *file, struct page *page)
283 {
284 	int rc = 0;
285 	struct ecryptfs_crypt_stat *crypt_stat;
286 
287 	BUG_ON(!(file && file->f_path.dentry && file->f_path.dentry->d_inode));
288 	crypt_stat = &ecryptfs_inode_to_private(file->f_path.dentry->d_inode)
289 			->crypt_stat;
290 	if (!crypt_stat
291 	    || !(crypt_stat->flags & ECRYPTFS_ENCRYPTED)
292 	    || (crypt_stat->flags & ECRYPTFS_NEW_FILE)) {
293 		ecryptfs_printk(KERN_DEBUG,
294 				"Passing through unencrypted page\n");
295 		rc = ecryptfs_do_readpage(file, page, page->index);
296 		if (rc) {
297 			ecryptfs_printk(KERN_ERR, "Error reading page; rc = "
298 					"[%d]\n", rc);
299 			goto out;
300 		}
301 	} else if (crypt_stat->flags & ECRYPTFS_VIEW_AS_ENCRYPTED) {
302 		if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) {
303 			int num_pages_in_header_region =
304 				(crypt_stat->header_extent_size
305 				 / PAGE_CACHE_SIZE);
306 
307 			if (page->index < num_pages_in_header_region) {
308 				char *page_virt;
309 
310 				page_virt = kmap_atomic(page, KM_USER0);
311 				memset(page_virt, 0, PAGE_CACHE_SIZE);
312 				if (page->index == 0) {
313 					rc = ecryptfs_read_xattr_region(
314 						page_virt, file->f_path.dentry);
315 					set_header_info(page_virt, crypt_stat);
316 				}
317 				kunmap_atomic(page_virt, KM_USER0);
318 				flush_dcache_page(page);
319 				if (rc) {
320 					printk(KERN_ERR "Error reading xattr "
321 					       "region\n");
322 					goto out;
323 				}
324 			} else {
325 				rc = ecryptfs_do_readpage(
326 					file, page,
327 					(page->index
328 					 - num_pages_in_header_region));
329 				if (rc) {
330 					printk(KERN_ERR "Error reading page; "
331 					       "rc = [%d]\n", rc);
332 					goto out;
333 				}
334 			}
335 		} else {
336 			rc = ecryptfs_do_readpage(file, page, page->index);
337 			if (rc) {
338 				printk(KERN_ERR "Error reading page; rc = "
339 				       "[%d]\n", rc);
340 				goto out;
341 			}
342 		}
343 	} else {
344 		rc = ecryptfs_decrypt_page(file, page);
345 		if (rc) {
346 			ecryptfs_printk(KERN_ERR, "Error decrypting page; "
347 					"rc = [%d]\n", rc);
348 			goto out;
349 		}
350 	}
351 	SetPageUptodate(page);
352 out:
353 	if (rc)
354 		ClearPageUptodate(page);
355 	ecryptfs_printk(KERN_DEBUG, "Unlocking page with index = [0x%.16x]\n",
356 			page->index);
357 	unlock_page(page);
358 	return rc;
359 }
360 
361 /**
362  * Called with lower inode mutex held.
363  */
364 static int fill_zeros_to_end_of_page(struct page *page, unsigned int to)
365 {
366 	struct inode *inode = page->mapping->host;
367 	int end_byte_in_page;
368 
369 	if ((i_size_read(inode) / PAGE_CACHE_SIZE) != page->index)
370 		goto out;
371 	end_byte_in_page = i_size_read(inode) % PAGE_CACHE_SIZE;
372 	if (to > end_byte_in_page)
373 		end_byte_in_page = to;
374 	zero_user_page(page, end_byte_in_page,
375 		PAGE_CACHE_SIZE - end_byte_in_page, KM_USER0);
376 out:
377 	return 0;
378 }
379 
380 /**
381  * eCryptfs does not currently support holes. When writing after a
382  * seek past the end of the file, eCryptfs fills in 0's through to the
383  * current location. The code to fill in the 0's to all the
384  * intermediate pages calls ecryptfs_prepare_write_no_truncate().
385  */
386 static int
387 ecryptfs_prepare_write_no_truncate(struct file *file, struct page *page,
388 				   unsigned from, unsigned to)
389 {
390 	int rc = 0;
391 
392 	if (from == 0 && to == PAGE_CACHE_SIZE)
393 		goto out;	/* If we are writing a full page, it will be
394 				   up to date. */
395 	if (!PageUptodate(page))
396 		rc = ecryptfs_do_readpage(file, page, page->index);
397 out:
398 	return rc;
399 }
400 
401 static int ecryptfs_prepare_write(struct file *file, struct page *page,
402 				  unsigned from, unsigned to)
403 {
404 	int rc = 0;
405 
406 	if (from == 0 && to == PAGE_CACHE_SIZE)
407 		goto out;	/* If we are writing a full page, it will be
408 				   up to date. */
409 	if (!PageUptodate(page))
410 		rc = ecryptfs_do_readpage(file, page, page->index);
411 	if (page->index != 0) {
412 		loff_t end_of_prev_pg_pos = page_offset(page) - 1;
413 
414 		if (end_of_prev_pg_pos > i_size_read(page->mapping->host)) {
415 			rc = ecryptfs_truncate(file->f_path.dentry,
416 					       end_of_prev_pg_pos);
417 			if (rc) {
418 				printk(KERN_ERR "Error on attempt to "
419 				       "truncate to (higher) offset [%lld];"
420 				       " rc = [%d]\n", end_of_prev_pg_pos, rc);
421 				goto out;
422 			}
423 		}
424 		if (end_of_prev_pg_pos + 1 > i_size_read(page->mapping->host))
425 			zero_user_page(page, 0, PAGE_CACHE_SIZE, KM_USER0);
426 	}
427 out:
428 	return rc;
429 }
430 
431 int ecryptfs_writepage_and_release_lower_page(struct page *lower_page,
432 					      struct inode *lower_inode,
433 					      struct writeback_control *wbc)
434 {
435 	int rc = 0;
436 
437 	rc = lower_inode->i_mapping->a_ops->writepage(lower_page, wbc);
438 	if (rc) {
439 		ecryptfs_printk(KERN_ERR, "Error calling lower writepage(); "
440 				"rc = [%d]\n", rc);
441 		goto out;
442 	}
443 	lower_inode->i_mtime = lower_inode->i_ctime = CURRENT_TIME;
444 	page_cache_release(lower_page);
445 out:
446 	return rc;
447 }
448 
449 static
450 void ecryptfs_release_lower_page(struct page *lower_page, int page_locked)
451 {
452 	if (page_locked)
453 		unlock_page(lower_page);
454 	page_cache_release(lower_page);
455 }
456 
457 /**
458  * ecryptfs_write_inode_size_to_header
459  *
460  * Writes the lower file size to the first 8 bytes of the header.
461  *
462  * Returns zero on success; non-zero on error.
463  */
464 static int ecryptfs_write_inode_size_to_header(struct file *lower_file,
465 					       struct inode *lower_inode,
466 					       struct inode *inode)
467 {
468 	int rc = 0;
469 	struct page *header_page;
470 	char *header_virt;
471 	const struct address_space_operations *lower_a_ops;
472 	u64 file_size;
473 
474 retry:
475 	header_page = grab_cache_page(lower_inode->i_mapping, 0);
476 	if (!header_page) {
477 		ecryptfs_printk(KERN_ERR, "grab_cache_page for "
478 				"lower_page_index 0 failed\n");
479 		rc = -EINVAL;
480 		goto out;
481 	}
482 	lower_a_ops = lower_inode->i_mapping->a_ops;
483 	rc = lower_a_ops->prepare_write(lower_file, header_page, 0, 8);
484 	if (rc) {
485 		if (rc == AOP_TRUNCATED_PAGE) {
486 			ecryptfs_release_lower_page(header_page, 0);
487 			goto retry;
488 		} else
489 			ecryptfs_release_lower_page(header_page, 1);
490 		goto out;
491 	}
492 	file_size = (u64)i_size_read(inode);
493 	ecryptfs_printk(KERN_DEBUG, "Writing size: [0x%.16x]\n", file_size);
494 	file_size = cpu_to_be64(file_size);
495 	header_virt = kmap_atomic(header_page, KM_USER0);
496 	memcpy(header_virt, &file_size, sizeof(u64));
497 	kunmap_atomic(header_virt, KM_USER0);
498 	flush_dcache_page(header_page);
499 	rc = lower_a_ops->commit_write(lower_file, header_page, 0, 8);
500 	if (rc < 0)
501 		ecryptfs_printk(KERN_ERR, "Error commiting header page "
502 				"write\n");
503 	if (rc == AOP_TRUNCATED_PAGE) {
504 		ecryptfs_release_lower_page(header_page, 0);
505 		goto retry;
506 	} else
507 		ecryptfs_release_lower_page(header_page, 1);
508 	lower_inode->i_mtime = lower_inode->i_ctime = CURRENT_TIME;
509 	mark_inode_dirty_sync(inode);
510 out:
511 	return rc;
512 }
513 
514 static int ecryptfs_write_inode_size_to_xattr(struct inode *lower_inode,
515 					      struct inode *inode,
516 					      struct dentry *ecryptfs_dentry,
517 					      int lower_i_mutex_held)
518 {
519 	ssize_t size;
520 	void *xattr_virt;
521 	struct dentry *lower_dentry;
522 	u64 file_size;
523 	int rc;
524 
525 	xattr_virt = kmem_cache_alloc(ecryptfs_xattr_cache, GFP_KERNEL);
526 	if (!xattr_virt) {
527 		printk(KERN_ERR "Out of memory whilst attempting to write "
528 		       "inode size to xattr\n");
529 		rc = -ENOMEM;
530 		goto out;
531 	}
532 	lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
533 	if (!lower_dentry->d_inode->i_op->getxattr ||
534 			!lower_dentry->d_inode->i_op->setxattr) {
535 		printk(KERN_WARNING
536 		       "No support for setting xattr in lower filesystem\n");
537 		rc = -ENOSYS;
538 		kmem_cache_free(ecryptfs_xattr_cache, xattr_virt);
539 		goto out;
540 	}
541 	if (!lower_i_mutex_held)
542 		mutex_lock(&lower_dentry->d_inode->i_mutex);
543 	size = lower_dentry->d_inode->i_op->getxattr(lower_dentry,
544 						     ECRYPTFS_XATTR_NAME,
545 						     xattr_virt,
546 						     PAGE_CACHE_SIZE);
547 	if (!lower_i_mutex_held)
548 		mutex_unlock(&lower_dentry->d_inode->i_mutex);
549 	if (size < 0)
550 		size = 8;
551 	file_size = (u64)i_size_read(inode);
552 	file_size = cpu_to_be64(file_size);
553 	memcpy(xattr_virt, &file_size, sizeof(u64));
554 	if (!lower_i_mutex_held)
555 		mutex_lock(&lower_dentry->d_inode->i_mutex);
556 	rc = lower_dentry->d_inode->i_op->setxattr(lower_dentry,
557 						   ECRYPTFS_XATTR_NAME,
558 						   xattr_virt, size, 0);
559 	if (!lower_i_mutex_held)
560 		mutex_unlock(&lower_dentry->d_inode->i_mutex);
561 	if (rc)
562 		printk(KERN_ERR "Error whilst attempting to write inode size "
563 		       "to lower file xattr; rc = [%d]\n", rc);
564 	kmem_cache_free(ecryptfs_xattr_cache, xattr_virt);
565 out:
566 	return rc;
567 }
568 
569 int
570 ecryptfs_write_inode_size_to_metadata(struct file *lower_file,
571 				      struct inode *lower_inode,
572 				      struct inode *inode,
573 				      struct dentry *ecryptfs_dentry,
574 				      int lower_i_mutex_held)
575 {
576 	struct ecryptfs_crypt_stat *crypt_stat;
577 
578 	crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
579 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
580 		return ecryptfs_write_inode_size_to_xattr(lower_inode, inode,
581 							  ecryptfs_dentry,
582 							  lower_i_mutex_held);
583 	else
584 		return ecryptfs_write_inode_size_to_header(lower_file,
585 							   lower_inode,
586 							   inode);
587 }
588 
589 int ecryptfs_get_lower_page(struct page **lower_page, struct inode *lower_inode,
590 			    struct file *lower_file,
591 			    unsigned long lower_page_index, int byte_offset,
592 			    int region_bytes)
593 {
594 	int rc = 0;
595 
596 retry:
597 	*lower_page = grab_cache_page(lower_inode->i_mapping, lower_page_index);
598 	if (!(*lower_page)) {
599 		rc = -EINVAL;
600 		ecryptfs_printk(KERN_ERR, "Error attempting to grab "
601 				"lower page with index [0x%.16x]\n",
602 				lower_page_index);
603 		goto out;
604 	}
605 	rc = lower_inode->i_mapping->a_ops->prepare_write(lower_file,
606 							  (*lower_page),
607 							  byte_offset,
608 							  region_bytes);
609 	if (rc) {
610 		if (rc == AOP_TRUNCATED_PAGE) {
611 			ecryptfs_release_lower_page(*lower_page, 0);
612 			goto retry;
613 		} else {
614 			ecryptfs_printk(KERN_ERR, "prepare_write for "
615 				"lower_page_index = [0x%.16x] failed; rc = "
616 				"[%d]\n", lower_page_index, rc);
617 			ecryptfs_release_lower_page(*lower_page, 1);
618 			(*lower_page) = NULL;
619 		}
620 	}
621 out:
622 	return rc;
623 }
624 
625 /**
626  * ecryptfs_commit_lower_page
627  *
628  * Returns zero on success; non-zero on error
629  */
630 int
631 ecryptfs_commit_lower_page(struct page *lower_page, struct inode *lower_inode,
632 			   struct file *lower_file, int byte_offset,
633 			   int region_size)
634 {
635 	int page_locked = 1;
636 	int rc = 0;
637 
638 	rc = lower_inode->i_mapping->a_ops->commit_write(
639 		lower_file, lower_page, byte_offset, region_size);
640 	if (rc == AOP_TRUNCATED_PAGE)
641 		page_locked = 0;
642 	if (rc < 0) {
643 		ecryptfs_printk(KERN_ERR,
644 				"Error committing write; rc = [%d]\n", rc);
645 	} else
646 		rc = 0;
647 	ecryptfs_release_lower_page(lower_page, page_locked);
648 	return rc;
649 }
650 
651 /**
652  * ecryptfs_copy_page_to_lower
653  *
654  * Used for plaintext pass-through; no page index interpolation
655  * required.
656  */
657 int ecryptfs_copy_page_to_lower(struct page *page, struct inode *lower_inode,
658 				struct file *lower_file)
659 {
660 	int rc = 0;
661 	struct page *lower_page;
662 
663 	rc = ecryptfs_get_lower_page(&lower_page, lower_inode, lower_file,
664 				     page->index, 0, PAGE_CACHE_SIZE);
665 	if (rc) {
666 		ecryptfs_printk(KERN_ERR, "Error attempting to get page "
667 				"at index [0x%.16x]\n", page->index);
668 		goto out;
669 	}
670 	/* TODO: aops */
671 	memcpy((char *)page_address(lower_page), page_address(page),
672 	       PAGE_CACHE_SIZE);
673 	rc = ecryptfs_commit_lower_page(lower_page, lower_inode, lower_file,
674 					0, PAGE_CACHE_SIZE);
675 	if (rc)
676 		ecryptfs_printk(KERN_ERR, "Error attempting to commit page "
677 				"at index [0x%.16x]\n", page->index);
678 out:
679 	return rc;
680 }
681 
682 struct kmem_cache *ecryptfs_xattr_cache;
683 
684 /**
685  * ecryptfs_commit_write
686  * @file: The eCryptfs file object
687  * @page: The eCryptfs page
688  * @from: Ignored (we rotate the page IV on each write)
689  * @to: Ignored
690  *
691  * This is where we encrypt the data and pass the encrypted data to
692  * the lower filesystem.  In OpenPGP-compatible mode, we operate on
693  * entire underlying packets.
694  */
695 static int ecryptfs_commit_write(struct file *file, struct page *page,
696 				 unsigned from, unsigned to)
697 {
698 	struct ecryptfs_page_crypt_context ctx;
699 	loff_t pos;
700 	struct inode *inode;
701 	struct inode *lower_inode;
702 	struct file *lower_file;
703 	struct ecryptfs_crypt_stat *crypt_stat;
704 	int rc;
705 
706 	inode = page->mapping->host;
707 	lower_inode = ecryptfs_inode_to_lower(inode);
708 	lower_file = ecryptfs_file_to_lower(file);
709 	mutex_lock(&lower_inode->i_mutex);
710 	crypt_stat = &ecryptfs_inode_to_private(file->f_path.dentry->d_inode)
711 				->crypt_stat;
712 	if (crypt_stat->flags & ECRYPTFS_NEW_FILE) {
713 		ecryptfs_printk(KERN_DEBUG, "ECRYPTFS_NEW_FILE flag set in "
714 			"crypt_stat at memory location [%p]\n", crypt_stat);
715 		crypt_stat->flags &= ~(ECRYPTFS_NEW_FILE);
716 	} else
717 		ecryptfs_printk(KERN_DEBUG, "Not a new file\n");
718 	ecryptfs_printk(KERN_DEBUG, "Calling fill_zeros_to_end_of_page"
719 			"(page w/ index = [0x%.16x], to = [%d])\n", page->index,
720 			to);
721 	rc = fill_zeros_to_end_of_page(page, to);
722 	if (rc) {
723 		ecryptfs_printk(KERN_WARNING, "Error attempting to fill "
724 				"zeros in page with index = [0x%.16x]\n",
725 				page->index);
726 		goto out;
727 	}
728 	ctx.page = page;
729 	ctx.mode = ECRYPTFS_PREPARE_COMMIT_MODE;
730 	ctx.param.lower_file = lower_file;
731 	rc = ecryptfs_encrypt_page(&ctx);
732 	if (rc) {
733 		ecryptfs_printk(KERN_WARNING, "Error encrypting page (upper "
734 				"index [0x%.16x])\n", page->index);
735 		goto out;
736 	}
737 	inode->i_blocks = lower_inode->i_blocks;
738 	pos = page_offset(page) + to;
739 	if (pos > i_size_read(inode)) {
740 		i_size_write(inode, pos);
741 		ecryptfs_printk(KERN_DEBUG, "Expanded file size to "
742 				"[0x%.16x]\n", i_size_read(inode));
743 	}
744 	rc = ecryptfs_write_inode_size_to_metadata(lower_file, lower_inode,
745 						   inode, file->f_dentry,
746 						   ECRYPTFS_LOWER_I_MUTEX_HELD);
747 	if (rc)
748 		printk(KERN_ERR "Error writing inode size to metadata; "
749 		       "rc = [%d]\n", rc);
750 	lower_inode->i_mtime = lower_inode->i_ctime = CURRENT_TIME;
751 	mark_inode_dirty_sync(inode);
752 out:
753 	if (rc < 0)
754 		ClearPageUptodate(page);
755 	else
756 		SetPageUptodate(page);
757 	mutex_unlock(&lower_inode->i_mutex);
758 	return rc;
759 }
760 
761 /**
762  * ecryptfs_write_zeros
763  * @file: The ecryptfs file
764  * @index: The index in which we are writing
765  * @start: The position after the last block of data
766  * @num_zeros: The number of zeros to write
767  *
768  * Write a specified number of zero's to a page.
769  *
770  * (start + num_zeros) must be less than or equal to PAGE_CACHE_SIZE
771  */
772 int
773 ecryptfs_write_zeros(struct file *file, pgoff_t index, int start, int num_zeros)
774 {
775 	int rc = 0;
776 	struct page *tmp_page;
777 
778 	tmp_page = ecryptfs_get1page(file, index);
779 	if (IS_ERR(tmp_page)) {
780 		ecryptfs_printk(KERN_ERR, "Error getting page at index "
781 				"[0x%.16x]\n", index);
782 		rc = PTR_ERR(tmp_page);
783 		goto out;
784 	}
785 	if ((rc = ecryptfs_prepare_write_no_truncate(file, tmp_page, start,
786 						     (start + num_zeros)))) {
787 		ecryptfs_printk(KERN_ERR, "Error preparing to write zero's "
788 				"to page at index [0x%.16x]\n",
789 				index);
790 		page_cache_release(tmp_page);
791 		goto out;
792 	}
793 	zero_user_page(tmp_page, start, num_zeros, KM_USER0);
794 	rc = ecryptfs_commit_write(file, tmp_page, start, start + num_zeros);
795 	if (rc < 0) {
796 		ecryptfs_printk(KERN_ERR, "Error attempting to write zero's "
797 				"to remainder of page at index [0x%.16x]\n",
798 				index);
799 		page_cache_release(tmp_page);
800 		goto out;
801 	}
802 	rc = 0;
803 	page_cache_release(tmp_page);
804 out:
805 	return rc;
806 }
807 
808 static sector_t ecryptfs_bmap(struct address_space *mapping, sector_t block)
809 {
810 	int rc = 0;
811 	struct inode *inode;
812 	struct inode *lower_inode;
813 
814 	inode = (struct inode *)mapping->host;
815 	lower_inode = ecryptfs_inode_to_lower(inode);
816 	if (lower_inode->i_mapping->a_ops->bmap)
817 		rc = lower_inode->i_mapping->a_ops->bmap(lower_inode->i_mapping,
818 							 block);
819 	return rc;
820 }
821 
822 static void ecryptfs_sync_page(struct page *page)
823 {
824 	struct inode *inode;
825 	struct inode *lower_inode;
826 	struct page *lower_page;
827 
828 	inode = page->mapping->host;
829 	lower_inode = ecryptfs_inode_to_lower(inode);
830 	/* NOTE: Recently swapped with grab_cache_page(), since
831 	 * sync_page() just makes sure that pending I/O gets done. */
832 	lower_page = find_lock_page(lower_inode->i_mapping, page->index);
833 	if (!lower_page) {
834 		ecryptfs_printk(KERN_DEBUG, "find_lock_page failed\n");
835 		return;
836 	}
837 	lower_page->mapping->a_ops->sync_page(lower_page);
838 	ecryptfs_printk(KERN_DEBUG, "Unlocking page with index = [0x%.16x]\n",
839 			lower_page->index);
840 	unlock_page(lower_page);
841 	page_cache_release(lower_page);
842 }
843 
844 struct address_space_operations ecryptfs_aops = {
845 	.writepage = ecryptfs_writepage,
846 	.readpage = ecryptfs_readpage,
847 	.prepare_write = ecryptfs_prepare_write,
848 	.commit_write = ecryptfs_commit_write,
849 	.bmap = ecryptfs_bmap,
850 	.sync_page = ecryptfs_sync_page,
851 };
852