xref: /openbmc/linux/fs/ecryptfs/main.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 1997-2003 Erez Zadok
5  * Copyright (C) 2001-2003 Stony Brook University
6  * Copyright (C) 2004-2007 International Business Machines Corp.
7  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8  *              Michael C. Thompson <mcthomps@us.ibm.com>
9  *              Tyler Hicks <tyhicks@ou.edu>
10  *
11  * This program is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU General Public License as
13  * published by the Free Software Foundation; either version 2 of the
14  * License, or (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
24  * 02111-1307, USA.
25  */
26 
27 #include <linux/dcache.h>
28 #include <linux/file.h>
29 #include <linux/module.h>
30 #include <linux/namei.h>
31 #include <linux/skbuff.h>
32 #include <linux/crypto.h>
33 #include <linux/mount.h>
34 #include <linux/pagemap.h>
35 #include <linux/key.h>
36 #include <linux/parser.h>
37 #include <linux/fs_stack.h>
38 #include <linux/slab.h>
39 #include "ecryptfs_kernel.h"
40 
41 /**
42  * Module parameter that defines the ecryptfs_verbosity level.
43  */
44 int ecryptfs_verbosity = 0;
45 
46 module_param(ecryptfs_verbosity, int, 0);
47 MODULE_PARM_DESC(ecryptfs_verbosity,
48 		 "Initial verbosity level (0 or 1; defaults to "
49 		 "0, which is Quiet)");
50 
51 /**
52  * Module parameter that defines the number of message buffer elements
53  */
54 unsigned int ecryptfs_message_buf_len = ECRYPTFS_DEFAULT_MSG_CTX_ELEMS;
55 
56 module_param(ecryptfs_message_buf_len, uint, 0);
57 MODULE_PARM_DESC(ecryptfs_message_buf_len,
58 		 "Number of message buffer elements");
59 
60 /**
61  * Module parameter that defines the maximum guaranteed amount of time to wait
62  * for a response from ecryptfsd.  The actual sleep time will be, more than
63  * likely, a small amount greater than this specified value, but only less if
64  * the message successfully arrives.
65  */
66 signed long ecryptfs_message_wait_timeout = ECRYPTFS_MAX_MSG_CTX_TTL / HZ;
67 
68 module_param(ecryptfs_message_wait_timeout, long, 0);
69 MODULE_PARM_DESC(ecryptfs_message_wait_timeout,
70 		 "Maximum number of seconds that an operation will "
71 		 "sleep while waiting for a message response from "
72 		 "userspace");
73 
74 /**
75  * Module parameter that is an estimate of the maximum number of users
76  * that will be concurrently using eCryptfs. Set this to the right
77  * value to balance performance and memory use.
78  */
79 unsigned int ecryptfs_number_of_users = ECRYPTFS_DEFAULT_NUM_USERS;
80 
81 module_param(ecryptfs_number_of_users, uint, 0);
82 MODULE_PARM_DESC(ecryptfs_number_of_users, "An estimate of the number of "
83 		 "concurrent users of eCryptfs");
84 
85 void __ecryptfs_printk(const char *fmt, ...)
86 {
87 	va_list args;
88 	va_start(args, fmt);
89 	if (fmt[1] == '7') { /* KERN_DEBUG */
90 		if (ecryptfs_verbosity >= 1)
91 			vprintk(fmt, args);
92 	} else
93 		vprintk(fmt, args);
94 	va_end(args);
95 }
96 
97 /**
98  * ecryptfs_init_persistent_file
99  * @ecryptfs_dentry: Fully initialized eCryptfs dentry object, with
100  *                   the lower dentry and the lower mount set
101  *
102  * eCryptfs only ever keeps a single open file for every lower
103  * inode. All I/O operations to the lower inode occur through that
104  * file. When the first eCryptfs dentry that interposes with the first
105  * lower dentry for that inode is created, this function creates the
106  * persistent file struct and associates it with the eCryptfs
107  * inode. When the eCryptfs inode is destroyed, the file is closed.
108  *
109  * The persistent file will be opened with read/write permissions, if
110  * possible. Otherwise, it is opened read-only.
111  *
112  * This function does nothing if a lower persistent file is already
113  * associated with the eCryptfs inode.
114  *
115  * Returns zero on success; non-zero otherwise
116  */
117 int ecryptfs_init_persistent_file(struct dentry *ecryptfs_dentry)
118 {
119 	const struct cred *cred = current_cred();
120 	struct ecryptfs_inode_info *inode_info =
121 		ecryptfs_inode_to_private(ecryptfs_dentry->d_inode);
122 	int rc = 0;
123 
124 	mutex_lock(&inode_info->lower_file_mutex);
125 	if (!inode_info->lower_file) {
126 		struct dentry *lower_dentry;
127 		struct vfsmount *lower_mnt =
128 			ecryptfs_dentry_to_lower_mnt(ecryptfs_dentry);
129 
130 		lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
131 		rc = ecryptfs_privileged_open(&inode_info->lower_file,
132 					      lower_dentry, lower_mnt, cred);
133 		if (rc) {
134 			printk(KERN_ERR "Error opening lower persistent file "
135 			       "for lower_dentry [0x%p] and lower_mnt [0x%p]; "
136 			       "rc = [%d]\n", lower_dentry, lower_mnt, rc);
137 			inode_info->lower_file = NULL;
138 		}
139 	}
140 	mutex_unlock(&inode_info->lower_file_mutex);
141 	return rc;
142 }
143 
144 /**
145  * ecryptfs_interpose
146  * @lower_dentry: Existing dentry in the lower filesystem
147  * @dentry: ecryptfs' dentry
148  * @sb: ecryptfs's super_block
149  * @flags: flags to govern behavior of interpose procedure
150  *
151  * Interposes upper and lower dentries.
152  *
153  * Returns zero on success; non-zero otherwise
154  */
155 int ecryptfs_interpose(struct dentry *lower_dentry, struct dentry *dentry,
156 		       struct super_block *sb, u32 flags)
157 {
158 	struct inode *lower_inode;
159 	struct inode *inode;
160 	int rc = 0;
161 
162 	lower_inode = lower_dentry->d_inode;
163 	if (lower_inode->i_sb != ecryptfs_superblock_to_lower(sb)) {
164 		rc = -EXDEV;
165 		goto out;
166 	}
167 	if (!igrab(lower_inode)) {
168 		rc = -ESTALE;
169 		goto out;
170 	}
171 	inode = iget5_locked(sb, (unsigned long)lower_inode,
172 			     ecryptfs_inode_test, ecryptfs_inode_set,
173 			     lower_inode);
174 	if (!inode) {
175 		rc = -EACCES;
176 		iput(lower_inode);
177 		goto out;
178 	}
179 	if (inode->i_state & I_NEW)
180 		unlock_new_inode(inode);
181 	else
182 		iput(lower_inode);
183 	if (S_ISLNK(lower_inode->i_mode))
184 		inode->i_op = &ecryptfs_symlink_iops;
185 	else if (S_ISDIR(lower_inode->i_mode))
186 		inode->i_op = &ecryptfs_dir_iops;
187 	if (S_ISDIR(lower_inode->i_mode))
188 		inode->i_fop = &ecryptfs_dir_fops;
189 	if (special_file(lower_inode->i_mode))
190 		init_special_inode(inode, lower_inode->i_mode,
191 				   lower_inode->i_rdev);
192 	dentry->d_op = &ecryptfs_dops;
193 	fsstack_copy_attr_all(inode, lower_inode);
194 	/* This size will be overwritten for real files w/ headers and
195 	 * other metadata */
196 	fsstack_copy_inode_size(inode, lower_inode);
197 	if (flags & ECRYPTFS_INTERPOSE_FLAG_D_ADD)
198 		d_add(dentry, inode);
199 	else
200 		d_instantiate(dentry, inode);
201 out:
202 	return rc;
203 }
204 
205 enum { ecryptfs_opt_sig, ecryptfs_opt_ecryptfs_sig,
206        ecryptfs_opt_cipher, ecryptfs_opt_ecryptfs_cipher,
207        ecryptfs_opt_ecryptfs_key_bytes,
208        ecryptfs_opt_passthrough, ecryptfs_opt_xattr_metadata,
209        ecryptfs_opt_encrypted_view, ecryptfs_opt_fnek_sig,
210        ecryptfs_opt_fn_cipher, ecryptfs_opt_fn_cipher_key_bytes,
211        ecryptfs_opt_unlink_sigs, ecryptfs_opt_mount_auth_tok_only,
212        ecryptfs_opt_err };
213 
214 static const match_table_t tokens = {
215 	{ecryptfs_opt_sig, "sig=%s"},
216 	{ecryptfs_opt_ecryptfs_sig, "ecryptfs_sig=%s"},
217 	{ecryptfs_opt_cipher, "cipher=%s"},
218 	{ecryptfs_opt_ecryptfs_cipher, "ecryptfs_cipher=%s"},
219 	{ecryptfs_opt_ecryptfs_key_bytes, "ecryptfs_key_bytes=%u"},
220 	{ecryptfs_opt_passthrough, "ecryptfs_passthrough"},
221 	{ecryptfs_opt_xattr_metadata, "ecryptfs_xattr_metadata"},
222 	{ecryptfs_opt_encrypted_view, "ecryptfs_encrypted_view"},
223 	{ecryptfs_opt_fnek_sig, "ecryptfs_fnek_sig=%s"},
224 	{ecryptfs_opt_fn_cipher, "ecryptfs_fn_cipher=%s"},
225 	{ecryptfs_opt_fn_cipher_key_bytes, "ecryptfs_fn_key_bytes=%u"},
226 	{ecryptfs_opt_unlink_sigs, "ecryptfs_unlink_sigs"},
227 	{ecryptfs_opt_mount_auth_tok_only, "ecryptfs_mount_auth_tok_only"},
228 	{ecryptfs_opt_err, NULL}
229 };
230 
231 static int ecryptfs_init_global_auth_toks(
232 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
233 {
234 	struct ecryptfs_global_auth_tok *global_auth_tok;
235 	int rc = 0;
236 
237 	list_for_each_entry(global_auth_tok,
238 			    &mount_crypt_stat->global_auth_tok_list,
239 			    mount_crypt_stat_list) {
240 		rc = ecryptfs_keyring_auth_tok_for_sig(
241 			&global_auth_tok->global_auth_tok_key,
242 			&global_auth_tok->global_auth_tok,
243 			global_auth_tok->sig);
244 		if (rc) {
245 			printk(KERN_ERR "Could not find valid key in user "
246 			       "session keyring for sig specified in mount "
247 			       "option: [%s]\n", global_auth_tok->sig);
248 			global_auth_tok->flags |= ECRYPTFS_AUTH_TOK_INVALID;
249 			goto out;
250 		} else
251 			global_auth_tok->flags &= ~ECRYPTFS_AUTH_TOK_INVALID;
252 	}
253 out:
254 	return rc;
255 }
256 
257 static void ecryptfs_init_mount_crypt_stat(
258 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
259 {
260 	memset((void *)mount_crypt_stat, 0,
261 	       sizeof(struct ecryptfs_mount_crypt_stat));
262 	INIT_LIST_HEAD(&mount_crypt_stat->global_auth_tok_list);
263 	mutex_init(&mount_crypt_stat->global_auth_tok_list_mutex);
264 	mount_crypt_stat->flags |= ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED;
265 }
266 
267 /**
268  * ecryptfs_parse_options
269  * @sb: The ecryptfs super block
270  * @options: The options pased to the kernel
271  *
272  * Parse mount options:
273  * debug=N 	   - ecryptfs_verbosity level for debug output
274  * sig=XXX	   - description(signature) of the key to use
275  *
276  * Returns the dentry object of the lower-level (lower/interposed)
277  * directory; We want to mount our stackable file system on top of
278  * that lower directory.
279  *
280  * The signature of the key to use must be the description of a key
281  * already in the keyring. Mounting will fail if the key can not be
282  * found.
283  *
284  * Returns zero on success; non-zero on error
285  */
286 static int ecryptfs_parse_options(struct ecryptfs_sb_info *sbi, char *options)
287 {
288 	char *p;
289 	int rc = 0;
290 	int sig_set = 0;
291 	int cipher_name_set = 0;
292 	int fn_cipher_name_set = 0;
293 	int cipher_key_bytes;
294 	int cipher_key_bytes_set = 0;
295 	int fn_cipher_key_bytes;
296 	int fn_cipher_key_bytes_set = 0;
297 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
298 		&sbi->mount_crypt_stat;
299 	substring_t args[MAX_OPT_ARGS];
300 	int token;
301 	char *sig_src;
302 	char *cipher_name_dst;
303 	char *cipher_name_src;
304 	char *fn_cipher_name_dst;
305 	char *fn_cipher_name_src;
306 	char *fnek_dst;
307 	char *fnek_src;
308 	char *cipher_key_bytes_src;
309 	char *fn_cipher_key_bytes_src;
310 
311 	if (!options) {
312 		rc = -EINVAL;
313 		goto out;
314 	}
315 	ecryptfs_init_mount_crypt_stat(mount_crypt_stat);
316 	while ((p = strsep(&options, ",")) != NULL) {
317 		if (!*p)
318 			continue;
319 		token = match_token(p, tokens, args);
320 		switch (token) {
321 		case ecryptfs_opt_sig:
322 		case ecryptfs_opt_ecryptfs_sig:
323 			sig_src = args[0].from;
324 			rc = ecryptfs_add_global_auth_tok(mount_crypt_stat,
325 							  sig_src, 0);
326 			if (rc) {
327 				printk(KERN_ERR "Error attempting to register "
328 				       "global sig; rc = [%d]\n", rc);
329 				goto out;
330 			}
331 			sig_set = 1;
332 			break;
333 		case ecryptfs_opt_cipher:
334 		case ecryptfs_opt_ecryptfs_cipher:
335 			cipher_name_src = args[0].from;
336 			cipher_name_dst =
337 				mount_crypt_stat->
338 				global_default_cipher_name;
339 			strncpy(cipher_name_dst, cipher_name_src,
340 				ECRYPTFS_MAX_CIPHER_NAME_SIZE);
341 			cipher_name_dst[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
342 			cipher_name_set = 1;
343 			break;
344 		case ecryptfs_opt_ecryptfs_key_bytes:
345 			cipher_key_bytes_src = args[0].from;
346 			cipher_key_bytes =
347 				(int)simple_strtol(cipher_key_bytes_src,
348 						   &cipher_key_bytes_src, 0);
349 			mount_crypt_stat->global_default_cipher_key_size =
350 				cipher_key_bytes;
351 			cipher_key_bytes_set = 1;
352 			break;
353 		case ecryptfs_opt_passthrough:
354 			mount_crypt_stat->flags |=
355 				ECRYPTFS_PLAINTEXT_PASSTHROUGH_ENABLED;
356 			break;
357 		case ecryptfs_opt_xattr_metadata:
358 			mount_crypt_stat->flags |=
359 				ECRYPTFS_XATTR_METADATA_ENABLED;
360 			break;
361 		case ecryptfs_opt_encrypted_view:
362 			mount_crypt_stat->flags |=
363 				ECRYPTFS_XATTR_METADATA_ENABLED;
364 			mount_crypt_stat->flags |=
365 				ECRYPTFS_ENCRYPTED_VIEW_ENABLED;
366 			break;
367 		case ecryptfs_opt_fnek_sig:
368 			fnek_src = args[0].from;
369 			fnek_dst =
370 				mount_crypt_stat->global_default_fnek_sig;
371 			strncpy(fnek_dst, fnek_src, ECRYPTFS_SIG_SIZE_HEX);
372 			mount_crypt_stat->global_default_fnek_sig[
373 				ECRYPTFS_SIG_SIZE_HEX] = '\0';
374 			rc = ecryptfs_add_global_auth_tok(
375 				mount_crypt_stat,
376 				mount_crypt_stat->global_default_fnek_sig,
377 				ECRYPTFS_AUTH_TOK_FNEK);
378 			if (rc) {
379 				printk(KERN_ERR "Error attempting to register "
380 				       "global fnek sig [%s]; rc = [%d]\n",
381 				       mount_crypt_stat->global_default_fnek_sig,
382 				       rc);
383 				goto out;
384 			}
385 			mount_crypt_stat->flags |=
386 				(ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
387 				 | ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK);
388 			break;
389 		case ecryptfs_opt_fn_cipher:
390 			fn_cipher_name_src = args[0].from;
391 			fn_cipher_name_dst =
392 				mount_crypt_stat->global_default_fn_cipher_name;
393 			strncpy(fn_cipher_name_dst, fn_cipher_name_src,
394 				ECRYPTFS_MAX_CIPHER_NAME_SIZE);
395 			mount_crypt_stat->global_default_fn_cipher_name[
396 				ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
397 			fn_cipher_name_set = 1;
398 			break;
399 		case ecryptfs_opt_fn_cipher_key_bytes:
400 			fn_cipher_key_bytes_src = args[0].from;
401 			fn_cipher_key_bytes =
402 				(int)simple_strtol(fn_cipher_key_bytes_src,
403 						   &fn_cipher_key_bytes_src, 0);
404 			mount_crypt_stat->global_default_fn_cipher_key_bytes =
405 				fn_cipher_key_bytes;
406 			fn_cipher_key_bytes_set = 1;
407 			break;
408 		case ecryptfs_opt_unlink_sigs:
409 			mount_crypt_stat->flags |= ECRYPTFS_UNLINK_SIGS;
410 			break;
411 		case ecryptfs_opt_mount_auth_tok_only:
412 			mount_crypt_stat->flags |=
413 				ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY;
414 			break;
415 		case ecryptfs_opt_err:
416 		default:
417 			printk(KERN_WARNING
418 			       "%s: eCryptfs: unrecognized option [%s]\n",
419 			       __func__, p);
420 		}
421 	}
422 	if (!sig_set) {
423 		rc = -EINVAL;
424 		ecryptfs_printk(KERN_ERR, "You must supply at least one valid "
425 				"auth tok signature as a mount "
426 				"parameter; see the eCryptfs README\n");
427 		goto out;
428 	}
429 	if (!cipher_name_set) {
430 		int cipher_name_len = strlen(ECRYPTFS_DEFAULT_CIPHER);
431 
432 		BUG_ON(cipher_name_len >= ECRYPTFS_MAX_CIPHER_NAME_SIZE);
433 		strcpy(mount_crypt_stat->global_default_cipher_name,
434 		       ECRYPTFS_DEFAULT_CIPHER);
435 	}
436 	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
437 	    && !fn_cipher_name_set)
438 		strcpy(mount_crypt_stat->global_default_fn_cipher_name,
439 		       mount_crypt_stat->global_default_cipher_name);
440 	if (!cipher_key_bytes_set)
441 		mount_crypt_stat->global_default_cipher_key_size = 0;
442 	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
443 	    && !fn_cipher_key_bytes_set)
444 		mount_crypt_stat->global_default_fn_cipher_key_bytes =
445 			mount_crypt_stat->global_default_cipher_key_size;
446 	mutex_lock(&key_tfm_list_mutex);
447 	if (!ecryptfs_tfm_exists(mount_crypt_stat->global_default_cipher_name,
448 				 NULL)) {
449 		rc = ecryptfs_add_new_key_tfm(
450 			NULL, mount_crypt_stat->global_default_cipher_name,
451 			mount_crypt_stat->global_default_cipher_key_size);
452 		if (rc) {
453 			printk(KERN_ERR "Error attempting to initialize "
454 			       "cipher with name = [%s] and key size = [%td]; "
455 			       "rc = [%d]\n",
456 			       mount_crypt_stat->global_default_cipher_name,
457 			       mount_crypt_stat->global_default_cipher_key_size,
458 			       rc);
459 			rc = -EINVAL;
460 			mutex_unlock(&key_tfm_list_mutex);
461 			goto out;
462 		}
463 	}
464 	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
465 	    && !ecryptfs_tfm_exists(
466 		    mount_crypt_stat->global_default_fn_cipher_name, NULL)) {
467 		rc = ecryptfs_add_new_key_tfm(
468 			NULL, mount_crypt_stat->global_default_fn_cipher_name,
469 			mount_crypt_stat->global_default_fn_cipher_key_bytes);
470 		if (rc) {
471 			printk(KERN_ERR "Error attempting to initialize "
472 			       "cipher with name = [%s] and key size = [%td]; "
473 			       "rc = [%d]\n",
474 			       mount_crypt_stat->global_default_fn_cipher_name,
475 			       mount_crypt_stat->global_default_fn_cipher_key_bytes,
476 			       rc);
477 			rc = -EINVAL;
478 			mutex_unlock(&key_tfm_list_mutex);
479 			goto out;
480 		}
481 	}
482 	mutex_unlock(&key_tfm_list_mutex);
483 	rc = ecryptfs_init_global_auth_toks(mount_crypt_stat);
484 	if (rc)
485 		printk(KERN_WARNING "One or more global auth toks could not "
486 		       "properly register; rc = [%d]\n", rc);
487 out:
488 	return rc;
489 }
490 
491 struct kmem_cache *ecryptfs_sb_info_cache;
492 static struct file_system_type ecryptfs_fs_type;
493 
494 /**
495  * ecryptfs_read_super
496  * @sb: The ecryptfs super block
497  * @dev_name: The path to mount over
498  *
499  * Read the super block of the lower filesystem, and use
500  * ecryptfs_interpose to create our initial inode and super block
501  * struct.
502  */
503 static int ecryptfs_read_super(struct super_block *sb, const char *dev_name)
504 {
505 	struct path path;
506 	int rc;
507 
508 	rc = kern_path(dev_name, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &path);
509 	if (rc) {
510 		ecryptfs_printk(KERN_WARNING, "path_lookup() failed\n");
511 		goto out;
512 	}
513 	if (path.dentry->d_sb->s_type == &ecryptfs_fs_type) {
514 		rc = -EINVAL;
515 		printk(KERN_ERR "Mount on filesystem of type "
516 			"eCryptfs explicitly disallowed due to "
517 			"known incompatibilities\n");
518 		goto out_free;
519 	}
520 	ecryptfs_set_superblock_lower(sb, path.dentry->d_sb);
521 	sb->s_maxbytes = path.dentry->d_sb->s_maxbytes;
522 	sb->s_blocksize = path.dentry->d_sb->s_blocksize;
523 	ecryptfs_set_dentry_lower(sb->s_root, path.dentry);
524 	ecryptfs_set_dentry_lower_mnt(sb->s_root, path.mnt);
525 	rc = ecryptfs_interpose(path.dentry, sb->s_root, sb, 0);
526 	if (rc)
527 		goto out_free;
528 	rc = 0;
529 	goto out;
530 out_free:
531 	path_put(&path);
532 out:
533 	return rc;
534 }
535 
536 /**
537  * ecryptfs_get_sb
538  * @fs_type
539  * @flags
540  * @dev_name: The path to mount over
541  * @raw_data: The options passed into the kernel
542  *
543  * The whole ecryptfs_get_sb process is broken into 3 functions:
544  * ecryptfs_parse_options(): handle options passed to ecryptfs, if any
545  * ecryptfs_read_super(): this accesses the lower filesystem and uses
546  *                        ecryptfs_interpose to perform most of the linking
547  * ecryptfs_interpose(): links the lower filesystem into ecryptfs (inode.c)
548  */
549 static struct dentry *ecryptfs_mount(struct file_system_type *fs_type, int flags,
550 			const char *dev_name, void *raw_data)
551 {
552 	struct super_block *s;
553 	struct ecryptfs_sb_info *sbi;
554 	struct ecryptfs_dentry_info *root_info;
555 	const char *err = "Getting sb failed";
556 	int rc;
557 
558 	sbi = kmem_cache_zalloc(ecryptfs_sb_info_cache, GFP_KERNEL);
559 	if (!sbi) {
560 		rc = -ENOMEM;
561 		goto out;
562 	}
563 
564 	rc = ecryptfs_parse_options(sbi, raw_data);
565 	if (rc) {
566 		err = "Error parsing options";
567 		goto out;
568 	}
569 
570 	s = sget(fs_type, NULL, set_anon_super, NULL);
571 	if (IS_ERR(s)) {
572 		rc = PTR_ERR(s);
573 		goto out;
574 	}
575 
576 	s->s_flags = flags;
577 	rc = bdi_setup_and_register(&sbi->bdi, "ecryptfs", BDI_CAP_MAP_COPY);
578 	if (rc) {
579 		deactivate_locked_super(s);
580 		goto out;
581 	}
582 
583 	ecryptfs_set_superblock_private(s, sbi);
584 	s->s_bdi = &sbi->bdi;
585 
586 	/* ->kill_sb() will take care of sbi after that point */
587 	sbi = NULL;
588 	s->s_op = &ecryptfs_sops;
589 
590 	rc = -ENOMEM;
591 	s->s_root = d_alloc(NULL, &(const struct qstr) {
592 			     .hash = 0,.name = "/",.len = 1});
593 	if (!s->s_root) {
594 		deactivate_locked_super(s);
595 		goto out;
596 	}
597 	s->s_root->d_op = &ecryptfs_dops;
598 	s->s_root->d_sb = s;
599 	s->s_root->d_parent = s->s_root;
600 
601 	root_info = kmem_cache_zalloc(ecryptfs_dentry_info_cache, GFP_KERNEL);
602 	if (!root_info) {
603 		deactivate_locked_super(s);
604 		goto out;
605 	}
606 	/* ->kill_sb() will take care of root_info */
607 	ecryptfs_set_dentry_private(s->s_root, root_info);
608 	s->s_flags |= MS_ACTIVE;
609 	rc = ecryptfs_read_super(s, dev_name);
610 	if (rc) {
611 		deactivate_locked_super(s);
612 		err = "Reading sb failed";
613 		goto out;
614 	}
615 	return dget(s->s_root);
616 
617 out:
618 	if (sbi) {
619 		ecryptfs_destroy_mount_crypt_stat(&sbi->mount_crypt_stat);
620 		kmem_cache_free(ecryptfs_sb_info_cache, sbi);
621 	}
622 	printk(KERN_ERR "%s; rc = [%d]\n", err, rc);
623 	return ERR_PTR(rc);
624 }
625 
626 /**
627  * ecryptfs_kill_block_super
628  * @sb: The ecryptfs super block
629  *
630  * Used to bring the superblock down and free the private data.
631  */
632 static void ecryptfs_kill_block_super(struct super_block *sb)
633 {
634 	struct ecryptfs_sb_info *sb_info = ecryptfs_superblock_to_private(sb);
635 	kill_anon_super(sb);
636 	if (!sb_info)
637 		return;
638 	ecryptfs_destroy_mount_crypt_stat(&sb_info->mount_crypt_stat);
639 	bdi_destroy(&sb_info->bdi);
640 	kmem_cache_free(ecryptfs_sb_info_cache, sb_info);
641 }
642 
643 static struct file_system_type ecryptfs_fs_type = {
644 	.owner = THIS_MODULE,
645 	.name = "ecryptfs",
646 	.mount = ecryptfs_mount,
647 	.kill_sb = ecryptfs_kill_block_super,
648 	.fs_flags = 0
649 };
650 
651 /**
652  * inode_info_init_once
653  *
654  * Initializes the ecryptfs_inode_info_cache when it is created
655  */
656 static void
657 inode_info_init_once(void *vptr)
658 {
659 	struct ecryptfs_inode_info *ei = (struct ecryptfs_inode_info *)vptr;
660 
661 	inode_init_once(&ei->vfs_inode);
662 }
663 
664 static struct ecryptfs_cache_info {
665 	struct kmem_cache **cache;
666 	const char *name;
667 	size_t size;
668 	void (*ctor)(void *obj);
669 } ecryptfs_cache_infos[] = {
670 	{
671 		.cache = &ecryptfs_auth_tok_list_item_cache,
672 		.name = "ecryptfs_auth_tok_list_item",
673 		.size = sizeof(struct ecryptfs_auth_tok_list_item),
674 	},
675 	{
676 		.cache = &ecryptfs_file_info_cache,
677 		.name = "ecryptfs_file_cache",
678 		.size = sizeof(struct ecryptfs_file_info),
679 	},
680 	{
681 		.cache = &ecryptfs_dentry_info_cache,
682 		.name = "ecryptfs_dentry_info_cache",
683 		.size = sizeof(struct ecryptfs_dentry_info),
684 	},
685 	{
686 		.cache = &ecryptfs_inode_info_cache,
687 		.name = "ecryptfs_inode_cache",
688 		.size = sizeof(struct ecryptfs_inode_info),
689 		.ctor = inode_info_init_once,
690 	},
691 	{
692 		.cache = &ecryptfs_sb_info_cache,
693 		.name = "ecryptfs_sb_cache",
694 		.size = sizeof(struct ecryptfs_sb_info),
695 	},
696 	{
697 		.cache = &ecryptfs_header_cache_1,
698 		.name = "ecryptfs_headers_1",
699 		.size = PAGE_CACHE_SIZE,
700 	},
701 	{
702 		.cache = &ecryptfs_header_cache_2,
703 		.name = "ecryptfs_headers_2",
704 		.size = PAGE_CACHE_SIZE,
705 	},
706 	{
707 		.cache = &ecryptfs_xattr_cache,
708 		.name = "ecryptfs_xattr_cache",
709 		.size = PAGE_CACHE_SIZE,
710 	},
711 	{
712 		.cache = &ecryptfs_key_record_cache,
713 		.name = "ecryptfs_key_record_cache",
714 		.size = sizeof(struct ecryptfs_key_record),
715 	},
716 	{
717 		.cache = &ecryptfs_key_sig_cache,
718 		.name = "ecryptfs_key_sig_cache",
719 		.size = sizeof(struct ecryptfs_key_sig),
720 	},
721 	{
722 		.cache = &ecryptfs_global_auth_tok_cache,
723 		.name = "ecryptfs_global_auth_tok_cache",
724 		.size = sizeof(struct ecryptfs_global_auth_tok),
725 	},
726 	{
727 		.cache = &ecryptfs_key_tfm_cache,
728 		.name = "ecryptfs_key_tfm_cache",
729 		.size = sizeof(struct ecryptfs_key_tfm),
730 	},
731 	{
732 		.cache = &ecryptfs_open_req_cache,
733 		.name = "ecryptfs_open_req_cache",
734 		.size = sizeof(struct ecryptfs_open_req),
735 	},
736 };
737 
738 static void ecryptfs_free_kmem_caches(void)
739 {
740 	int i;
741 
742 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cache_infos); i++) {
743 		struct ecryptfs_cache_info *info;
744 
745 		info = &ecryptfs_cache_infos[i];
746 		if (*(info->cache))
747 			kmem_cache_destroy(*(info->cache));
748 	}
749 }
750 
751 /**
752  * ecryptfs_init_kmem_caches
753  *
754  * Returns zero on success; non-zero otherwise
755  */
756 static int ecryptfs_init_kmem_caches(void)
757 {
758 	int i;
759 
760 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cache_infos); i++) {
761 		struct ecryptfs_cache_info *info;
762 
763 		info = &ecryptfs_cache_infos[i];
764 		*(info->cache) = kmem_cache_create(info->name, info->size,
765 				0, SLAB_HWCACHE_ALIGN, info->ctor);
766 		if (!*(info->cache)) {
767 			ecryptfs_free_kmem_caches();
768 			ecryptfs_printk(KERN_WARNING, "%s: "
769 					"kmem_cache_create failed\n",
770 					info->name);
771 			return -ENOMEM;
772 		}
773 	}
774 	return 0;
775 }
776 
777 static struct kobject *ecryptfs_kobj;
778 
779 static ssize_t version_show(struct kobject *kobj,
780 			    struct kobj_attribute *attr, char *buff)
781 {
782 	return snprintf(buff, PAGE_SIZE, "%d\n", ECRYPTFS_VERSIONING_MASK);
783 }
784 
785 static struct kobj_attribute version_attr = __ATTR_RO(version);
786 
787 static struct attribute *attributes[] = {
788 	&version_attr.attr,
789 	NULL,
790 };
791 
792 static struct attribute_group attr_group = {
793 	.attrs = attributes,
794 };
795 
796 static int do_sysfs_registration(void)
797 {
798 	int rc;
799 
800 	ecryptfs_kobj = kobject_create_and_add("ecryptfs", fs_kobj);
801 	if (!ecryptfs_kobj) {
802 		printk(KERN_ERR "Unable to create ecryptfs kset\n");
803 		rc = -ENOMEM;
804 		goto out;
805 	}
806 	rc = sysfs_create_group(ecryptfs_kobj, &attr_group);
807 	if (rc) {
808 		printk(KERN_ERR
809 		       "Unable to create ecryptfs version attributes\n");
810 		kobject_put(ecryptfs_kobj);
811 	}
812 out:
813 	return rc;
814 }
815 
816 static void do_sysfs_unregistration(void)
817 {
818 	sysfs_remove_group(ecryptfs_kobj, &attr_group);
819 	kobject_put(ecryptfs_kobj);
820 }
821 
822 static int __init ecryptfs_init(void)
823 {
824 	int rc;
825 
826 	if (ECRYPTFS_DEFAULT_EXTENT_SIZE > PAGE_CACHE_SIZE) {
827 		rc = -EINVAL;
828 		ecryptfs_printk(KERN_ERR, "The eCryptfs extent size is "
829 				"larger than the host's page size, and so "
830 				"eCryptfs cannot run on this system. The "
831 				"default eCryptfs extent size is [%d] bytes; "
832 				"the page size is [%d] bytes.\n",
833 				ECRYPTFS_DEFAULT_EXTENT_SIZE, PAGE_CACHE_SIZE);
834 		goto out;
835 	}
836 	rc = ecryptfs_init_kmem_caches();
837 	if (rc) {
838 		printk(KERN_ERR
839 		       "Failed to allocate one or more kmem_cache objects\n");
840 		goto out;
841 	}
842 	rc = register_filesystem(&ecryptfs_fs_type);
843 	if (rc) {
844 		printk(KERN_ERR "Failed to register filesystem\n");
845 		goto out_free_kmem_caches;
846 	}
847 	rc = do_sysfs_registration();
848 	if (rc) {
849 		printk(KERN_ERR "sysfs registration failed\n");
850 		goto out_unregister_filesystem;
851 	}
852 	rc = ecryptfs_init_kthread();
853 	if (rc) {
854 		printk(KERN_ERR "%s: kthread initialization failed; "
855 		       "rc = [%d]\n", __func__, rc);
856 		goto out_do_sysfs_unregistration;
857 	}
858 	rc = ecryptfs_init_messaging();
859 	if (rc) {
860 		printk(KERN_ERR "Failure occured while attempting to "
861 				"initialize the communications channel to "
862 				"ecryptfsd\n");
863 		goto out_destroy_kthread;
864 	}
865 	rc = ecryptfs_init_crypto();
866 	if (rc) {
867 		printk(KERN_ERR "Failure whilst attempting to init crypto; "
868 		       "rc = [%d]\n", rc);
869 		goto out_release_messaging;
870 	}
871 	if (ecryptfs_verbosity > 0)
872 		printk(KERN_CRIT "eCryptfs verbosity set to %d. Secret values "
873 			"will be written to the syslog!\n", ecryptfs_verbosity);
874 
875 	goto out;
876 out_release_messaging:
877 	ecryptfs_release_messaging();
878 out_destroy_kthread:
879 	ecryptfs_destroy_kthread();
880 out_do_sysfs_unregistration:
881 	do_sysfs_unregistration();
882 out_unregister_filesystem:
883 	unregister_filesystem(&ecryptfs_fs_type);
884 out_free_kmem_caches:
885 	ecryptfs_free_kmem_caches();
886 out:
887 	return rc;
888 }
889 
890 static void __exit ecryptfs_exit(void)
891 {
892 	int rc;
893 
894 	rc = ecryptfs_destroy_crypto();
895 	if (rc)
896 		printk(KERN_ERR "Failure whilst attempting to destroy crypto; "
897 		       "rc = [%d]\n", rc);
898 	ecryptfs_release_messaging();
899 	ecryptfs_destroy_kthread();
900 	do_sysfs_unregistration();
901 	unregister_filesystem(&ecryptfs_fs_type);
902 	ecryptfs_free_kmem_caches();
903 }
904 
905 MODULE_AUTHOR("Michael A. Halcrow <mhalcrow@us.ibm.com>");
906 MODULE_DESCRIPTION("eCryptfs");
907 
908 MODULE_LICENSE("GPL");
909 
910 module_init(ecryptfs_init)
911 module_exit(ecryptfs_exit)
912