1 /** 2 * eCryptfs: Linux filesystem encryption layer 3 * 4 * Copyright (C) 1997-2003 Erez Zadok 5 * Copyright (C) 2001-2003 Stony Brook University 6 * Copyright (C) 2004-2007 International Business Machines Corp. 7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com> 8 * Michael C. Thompson <mcthomps@us.ibm.com> 9 * Tyler Hicks <tyhicks@ou.edu> 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License as 13 * published by the Free Software Foundation; either version 2 of the 14 * License, or (at your option) any later version. 15 * 16 * This program is distributed in the hope that it will be useful, but 17 * WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 19 * General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; if not, write to the Free Software 23 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 24 * 02111-1307, USA. 25 */ 26 27 #include <linux/dcache.h> 28 #include <linux/file.h> 29 #include <linux/module.h> 30 #include <linux/namei.h> 31 #include <linux/skbuff.h> 32 #include <linux/crypto.h> 33 #include <linux/netlink.h> 34 #include <linux/mount.h> 35 #include <linux/pagemap.h> 36 #include <linux/key.h> 37 #include <linux/parser.h> 38 #include <linux/fs_stack.h> 39 #include "ecryptfs_kernel.h" 40 41 /** 42 * Module parameter that defines the ecryptfs_verbosity level. 43 */ 44 int ecryptfs_verbosity = 0; 45 46 module_param(ecryptfs_verbosity, int, 0); 47 MODULE_PARM_DESC(ecryptfs_verbosity, 48 "Initial verbosity level (0 or 1; defaults to " 49 "0, which is Quiet)"); 50 51 /** 52 * Module parameter that defines the number of netlink message buffer 53 * elements 54 */ 55 unsigned int ecryptfs_message_buf_len = ECRYPTFS_DEFAULT_MSG_CTX_ELEMS; 56 57 module_param(ecryptfs_message_buf_len, uint, 0); 58 MODULE_PARM_DESC(ecryptfs_message_buf_len, 59 "Number of message buffer elements"); 60 61 /** 62 * Module parameter that defines the maximum guaranteed amount of time to wait 63 * for a response through netlink. The actual sleep time will be, more than 64 * likely, a small amount greater than this specified value, but only less if 65 * the netlink message successfully arrives. 66 */ 67 signed long ecryptfs_message_wait_timeout = ECRYPTFS_MAX_MSG_CTX_TTL / HZ; 68 69 module_param(ecryptfs_message_wait_timeout, long, 0); 70 MODULE_PARM_DESC(ecryptfs_message_wait_timeout, 71 "Maximum number of seconds that an operation will " 72 "sleep while waiting for a message response from " 73 "userspace"); 74 75 /** 76 * Module parameter that is an estimate of the maximum number of users 77 * that will be concurrently using eCryptfs. Set this to the right 78 * value to balance performance and memory use. 79 */ 80 unsigned int ecryptfs_number_of_users = ECRYPTFS_DEFAULT_NUM_USERS; 81 82 module_param(ecryptfs_number_of_users, uint, 0); 83 MODULE_PARM_DESC(ecryptfs_number_of_users, "An estimate of the number of " 84 "concurrent users of eCryptfs"); 85 86 unsigned int ecryptfs_transport = ECRYPTFS_DEFAULT_TRANSPORT; 87 88 void __ecryptfs_printk(const char *fmt, ...) 89 { 90 va_list args; 91 va_start(args, fmt); 92 if (fmt[1] == '7') { /* KERN_DEBUG */ 93 if (ecryptfs_verbosity >= 1) 94 vprintk(fmt, args); 95 } else 96 vprintk(fmt, args); 97 va_end(args); 98 } 99 100 /** 101 * ecryptfs_init_persistent_file 102 * @ecryptfs_dentry: Fully initialized eCryptfs dentry object, with 103 * the lower dentry and the lower mount set 104 * 105 * eCryptfs only ever keeps a single open file for every lower 106 * inode. All I/O operations to the lower inode occur through that 107 * file. When the first eCryptfs dentry that interposes with the first 108 * lower dentry for that inode is created, this function creates the 109 * persistent file struct and associates it with the eCryptfs 110 * inode. When the eCryptfs inode is destroyed, the file is closed. 111 * 112 * The persistent file will be opened with read/write permissions, if 113 * possible. Otherwise, it is opened read-only. 114 * 115 * This function does nothing if a lower persistent file is already 116 * associated with the eCryptfs inode. 117 * 118 * Returns zero on success; non-zero otherwise 119 */ 120 int ecryptfs_init_persistent_file(struct dentry *ecryptfs_dentry) 121 { 122 struct ecryptfs_inode_info *inode_info = 123 ecryptfs_inode_to_private(ecryptfs_dentry->d_inode); 124 int rc = 0; 125 126 mutex_lock(&inode_info->lower_file_mutex); 127 if (!inode_info->lower_file) { 128 struct dentry *lower_dentry; 129 struct vfsmount *lower_mnt = 130 ecryptfs_dentry_to_lower_mnt(ecryptfs_dentry); 131 132 lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry); 133 /* Corresponding dput() and mntput() are done when the 134 * persistent file is fput() when the eCryptfs inode 135 * is destroyed. */ 136 dget(lower_dentry); 137 mntget(lower_mnt); 138 inode_info->lower_file = dentry_open(lower_dentry, 139 lower_mnt, 140 (O_RDWR | O_LARGEFILE)); 141 if (IS_ERR(inode_info->lower_file)) { 142 dget(lower_dentry); 143 mntget(lower_mnt); 144 inode_info->lower_file = dentry_open(lower_dentry, 145 lower_mnt, 146 (O_RDONLY 147 | O_LARGEFILE)); 148 } 149 if (IS_ERR(inode_info->lower_file)) { 150 printk(KERN_ERR "Error opening lower persistent file " 151 "for lower_dentry [0x%p] and lower_mnt [0x%p]\n", 152 lower_dentry, lower_mnt); 153 rc = PTR_ERR(inode_info->lower_file); 154 inode_info->lower_file = NULL; 155 } 156 } 157 mutex_unlock(&inode_info->lower_file_mutex); 158 return rc; 159 } 160 161 /** 162 * ecryptfs_interpose 163 * @lower_dentry: Existing dentry in the lower filesystem 164 * @dentry: ecryptfs' dentry 165 * @sb: ecryptfs's super_block 166 * @flag: If set to true, then d_add is called, else d_instantiate is called 167 * 168 * Interposes upper and lower dentries. 169 * 170 * Returns zero on success; non-zero otherwise 171 */ 172 int ecryptfs_interpose(struct dentry *lower_dentry, struct dentry *dentry, 173 struct super_block *sb, int flag) 174 { 175 struct inode *lower_inode; 176 struct inode *inode; 177 int rc = 0; 178 179 lower_inode = lower_dentry->d_inode; 180 if (lower_inode->i_sb != ecryptfs_superblock_to_lower(sb)) { 181 rc = -EXDEV; 182 goto out; 183 } 184 if (!igrab(lower_inode)) { 185 rc = -ESTALE; 186 goto out; 187 } 188 inode = iget5_locked(sb, (unsigned long)lower_inode, 189 ecryptfs_inode_test, ecryptfs_inode_set, 190 lower_inode); 191 if (!inode) { 192 rc = -EACCES; 193 iput(lower_inode); 194 goto out; 195 } 196 if (inode->i_state & I_NEW) 197 unlock_new_inode(inode); 198 else 199 iput(lower_inode); 200 if (S_ISLNK(lower_inode->i_mode)) 201 inode->i_op = &ecryptfs_symlink_iops; 202 else if (S_ISDIR(lower_inode->i_mode)) 203 inode->i_op = &ecryptfs_dir_iops; 204 if (S_ISDIR(lower_inode->i_mode)) 205 inode->i_fop = &ecryptfs_dir_fops; 206 if (special_file(lower_inode->i_mode)) 207 init_special_inode(inode, lower_inode->i_mode, 208 lower_inode->i_rdev); 209 dentry->d_op = &ecryptfs_dops; 210 if (flag) 211 d_add(dentry, inode); 212 else 213 d_instantiate(dentry, inode); 214 fsstack_copy_attr_all(inode, lower_inode, NULL); 215 /* This size will be overwritten for real files w/ headers and 216 * other metadata */ 217 fsstack_copy_inode_size(inode, lower_inode); 218 rc = ecryptfs_init_persistent_file(dentry); 219 if (rc) { 220 printk(KERN_ERR "%s: Error attempting to initialize the " 221 "persistent file for the dentry with name [%s]; " 222 "rc = [%d]\n", __FUNCTION__, dentry->d_name.name, rc); 223 goto out; 224 } 225 out: 226 return rc; 227 } 228 229 enum { ecryptfs_opt_sig, ecryptfs_opt_ecryptfs_sig, ecryptfs_opt_debug, 230 ecryptfs_opt_ecryptfs_debug, ecryptfs_opt_cipher, 231 ecryptfs_opt_ecryptfs_cipher, ecryptfs_opt_ecryptfs_key_bytes, 232 ecryptfs_opt_passthrough, ecryptfs_opt_xattr_metadata, 233 ecryptfs_opt_encrypted_view, ecryptfs_opt_err }; 234 235 static match_table_t tokens = { 236 {ecryptfs_opt_sig, "sig=%s"}, 237 {ecryptfs_opt_ecryptfs_sig, "ecryptfs_sig=%s"}, 238 {ecryptfs_opt_debug, "debug=%u"}, 239 {ecryptfs_opt_ecryptfs_debug, "ecryptfs_debug=%u"}, 240 {ecryptfs_opt_cipher, "cipher=%s"}, 241 {ecryptfs_opt_ecryptfs_cipher, "ecryptfs_cipher=%s"}, 242 {ecryptfs_opt_ecryptfs_key_bytes, "ecryptfs_key_bytes=%u"}, 243 {ecryptfs_opt_passthrough, "ecryptfs_passthrough"}, 244 {ecryptfs_opt_xattr_metadata, "ecryptfs_xattr_metadata"}, 245 {ecryptfs_opt_encrypted_view, "ecryptfs_encrypted_view"}, 246 {ecryptfs_opt_err, NULL} 247 }; 248 249 static int ecryptfs_init_global_auth_toks( 250 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 251 { 252 struct ecryptfs_global_auth_tok *global_auth_tok; 253 int rc = 0; 254 255 list_for_each_entry(global_auth_tok, 256 &mount_crypt_stat->global_auth_tok_list, 257 mount_crypt_stat_list) { 258 rc = ecryptfs_keyring_auth_tok_for_sig( 259 &global_auth_tok->global_auth_tok_key, 260 &global_auth_tok->global_auth_tok, 261 global_auth_tok->sig); 262 if (rc) { 263 printk(KERN_ERR "Could not find valid key in user " 264 "session keyring for sig specified in mount " 265 "option: [%s]\n", global_auth_tok->sig); 266 global_auth_tok->flags |= ECRYPTFS_AUTH_TOK_INVALID; 267 rc = 0; 268 } else 269 global_auth_tok->flags &= ~ECRYPTFS_AUTH_TOK_INVALID; 270 } 271 return rc; 272 } 273 274 static void ecryptfs_init_mount_crypt_stat( 275 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 276 { 277 memset((void *)mount_crypt_stat, 0, 278 sizeof(struct ecryptfs_mount_crypt_stat)); 279 INIT_LIST_HEAD(&mount_crypt_stat->global_auth_tok_list); 280 mutex_init(&mount_crypt_stat->global_auth_tok_list_mutex); 281 mount_crypt_stat->flags |= ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED; 282 } 283 284 /** 285 * ecryptfs_parse_options 286 * @sb: The ecryptfs super block 287 * @options: The options pased to the kernel 288 * 289 * Parse mount options: 290 * debug=N - ecryptfs_verbosity level for debug output 291 * sig=XXX - description(signature) of the key to use 292 * 293 * Returns the dentry object of the lower-level (lower/interposed) 294 * directory; We want to mount our stackable file system on top of 295 * that lower directory. 296 * 297 * The signature of the key to use must be the description of a key 298 * already in the keyring. Mounting will fail if the key can not be 299 * found. 300 * 301 * Returns zero on success; non-zero on error 302 */ 303 static int ecryptfs_parse_options(struct super_block *sb, char *options) 304 { 305 char *p; 306 int rc = 0; 307 int sig_set = 0; 308 int cipher_name_set = 0; 309 int cipher_key_bytes; 310 int cipher_key_bytes_set = 0; 311 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 312 &ecryptfs_superblock_to_private(sb)->mount_crypt_stat; 313 substring_t args[MAX_OPT_ARGS]; 314 int token; 315 char *sig_src; 316 char *debug_src; 317 char *cipher_name_dst; 318 char *cipher_name_src; 319 char *cipher_key_bytes_src; 320 int cipher_name_len; 321 322 if (!options) { 323 rc = -EINVAL; 324 goto out; 325 } 326 ecryptfs_init_mount_crypt_stat(mount_crypt_stat); 327 while ((p = strsep(&options, ",")) != NULL) { 328 if (!*p) 329 continue; 330 token = match_token(p, tokens, args); 331 switch (token) { 332 case ecryptfs_opt_sig: 333 case ecryptfs_opt_ecryptfs_sig: 334 sig_src = args[0].from; 335 rc = ecryptfs_add_global_auth_tok(mount_crypt_stat, 336 sig_src); 337 if (rc) { 338 printk(KERN_ERR "Error attempting to register " 339 "global sig; rc = [%d]\n", rc); 340 goto out; 341 } 342 sig_set = 1; 343 break; 344 case ecryptfs_opt_debug: 345 case ecryptfs_opt_ecryptfs_debug: 346 debug_src = args[0].from; 347 ecryptfs_verbosity = 348 (int)simple_strtol(debug_src, &debug_src, 349 0); 350 ecryptfs_printk(KERN_DEBUG, 351 "Verbosity set to [%d]" "\n", 352 ecryptfs_verbosity); 353 break; 354 case ecryptfs_opt_cipher: 355 case ecryptfs_opt_ecryptfs_cipher: 356 cipher_name_src = args[0].from; 357 cipher_name_dst = 358 mount_crypt_stat-> 359 global_default_cipher_name; 360 strncpy(cipher_name_dst, cipher_name_src, 361 ECRYPTFS_MAX_CIPHER_NAME_SIZE); 362 ecryptfs_printk(KERN_DEBUG, 363 "The mount_crypt_stat " 364 "global_default_cipher_name set to: " 365 "[%s]\n", cipher_name_dst); 366 cipher_name_set = 1; 367 break; 368 case ecryptfs_opt_ecryptfs_key_bytes: 369 cipher_key_bytes_src = args[0].from; 370 cipher_key_bytes = 371 (int)simple_strtol(cipher_key_bytes_src, 372 &cipher_key_bytes_src, 0); 373 mount_crypt_stat->global_default_cipher_key_size = 374 cipher_key_bytes; 375 ecryptfs_printk(KERN_DEBUG, 376 "The mount_crypt_stat " 377 "global_default_cipher_key_size " 378 "set to: [%d]\n", mount_crypt_stat-> 379 global_default_cipher_key_size); 380 cipher_key_bytes_set = 1; 381 break; 382 case ecryptfs_opt_passthrough: 383 mount_crypt_stat->flags |= 384 ECRYPTFS_PLAINTEXT_PASSTHROUGH_ENABLED; 385 break; 386 case ecryptfs_opt_xattr_metadata: 387 mount_crypt_stat->flags |= 388 ECRYPTFS_XATTR_METADATA_ENABLED; 389 break; 390 case ecryptfs_opt_encrypted_view: 391 mount_crypt_stat->flags |= 392 ECRYPTFS_XATTR_METADATA_ENABLED; 393 mount_crypt_stat->flags |= 394 ECRYPTFS_ENCRYPTED_VIEW_ENABLED; 395 break; 396 case ecryptfs_opt_err: 397 default: 398 ecryptfs_printk(KERN_WARNING, 399 "eCryptfs: unrecognized option '%s'\n", 400 p); 401 } 402 } 403 if (!sig_set) { 404 rc = -EINVAL; 405 ecryptfs_printk(KERN_ERR, "You must supply at least one valid " 406 "auth tok signature as a mount " 407 "parameter; see the eCryptfs README\n"); 408 goto out; 409 } 410 if (!cipher_name_set) { 411 cipher_name_len = strlen(ECRYPTFS_DEFAULT_CIPHER); 412 if (unlikely(cipher_name_len 413 >= ECRYPTFS_MAX_CIPHER_NAME_SIZE)) { 414 rc = -EINVAL; 415 BUG(); 416 goto out; 417 } 418 memcpy(mount_crypt_stat->global_default_cipher_name, 419 ECRYPTFS_DEFAULT_CIPHER, cipher_name_len); 420 mount_crypt_stat->global_default_cipher_name[cipher_name_len] 421 = '\0'; 422 } 423 if (!cipher_key_bytes_set) { 424 mount_crypt_stat->global_default_cipher_key_size = 0; 425 } 426 rc = ecryptfs_add_new_key_tfm( 427 NULL, mount_crypt_stat->global_default_cipher_name, 428 mount_crypt_stat->global_default_cipher_key_size); 429 if (rc) { 430 printk(KERN_ERR "Error attempting to initialize cipher with " 431 "name = [%s] and key size = [%td]; rc = [%d]\n", 432 mount_crypt_stat->global_default_cipher_name, 433 mount_crypt_stat->global_default_cipher_key_size, rc); 434 rc = -EINVAL; 435 goto out; 436 } 437 rc = ecryptfs_init_global_auth_toks(mount_crypt_stat); 438 if (rc) { 439 printk(KERN_WARNING "One or more global auth toks could not " 440 "properly register; rc = [%d]\n", rc); 441 } 442 rc = 0; 443 out: 444 return rc; 445 } 446 447 struct kmem_cache *ecryptfs_sb_info_cache; 448 449 /** 450 * ecryptfs_fill_super 451 * @sb: The ecryptfs super block 452 * @raw_data: The options passed to mount 453 * @silent: Not used but required by function prototype 454 * 455 * Sets up what we can of the sb, rest is done in ecryptfs_read_super 456 * 457 * Returns zero on success; non-zero otherwise 458 */ 459 static int 460 ecryptfs_fill_super(struct super_block *sb, void *raw_data, int silent) 461 { 462 int rc = 0; 463 464 /* Released in ecryptfs_put_super() */ 465 ecryptfs_set_superblock_private(sb, 466 kmem_cache_zalloc(ecryptfs_sb_info_cache, 467 GFP_KERNEL)); 468 if (!ecryptfs_superblock_to_private(sb)) { 469 ecryptfs_printk(KERN_WARNING, "Out of memory\n"); 470 rc = -ENOMEM; 471 goto out; 472 } 473 sb->s_op = &ecryptfs_sops; 474 /* Released through deactivate_super(sb) from get_sb_nodev */ 475 sb->s_root = d_alloc(NULL, &(const struct qstr) { 476 .hash = 0,.name = "/",.len = 1}); 477 if (!sb->s_root) { 478 ecryptfs_printk(KERN_ERR, "d_alloc failed\n"); 479 rc = -ENOMEM; 480 goto out; 481 } 482 sb->s_root->d_op = &ecryptfs_dops; 483 sb->s_root->d_sb = sb; 484 sb->s_root->d_parent = sb->s_root; 485 /* Released in d_release when dput(sb->s_root) is called */ 486 /* through deactivate_super(sb) from get_sb_nodev() */ 487 ecryptfs_set_dentry_private(sb->s_root, 488 kmem_cache_zalloc(ecryptfs_dentry_info_cache, 489 GFP_KERNEL)); 490 if (!ecryptfs_dentry_to_private(sb->s_root)) { 491 ecryptfs_printk(KERN_ERR, 492 "dentry_info_cache alloc failed\n"); 493 rc = -ENOMEM; 494 goto out; 495 } 496 rc = 0; 497 out: 498 /* Should be able to rely on deactivate_super called from 499 * get_sb_nodev */ 500 return rc; 501 } 502 503 /** 504 * ecryptfs_read_super 505 * @sb: The ecryptfs super block 506 * @dev_name: The path to mount over 507 * 508 * Read the super block of the lower filesystem, and use 509 * ecryptfs_interpose to create our initial inode and super block 510 * struct. 511 */ 512 static int ecryptfs_read_super(struct super_block *sb, const char *dev_name) 513 { 514 int rc; 515 struct nameidata nd; 516 struct dentry *lower_root; 517 struct vfsmount *lower_mnt; 518 519 memset(&nd, 0, sizeof(struct nameidata)); 520 rc = path_lookup(dev_name, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &nd); 521 if (rc) { 522 ecryptfs_printk(KERN_WARNING, "path_lookup() failed\n"); 523 goto out; 524 } 525 lower_root = nd.dentry; 526 lower_mnt = nd.mnt; 527 ecryptfs_set_superblock_lower(sb, lower_root->d_sb); 528 sb->s_maxbytes = lower_root->d_sb->s_maxbytes; 529 sb->s_blocksize = lower_root->d_sb->s_blocksize; 530 ecryptfs_set_dentry_lower(sb->s_root, lower_root); 531 ecryptfs_set_dentry_lower_mnt(sb->s_root, lower_mnt); 532 rc = ecryptfs_interpose(lower_root, sb->s_root, sb, 0); 533 if (rc) 534 goto out_free; 535 rc = 0; 536 goto out; 537 out_free: 538 path_release(&nd); 539 out: 540 return rc; 541 } 542 543 /** 544 * ecryptfs_get_sb 545 * @fs_type 546 * @flags 547 * @dev_name: The path to mount over 548 * @raw_data: The options passed into the kernel 549 * 550 * The whole ecryptfs_get_sb process is broken into 4 functions: 551 * ecryptfs_parse_options(): handle options passed to ecryptfs, if any 552 * ecryptfs_fill_super(): used by get_sb_nodev, fills out the super_block 553 * with as much information as it can before needing 554 * the lower filesystem. 555 * ecryptfs_read_super(): this accesses the lower filesystem and uses 556 * ecryptfs_interpolate to perform most of the linking 557 * ecryptfs_interpolate(): links the lower filesystem into ecryptfs 558 */ 559 static int ecryptfs_get_sb(struct file_system_type *fs_type, int flags, 560 const char *dev_name, void *raw_data, 561 struct vfsmount *mnt) 562 { 563 int rc; 564 struct super_block *sb; 565 566 rc = get_sb_nodev(fs_type, flags, raw_data, ecryptfs_fill_super, mnt); 567 if (rc < 0) { 568 printk(KERN_ERR "Getting sb failed; rc = [%d]\n", rc); 569 goto out; 570 } 571 sb = mnt->mnt_sb; 572 rc = ecryptfs_parse_options(sb, raw_data); 573 if (rc) { 574 printk(KERN_ERR "Error parsing options; rc = [%d]\n", rc); 575 goto out_abort; 576 } 577 rc = ecryptfs_read_super(sb, dev_name); 578 if (rc) { 579 printk(KERN_ERR "Reading sb failed; rc = [%d]\n", rc); 580 goto out_abort; 581 } 582 goto out; 583 out_abort: 584 dput(sb->s_root); 585 up_write(&sb->s_umount); 586 deactivate_super(sb); 587 out: 588 return rc; 589 } 590 591 /** 592 * ecryptfs_kill_block_super 593 * @sb: The ecryptfs super block 594 * 595 * Used to bring the superblock down and free the private data. 596 * Private data is free'd in ecryptfs_put_super() 597 */ 598 static void ecryptfs_kill_block_super(struct super_block *sb) 599 { 600 generic_shutdown_super(sb); 601 } 602 603 static struct file_system_type ecryptfs_fs_type = { 604 .owner = THIS_MODULE, 605 .name = "ecryptfs", 606 .get_sb = ecryptfs_get_sb, 607 .kill_sb = ecryptfs_kill_block_super, 608 .fs_flags = 0 609 }; 610 611 /** 612 * inode_info_init_once 613 * 614 * Initializes the ecryptfs_inode_info_cache when it is created 615 */ 616 static void 617 inode_info_init_once(struct kmem_cache *cachep, void *vptr) 618 { 619 struct ecryptfs_inode_info *ei = (struct ecryptfs_inode_info *)vptr; 620 621 inode_init_once(&ei->vfs_inode); 622 } 623 624 static struct ecryptfs_cache_info { 625 struct kmem_cache **cache; 626 const char *name; 627 size_t size; 628 void (*ctor)(struct kmem_cache *cache, void *obj); 629 } ecryptfs_cache_infos[] = { 630 { 631 .cache = &ecryptfs_auth_tok_list_item_cache, 632 .name = "ecryptfs_auth_tok_list_item", 633 .size = sizeof(struct ecryptfs_auth_tok_list_item), 634 }, 635 { 636 .cache = &ecryptfs_file_info_cache, 637 .name = "ecryptfs_file_cache", 638 .size = sizeof(struct ecryptfs_file_info), 639 }, 640 { 641 .cache = &ecryptfs_dentry_info_cache, 642 .name = "ecryptfs_dentry_info_cache", 643 .size = sizeof(struct ecryptfs_dentry_info), 644 }, 645 { 646 .cache = &ecryptfs_inode_info_cache, 647 .name = "ecryptfs_inode_cache", 648 .size = sizeof(struct ecryptfs_inode_info), 649 .ctor = inode_info_init_once, 650 }, 651 { 652 .cache = &ecryptfs_sb_info_cache, 653 .name = "ecryptfs_sb_cache", 654 .size = sizeof(struct ecryptfs_sb_info), 655 }, 656 { 657 .cache = &ecryptfs_header_cache_0, 658 .name = "ecryptfs_headers_0", 659 .size = PAGE_CACHE_SIZE, 660 }, 661 { 662 .cache = &ecryptfs_header_cache_1, 663 .name = "ecryptfs_headers_1", 664 .size = PAGE_CACHE_SIZE, 665 }, 666 { 667 .cache = &ecryptfs_header_cache_2, 668 .name = "ecryptfs_headers_2", 669 .size = PAGE_CACHE_SIZE, 670 }, 671 { 672 .cache = &ecryptfs_xattr_cache, 673 .name = "ecryptfs_xattr_cache", 674 .size = PAGE_CACHE_SIZE, 675 }, 676 { 677 .cache = &ecryptfs_key_record_cache, 678 .name = "ecryptfs_key_record_cache", 679 .size = sizeof(struct ecryptfs_key_record), 680 }, 681 { 682 .cache = &ecryptfs_key_sig_cache, 683 .name = "ecryptfs_key_sig_cache", 684 .size = sizeof(struct ecryptfs_key_sig), 685 }, 686 { 687 .cache = &ecryptfs_global_auth_tok_cache, 688 .name = "ecryptfs_global_auth_tok_cache", 689 .size = sizeof(struct ecryptfs_global_auth_tok), 690 }, 691 { 692 .cache = &ecryptfs_key_tfm_cache, 693 .name = "ecryptfs_key_tfm_cache", 694 .size = sizeof(struct ecryptfs_key_tfm), 695 }, 696 }; 697 698 static void ecryptfs_free_kmem_caches(void) 699 { 700 int i; 701 702 for (i = 0; i < ARRAY_SIZE(ecryptfs_cache_infos); i++) { 703 struct ecryptfs_cache_info *info; 704 705 info = &ecryptfs_cache_infos[i]; 706 if (*(info->cache)) 707 kmem_cache_destroy(*(info->cache)); 708 } 709 } 710 711 /** 712 * ecryptfs_init_kmem_caches 713 * 714 * Returns zero on success; non-zero otherwise 715 */ 716 static int ecryptfs_init_kmem_caches(void) 717 { 718 int i; 719 720 for (i = 0; i < ARRAY_SIZE(ecryptfs_cache_infos); i++) { 721 struct ecryptfs_cache_info *info; 722 723 info = &ecryptfs_cache_infos[i]; 724 *(info->cache) = kmem_cache_create(info->name, info->size, 725 0, SLAB_HWCACHE_ALIGN, info->ctor); 726 if (!*(info->cache)) { 727 ecryptfs_free_kmem_caches(); 728 ecryptfs_printk(KERN_WARNING, "%s: " 729 "kmem_cache_create failed\n", 730 info->name); 731 return -ENOMEM; 732 } 733 } 734 return 0; 735 } 736 737 static struct kobject *ecryptfs_kobj; 738 739 static ssize_t version_show(struct kobject *kobj, 740 struct kobj_attribute *attr, char *buff) 741 { 742 return snprintf(buff, PAGE_SIZE, "%d\n", ECRYPTFS_VERSIONING_MASK); 743 } 744 745 static struct kobj_attribute version_attr = __ATTR_RO(version); 746 747 static struct attribute *attributes[] = { 748 &version_attr.attr, 749 NULL, 750 }; 751 752 static struct attribute_group attr_group = { 753 .attrs = attributes, 754 }; 755 756 static int do_sysfs_registration(void) 757 { 758 int rc; 759 760 ecryptfs_kobj = kobject_create_and_add("ecryptfs", fs_kobj); 761 if (!ecryptfs_kobj) { 762 printk(KERN_ERR "Unable to create ecryptfs kset\n"); 763 rc = -ENOMEM; 764 goto out; 765 } 766 rc = sysfs_create_group(ecryptfs_kobj, &attr_group); 767 if (rc) { 768 printk(KERN_ERR 769 "Unable to create ecryptfs version attributes\n"); 770 kobject_put(ecryptfs_kobj); 771 } 772 out: 773 return rc; 774 } 775 776 static void do_sysfs_unregistration(void) 777 { 778 sysfs_remove_group(ecryptfs_kobj, &attr_group); 779 kobject_put(ecryptfs_kobj); 780 } 781 782 static int __init ecryptfs_init(void) 783 { 784 int rc; 785 786 if (ECRYPTFS_DEFAULT_EXTENT_SIZE > PAGE_CACHE_SIZE) { 787 rc = -EINVAL; 788 ecryptfs_printk(KERN_ERR, "The eCryptfs extent size is " 789 "larger than the host's page size, and so " 790 "eCryptfs cannot run on this system. The " 791 "default eCryptfs extent size is [%d] bytes; " 792 "the page size is [%d] bytes.\n", 793 ECRYPTFS_DEFAULT_EXTENT_SIZE, PAGE_CACHE_SIZE); 794 goto out; 795 } 796 rc = ecryptfs_init_kmem_caches(); 797 if (rc) { 798 printk(KERN_ERR 799 "Failed to allocate one or more kmem_cache objects\n"); 800 goto out; 801 } 802 rc = register_filesystem(&ecryptfs_fs_type); 803 if (rc) { 804 printk(KERN_ERR "Failed to register filesystem\n"); 805 goto out_free_kmem_caches; 806 } 807 rc = do_sysfs_registration(); 808 if (rc) { 809 printk(KERN_ERR "sysfs registration failed\n"); 810 goto out_unregister_filesystem; 811 } 812 rc = ecryptfs_init_messaging(ecryptfs_transport); 813 if (rc) { 814 ecryptfs_printk(KERN_ERR, "Failure occured while attempting to " 815 "initialize the eCryptfs netlink socket\n"); 816 goto out_do_sysfs_unregistration; 817 } 818 rc = ecryptfs_init_crypto(); 819 if (rc) { 820 printk(KERN_ERR "Failure whilst attempting to init crypto; " 821 "rc = [%d]\n", rc); 822 goto out_release_messaging; 823 } 824 goto out; 825 out_release_messaging: 826 ecryptfs_release_messaging(ecryptfs_transport); 827 out_do_sysfs_unregistration: 828 do_sysfs_unregistration(); 829 out_unregister_filesystem: 830 unregister_filesystem(&ecryptfs_fs_type); 831 out_free_kmem_caches: 832 ecryptfs_free_kmem_caches(); 833 out: 834 return rc; 835 } 836 837 static void __exit ecryptfs_exit(void) 838 { 839 int rc; 840 841 rc = ecryptfs_destroy_crypto(); 842 if (rc) 843 printk(KERN_ERR "Failure whilst attempting to destroy crypto; " 844 "rc = [%d]\n", rc); 845 ecryptfs_release_messaging(ecryptfs_transport); 846 do_sysfs_unregistration(); 847 unregister_filesystem(&ecryptfs_fs_type); 848 ecryptfs_free_kmem_caches(); 849 } 850 851 MODULE_AUTHOR("Michael A. Halcrow <mhalcrow@us.ibm.com>"); 852 MODULE_DESCRIPTION("eCryptfs"); 853 854 MODULE_LICENSE("GPL"); 855 856 module_init(ecryptfs_init) 857 module_exit(ecryptfs_exit) 858