xref: /openbmc/linux/fs/ecryptfs/messaging.c (revision 64c70b1c)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 2004-2006 International Business Machines Corp.
5  *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
6  *		Tyler Hicks <tyhicks@ou.edu>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License version
10  * 2 as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
20  * 02111-1307, USA.
21  */
22 #include <linux/sched.h>
23 #include "ecryptfs_kernel.h"
24 
25 static LIST_HEAD(ecryptfs_msg_ctx_free_list);
26 static LIST_HEAD(ecryptfs_msg_ctx_alloc_list);
27 static struct mutex ecryptfs_msg_ctx_lists_mux;
28 
29 static struct hlist_head *ecryptfs_daemon_id_hash;
30 static struct mutex ecryptfs_daemon_id_hash_mux;
31 static int ecryptfs_hash_buckets;
32 #define ecryptfs_uid_hash(uid) \
33         hash_long((unsigned long)uid, ecryptfs_hash_buckets)
34 
35 static unsigned int ecryptfs_msg_counter;
36 static struct ecryptfs_msg_ctx *ecryptfs_msg_ctx_arr;
37 
38 /**
39  * ecryptfs_acquire_free_msg_ctx
40  * @msg_ctx: The context that was acquired from the free list
41  *
42  * Acquires a context element from the free list and locks the mutex
43  * on the context.  Returns zero on success; non-zero on error or upon
44  * failure to acquire a free context element.  Be sure to lock the
45  * list mutex before calling.
46  */
47 static int ecryptfs_acquire_free_msg_ctx(struct ecryptfs_msg_ctx **msg_ctx)
48 {
49 	struct list_head *p;
50 	int rc;
51 
52 	if (list_empty(&ecryptfs_msg_ctx_free_list)) {
53 		ecryptfs_printk(KERN_WARNING, "The eCryptfs free "
54 				"context list is empty.  It may be helpful to "
55 				"specify the ecryptfs_message_buf_len "
56 				"parameter to be greater than the current "
57 				"value of [%d]\n", ecryptfs_message_buf_len);
58 		rc = -ENOMEM;
59 		goto out;
60 	}
61 	list_for_each(p, &ecryptfs_msg_ctx_free_list) {
62 		*msg_ctx = list_entry(p, struct ecryptfs_msg_ctx, node);
63 		if (mutex_trylock(&(*msg_ctx)->mux)) {
64 			(*msg_ctx)->task = current;
65 			rc = 0;
66 			goto out;
67 		}
68 	}
69 	rc = -ENOMEM;
70 out:
71 	return rc;
72 }
73 
74 /**
75  * ecryptfs_msg_ctx_free_to_alloc
76  * @msg_ctx: The context to move from the free list to the alloc list
77  *
78  * Be sure to lock the list mutex and the context mutex before
79  * calling.
80  */
81 static void ecryptfs_msg_ctx_free_to_alloc(struct ecryptfs_msg_ctx *msg_ctx)
82 {
83 	list_move(&msg_ctx->node, &ecryptfs_msg_ctx_alloc_list);
84 	msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_PENDING;
85 	msg_ctx->counter = ++ecryptfs_msg_counter;
86 }
87 
88 /**
89  * ecryptfs_msg_ctx_alloc_to_free
90  * @msg_ctx: The context to move from the alloc list to the free list
91  *
92  * Be sure to lock the list mutex and the context mutex before
93  * calling.
94  */
95 static void ecryptfs_msg_ctx_alloc_to_free(struct ecryptfs_msg_ctx *msg_ctx)
96 {
97 	list_move(&(msg_ctx->node), &ecryptfs_msg_ctx_free_list);
98 	if (msg_ctx->msg)
99 		kfree(msg_ctx->msg);
100 	msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_FREE;
101 }
102 
103 /**
104  * ecryptfs_find_daemon_id
105  * @uid: The user id which maps to the desired daemon id
106  * @id: If return value is zero, points to the desired daemon id
107  *      pointer
108  *
109  * Search the hash list for the given user id.  Returns zero if the
110  * user id exists in the list; non-zero otherwise.  The daemon id hash
111  * mutex should be held before calling this function.
112  */
113 static int ecryptfs_find_daemon_id(uid_t uid, struct ecryptfs_daemon_id **id)
114 {
115 	struct hlist_node *elem;
116 	int rc;
117 
118 	hlist_for_each_entry(*id, elem,
119 			     &ecryptfs_daemon_id_hash[ecryptfs_uid_hash(uid)],
120 			     id_chain) {
121 		if ((*id)->uid == uid) {
122 			rc = 0;
123 			goto out;
124 		}
125 	}
126 	rc = -EINVAL;
127 out:
128 	return rc;
129 }
130 
131 static int ecryptfs_send_raw_message(unsigned int transport, u16 msg_type,
132 				     pid_t pid)
133 {
134 	int rc;
135 
136 	switch(transport) {
137 	case ECRYPTFS_TRANSPORT_NETLINK:
138 		rc = ecryptfs_send_netlink(NULL, 0, NULL, msg_type, 0, pid);
139 		break;
140 	case ECRYPTFS_TRANSPORT_CONNECTOR:
141 	case ECRYPTFS_TRANSPORT_RELAYFS:
142 	default:
143 		rc = -ENOSYS;
144 	}
145 	return rc;
146 }
147 
148 /**
149  * ecryptfs_process_helo
150  * @transport: The underlying transport (netlink, etc.)
151  * @uid: The user ID owner of the message
152  * @pid: The process ID for the userspace program that sent the
153  *       message
154  *
155  * Adds the uid and pid values to the daemon id hash.  If a uid
156  * already has a daemon pid registered, the daemon will be
157  * unregistered before the new daemon id is put into the hash list.
158  * Returns zero after adding a new daemon id to the hash list;
159  * non-zero otherwise.
160  */
161 int ecryptfs_process_helo(unsigned int transport, uid_t uid, pid_t pid)
162 {
163 	struct ecryptfs_daemon_id *new_id;
164 	struct ecryptfs_daemon_id *old_id;
165 	int rc;
166 
167 	mutex_lock(&ecryptfs_daemon_id_hash_mux);
168 	new_id = kmalloc(sizeof(*new_id), GFP_KERNEL);
169 	if (!new_id) {
170 		rc = -ENOMEM;
171 		ecryptfs_printk(KERN_ERR, "Failed to allocate memory; unable "
172 				"to register daemon [%d] for user [%d]\n",
173 				pid, uid);
174 		goto unlock;
175 	}
176 	if (!ecryptfs_find_daemon_id(uid, &old_id)) {
177 		printk(KERN_WARNING "Received request from user [%d] "
178 		       "to register daemon [%d]; unregistering daemon "
179 		       "[%d]\n", uid, pid, old_id->pid);
180 		hlist_del(&old_id->id_chain);
181 		rc = ecryptfs_send_raw_message(transport, ECRYPTFS_NLMSG_QUIT,
182 					       old_id->pid);
183 		if (rc)
184 			printk(KERN_WARNING "Failed to send QUIT "
185 			       "message to daemon [%d]; rc = [%d]\n",
186 			       old_id->pid, rc);
187 		kfree(old_id);
188 	}
189 	new_id->uid = uid;
190 	new_id->pid = pid;
191 	hlist_add_head(&new_id->id_chain,
192 		       &ecryptfs_daemon_id_hash[ecryptfs_uid_hash(uid)]);
193 	rc = 0;
194 unlock:
195 	mutex_unlock(&ecryptfs_daemon_id_hash_mux);
196 	return rc;
197 }
198 
199 /**
200  * ecryptfs_process_quit
201  * @uid: The user ID owner of the message
202  * @pid: The process ID for the userspace program that sent the
203  *       message
204  *
205  * Deletes the corresponding daemon id for the given uid and pid, if
206  * it is the registered that is requesting the deletion. Returns zero
207  * after deleting the desired daemon id; non-zero otherwise.
208  */
209 int ecryptfs_process_quit(uid_t uid, pid_t pid)
210 {
211 	struct ecryptfs_daemon_id *id;
212 	int rc;
213 
214 	mutex_lock(&ecryptfs_daemon_id_hash_mux);
215 	if (ecryptfs_find_daemon_id(uid, &id)) {
216 		rc = -EINVAL;
217 		ecryptfs_printk(KERN_ERR, "Received request from user [%d] to "
218 				"unregister unrecognized daemon [%d]\n", uid,
219 				pid);
220 		goto unlock;
221 	}
222 	if (id->pid != pid) {
223 		rc = -EINVAL;
224 		ecryptfs_printk(KERN_WARNING, "Received request from user [%d] "
225 				"with pid [%d] to unregister daemon [%d]\n",
226 				uid, pid, id->pid);
227 		goto unlock;
228 	}
229 	hlist_del(&id->id_chain);
230 	kfree(id);
231 	rc = 0;
232 unlock:
233 	mutex_unlock(&ecryptfs_daemon_id_hash_mux);
234 	return rc;
235 }
236 
237 /**
238  * ecryptfs_process_reponse
239  * @msg: The ecryptfs message received; the caller should sanity check
240  *       msg->data_len
241  * @pid: The process ID of the userspace application that sent the
242  *       message
243  * @seq: The sequence number of the message
244  *
245  * Processes a response message after sending a operation request to
246  * userspace. Returns zero upon delivery to desired context element;
247  * non-zero upon delivery failure or error.
248  */
249 int ecryptfs_process_response(struct ecryptfs_message *msg, uid_t uid,
250 			      pid_t pid, u32 seq)
251 {
252 	struct ecryptfs_daemon_id *id;
253 	struct ecryptfs_msg_ctx *msg_ctx;
254 	int msg_size;
255 	int rc;
256 
257 	if (msg->index >= ecryptfs_message_buf_len) {
258 		rc = -EINVAL;
259 		ecryptfs_printk(KERN_ERR, "Attempt to reference "
260 				"context buffer at index [%d]; maximum "
261 				"allowable is [%d]\n", msg->index,
262 				(ecryptfs_message_buf_len - 1));
263 		goto out;
264 	}
265 	msg_ctx = &ecryptfs_msg_ctx_arr[msg->index];
266 	mutex_lock(&msg_ctx->mux);
267 	if (ecryptfs_find_daemon_id(msg_ctx->task->euid, &id)) {
268 		rc = -EBADMSG;
269 		ecryptfs_printk(KERN_WARNING, "User [%d] received a "
270 				"message response from process [%d] but does "
271 				"not have a registered daemon\n",
272 				msg_ctx->task->euid, pid);
273 		goto wake_up;
274 	}
275 	if (msg_ctx->task->euid != uid) {
276 		rc = -EBADMSG;
277 		ecryptfs_printk(KERN_WARNING, "Received message from user "
278 				"[%d]; expected message from user [%d]\n",
279 				uid, msg_ctx->task->euid);
280 		goto unlock;
281 	}
282 	if (id->pid != pid) {
283 		rc = -EBADMSG;
284 		ecryptfs_printk(KERN_ERR, "User [%d] received a "
285 				"message response from an unrecognized "
286 				"process [%d]\n", msg_ctx->task->euid, pid);
287 		goto unlock;
288 	}
289 	if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_PENDING) {
290 		rc = -EINVAL;
291 		ecryptfs_printk(KERN_WARNING, "Desired context element is not "
292 				"pending a response\n");
293 		goto unlock;
294 	} else if (msg_ctx->counter != seq) {
295 		rc = -EINVAL;
296 		ecryptfs_printk(KERN_WARNING, "Invalid message sequence; "
297 				"expected [%d]; received [%d]\n",
298 				msg_ctx->counter, seq);
299 		goto unlock;
300 	}
301 	msg_size = sizeof(*msg) + msg->data_len;
302 	msg_ctx->msg = kmalloc(msg_size, GFP_KERNEL);
303 	if (!msg_ctx->msg) {
304 		rc = -ENOMEM;
305 		ecryptfs_printk(KERN_ERR, "Failed to allocate memory\n");
306 		goto unlock;
307 	}
308 	memcpy(msg_ctx->msg, msg, msg_size);
309 	msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_DONE;
310 	rc = 0;
311 wake_up:
312 	wake_up_process(msg_ctx->task);
313 unlock:
314 	mutex_unlock(&msg_ctx->mux);
315 out:
316 	return rc;
317 }
318 
319 /**
320  * ecryptfs_send_message
321  * @transport: The transport over which to send the message (i.e.,
322  *             netlink)
323  * @data: The data to send
324  * @data_len: The length of data
325  * @msg_ctx: The message context allocated for the send
326  */
327 int ecryptfs_send_message(unsigned int transport, char *data, int data_len,
328 			  struct ecryptfs_msg_ctx **msg_ctx)
329 {
330 	struct ecryptfs_daemon_id *id;
331 	int rc;
332 
333 	mutex_lock(&ecryptfs_daemon_id_hash_mux);
334 	if (ecryptfs_find_daemon_id(current->euid, &id)) {
335 		mutex_unlock(&ecryptfs_daemon_id_hash_mux);
336 		rc = -ENOTCONN;
337 		ecryptfs_printk(KERN_ERR, "User [%d] does not have a daemon "
338 				"registered\n", current->euid);
339 		goto out;
340 	}
341 	mutex_unlock(&ecryptfs_daemon_id_hash_mux);
342 	mutex_lock(&ecryptfs_msg_ctx_lists_mux);
343 	rc = ecryptfs_acquire_free_msg_ctx(msg_ctx);
344 	if (rc) {
345 		mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
346 		ecryptfs_printk(KERN_WARNING, "Could not claim a free "
347 				"context element\n");
348 		goto out;
349 	}
350 	ecryptfs_msg_ctx_free_to_alloc(*msg_ctx);
351 	mutex_unlock(&(*msg_ctx)->mux);
352 	mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
353 	switch (transport) {
354 	case ECRYPTFS_TRANSPORT_NETLINK:
355 		rc = ecryptfs_send_netlink(data, data_len, *msg_ctx,
356 					   ECRYPTFS_NLMSG_REQUEST, 0, id->pid);
357 		break;
358 	case ECRYPTFS_TRANSPORT_CONNECTOR:
359 	case ECRYPTFS_TRANSPORT_RELAYFS:
360 	default:
361 		rc = -ENOSYS;
362 	}
363 	if (rc) {
364 		printk(KERN_ERR "Error attempting to send message to userspace "
365 		       "daemon; rc = [%d]\n", rc);
366 	}
367 out:
368 	return rc;
369 }
370 
371 /**
372  * ecryptfs_wait_for_response
373  * @msg_ctx: The context that was assigned when sending a message
374  * @msg: The incoming message from userspace; not set if rc != 0
375  *
376  * Sleeps until awaken by ecryptfs_receive_message or until the amount
377  * of time exceeds ecryptfs_message_wait_timeout.  If zero is
378  * returned, msg will point to a valid message from userspace; a
379  * non-zero value is returned upon failure to receive a message or an
380  * error occurs.
381  */
382 int ecryptfs_wait_for_response(struct ecryptfs_msg_ctx *msg_ctx,
383 			       struct ecryptfs_message **msg)
384 {
385 	signed long timeout = ecryptfs_message_wait_timeout * HZ;
386 	int rc = 0;
387 
388 sleep:
389 	timeout = schedule_timeout_interruptible(timeout);
390 	mutex_lock(&ecryptfs_msg_ctx_lists_mux);
391 	mutex_lock(&msg_ctx->mux);
392 	if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_DONE) {
393 		if (timeout) {
394 			mutex_unlock(&msg_ctx->mux);
395 			mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
396 			goto sleep;
397 		}
398 		rc = -ENOMSG;
399 	} else {
400 		*msg = msg_ctx->msg;
401 		msg_ctx->msg = NULL;
402 	}
403 	ecryptfs_msg_ctx_alloc_to_free(msg_ctx);
404 	mutex_unlock(&msg_ctx->mux);
405 	mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
406 	return rc;
407 }
408 
409 int ecryptfs_init_messaging(unsigned int transport)
410 {
411 	int i;
412 	int rc = 0;
413 
414 	if (ecryptfs_number_of_users > ECRYPTFS_MAX_NUM_USERS) {
415 		ecryptfs_number_of_users = ECRYPTFS_MAX_NUM_USERS;
416 		ecryptfs_printk(KERN_WARNING, "Specified number of users is "
417 				"too large, defaulting to [%d] users\n",
418 				ecryptfs_number_of_users);
419 	}
420 	mutex_init(&ecryptfs_daemon_id_hash_mux);
421 	mutex_lock(&ecryptfs_daemon_id_hash_mux);
422 	ecryptfs_hash_buckets = 0;
423 	while (ecryptfs_number_of_users >> ++ecryptfs_hash_buckets);
424 	ecryptfs_daemon_id_hash = kmalloc(sizeof(struct hlist_head)
425 					  * ecryptfs_hash_buckets, GFP_KERNEL);
426 	if (!ecryptfs_daemon_id_hash) {
427 		rc = -ENOMEM;
428 		ecryptfs_printk(KERN_ERR, "Failed to allocate memory\n");
429 		goto out;
430 	}
431 	for (i = 0; i < ecryptfs_hash_buckets; i++)
432 		INIT_HLIST_HEAD(&ecryptfs_daemon_id_hash[i]);
433 	mutex_unlock(&ecryptfs_daemon_id_hash_mux);
434 
435 	ecryptfs_msg_ctx_arr = kmalloc((sizeof(struct ecryptfs_msg_ctx)
436 				      * ecryptfs_message_buf_len), GFP_KERNEL);
437 	if (!ecryptfs_msg_ctx_arr) {
438 		rc = -ENOMEM;
439 		ecryptfs_printk(KERN_ERR, "Failed to allocate memory\n");
440 		goto out;
441 	}
442 	mutex_init(&ecryptfs_msg_ctx_lists_mux);
443 	mutex_lock(&ecryptfs_msg_ctx_lists_mux);
444 	ecryptfs_msg_counter = 0;
445 	for (i = 0; i < ecryptfs_message_buf_len; i++) {
446 		INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].node);
447 		mutex_init(&ecryptfs_msg_ctx_arr[i].mux);
448 		mutex_lock(&ecryptfs_msg_ctx_arr[i].mux);
449 		ecryptfs_msg_ctx_arr[i].index = i;
450 		ecryptfs_msg_ctx_arr[i].state = ECRYPTFS_MSG_CTX_STATE_FREE;
451 		ecryptfs_msg_ctx_arr[i].counter = 0;
452 		ecryptfs_msg_ctx_arr[i].task = NULL;
453 		ecryptfs_msg_ctx_arr[i].msg = NULL;
454 		list_add_tail(&ecryptfs_msg_ctx_arr[i].node,
455 			      &ecryptfs_msg_ctx_free_list);
456 		mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux);
457 	}
458 	mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
459 	switch(transport) {
460 	case ECRYPTFS_TRANSPORT_NETLINK:
461 		rc = ecryptfs_init_netlink();
462 		if (rc)
463 			ecryptfs_release_messaging(transport);
464 		break;
465 	case ECRYPTFS_TRANSPORT_CONNECTOR:
466 	case ECRYPTFS_TRANSPORT_RELAYFS:
467 	default:
468 		rc = -ENOSYS;
469 	}
470 out:
471 	return rc;
472 }
473 
474 void ecryptfs_release_messaging(unsigned int transport)
475 {
476 	if (ecryptfs_msg_ctx_arr) {
477 		int i;
478 
479 		mutex_lock(&ecryptfs_msg_ctx_lists_mux);
480 		for (i = 0; i < ecryptfs_message_buf_len; i++) {
481 			mutex_lock(&ecryptfs_msg_ctx_arr[i].mux);
482 			if (ecryptfs_msg_ctx_arr[i].msg)
483 				kfree(ecryptfs_msg_ctx_arr[i].msg);
484 			mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux);
485 		}
486 		kfree(ecryptfs_msg_ctx_arr);
487 		mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
488 	}
489 	if (ecryptfs_daemon_id_hash) {
490 		struct hlist_node *elem;
491 		struct ecryptfs_daemon_id *id;
492 		int i;
493 
494 		mutex_lock(&ecryptfs_daemon_id_hash_mux);
495 		for (i = 0; i < ecryptfs_hash_buckets; i++) {
496 			hlist_for_each_entry(id, elem,
497 					     &ecryptfs_daemon_id_hash[i],
498 					     id_chain) {
499 				hlist_del(elem);
500 				kfree(id);
501 			}
502 		}
503 		kfree(ecryptfs_daemon_id_hash);
504 		mutex_unlock(&ecryptfs_daemon_id_hash_mux);
505 	}
506 	switch(transport) {
507 	case ECRYPTFS_TRANSPORT_NETLINK:
508 		ecryptfs_release_netlink();
509 		break;
510 	case ECRYPTFS_TRANSPORT_CONNECTOR:
511 	case ECRYPTFS_TRANSPORT_RELAYFS:
512 	default:
513 		break;
514 	}
515 	return;
516 }
517