xref: /openbmc/linux/fs/ecryptfs/messaging.c (revision 840ef8b7cc584a23c4f9d05352f4dbaf8e56e5ab)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 2004-2008 International Business Machines Corp.
5  *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
6  *		Tyler Hicks <tyhicks@ou.edu>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License version
10  * 2 as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
20  * 02111-1307, USA.
21  */
22 #include <linux/sched.h>
23 #include <linux/slab.h>
24 #include <linux/user_namespace.h>
25 #include <linux/nsproxy.h>
26 #include "ecryptfs_kernel.h"
27 
28 static LIST_HEAD(ecryptfs_msg_ctx_free_list);
29 static LIST_HEAD(ecryptfs_msg_ctx_alloc_list);
30 static struct mutex ecryptfs_msg_ctx_lists_mux;
31 
32 static struct hlist_head *ecryptfs_daemon_hash;
33 struct mutex ecryptfs_daemon_hash_mux;
34 static int ecryptfs_hash_bits;
35 #define ecryptfs_current_euid_hash(uid) \
36 	hash_long((unsigned long)from_kuid(&init_user_ns, current_euid()), ecryptfs_hash_bits)
37 
38 static u32 ecryptfs_msg_counter;
39 static struct ecryptfs_msg_ctx *ecryptfs_msg_ctx_arr;
40 
41 /**
42  * ecryptfs_acquire_free_msg_ctx
43  * @msg_ctx: The context that was acquired from the free list
44  *
45  * Acquires a context element from the free list and locks the mutex
46  * on the context.  Sets the msg_ctx task to current.  Returns zero on
47  * success; non-zero on error or upon failure to acquire a free
48  * context element.  Must be called with ecryptfs_msg_ctx_lists_mux
49  * held.
50  */
51 static int ecryptfs_acquire_free_msg_ctx(struct ecryptfs_msg_ctx **msg_ctx)
52 {
53 	struct list_head *p;
54 	int rc;
55 
56 	if (list_empty(&ecryptfs_msg_ctx_free_list)) {
57 		printk(KERN_WARNING "%s: The eCryptfs free "
58 		       "context list is empty.  It may be helpful to "
59 		       "specify the ecryptfs_message_buf_len "
60 		       "parameter to be greater than the current "
61 		       "value of [%d]\n", __func__, ecryptfs_message_buf_len);
62 		rc = -ENOMEM;
63 		goto out;
64 	}
65 	list_for_each(p, &ecryptfs_msg_ctx_free_list) {
66 		*msg_ctx = list_entry(p, struct ecryptfs_msg_ctx, node);
67 		if (mutex_trylock(&(*msg_ctx)->mux)) {
68 			(*msg_ctx)->task = current;
69 			rc = 0;
70 			goto out;
71 		}
72 	}
73 	rc = -ENOMEM;
74 out:
75 	return rc;
76 }
77 
78 /**
79  * ecryptfs_msg_ctx_free_to_alloc
80  * @msg_ctx: The context to move from the free list to the alloc list
81  *
82  * Must be called with ecryptfs_msg_ctx_lists_mux held.
83  */
84 static void ecryptfs_msg_ctx_free_to_alloc(struct ecryptfs_msg_ctx *msg_ctx)
85 {
86 	list_move(&msg_ctx->node, &ecryptfs_msg_ctx_alloc_list);
87 	msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_PENDING;
88 	msg_ctx->counter = ++ecryptfs_msg_counter;
89 }
90 
91 /**
92  * ecryptfs_msg_ctx_alloc_to_free
93  * @msg_ctx: The context to move from the alloc list to the free list
94  *
95  * Must be called with ecryptfs_msg_ctx_lists_mux held.
96  */
97 void ecryptfs_msg_ctx_alloc_to_free(struct ecryptfs_msg_ctx *msg_ctx)
98 {
99 	list_move(&(msg_ctx->node), &ecryptfs_msg_ctx_free_list);
100 	if (msg_ctx->msg)
101 		kfree(msg_ctx->msg);
102 	msg_ctx->msg = NULL;
103 	msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_FREE;
104 }
105 
106 /**
107  * ecryptfs_find_daemon_by_euid
108  * @daemon: If return value is zero, points to the desired daemon pointer
109  *
110  * Must be called with ecryptfs_daemon_hash_mux held.
111  *
112  * Search the hash list for the current effective user id.
113  *
114  * Returns zero if the user id exists in the list; non-zero otherwise.
115  */
116 int ecryptfs_find_daemon_by_euid(struct ecryptfs_daemon **daemon)
117 {
118 	int rc;
119 
120 	hlist_for_each_entry(*daemon,
121 			    &ecryptfs_daemon_hash[ecryptfs_current_euid_hash()],
122 			    euid_chain) {
123 		if (uid_eq((*daemon)->file->f_cred->euid, current_euid())) {
124 			rc = 0;
125 			goto out;
126 		}
127 	}
128 	rc = -EINVAL;
129 out:
130 	return rc;
131 }
132 
133 /**
134  * ecryptfs_spawn_daemon - Create and initialize a new daemon struct
135  * @daemon: Pointer to set to newly allocated daemon struct
136  * @file: File used when opening /dev/ecryptfs
137  *
138  * Must be called ceremoniously while in possession of
139  * ecryptfs_sacred_daemon_hash_mux
140  *
141  * Returns zero on success; non-zero otherwise
142  */
143 int
144 ecryptfs_spawn_daemon(struct ecryptfs_daemon **daemon, struct file *file)
145 {
146 	int rc = 0;
147 
148 	(*daemon) = kzalloc(sizeof(**daemon), GFP_KERNEL);
149 	if (!(*daemon)) {
150 		rc = -ENOMEM;
151 		printk(KERN_ERR "%s: Failed to allocate [%zd] bytes of "
152 		       "GFP_KERNEL memory\n", __func__, sizeof(**daemon));
153 		goto out;
154 	}
155 	(*daemon)->file = file;
156 	mutex_init(&(*daemon)->mux);
157 	INIT_LIST_HEAD(&(*daemon)->msg_ctx_out_queue);
158 	init_waitqueue_head(&(*daemon)->wait);
159 	(*daemon)->num_queued_msg_ctx = 0;
160 	hlist_add_head(&(*daemon)->euid_chain,
161 		       &ecryptfs_daemon_hash[ecryptfs_current_euid_hash()]);
162 out:
163 	return rc;
164 }
165 
166 /**
167  * ecryptfs_exorcise_daemon - Destroy the daemon struct
168  *
169  * Must be called ceremoniously while in possession of
170  * ecryptfs_daemon_hash_mux and the daemon's own mux.
171  */
172 int ecryptfs_exorcise_daemon(struct ecryptfs_daemon *daemon)
173 {
174 	struct ecryptfs_msg_ctx *msg_ctx, *msg_ctx_tmp;
175 	int rc = 0;
176 
177 	mutex_lock(&daemon->mux);
178 	if ((daemon->flags & ECRYPTFS_DAEMON_IN_READ)
179 	    || (daemon->flags & ECRYPTFS_DAEMON_IN_POLL)) {
180 		rc = -EBUSY;
181 		mutex_unlock(&daemon->mux);
182 		goto out;
183 	}
184 	list_for_each_entry_safe(msg_ctx, msg_ctx_tmp,
185 				 &daemon->msg_ctx_out_queue, daemon_out_list) {
186 		list_del(&msg_ctx->daemon_out_list);
187 		daemon->num_queued_msg_ctx--;
188 		printk(KERN_WARNING "%s: Warning: dropping message that is in "
189 		       "the out queue of a dying daemon\n", __func__);
190 		ecryptfs_msg_ctx_alloc_to_free(msg_ctx);
191 	}
192 	hlist_del(&daemon->euid_chain);
193 	mutex_unlock(&daemon->mux);
194 	kzfree(daemon);
195 out:
196 	return rc;
197 }
198 
199 /**
200  * ecryptfs_process_reponse
201  * @msg: The ecryptfs message received; the caller should sanity check
202  *       msg->data_len and free the memory
203  * @seq: The sequence number of the message; must match the sequence
204  *       number for the existing message context waiting for this
205  *       response
206  *
207  * Processes a response message after sending an operation request to
208  * userspace. Some other process is awaiting this response. Before
209  * sending out its first communications, the other process allocated a
210  * msg_ctx from the ecryptfs_msg_ctx_arr at a particular index. The
211  * response message contains this index so that we can copy over the
212  * response message into the msg_ctx that the process holds a
213  * reference to. The other process is going to wake up, check to see
214  * that msg_ctx->state == ECRYPTFS_MSG_CTX_STATE_DONE, and then
215  * proceed to read off and process the response message. Returns zero
216  * upon delivery to desired context element; non-zero upon delivery
217  * failure or error.
218  *
219  * Returns zero on success; non-zero otherwise
220  */
221 int ecryptfs_process_response(struct ecryptfs_daemon *daemon,
222 			      struct ecryptfs_message *msg, u32 seq)
223 {
224 	struct ecryptfs_msg_ctx *msg_ctx;
225 	size_t msg_size;
226 	int rc;
227 
228 	if (msg->index >= ecryptfs_message_buf_len) {
229 		rc = -EINVAL;
230 		printk(KERN_ERR "%s: Attempt to reference "
231 		       "context buffer at index [%d]; maximum "
232 		       "allowable is [%d]\n", __func__, msg->index,
233 		       (ecryptfs_message_buf_len - 1));
234 		goto out;
235 	}
236 	msg_ctx = &ecryptfs_msg_ctx_arr[msg->index];
237 	mutex_lock(&msg_ctx->mux);
238 	if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_PENDING) {
239 		rc = -EINVAL;
240 		printk(KERN_WARNING "%s: Desired context element is not "
241 		       "pending a response\n", __func__);
242 		goto unlock;
243 	} else if (msg_ctx->counter != seq) {
244 		rc = -EINVAL;
245 		printk(KERN_WARNING "%s: Invalid message sequence; "
246 		       "expected [%d]; received [%d]\n", __func__,
247 		       msg_ctx->counter, seq);
248 		goto unlock;
249 	}
250 	msg_size = (sizeof(*msg) + msg->data_len);
251 	msg_ctx->msg = kmalloc(msg_size, GFP_KERNEL);
252 	if (!msg_ctx->msg) {
253 		rc = -ENOMEM;
254 		printk(KERN_ERR "%s: Failed to allocate [%zd] bytes of "
255 		       "GFP_KERNEL memory\n", __func__, msg_size);
256 		goto unlock;
257 	}
258 	memcpy(msg_ctx->msg, msg, msg_size);
259 	msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_DONE;
260 	wake_up_process(msg_ctx->task);
261 	rc = 0;
262 unlock:
263 	mutex_unlock(&msg_ctx->mux);
264 out:
265 	return rc;
266 }
267 
268 /**
269  * ecryptfs_send_message_locked
270  * @data: The data to send
271  * @data_len: The length of data
272  * @msg_ctx: The message context allocated for the send
273  *
274  * Must be called with ecryptfs_daemon_hash_mux held.
275  *
276  * Returns zero on success; non-zero otherwise
277  */
278 static int
279 ecryptfs_send_message_locked(char *data, int data_len, u8 msg_type,
280 			     struct ecryptfs_msg_ctx **msg_ctx)
281 {
282 	struct ecryptfs_daemon *daemon;
283 	int rc;
284 
285 	rc = ecryptfs_find_daemon_by_euid(&daemon);
286 	if (rc || !daemon) {
287 		rc = -ENOTCONN;
288 		goto out;
289 	}
290 	mutex_lock(&ecryptfs_msg_ctx_lists_mux);
291 	rc = ecryptfs_acquire_free_msg_ctx(msg_ctx);
292 	if (rc) {
293 		mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
294 		printk(KERN_WARNING "%s: Could not claim a free "
295 		       "context element\n", __func__);
296 		goto out;
297 	}
298 	ecryptfs_msg_ctx_free_to_alloc(*msg_ctx);
299 	mutex_unlock(&(*msg_ctx)->mux);
300 	mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
301 	rc = ecryptfs_send_miscdev(data, data_len, *msg_ctx, msg_type, 0,
302 				   daemon);
303 	if (rc)
304 		printk(KERN_ERR "%s: Error attempting to send message to "
305 		       "userspace daemon; rc = [%d]\n", __func__, rc);
306 out:
307 	return rc;
308 }
309 
310 /**
311  * ecryptfs_send_message
312  * @data: The data to send
313  * @data_len: The length of data
314  * @msg_ctx: The message context allocated for the send
315  *
316  * Grabs ecryptfs_daemon_hash_mux.
317  *
318  * Returns zero on success; non-zero otherwise
319  */
320 int ecryptfs_send_message(char *data, int data_len,
321 			  struct ecryptfs_msg_ctx **msg_ctx)
322 {
323 	int rc;
324 
325 	mutex_lock(&ecryptfs_daemon_hash_mux);
326 	rc = ecryptfs_send_message_locked(data, data_len, ECRYPTFS_MSG_REQUEST,
327 					  msg_ctx);
328 	mutex_unlock(&ecryptfs_daemon_hash_mux);
329 	return rc;
330 }
331 
332 /**
333  * ecryptfs_wait_for_response
334  * @msg_ctx: The context that was assigned when sending a message
335  * @msg: The incoming message from userspace; not set if rc != 0
336  *
337  * Sleeps until awaken by ecryptfs_receive_message or until the amount
338  * of time exceeds ecryptfs_message_wait_timeout.  If zero is
339  * returned, msg will point to a valid message from userspace; a
340  * non-zero value is returned upon failure to receive a message or an
341  * error occurs. Callee must free @msg on success.
342  */
343 int ecryptfs_wait_for_response(struct ecryptfs_msg_ctx *msg_ctx,
344 			       struct ecryptfs_message **msg)
345 {
346 	signed long timeout = ecryptfs_message_wait_timeout * HZ;
347 	int rc = 0;
348 
349 sleep:
350 	timeout = schedule_timeout_interruptible(timeout);
351 	mutex_lock(&ecryptfs_msg_ctx_lists_mux);
352 	mutex_lock(&msg_ctx->mux);
353 	if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_DONE) {
354 		if (timeout) {
355 			mutex_unlock(&msg_ctx->mux);
356 			mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
357 			goto sleep;
358 		}
359 		rc = -ENOMSG;
360 	} else {
361 		*msg = msg_ctx->msg;
362 		msg_ctx->msg = NULL;
363 	}
364 	ecryptfs_msg_ctx_alloc_to_free(msg_ctx);
365 	mutex_unlock(&msg_ctx->mux);
366 	mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
367 	return rc;
368 }
369 
370 int __init ecryptfs_init_messaging(void)
371 {
372 	int i;
373 	int rc = 0;
374 
375 	if (ecryptfs_number_of_users > ECRYPTFS_MAX_NUM_USERS) {
376 		ecryptfs_number_of_users = ECRYPTFS_MAX_NUM_USERS;
377 		printk(KERN_WARNING "%s: Specified number of users is "
378 		       "too large, defaulting to [%d] users\n", __func__,
379 		       ecryptfs_number_of_users);
380 	}
381 	mutex_init(&ecryptfs_daemon_hash_mux);
382 	mutex_lock(&ecryptfs_daemon_hash_mux);
383 	ecryptfs_hash_bits = 1;
384 	while (ecryptfs_number_of_users >> ecryptfs_hash_bits)
385 		ecryptfs_hash_bits++;
386 	ecryptfs_daemon_hash = kmalloc((sizeof(struct hlist_head)
387 					* (1 << ecryptfs_hash_bits)),
388 				       GFP_KERNEL);
389 	if (!ecryptfs_daemon_hash) {
390 		rc = -ENOMEM;
391 		printk(KERN_ERR "%s: Failed to allocate memory\n", __func__);
392 		mutex_unlock(&ecryptfs_daemon_hash_mux);
393 		goto out;
394 	}
395 	for (i = 0; i < (1 << ecryptfs_hash_bits); i++)
396 		INIT_HLIST_HEAD(&ecryptfs_daemon_hash[i]);
397 	mutex_unlock(&ecryptfs_daemon_hash_mux);
398 	ecryptfs_msg_ctx_arr = kmalloc((sizeof(struct ecryptfs_msg_ctx)
399 					* ecryptfs_message_buf_len),
400 				       GFP_KERNEL);
401 	if (!ecryptfs_msg_ctx_arr) {
402 		rc = -ENOMEM;
403 		printk(KERN_ERR "%s: Failed to allocate memory\n", __func__);
404 		goto out;
405 	}
406 	mutex_init(&ecryptfs_msg_ctx_lists_mux);
407 	mutex_lock(&ecryptfs_msg_ctx_lists_mux);
408 	ecryptfs_msg_counter = 0;
409 	for (i = 0; i < ecryptfs_message_buf_len; i++) {
410 		INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].node);
411 		INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].daemon_out_list);
412 		mutex_init(&ecryptfs_msg_ctx_arr[i].mux);
413 		mutex_lock(&ecryptfs_msg_ctx_arr[i].mux);
414 		ecryptfs_msg_ctx_arr[i].index = i;
415 		ecryptfs_msg_ctx_arr[i].state = ECRYPTFS_MSG_CTX_STATE_FREE;
416 		ecryptfs_msg_ctx_arr[i].counter = 0;
417 		ecryptfs_msg_ctx_arr[i].task = NULL;
418 		ecryptfs_msg_ctx_arr[i].msg = NULL;
419 		list_add_tail(&ecryptfs_msg_ctx_arr[i].node,
420 			      &ecryptfs_msg_ctx_free_list);
421 		mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux);
422 	}
423 	mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
424 	rc = ecryptfs_init_ecryptfs_miscdev();
425 	if (rc)
426 		ecryptfs_release_messaging();
427 out:
428 	return rc;
429 }
430 
431 void ecryptfs_release_messaging(void)
432 {
433 	if (ecryptfs_msg_ctx_arr) {
434 		int i;
435 
436 		mutex_lock(&ecryptfs_msg_ctx_lists_mux);
437 		for (i = 0; i < ecryptfs_message_buf_len; i++) {
438 			mutex_lock(&ecryptfs_msg_ctx_arr[i].mux);
439 			if (ecryptfs_msg_ctx_arr[i].msg)
440 				kfree(ecryptfs_msg_ctx_arr[i].msg);
441 			mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux);
442 		}
443 		kfree(ecryptfs_msg_ctx_arr);
444 		mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
445 	}
446 	if (ecryptfs_daemon_hash) {
447 		struct ecryptfs_daemon *daemon;
448 		int i;
449 
450 		mutex_lock(&ecryptfs_daemon_hash_mux);
451 		for (i = 0; i < (1 << ecryptfs_hash_bits); i++) {
452 			int rc;
453 
454 			hlist_for_each_entry(daemon,
455 					     &ecryptfs_daemon_hash[i],
456 					     euid_chain) {
457 				rc = ecryptfs_exorcise_daemon(daemon);
458 				if (rc)
459 					printk(KERN_ERR "%s: Error whilst "
460 					       "attempting to destroy daemon; "
461 					       "rc = [%d]. Dazed and confused, "
462 					       "but trying to continue.\n",
463 					       __func__, rc);
464 			}
465 		}
466 		kfree(ecryptfs_daemon_hash);
467 		mutex_unlock(&ecryptfs_daemon_hash_mux);
468 	}
469 	ecryptfs_destroy_ecryptfs_miscdev();
470 	return;
471 }
472