1 /** 2 * eCryptfs: Linux filesystem encryption layer 3 * 4 * Copyright (C) 2004-2008 International Business Machines Corp. 5 * Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com> 6 * Tyler Hicks <tyhicks@ou.edu> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License version 10 * 2 as published by the Free Software Foundation. 11 * 12 * This program is distributed in the hope that it will be useful, but 13 * WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 20 * 02111-1307, USA. 21 */ 22 #include <linux/sched.h> 23 #include <linux/slab.h> 24 #include <linux/user_namespace.h> 25 #include <linux/nsproxy.h> 26 #include "ecryptfs_kernel.h" 27 28 static LIST_HEAD(ecryptfs_msg_ctx_free_list); 29 static LIST_HEAD(ecryptfs_msg_ctx_alloc_list); 30 static struct mutex ecryptfs_msg_ctx_lists_mux; 31 32 static struct hlist_head *ecryptfs_daemon_hash; 33 struct mutex ecryptfs_daemon_hash_mux; 34 static int ecryptfs_hash_bits; 35 #define ecryptfs_current_euid_hash(uid) \ 36 hash_long((unsigned long)from_kuid(&init_user_ns, current_euid()), ecryptfs_hash_bits) 37 38 static u32 ecryptfs_msg_counter; 39 static struct ecryptfs_msg_ctx *ecryptfs_msg_ctx_arr; 40 41 /** 42 * ecryptfs_acquire_free_msg_ctx 43 * @msg_ctx: The context that was acquired from the free list 44 * 45 * Acquires a context element from the free list and locks the mutex 46 * on the context. Sets the msg_ctx task to current. Returns zero on 47 * success; non-zero on error or upon failure to acquire a free 48 * context element. Must be called with ecryptfs_msg_ctx_lists_mux 49 * held. 50 */ 51 static int ecryptfs_acquire_free_msg_ctx(struct ecryptfs_msg_ctx **msg_ctx) 52 { 53 struct list_head *p; 54 int rc; 55 56 if (list_empty(&ecryptfs_msg_ctx_free_list)) { 57 printk(KERN_WARNING "%s: The eCryptfs free " 58 "context list is empty. It may be helpful to " 59 "specify the ecryptfs_message_buf_len " 60 "parameter to be greater than the current " 61 "value of [%d]\n", __func__, ecryptfs_message_buf_len); 62 rc = -ENOMEM; 63 goto out; 64 } 65 list_for_each(p, &ecryptfs_msg_ctx_free_list) { 66 *msg_ctx = list_entry(p, struct ecryptfs_msg_ctx, node); 67 if (mutex_trylock(&(*msg_ctx)->mux)) { 68 (*msg_ctx)->task = current; 69 rc = 0; 70 goto out; 71 } 72 } 73 rc = -ENOMEM; 74 out: 75 return rc; 76 } 77 78 /** 79 * ecryptfs_msg_ctx_free_to_alloc 80 * @msg_ctx: The context to move from the free list to the alloc list 81 * 82 * Must be called with ecryptfs_msg_ctx_lists_mux held. 83 */ 84 static void ecryptfs_msg_ctx_free_to_alloc(struct ecryptfs_msg_ctx *msg_ctx) 85 { 86 list_move(&msg_ctx->node, &ecryptfs_msg_ctx_alloc_list); 87 msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_PENDING; 88 msg_ctx->counter = ++ecryptfs_msg_counter; 89 } 90 91 /** 92 * ecryptfs_msg_ctx_alloc_to_free 93 * @msg_ctx: The context to move from the alloc list to the free list 94 * 95 * Must be called with ecryptfs_msg_ctx_lists_mux held. 96 */ 97 void ecryptfs_msg_ctx_alloc_to_free(struct ecryptfs_msg_ctx *msg_ctx) 98 { 99 list_move(&(msg_ctx->node), &ecryptfs_msg_ctx_free_list); 100 kfree(msg_ctx->msg); 101 msg_ctx->msg = NULL; 102 msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_FREE; 103 } 104 105 /** 106 * ecryptfs_find_daemon_by_euid 107 * @daemon: If return value is zero, points to the desired daemon pointer 108 * 109 * Must be called with ecryptfs_daemon_hash_mux held. 110 * 111 * Search the hash list for the current effective user id. 112 * 113 * Returns zero if the user id exists in the list; non-zero otherwise. 114 */ 115 int ecryptfs_find_daemon_by_euid(struct ecryptfs_daemon **daemon) 116 { 117 int rc; 118 119 hlist_for_each_entry(*daemon, 120 &ecryptfs_daemon_hash[ecryptfs_current_euid_hash()], 121 euid_chain) { 122 if (uid_eq((*daemon)->file->f_cred->euid, current_euid())) { 123 rc = 0; 124 goto out; 125 } 126 } 127 rc = -EINVAL; 128 out: 129 return rc; 130 } 131 132 /** 133 * ecryptfs_spawn_daemon - Create and initialize a new daemon struct 134 * @daemon: Pointer to set to newly allocated daemon struct 135 * @file: File used when opening /dev/ecryptfs 136 * 137 * Must be called ceremoniously while in possession of 138 * ecryptfs_sacred_daemon_hash_mux 139 * 140 * Returns zero on success; non-zero otherwise 141 */ 142 int 143 ecryptfs_spawn_daemon(struct ecryptfs_daemon **daemon, struct file *file) 144 { 145 int rc = 0; 146 147 (*daemon) = kzalloc(sizeof(**daemon), GFP_KERNEL); 148 if (!(*daemon)) { 149 rc = -ENOMEM; 150 printk(KERN_ERR "%s: Failed to allocate [%zd] bytes of " 151 "GFP_KERNEL memory\n", __func__, sizeof(**daemon)); 152 goto out; 153 } 154 (*daemon)->file = file; 155 mutex_init(&(*daemon)->mux); 156 INIT_LIST_HEAD(&(*daemon)->msg_ctx_out_queue); 157 init_waitqueue_head(&(*daemon)->wait); 158 (*daemon)->num_queued_msg_ctx = 0; 159 hlist_add_head(&(*daemon)->euid_chain, 160 &ecryptfs_daemon_hash[ecryptfs_current_euid_hash()]); 161 out: 162 return rc; 163 } 164 165 /** 166 * ecryptfs_exorcise_daemon - Destroy the daemon struct 167 * 168 * Must be called ceremoniously while in possession of 169 * ecryptfs_daemon_hash_mux and the daemon's own mux. 170 */ 171 int ecryptfs_exorcise_daemon(struct ecryptfs_daemon *daemon) 172 { 173 struct ecryptfs_msg_ctx *msg_ctx, *msg_ctx_tmp; 174 int rc = 0; 175 176 mutex_lock(&daemon->mux); 177 if ((daemon->flags & ECRYPTFS_DAEMON_IN_READ) 178 || (daemon->flags & ECRYPTFS_DAEMON_IN_POLL)) { 179 rc = -EBUSY; 180 mutex_unlock(&daemon->mux); 181 goto out; 182 } 183 list_for_each_entry_safe(msg_ctx, msg_ctx_tmp, 184 &daemon->msg_ctx_out_queue, daemon_out_list) { 185 list_del(&msg_ctx->daemon_out_list); 186 daemon->num_queued_msg_ctx--; 187 printk(KERN_WARNING "%s: Warning: dropping message that is in " 188 "the out queue of a dying daemon\n", __func__); 189 ecryptfs_msg_ctx_alloc_to_free(msg_ctx); 190 } 191 hlist_del(&daemon->euid_chain); 192 mutex_unlock(&daemon->mux); 193 kzfree(daemon); 194 out: 195 return rc; 196 } 197 198 /** 199 * ecryptfs_process_reponse 200 * @msg: The ecryptfs message received; the caller should sanity check 201 * msg->data_len and free the memory 202 * @seq: The sequence number of the message; must match the sequence 203 * number for the existing message context waiting for this 204 * response 205 * 206 * Processes a response message after sending an operation request to 207 * userspace. Some other process is awaiting this response. Before 208 * sending out its first communications, the other process allocated a 209 * msg_ctx from the ecryptfs_msg_ctx_arr at a particular index. The 210 * response message contains this index so that we can copy over the 211 * response message into the msg_ctx that the process holds a 212 * reference to. The other process is going to wake up, check to see 213 * that msg_ctx->state == ECRYPTFS_MSG_CTX_STATE_DONE, and then 214 * proceed to read off and process the response message. Returns zero 215 * upon delivery to desired context element; non-zero upon delivery 216 * failure or error. 217 * 218 * Returns zero on success; non-zero otherwise 219 */ 220 int ecryptfs_process_response(struct ecryptfs_daemon *daemon, 221 struct ecryptfs_message *msg, u32 seq) 222 { 223 struct ecryptfs_msg_ctx *msg_ctx; 224 size_t msg_size; 225 int rc; 226 227 if (msg->index >= ecryptfs_message_buf_len) { 228 rc = -EINVAL; 229 printk(KERN_ERR "%s: Attempt to reference " 230 "context buffer at index [%d]; maximum " 231 "allowable is [%d]\n", __func__, msg->index, 232 (ecryptfs_message_buf_len - 1)); 233 goto out; 234 } 235 msg_ctx = &ecryptfs_msg_ctx_arr[msg->index]; 236 mutex_lock(&msg_ctx->mux); 237 if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_PENDING) { 238 rc = -EINVAL; 239 printk(KERN_WARNING "%s: Desired context element is not " 240 "pending a response\n", __func__); 241 goto unlock; 242 } else if (msg_ctx->counter != seq) { 243 rc = -EINVAL; 244 printk(KERN_WARNING "%s: Invalid message sequence; " 245 "expected [%d]; received [%d]\n", __func__, 246 msg_ctx->counter, seq); 247 goto unlock; 248 } 249 msg_size = (sizeof(*msg) + msg->data_len); 250 msg_ctx->msg = kmemdup(msg, msg_size, GFP_KERNEL); 251 if (!msg_ctx->msg) { 252 rc = -ENOMEM; 253 printk(KERN_ERR "%s: Failed to allocate [%zd] bytes of " 254 "GFP_KERNEL memory\n", __func__, msg_size); 255 goto unlock; 256 } 257 msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_DONE; 258 wake_up_process(msg_ctx->task); 259 rc = 0; 260 unlock: 261 mutex_unlock(&msg_ctx->mux); 262 out: 263 return rc; 264 } 265 266 /** 267 * ecryptfs_send_message_locked 268 * @data: The data to send 269 * @data_len: The length of data 270 * @msg_ctx: The message context allocated for the send 271 * 272 * Must be called with ecryptfs_daemon_hash_mux held. 273 * 274 * Returns zero on success; non-zero otherwise 275 */ 276 static int 277 ecryptfs_send_message_locked(char *data, int data_len, u8 msg_type, 278 struct ecryptfs_msg_ctx **msg_ctx) 279 { 280 struct ecryptfs_daemon *daemon; 281 int rc; 282 283 rc = ecryptfs_find_daemon_by_euid(&daemon); 284 if (rc) { 285 rc = -ENOTCONN; 286 goto out; 287 } 288 mutex_lock(&ecryptfs_msg_ctx_lists_mux); 289 rc = ecryptfs_acquire_free_msg_ctx(msg_ctx); 290 if (rc) { 291 mutex_unlock(&ecryptfs_msg_ctx_lists_mux); 292 printk(KERN_WARNING "%s: Could not claim a free " 293 "context element\n", __func__); 294 goto out; 295 } 296 ecryptfs_msg_ctx_free_to_alloc(*msg_ctx); 297 mutex_unlock(&(*msg_ctx)->mux); 298 mutex_unlock(&ecryptfs_msg_ctx_lists_mux); 299 rc = ecryptfs_send_miscdev(data, data_len, *msg_ctx, msg_type, 0, 300 daemon); 301 if (rc) 302 printk(KERN_ERR "%s: Error attempting to send message to " 303 "userspace daemon; rc = [%d]\n", __func__, rc); 304 out: 305 return rc; 306 } 307 308 /** 309 * ecryptfs_send_message 310 * @data: The data to send 311 * @data_len: The length of data 312 * @msg_ctx: The message context allocated for the send 313 * 314 * Grabs ecryptfs_daemon_hash_mux. 315 * 316 * Returns zero on success; non-zero otherwise 317 */ 318 int ecryptfs_send_message(char *data, int data_len, 319 struct ecryptfs_msg_ctx **msg_ctx) 320 { 321 int rc; 322 323 mutex_lock(&ecryptfs_daemon_hash_mux); 324 rc = ecryptfs_send_message_locked(data, data_len, ECRYPTFS_MSG_REQUEST, 325 msg_ctx); 326 mutex_unlock(&ecryptfs_daemon_hash_mux); 327 return rc; 328 } 329 330 /** 331 * ecryptfs_wait_for_response 332 * @msg_ctx: The context that was assigned when sending a message 333 * @msg: The incoming message from userspace; not set if rc != 0 334 * 335 * Sleeps until awaken by ecryptfs_receive_message or until the amount 336 * of time exceeds ecryptfs_message_wait_timeout. If zero is 337 * returned, msg will point to a valid message from userspace; a 338 * non-zero value is returned upon failure to receive a message or an 339 * error occurs. Callee must free @msg on success. 340 */ 341 int ecryptfs_wait_for_response(struct ecryptfs_msg_ctx *msg_ctx, 342 struct ecryptfs_message **msg) 343 { 344 signed long timeout = ecryptfs_message_wait_timeout * HZ; 345 int rc = 0; 346 347 sleep: 348 timeout = schedule_timeout_interruptible(timeout); 349 mutex_lock(&ecryptfs_msg_ctx_lists_mux); 350 mutex_lock(&msg_ctx->mux); 351 if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_DONE) { 352 if (timeout) { 353 mutex_unlock(&msg_ctx->mux); 354 mutex_unlock(&ecryptfs_msg_ctx_lists_mux); 355 goto sleep; 356 } 357 rc = -ENOMSG; 358 } else { 359 *msg = msg_ctx->msg; 360 msg_ctx->msg = NULL; 361 } 362 ecryptfs_msg_ctx_alloc_to_free(msg_ctx); 363 mutex_unlock(&msg_ctx->mux); 364 mutex_unlock(&ecryptfs_msg_ctx_lists_mux); 365 return rc; 366 } 367 368 int __init ecryptfs_init_messaging(void) 369 { 370 int i; 371 int rc = 0; 372 373 if (ecryptfs_number_of_users > ECRYPTFS_MAX_NUM_USERS) { 374 ecryptfs_number_of_users = ECRYPTFS_MAX_NUM_USERS; 375 printk(KERN_WARNING "%s: Specified number of users is " 376 "too large, defaulting to [%d] users\n", __func__, 377 ecryptfs_number_of_users); 378 } 379 mutex_init(&ecryptfs_daemon_hash_mux); 380 mutex_lock(&ecryptfs_daemon_hash_mux); 381 ecryptfs_hash_bits = 1; 382 while (ecryptfs_number_of_users >> ecryptfs_hash_bits) 383 ecryptfs_hash_bits++; 384 ecryptfs_daemon_hash = kmalloc((sizeof(struct hlist_head) 385 * (1 << ecryptfs_hash_bits)), 386 GFP_KERNEL); 387 if (!ecryptfs_daemon_hash) { 388 rc = -ENOMEM; 389 printk(KERN_ERR "%s: Failed to allocate memory\n", __func__); 390 mutex_unlock(&ecryptfs_daemon_hash_mux); 391 goto out; 392 } 393 for (i = 0; i < (1 << ecryptfs_hash_bits); i++) 394 INIT_HLIST_HEAD(&ecryptfs_daemon_hash[i]); 395 mutex_unlock(&ecryptfs_daemon_hash_mux); 396 ecryptfs_msg_ctx_arr = kmalloc((sizeof(struct ecryptfs_msg_ctx) 397 * ecryptfs_message_buf_len), 398 GFP_KERNEL); 399 if (!ecryptfs_msg_ctx_arr) { 400 rc = -ENOMEM; 401 printk(KERN_ERR "%s: Failed to allocate memory\n", __func__); 402 goto out; 403 } 404 mutex_init(&ecryptfs_msg_ctx_lists_mux); 405 mutex_lock(&ecryptfs_msg_ctx_lists_mux); 406 ecryptfs_msg_counter = 0; 407 for (i = 0; i < ecryptfs_message_buf_len; i++) { 408 INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].node); 409 INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].daemon_out_list); 410 mutex_init(&ecryptfs_msg_ctx_arr[i].mux); 411 mutex_lock(&ecryptfs_msg_ctx_arr[i].mux); 412 ecryptfs_msg_ctx_arr[i].index = i; 413 ecryptfs_msg_ctx_arr[i].state = ECRYPTFS_MSG_CTX_STATE_FREE; 414 ecryptfs_msg_ctx_arr[i].counter = 0; 415 ecryptfs_msg_ctx_arr[i].task = NULL; 416 ecryptfs_msg_ctx_arr[i].msg = NULL; 417 list_add_tail(&ecryptfs_msg_ctx_arr[i].node, 418 &ecryptfs_msg_ctx_free_list); 419 mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux); 420 } 421 mutex_unlock(&ecryptfs_msg_ctx_lists_mux); 422 rc = ecryptfs_init_ecryptfs_miscdev(); 423 if (rc) 424 ecryptfs_release_messaging(); 425 out: 426 return rc; 427 } 428 429 void ecryptfs_release_messaging(void) 430 { 431 if (ecryptfs_msg_ctx_arr) { 432 int i; 433 434 mutex_lock(&ecryptfs_msg_ctx_lists_mux); 435 for (i = 0; i < ecryptfs_message_buf_len; i++) { 436 mutex_lock(&ecryptfs_msg_ctx_arr[i].mux); 437 if (ecryptfs_msg_ctx_arr[i].msg) 438 kfree(ecryptfs_msg_ctx_arr[i].msg); 439 mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux); 440 } 441 kfree(ecryptfs_msg_ctx_arr); 442 mutex_unlock(&ecryptfs_msg_ctx_lists_mux); 443 } 444 if (ecryptfs_daemon_hash) { 445 struct ecryptfs_daemon *daemon; 446 int i; 447 448 mutex_lock(&ecryptfs_daemon_hash_mux); 449 for (i = 0; i < (1 << ecryptfs_hash_bits); i++) { 450 int rc; 451 452 hlist_for_each_entry(daemon, 453 &ecryptfs_daemon_hash[i], 454 euid_chain) { 455 rc = ecryptfs_exorcise_daemon(daemon); 456 if (rc) 457 printk(KERN_ERR "%s: Error whilst " 458 "attempting to destroy daemon; " 459 "rc = [%d]. Dazed and confused, " 460 "but trying to continue.\n", 461 __func__, rc); 462 } 463 } 464 kfree(ecryptfs_daemon_hash); 465 mutex_unlock(&ecryptfs_daemon_hash_mux); 466 } 467 ecryptfs_destroy_ecryptfs_miscdev(); 468 return; 469 } 470