xref: /openbmc/linux/fs/ecryptfs/messaging.c (revision 545e4006)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 2004-2008 International Business Machines Corp.
5  *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
6  *		Tyler Hicks <tyhicks@ou.edu>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License version
10  * 2 as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
20  * 02111-1307, USA.
21  */
22 #include <linux/sched.h>
23 #include <linux/user_namespace.h>
24 #include <linux/nsproxy.h>
25 #include "ecryptfs_kernel.h"
26 
27 static LIST_HEAD(ecryptfs_msg_ctx_free_list);
28 static LIST_HEAD(ecryptfs_msg_ctx_alloc_list);
29 static struct mutex ecryptfs_msg_ctx_lists_mux;
30 
31 static struct hlist_head *ecryptfs_daemon_hash;
32 struct mutex ecryptfs_daemon_hash_mux;
33 static int ecryptfs_hash_buckets;
34 #define ecryptfs_uid_hash(uid) \
35         hash_long((unsigned long)uid, ecryptfs_hash_buckets)
36 
37 static u32 ecryptfs_msg_counter;
38 static struct ecryptfs_msg_ctx *ecryptfs_msg_ctx_arr;
39 
40 /**
41  * ecryptfs_acquire_free_msg_ctx
42  * @msg_ctx: The context that was acquired from the free list
43  *
44  * Acquires a context element from the free list and locks the mutex
45  * on the context.  Sets the msg_ctx task to current.  Returns zero on
46  * success; non-zero on error or upon failure to acquire a free
47  * context element.  Must be called with ecryptfs_msg_ctx_lists_mux
48  * held.
49  */
50 static int ecryptfs_acquire_free_msg_ctx(struct ecryptfs_msg_ctx **msg_ctx)
51 {
52 	struct list_head *p;
53 	int rc;
54 
55 	if (list_empty(&ecryptfs_msg_ctx_free_list)) {
56 		printk(KERN_WARNING "%s: The eCryptfs free "
57 		       "context list is empty.  It may be helpful to "
58 		       "specify the ecryptfs_message_buf_len "
59 		       "parameter to be greater than the current "
60 		       "value of [%d]\n", __func__, ecryptfs_message_buf_len);
61 		rc = -ENOMEM;
62 		goto out;
63 	}
64 	list_for_each(p, &ecryptfs_msg_ctx_free_list) {
65 		*msg_ctx = list_entry(p, struct ecryptfs_msg_ctx, node);
66 		if (mutex_trylock(&(*msg_ctx)->mux)) {
67 			(*msg_ctx)->task = current;
68 			rc = 0;
69 			goto out;
70 		}
71 	}
72 	rc = -ENOMEM;
73 out:
74 	return rc;
75 }
76 
77 /**
78  * ecryptfs_msg_ctx_free_to_alloc
79  * @msg_ctx: The context to move from the free list to the alloc list
80  *
81  * Must be called with ecryptfs_msg_ctx_lists_mux held.
82  */
83 static void ecryptfs_msg_ctx_free_to_alloc(struct ecryptfs_msg_ctx *msg_ctx)
84 {
85 	list_move(&msg_ctx->node, &ecryptfs_msg_ctx_alloc_list);
86 	msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_PENDING;
87 	msg_ctx->counter = ++ecryptfs_msg_counter;
88 }
89 
90 /**
91  * ecryptfs_msg_ctx_alloc_to_free
92  * @msg_ctx: The context to move from the alloc list to the free list
93  *
94  * Must be called with ecryptfs_msg_ctx_lists_mux held.
95  */
96 void ecryptfs_msg_ctx_alloc_to_free(struct ecryptfs_msg_ctx *msg_ctx)
97 {
98 	list_move(&(msg_ctx->node), &ecryptfs_msg_ctx_free_list);
99 	if (msg_ctx->msg)
100 		kfree(msg_ctx->msg);
101 	msg_ctx->msg = NULL;
102 	msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_FREE;
103 }
104 
105 /**
106  * ecryptfs_find_daemon_by_euid
107  * @euid: The effective user id which maps to the desired daemon id
108  * @user_ns: The namespace in which @euid applies
109  * @daemon: If return value is zero, points to the desired daemon pointer
110  *
111  * Must be called with ecryptfs_daemon_hash_mux held.
112  *
113  * Search the hash list for the given user id.
114  *
115  * Returns zero if the user id exists in the list; non-zero otherwise.
116  */
117 int ecryptfs_find_daemon_by_euid(struct ecryptfs_daemon **daemon, uid_t euid,
118 				 struct user_namespace *user_ns)
119 {
120 	struct hlist_node *elem;
121 	int rc;
122 
123 	hlist_for_each_entry(*daemon, elem,
124 			     &ecryptfs_daemon_hash[ecryptfs_uid_hash(euid)],
125 			     euid_chain) {
126 		if ((*daemon)->euid == euid && (*daemon)->user_ns == user_ns) {
127 			rc = 0;
128 			goto out;
129 		}
130 	}
131 	rc = -EINVAL;
132 out:
133 	return rc;
134 }
135 
136 static int
137 ecryptfs_send_message_locked(unsigned int transport, char *data, int data_len,
138 			     u8 msg_type, struct ecryptfs_msg_ctx **msg_ctx);
139 
140 /**
141  * ecryptfs_send_raw_message
142  * @transport: Transport type
143  * @msg_type: Message type
144  * @daemon: Daemon struct for recipient of message
145  *
146  * A raw message is one that does not include an ecryptfs_message
147  * struct. It simply has a type.
148  *
149  * Must be called with ecryptfs_daemon_hash_mux held.
150  *
151  * Returns zero on success; non-zero otherwise
152  */
153 static int ecryptfs_send_raw_message(unsigned int transport, u8 msg_type,
154 				     struct ecryptfs_daemon *daemon)
155 {
156 	struct ecryptfs_msg_ctx *msg_ctx;
157 	int rc;
158 
159 	switch(transport) {
160 	case ECRYPTFS_TRANSPORT_NETLINK:
161 		rc = ecryptfs_send_netlink(NULL, 0, NULL, msg_type, 0,
162 					   daemon->pid);
163 		break;
164 	case ECRYPTFS_TRANSPORT_MISCDEV:
165 		rc = ecryptfs_send_message_locked(transport, NULL, 0, msg_type,
166 						  &msg_ctx);
167 		if (rc) {
168 			printk(KERN_ERR "%s: Error whilst attempting to send "
169 			       "message via procfs; rc = [%d]\n", __func__, rc);
170 			goto out;
171 		}
172 		/* Raw messages are logically context-free (e.g., no
173 		 * reply is expected), so we set the state of the
174 		 * ecryptfs_msg_ctx object to indicate that it should
175 		 * be freed as soon as the transport sends out the message. */
176 		mutex_lock(&msg_ctx->mux);
177 		msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_NO_REPLY;
178 		mutex_unlock(&msg_ctx->mux);
179 		break;
180 	case ECRYPTFS_TRANSPORT_CONNECTOR:
181 	case ECRYPTFS_TRANSPORT_RELAYFS:
182 	default:
183 		rc = -ENOSYS;
184 	}
185 out:
186 	return rc;
187 }
188 
189 /**
190  * ecryptfs_spawn_daemon - Create and initialize a new daemon struct
191  * @daemon: Pointer to set to newly allocated daemon struct
192  * @euid: Effective user id for the daemon
193  * @user_ns: The namespace in which @euid applies
194  * @pid: Process id for the daemon
195  *
196  * Must be called ceremoniously while in possession of
197  * ecryptfs_sacred_daemon_hash_mux
198  *
199  * Returns zero on success; non-zero otherwise
200  */
201 int
202 ecryptfs_spawn_daemon(struct ecryptfs_daemon **daemon, uid_t euid,
203 		      struct user_namespace *user_ns, struct pid *pid)
204 {
205 	int rc = 0;
206 
207 	(*daemon) = kzalloc(sizeof(**daemon), GFP_KERNEL);
208 	if (!(*daemon)) {
209 		rc = -ENOMEM;
210 		printk(KERN_ERR "%s: Failed to allocate [%Zd] bytes of "
211 		       "GFP_KERNEL memory\n", __func__, sizeof(**daemon));
212 		goto out;
213 	}
214 	(*daemon)->euid = euid;
215 	(*daemon)->user_ns = get_user_ns(user_ns);
216 	(*daemon)->pid = get_pid(pid);
217 	(*daemon)->task = current;
218 	mutex_init(&(*daemon)->mux);
219 	INIT_LIST_HEAD(&(*daemon)->msg_ctx_out_queue);
220 	init_waitqueue_head(&(*daemon)->wait);
221 	(*daemon)->num_queued_msg_ctx = 0;
222 	hlist_add_head(&(*daemon)->euid_chain,
223 		       &ecryptfs_daemon_hash[ecryptfs_uid_hash(euid)]);
224 out:
225 	return rc;
226 }
227 
228 /**
229  * ecryptfs_process_helo
230  * @transport: The underlying transport (netlink, etc.)
231  * @euid: The user ID owner of the message
232  * @user_ns: The namespace in which @euid applies
233  * @pid: The process ID for the userspace program that sent the
234  *       message
235  *
236  * Adds the euid and pid values to the daemon euid hash.  If an euid
237  * already has a daemon pid registered, the daemon will be
238  * unregistered before the new daemon is put into the hash list.
239  * Returns zero after adding a new daemon to the hash list;
240  * non-zero otherwise.
241  */
242 int ecryptfs_process_helo(unsigned int transport, uid_t euid,
243 			  struct user_namespace *user_ns, struct pid *pid)
244 {
245 	struct ecryptfs_daemon *new_daemon;
246 	struct ecryptfs_daemon *old_daemon;
247 	int rc;
248 
249 	mutex_lock(&ecryptfs_daemon_hash_mux);
250 	rc = ecryptfs_find_daemon_by_euid(&old_daemon, euid, user_ns);
251 	if (rc != 0) {
252 		printk(KERN_WARNING "Received request from user [%d] "
253 		       "to register daemon [0x%p]; unregistering daemon "
254 		       "[0x%p]\n", euid, pid, old_daemon->pid);
255 		rc = ecryptfs_send_raw_message(transport, ECRYPTFS_MSG_QUIT,
256 					       old_daemon);
257 		if (rc)
258 			printk(KERN_WARNING "Failed to send QUIT "
259 			       "message to daemon [0x%p]; rc = [%d]\n",
260 			       old_daemon->pid, rc);
261 		hlist_del(&old_daemon->euid_chain);
262 		kfree(old_daemon);
263 	}
264 	rc = ecryptfs_spawn_daemon(&new_daemon, euid, user_ns, pid);
265 	if (rc)
266 		printk(KERN_ERR "%s: The gods are displeased with this attempt "
267 		       "to create a new daemon object for euid [%d]; pid "
268 		       "[0x%p]; rc = [%d]\n", __func__, euid, pid, rc);
269 	mutex_unlock(&ecryptfs_daemon_hash_mux);
270 	return rc;
271 }
272 
273 /**
274  * ecryptfs_exorcise_daemon - Destroy the daemon struct
275  *
276  * Must be called ceremoniously while in possession of
277  * ecryptfs_daemon_hash_mux and the daemon's own mux.
278  */
279 int ecryptfs_exorcise_daemon(struct ecryptfs_daemon *daemon)
280 {
281 	struct ecryptfs_msg_ctx *msg_ctx, *msg_ctx_tmp;
282 	int rc = 0;
283 
284 	mutex_lock(&daemon->mux);
285 	if ((daemon->flags & ECRYPTFS_DAEMON_IN_READ)
286 	    || (daemon->flags & ECRYPTFS_DAEMON_IN_POLL)) {
287 		rc = -EBUSY;
288 		printk(KERN_WARNING "%s: Attempt to destroy daemon with pid "
289 		       "[0x%p], but it is in the midst of a read or a poll\n",
290 		       __func__, daemon->pid);
291 		mutex_unlock(&daemon->mux);
292 		goto out;
293 	}
294 	list_for_each_entry_safe(msg_ctx, msg_ctx_tmp,
295 				 &daemon->msg_ctx_out_queue, daemon_out_list) {
296 		list_del(&msg_ctx->daemon_out_list);
297 		daemon->num_queued_msg_ctx--;
298 		printk(KERN_WARNING "%s: Warning: dropping message that is in "
299 		       "the out queue of a dying daemon\n", __func__);
300 		ecryptfs_msg_ctx_alloc_to_free(msg_ctx);
301 	}
302 	hlist_del(&daemon->euid_chain);
303 	if (daemon->task)
304 		wake_up_process(daemon->task);
305 	if (daemon->pid)
306 		put_pid(daemon->pid);
307 	if (daemon->user_ns)
308 		put_user_ns(daemon->user_ns);
309 	mutex_unlock(&daemon->mux);
310 	memset(daemon, 0, sizeof(*daemon));
311 	kfree(daemon);
312 out:
313 	return rc;
314 }
315 
316 /**
317  * ecryptfs_process_quit
318  * @euid: The user ID owner of the message
319  * @user_ns: The namespace in which @euid applies
320  * @pid: The process ID for the userspace program that sent the
321  *       message
322  *
323  * Deletes the corresponding daemon for the given euid and pid, if
324  * it is the registered that is requesting the deletion. Returns zero
325  * after deleting the desired daemon; non-zero otherwise.
326  */
327 int ecryptfs_process_quit(uid_t euid, struct user_namespace *user_ns,
328 			  struct pid *pid)
329 {
330 	struct ecryptfs_daemon *daemon;
331 	int rc;
332 
333 	mutex_lock(&ecryptfs_daemon_hash_mux);
334 	rc = ecryptfs_find_daemon_by_euid(&daemon, euid, user_ns);
335 	if (rc || !daemon) {
336 		rc = -EINVAL;
337 		printk(KERN_ERR "Received request from user [%d] to "
338 		       "unregister unrecognized daemon [0x%p]\n", euid, pid);
339 		goto out_unlock;
340 	}
341 	rc = ecryptfs_exorcise_daemon(daemon);
342 out_unlock:
343 	mutex_unlock(&ecryptfs_daemon_hash_mux);
344 	return rc;
345 }
346 
347 /**
348  * ecryptfs_process_reponse
349  * @msg: The ecryptfs message received; the caller should sanity check
350  *       msg->data_len and free the memory
351  * @pid: The process ID of the userspace application that sent the
352  *       message
353  * @seq: The sequence number of the message; must match the sequence
354  *       number for the existing message context waiting for this
355  *       response
356  *
357  * Processes a response message after sending an operation request to
358  * userspace. Some other process is awaiting this response. Before
359  * sending out its first communications, the other process allocated a
360  * msg_ctx from the ecryptfs_msg_ctx_arr at a particular index. The
361  * response message contains this index so that we can copy over the
362  * response message into the msg_ctx that the process holds a
363  * reference to. The other process is going to wake up, check to see
364  * that msg_ctx->state == ECRYPTFS_MSG_CTX_STATE_DONE, and then
365  * proceed to read off and process the response message. Returns zero
366  * upon delivery to desired context element; non-zero upon delivery
367  * failure or error.
368  *
369  * Returns zero on success; non-zero otherwise
370  */
371 int ecryptfs_process_response(struct ecryptfs_message *msg, uid_t euid,
372 			      struct user_namespace *user_ns, struct pid *pid,
373 			      u32 seq)
374 {
375 	struct ecryptfs_daemon *daemon;
376 	struct ecryptfs_msg_ctx *msg_ctx;
377 	size_t msg_size;
378 	struct nsproxy *nsproxy;
379 	struct user_namespace *current_user_ns;
380 	int rc;
381 
382 	if (msg->index >= ecryptfs_message_buf_len) {
383 		rc = -EINVAL;
384 		printk(KERN_ERR "%s: Attempt to reference "
385 		       "context buffer at index [%d]; maximum "
386 		       "allowable is [%d]\n", __func__, msg->index,
387 		       (ecryptfs_message_buf_len - 1));
388 		goto out;
389 	}
390 	msg_ctx = &ecryptfs_msg_ctx_arr[msg->index];
391 	mutex_lock(&msg_ctx->mux);
392 	mutex_lock(&ecryptfs_daemon_hash_mux);
393 	rcu_read_lock();
394 	nsproxy = task_nsproxy(msg_ctx->task);
395 	if (nsproxy == NULL) {
396 		rc = -EBADMSG;
397 		printk(KERN_ERR "%s: Receiving process is a zombie. Dropping "
398 		       "message.\n", __func__);
399 		rcu_read_unlock();
400 		mutex_unlock(&ecryptfs_daemon_hash_mux);
401 		goto wake_up;
402 	}
403 	current_user_ns = nsproxy->user_ns;
404 	rc = ecryptfs_find_daemon_by_euid(&daemon, msg_ctx->task->euid,
405 					  current_user_ns);
406 	rcu_read_unlock();
407 	mutex_unlock(&ecryptfs_daemon_hash_mux);
408 	if (rc) {
409 		rc = -EBADMSG;
410 		printk(KERN_WARNING "%s: User [%d] received a "
411 		       "message response from process [0x%p] but does "
412 		       "not have a registered daemon\n", __func__,
413 		       msg_ctx->task->euid, pid);
414 		goto wake_up;
415 	}
416 	if (msg_ctx->task->euid != euid) {
417 		rc = -EBADMSG;
418 		printk(KERN_WARNING "%s: Received message from user "
419 		       "[%d]; expected message from user [%d]\n", __func__,
420 		       euid, msg_ctx->task->euid);
421 		goto unlock;
422 	}
423 	if (current_user_ns != user_ns) {
424 		rc = -EBADMSG;
425 		printk(KERN_WARNING "%s: Received message from user_ns "
426 		       "[0x%p]; expected message from user_ns [0x%p]\n",
427 		       __func__, user_ns, nsproxy->user_ns);
428 		goto unlock;
429 	}
430 	if (daemon->pid != pid) {
431 		rc = -EBADMSG;
432 		printk(KERN_ERR "%s: User [%d] sent a message response "
433 		       "from an unrecognized process [0x%p]\n",
434 		       __func__, msg_ctx->task->euid, pid);
435 		goto unlock;
436 	}
437 	if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_PENDING) {
438 		rc = -EINVAL;
439 		printk(KERN_WARNING "%s: Desired context element is not "
440 		       "pending a response\n", __func__);
441 		goto unlock;
442 	} else if (msg_ctx->counter != seq) {
443 		rc = -EINVAL;
444 		printk(KERN_WARNING "%s: Invalid message sequence; "
445 		       "expected [%d]; received [%d]\n", __func__,
446 		       msg_ctx->counter, seq);
447 		goto unlock;
448 	}
449 	msg_size = (sizeof(*msg) + msg->data_len);
450 	msg_ctx->msg = kmalloc(msg_size, GFP_KERNEL);
451 	if (!msg_ctx->msg) {
452 		rc = -ENOMEM;
453 		printk(KERN_ERR "%s: Failed to allocate [%Zd] bytes of "
454 		       "GFP_KERNEL memory\n", __func__, msg_size);
455 		goto unlock;
456 	}
457 	memcpy(msg_ctx->msg, msg, msg_size);
458 	msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_DONE;
459 	rc = 0;
460 wake_up:
461 	wake_up_process(msg_ctx->task);
462 unlock:
463 	mutex_unlock(&msg_ctx->mux);
464 out:
465 	return rc;
466 }
467 
468 /**
469  * ecryptfs_send_message_locked
470  * @transport: The transport over which to send the message (i.e.,
471  *             netlink)
472  * @data: The data to send
473  * @data_len: The length of data
474  * @msg_ctx: The message context allocated for the send
475  *
476  * Must be called with ecryptfs_daemon_hash_mux held.
477  *
478  * Returns zero on success; non-zero otherwise
479  */
480 static int
481 ecryptfs_send_message_locked(unsigned int transport, char *data, int data_len,
482 			     u8 msg_type, struct ecryptfs_msg_ctx **msg_ctx)
483 {
484 	struct ecryptfs_daemon *daemon;
485 	int rc;
486 
487 	rc = ecryptfs_find_daemon_by_euid(&daemon, current->euid,
488 					  current->nsproxy->user_ns);
489 	if (rc || !daemon) {
490 		rc = -ENOTCONN;
491 		printk(KERN_ERR "%s: User [%d] does not have a daemon "
492 		       "registered\n", __func__, current->euid);
493 		goto out;
494 	}
495 	mutex_lock(&ecryptfs_msg_ctx_lists_mux);
496 	rc = ecryptfs_acquire_free_msg_ctx(msg_ctx);
497 	if (rc) {
498 		mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
499 		printk(KERN_WARNING "%s: Could not claim a free "
500 		       "context element\n", __func__);
501 		goto out;
502 	}
503 	ecryptfs_msg_ctx_free_to_alloc(*msg_ctx);
504 	mutex_unlock(&(*msg_ctx)->mux);
505 	mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
506 	switch (transport) {
507 	case ECRYPTFS_TRANSPORT_NETLINK:
508 		rc = ecryptfs_send_netlink(data, data_len, *msg_ctx, msg_type,
509 					   0, daemon->pid);
510 		break;
511 	case ECRYPTFS_TRANSPORT_MISCDEV:
512 		rc = ecryptfs_send_miscdev(data, data_len, *msg_ctx, msg_type,
513 					   0, daemon);
514 		break;
515 	case ECRYPTFS_TRANSPORT_CONNECTOR:
516 	case ECRYPTFS_TRANSPORT_RELAYFS:
517 	default:
518 		rc = -ENOSYS;
519 	}
520 	if (rc)
521 		printk(KERN_ERR "%s: Error attempting to send message to "
522 		       "userspace daemon; rc = [%d]\n", __func__, rc);
523 out:
524 	return rc;
525 }
526 
527 /**
528  * ecryptfs_send_message
529  * @transport: The transport over which to send the message (i.e.,
530  *             netlink)
531  * @data: The data to send
532  * @data_len: The length of data
533  * @msg_ctx: The message context allocated for the send
534  *
535  * Grabs ecryptfs_daemon_hash_mux.
536  *
537  * Returns zero on success; non-zero otherwise
538  */
539 int ecryptfs_send_message(unsigned int transport, char *data, int data_len,
540 			  struct ecryptfs_msg_ctx **msg_ctx)
541 {
542 	int rc;
543 
544 	mutex_lock(&ecryptfs_daemon_hash_mux);
545 	rc = ecryptfs_send_message_locked(transport, data, data_len,
546 					  ECRYPTFS_MSG_REQUEST, msg_ctx);
547 	mutex_unlock(&ecryptfs_daemon_hash_mux);
548 	return rc;
549 }
550 
551 /**
552  * ecryptfs_wait_for_response
553  * @msg_ctx: The context that was assigned when sending a message
554  * @msg: The incoming message from userspace; not set if rc != 0
555  *
556  * Sleeps until awaken by ecryptfs_receive_message or until the amount
557  * of time exceeds ecryptfs_message_wait_timeout.  If zero is
558  * returned, msg will point to a valid message from userspace; a
559  * non-zero value is returned upon failure to receive a message or an
560  * error occurs. Callee must free @msg on success.
561  */
562 int ecryptfs_wait_for_response(struct ecryptfs_msg_ctx *msg_ctx,
563 			       struct ecryptfs_message **msg)
564 {
565 	signed long timeout = ecryptfs_message_wait_timeout * HZ;
566 	int rc = 0;
567 
568 sleep:
569 	timeout = schedule_timeout_interruptible(timeout);
570 	mutex_lock(&ecryptfs_msg_ctx_lists_mux);
571 	mutex_lock(&msg_ctx->mux);
572 	if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_DONE) {
573 		if (timeout) {
574 			mutex_unlock(&msg_ctx->mux);
575 			mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
576 			goto sleep;
577 		}
578 		rc = -ENOMSG;
579 	} else {
580 		*msg = msg_ctx->msg;
581 		msg_ctx->msg = NULL;
582 	}
583 	ecryptfs_msg_ctx_alloc_to_free(msg_ctx);
584 	mutex_unlock(&msg_ctx->mux);
585 	mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
586 	return rc;
587 }
588 
589 int ecryptfs_init_messaging(unsigned int transport)
590 {
591 	int i;
592 	int rc = 0;
593 
594 	if (ecryptfs_number_of_users > ECRYPTFS_MAX_NUM_USERS) {
595 		ecryptfs_number_of_users = ECRYPTFS_MAX_NUM_USERS;
596 		printk(KERN_WARNING "%s: Specified number of users is "
597 		       "too large, defaulting to [%d] users\n", __func__,
598 		       ecryptfs_number_of_users);
599 	}
600 	mutex_init(&ecryptfs_daemon_hash_mux);
601 	mutex_lock(&ecryptfs_daemon_hash_mux);
602 	ecryptfs_hash_buckets = 1;
603 	while (ecryptfs_number_of_users >> ecryptfs_hash_buckets)
604 		ecryptfs_hash_buckets++;
605 	ecryptfs_daemon_hash = kmalloc((sizeof(struct hlist_head)
606 					* ecryptfs_hash_buckets), GFP_KERNEL);
607 	if (!ecryptfs_daemon_hash) {
608 		rc = -ENOMEM;
609 		printk(KERN_ERR "%s: Failed to allocate memory\n", __func__);
610 		mutex_unlock(&ecryptfs_daemon_hash_mux);
611 		goto out;
612 	}
613 	for (i = 0; i < ecryptfs_hash_buckets; i++)
614 		INIT_HLIST_HEAD(&ecryptfs_daemon_hash[i]);
615 	mutex_unlock(&ecryptfs_daemon_hash_mux);
616 	ecryptfs_msg_ctx_arr = kmalloc((sizeof(struct ecryptfs_msg_ctx)
617 					* ecryptfs_message_buf_len),
618 				       GFP_KERNEL);
619 	if (!ecryptfs_msg_ctx_arr) {
620 		rc = -ENOMEM;
621 		printk(KERN_ERR "%s: Failed to allocate memory\n", __func__);
622 		goto out;
623 	}
624 	mutex_init(&ecryptfs_msg_ctx_lists_mux);
625 	mutex_lock(&ecryptfs_msg_ctx_lists_mux);
626 	ecryptfs_msg_counter = 0;
627 	for (i = 0; i < ecryptfs_message_buf_len; i++) {
628 		INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].node);
629 		INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].daemon_out_list);
630 		mutex_init(&ecryptfs_msg_ctx_arr[i].mux);
631 		mutex_lock(&ecryptfs_msg_ctx_arr[i].mux);
632 		ecryptfs_msg_ctx_arr[i].index = i;
633 		ecryptfs_msg_ctx_arr[i].state = ECRYPTFS_MSG_CTX_STATE_FREE;
634 		ecryptfs_msg_ctx_arr[i].counter = 0;
635 		ecryptfs_msg_ctx_arr[i].task = NULL;
636 		ecryptfs_msg_ctx_arr[i].msg = NULL;
637 		list_add_tail(&ecryptfs_msg_ctx_arr[i].node,
638 			      &ecryptfs_msg_ctx_free_list);
639 		mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux);
640 	}
641 	mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
642 	switch(transport) {
643 	case ECRYPTFS_TRANSPORT_NETLINK:
644 		rc = ecryptfs_init_netlink();
645 		if (rc)
646 			ecryptfs_release_messaging(transport);
647 		break;
648 	case ECRYPTFS_TRANSPORT_MISCDEV:
649 		rc = ecryptfs_init_ecryptfs_miscdev();
650 		if (rc)
651 			ecryptfs_release_messaging(transport);
652 		break;
653 	case ECRYPTFS_TRANSPORT_CONNECTOR:
654 	case ECRYPTFS_TRANSPORT_RELAYFS:
655 	default:
656 		rc = -ENOSYS;
657 	}
658 out:
659 	return rc;
660 }
661 
662 void ecryptfs_release_messaging(unsigned int transport)
663 {
664 	if (ecryptfs_msg_ctx_arr) {
665 		int i;
666 
667 		mutex_lock(&ecryptfs_msg_ctx_lists_mux);
668 		for (i = 0; i < ecryptfs_message_buf_len; i++) {
669 			mutex_lock(&ecryptfs_msg_ctx_arr[i].mux);
670 			if (ecryptfs_msg_ctx_arr[i].msg)
671 				kfree(ecryptfs_msg_ctx_arr[i].msg);
672 			mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux);
673 		}
674 		kfree(ecryptfs_msg_ctx_arr);
675 		mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
676 	}
677 	if (ecryptfs_daemon_hash) {
678 		struct hlist_node *elem;
679 		struct ecryptfs_daemon *daemon;
680 		int i;
681 
682 		mutex_lock(&ecryptfs_daemon_hash_mux);
683 		for (i = 0; i < ecryptfs_hash_buckets; i++) {
684 			int rc;
685 
686 			hlist_for_each_entry(daemon, elem,
687 					     &ecryptfs_daemon_hash[i],
688 					     euid_chain) {
689 				rc = ecryptfs_exorcise_daemon(daemon);
690 				if (rc)
691 					printk(KERN_ERR "%s: Error whilst "
692 					       "attempting to destroy daemon; "
693 					       "rc = [%d]. Dazed and confused, "
694 					       "but trying to continue.\n",
695 					       __func__, rc);
696 			}
697 		}
698 		kfree(ecryptfs_daemon_hash);
699 		mutex_unlock(&ecryptfs_daemon_hash_mux);
700 	}
701 	switch(transport) {
702 	case ECRYPTFS_TRANSPORT_NETLINK:
703 		ecryptfs_release_netlink();
704 		break;
705 	case ECRYPTFS_TRANSPORT_MISCDEV:
706 		ecryptfs_destroy_ecryptfs_miscdev();
707 		break;
708 	case ECRYPTFS_TRANSPORT_CONNECTOR:
709 	case ECRYPTFS_TRANSPORT_RELAYFS:
710 	default:
711 		break;
712 	}
713 	return;
714 }
715