1 /** 2 * eCryptfs: Linux filesystem encryption layer 3 * 4 * Copyright (C) 1997-2003 Erez Zadok 5 * Copyright (C) 2001-2003 Stony Brook University 6 * Copyright (C) 2004-2007 International Business Machines Corp. 7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com> 8 * Michael C. Thompson <mcthomps@us.ibm.com> 9 * Tyler Hicks <tyhicks@ou.edu> 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License as 13 * published by the Free Software Foundation; either version 2 of the 14 * License, or (at your option) any later version. 15 * 16 * This program is distributed in the hope that it will be useful, but 17 * WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 19 * General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; if not, write to the Free Software 23 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 24 * 02111-1307, USA. 25 */ 26 27 #include <linux/dcache.h> 28 #include <linux/file.h> 29 #include <linux/module.h> 30 #include <linux/namei.h> 31 #include <linux/skbuff.h> 32 #include <linux/crypto.h> 33 #include <linux/netlink.h> 34 #include <linux/mount.h> 35 #include <linux/pagemap.h> 36 #include <linux/key.h> 37 #include <linux/parser.h> 38 #include <linux/fs_stack.h> 39 #include "ecryptfs_kernel.h" 40 41 /** 42 * Module parameter that defines the ecryptfs_verbosity level. 43 */ 44 int ecryptfs_verbosity = 0; 45 46 module_param(ecryptfs_verbosity, int, 0); 47 MODULE_PARM_DESC(ecryptfs_verbosity, 48 "Initial verbosity level (0 or 1; defaults to " 49 "0, which is Quiet)"); 50 51 /** 52 * Module parameter that defines the number of netlink message buffer 53 * elements 54 */ 55 unsigned int ecryptfs_message_buf_len = ECRYPTFS_DEFAULT_MSG_CTX_ELEMS; 56 57 module_param(ecryptfs_message_buf_len, uint, 0); 58 MODULE_PARM_DESC(ecryptfs_message_buf_len, 59 "Number of message buffer elements"); 60 61 /** 62 * Module parameter that defines the maximum guaranteed amount of time to wait 63 * for a response through netlink. The actual sleep time will be, more than 64 * likely, a small amount greater than this specified value, but only less if 65 * the netlink message successfully arrives. 66 */ 67 signed long ecryptfs_message_wait_timeout = ECRYPTFS_MAX_MSG_CTX_TTL / HZ; 68 69 module_param(ecryptfs_message_wait_timeout, long, 0); 70 MODULE_PARM_DESC(ecryptfs_message_wait_timeout, 71 "Maximum number of seconds that an operation will " 72 "sleep while waiting for a message response from " 73 "userspace"); 74 75 /** 76 * Module parameter that is an estimate of the maximum number of users 77 * that will be concurrently using eCryptfs. Set this to the right 78 * value to balance performance and memory use. 79 */ 80 unsigned int ecryptfs_number_of_users = ECRYPTFS_DEFAULT_NUM_USERS; 81 82 module_param(ecryptfs_number_of_users, uint, 0); 83 MODULE_PARM_DESC(ecryptfs_number_of_users, "An estimate of the number of " 84 "concurrent users of eCryptfs"); 85 86 unsigned int ecryptfs_transport = ECRYPTFS_DEFAULT_TRANSPORT; 87 88 void __ecryptfs_printk(const char *fmt, ...) 89 { 90 va_list args; 91 va_start(args, fmt); 92 if (fmt[1] == '7') { /* KERN_DEBUG */ 93 if (ecryptfs_verbosity >= 1) 94 vprintk(fmt, args); 95 } else 96 vprintk(fmt, args); 97 va_end(args); 98 } 99 100 /** 101 * ecryptfs_init_persistent_file 102 * @ecryptfs_dentry: Fully initialized eCryptfs dentry object, with 103 * the lower dentry and the lower mount set 104 * 105 * eCryptfs only ever keeps a single open file for every lower 106 * inode. All I/O operations to the lower inode occur through that 107 * file. When the first eCryptfs dentry that interposes with the first 108 * lower dentry for that inode is created, this function creates the 109 * persistent file struct and associates it with the eCryptfs 110 * inode. When the eCryptfs inode is destroyed, the file is closed. 111 * 112 * The persistent file will be opened with read/write permissions, if 113 * possible. Otherwise, it is opened read-only. 114 * 115 * This function does nothing if a lower persistent file is already 116 * associated with the eCryptfs inode. 117 * 118 * Returns zero on success; non-zero otherwise 119 */ 120 static int ecryptfs_init_persistent_file(struct dentry *ecryptfs_dentry) 121 { 122 struct ecryptfs_inode_info *inode_info = 123 ecryptfs_inode_to_private(ecryptfs_dentry->d_inode); 124 int rc = 0; 125 126 mutex_lock(&inode_info->lower_file_mutex); 127 if (!inode_info->lower_file) { 128 struct dentry *lower_dentry; 129 struct vfsmount *lower_mnt = 130 ecryptfs_dentry_to_lower_mnt(ecryptfs_dentry); 131 132 lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry); 133 /* Corresponding dput() and mntput() are done when the 134 * persistent file is fput() when the eCryptfs inode 135 * is destroyed. */ 136 dget(lower_dentry); 137 mntget(lower_mnt); 138 inode_info->lower_file = dentry_open(lower_dentry, 139 lower_mnt, 140 (O_RDWR | O_LARGEFILE)); 141 if (IS_ERR(inode_info->lower_file)) { 142 dget(lower_dentry); 143 mntget(lower_mnt); 144 inode_info->lower_file = dentry_open(lower_dentry, 145 lower_mnt, 146 (O_RDONLY 147 | O_LARGEFILE)); 148 } 149 if (IS_ERR(inode_info->lower_file)) { 150 printk(KERN_ERR "Error opening lower persistent file " 151 "for lower_dentry [0x%p] and lower_mnt [0x%p]\n", 152 lower_dentry, lower_mnt); 153 rc = PTR_ERR(inode_info->lower_file); 154 inode_info->lower_file = NULL; 155 } 156 } 157 mutex_unlock(&inode_info->lower_file_mutex); 158 return rc; 159 } 160 161 /** 162 * ecryptfs_interpose 163 * @lower_dentry: Existing dentry in the lower filesystem 164 * @dentry: ecryptfs' dentry 165 * @sb: ecryptfs's super_block 166 * @flag: If set to true, then d_add is called, else d_instantiate is called 167 * 168 * Interposes upper and lower dentries. 169 * 170 * Returns zero on success; non-zero otherwise 171 */ 172 int ecryptfs_interpose(struct dentry *lower_dentry, struct dentry *dentry, 173 struct super_block *sb, int flag) 174 { 175 struct inode *lower_inode; 176 struct inode *inode; 177 int rc = 0; 178 179 lower_inode = lower_dentry->d_inode; 180 if (lower_inode->i_sb != ecryptfs_superblock_to_lower(sb)) { 181 rc = -EXDEV; 182 goto out; 183 } 184 if (!igrab(lower_inode)) { 185 rc = -ESTALE; 186 goto out; 187 } 188 inode = iget5_locked(sb, (unsigned long)lower_inode, 189 ecryptfs_inode_test, ecryptfs_inode_set, 190 lower_inode); 191 if (!inode) { 192 rc = -EACCES; 193 iput(lower_inode); 194 goto out; 195 } 196 if (inode->i_state & I_NEW) 197 unlock_new_inode(inode); 198 else 199 iput(lower_inode); 200 if (S_ISLNK(lower_inode->i_mode)) 201 inode->i_op = &ecryptfs_symlink_iops; 202 else if (S_ISDIR(lower_inode->i_mode)) 203 inode->i_op = &ecryptfs_dir_iops; 204 if (S_ISDIR(lower_inode->i_mode)) 205 inode->i_fop = &ecryptfs_dir_fops; 206 if (special_file(lower_inode->i_mode)) 207 init_special_inode(inode, lower_inode->i_mode, 208 lower_inode->i_rdev); 209 dentry->d_op = &ecryptfs_dops; 210 if (flag) 211 d_add(dentry, inode); 212 else 213 d_instantiate(dentry, inode); 214 fsstack_copy_attr_all(inode, lower_inode, NULL); 215 /* This size will be overwritten for real files w/ headers and 216 * other metadata */ 217 fsstack_copy_inode_size(inode, lower_inode); 218 rc = ecryptfs_init_persistent_file(dentry); 219 if (rc) { 220 printk(KERN_ERR "%s: Error attempting to initialize the " 221 "persistent file for the dentry with name [%s]; " 222 "rc = [%d]\n", __func__, dentry->d_name.name, rc); 223 goto out; 224 } 225 out: 226 return rc; 227 } 228 229 enum { ecryptfs_opt_sig, ecryptfs_opt_ecryptfs_sig, 230 ecryptfs_opt_cipher, ecryptfs_opt_ecryptfs_cipher, 231 ecryptfs_opt_ecryptfs_key_bytes, 232 ecryptfs_opt_passthrough, ecryptfs_opt_xattr_metadata, 233 ecryptfs_opt_encrypted_view, ecryptfs_opt_err }; 234 235 static match_table_t tokens = { 236 {ecryptfs_opt_sig, "sig=%s"}, 237 {ecryptfs_opt_ecryptfs_sig, "ecryptfs_sig=%s"}, 238 {ecryptfs_opt_cipher, "cipher=%s"}, 239 {ecryptfs_opt_ecryptfs_cipher, "ecryptfs_cipher=%s"}, 240 {ecryptfs_opt_ecryptfs_key_bytes, "ecryptfs_key_bytes=%u"}, 241 {ecryptfs_opt_passthrough, "ecryptfs_passthrough"}, 242 {ecryptfs_opt_xattr_metadata, "ecryptfs_xattr_metadata"}, 243 {ecryptfs_opt_encrypted_view, "ecryptfs_encrypted_view"}, 244 {ecryptfs_opt_err, NULL} 245 }; 246 247 static int ecryptfs_init_global_auth_toks( 248 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 249 { 250 struct ecryptfs_global_auth_tok *global_auth_tok; 251 int rc = 0; 252 253 list_for_each_entry(global_auth_tok, 254 &mount_crypt_stat->global_auth_tok_list, 255 mount_crypt_stat_list) { 256 rc = ecryptfs_keyring_auth_tok_for_sig( 257 &global_auth_tok->global_auth_tok_key, 258 &global_auth_tok->global_auth_tok, 259 global_auth_tok->sig); 260 if (rc) { 261 printk(KERN_ERR "Could not find valid key in user " 262 "session keyring for sig specified in mount " 263 "option: [%s]\n", global_auth_tok->sig); 264 global_auth_tok->flags |= ECRYPTFS_AUTH_TOK_INVALID; 265 rc = 0; 266 } else 267 global_auth_tok->flags &= ~ECRYPTFS_AUTH_TOK_INVALID; 268 } 269 return rc; 270 } 271 272 static void ecryptfs_init_mount_crypt_stat( 273 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 274 { 275 memset((void *)mount_crypt_stat, 0, 276 sizeof(struct ecryptfs_mount_crypt_stat)); 277 INIT_LIST_HEAD(&mount_crypt_stat->global_auth_tok_list); 278 mutex_init(&mount_crypt_stat->global_auth_tok_list_mutex); 279 mount_crypt_stat->flags |= ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED; 280 } 281 282 /** 283 * ecryptfs_parse_options 284 * @sb: The ecryptfs super block 285 * @options: The options pased to the kernel 286 * 287 * Parse mount options: 288 * debug=N - ecryptfs_verbosity level for debug output 289 * sig=XXX - description(signature) of the key to use 290 * 291 * Returns the dentry object of the lower-level (lower/interposed) 292 * directory; We want to mount our stackable file system on top of 293 * that lower directory. 294 * 295 * The signature of the key to use must be the description of a key 296 * already in the keyring. Mounting will fail if the key can not be 297 * found. 298 * 299 * Returns zero on success; non-zero on error 300 */ 301 static int ecryptfs_parse_options(struct super_block *sb, char *options) 302 { 303 char *p; 304 int rc = 0; 305 int sig_set = 0; 306 int cipher_name_set = 0; 307 int cipher_key_bytes; 308 int cipher_key_bytes_set = 0; 309 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 310 &ecryptfs_superblock_to_private(sb)->mount_crypt_stat; 311 substring_t args[MAX_OPT_ARGS]; 312 int token; 313 char *sig_src; 314 char *cipher_name_dst; 315 char *cipher_name_src; 316 char *cipher_key_bytes_src; 317 int cipher_name_len; 318 319 if (!options) { 320 rc = -EINVAL; 321 goto out; 322 } 323 ecryptfs_init_mount_crypt_stat(mount_crypt_stat); 324 while ((p = strsep(&options, ",")) != NULL) { 325 if (!*p) 326 continue; 327 token = match_token(p, tokens, args); 328 switch (token) { 329 case ecryptfs_opt_sig: 330 case ecryptfs_opt_ecryptfs_sig: 331 sig_src = args[0].from; 332 rc = ecryptfs_add_global_auth_tok(mount_crypt_stat, 333 sig_src); 334 if (rc) { 335 printk(KERN_ERR "Error attempting to register " 336 "global sig; rc = [%d]\n", rc); 337 goto out; 338 } 339 sig_set = 1; 340 break; 341 case ecryptfs_opt_cipher: 342 case ecryptfs_opt_ecryptfs_cipher: 343 cipher_name_src = args[0].from; 344 cipher_name_dst = 345 mount_crypt_stat-> 346 global_default_cipher_name; 347 strncpy(cipher_name_dst, cipher_name_src, 348 ECRYPTFS_MAX_CIPHER_NAME_SIZE); 349 ecryptfs_printk(KERN_DEBUG, 350 "The mount_crypt_stat " 351 "global_default_cipher_name set to: " 352 "[%s]\n", cipher_name_dst); 353 cipher_name_set = 1; 354 break; 355 case ecryptfs_opt_ecryptfs_key_bytes: 356 cipher_key_bytes_src = args[0].from; 357 cipher_key_bytes = 358 (int)simple_strtol(cipher_key_bytes_src, 359 &cipher_key_bytes_src, 0); 360 mount_crypt_stat->global_default_cipher_key_size = 361 cipher_key_bytes; 362 ecryptfs_printk(KERN_DEBUG, 363 "The mount_crypt_stat " 364 "global_default_cipher_key_size " 365 "set to: [%d]\n", mount_crypt_stat-> 366 global_default_cipher_key_size); 367 cipher_key_bytes_set = 1; 368 break; 369 case ecryptfs_opt_passthrough: 370 mount_crypt_stat->flags |= 371 ECRYPTFS_PLAINTEXT_PASSTHROUGH_ENABLED; 372 break; 373 case ecryptfs_opt_xattr_metadata: 374 mount_crypt_stat->flags |= 375 ECRYPTFS_XATTR_METADATA_ENABLED; 376 break; 377 case ecryptfs_opt_encrypted_view: 378 mount_crypt_stat->flags |= 379 ECRYPTFS_XATTR_METADATA_ENABLED; 380 mount_crypt_stat->flags |= 381 ECRYPTFS_ENCRYPTED_VIEW_ENABLED; 382 break; 383 case ecryptfs_opt_err: 384 default: 385 ecryptfs_printk(KERN_WARNING, 386 "eCryptfs: unrecognized option '%s'\n", 387 p); 388 } 389 } 390 if (!sig_set) { 391 rc = -EINVAL; 392 ecryptfs_printk(KERN_ERR, "You must supply at least one valid " 393 "auth tok signature as a mount " 394 "parameter; see the eCryptfs README\n"); 395 goto out; 396 } 397 if (!cipher_name_set) { 398 cipher_name_len = strlen(ECRYPTFS_DEFAULT_CIPHER); 399 if (unlikely(cipher_name_len 400 >= ECRYPTFS_MAX_CIPHER_NAME_SIZE)) { 401 rc = -EINVAL; 402 BUG(); 403 goto out; 404 } 405 memcpy(mount_crypt_stat->global_default_cipher_name, 406 ECRYPTFS_DEFAULT_CIPHER, cipher_name_len); 407 mount_crypt_stat->global_default_cipher_name[cipher_name_len] 408 = '\0'; 409 } 410 if (!cipher_key_bytes_set) { 411 mount_crypt_stat->global_default_cipher_key_size = 0; 412 } 413 mutex_lock(&key_tfm_list_mutex); 414 if (!ecryptfs_tfm_exists(mount_crypt_stat->global_default_cipher_name, 415 NULL)) 416 rc = ecryptfs_add_new_key_tfm( 417 NULL, mount_crypt_stat->global_default_cipher_name, 418 mount_crypt_stat->global_default_cipher_key_size); 419 mutex_unlock(&key_tfm_list_mutex); 420 if (rc) { 421 printk(KERN_ERR "Error attempting to initialize cipher with " 422 "name = [%s] and key size = [%td]; rc = [%d]\n", 423 mount_crypt_stat->global_default_cipher_name, 424 mount_crypt_stat->global_default_cipher_key_size, rc); 425 rc = -EINVAL; 426 goto out; 427 } 428 rc = ecryptfs_init_global_auth_toks(mount_crypt_stat); 429 if (rc) { 430 printk(KERN_WARNING "One or more global auth toks could not " 431 "properly register; rc = [%d]\n", rc); 432 } 433 rc = 0; 434 out: 435 return rc; 436 } 437 438 struct kmem_cache *ecryptfs_sb_info_cache; 439 440 /** 441 * ecryptfs_fill_super 442 * @sb: The ecryptfs super block 443 * @raw_data: The options passed to mount 444 * @silent: Not used but required by function prototype 445 * 446 * Sets up what we can of the sb, rest is done in ecryptfs_read_super 447 * 448 * Returns zero on success; non-zero otherwise 449 */ 450 static int 451 ecryptfs_fill_super(struct super_block *sb, void *raw_data, int silent) 452 { 453 int rc = 0; 454 455 /* Released in ecryptfs_put_super() */ 456 ecryptfs_set_superblock_private(sb, 457 kmem_cache_zalloc(ecryptfs_sb_info_cache, 458 GFP_KERNEL)); 459 if (!ecryptfs_superblock_to_private(sb)) { 460 ecryptfs_printk(KERN_WARNING, "Out of memory\n"); 461 rc = -ENOMEM; 462 goto out; 463 } 464 sb->s_op = &ecryptfs_sops; 465 /* Released through deactivate_super(sb) from get_sb_nodev */ 466 sb->s_root = d_alloc(NULL, &(const struct qstr) { 467 .hash = 0,.name = "/",.len = 1}); 468 if (!sb->s_root) { 469 ecryptfs_printk(KERN_ERR, "d_alloc failed\n"); 470 rc = -ENOMEM; 471 goto out; 472 } 473 sb->s_root->d_op = &ecryptfs_dops; 474 sb->s_root->d_sb = sb; 475 sb->s_root->d_parent = sb->s_root; 476 /* Released in d_release when dput(sb->s_root) is called */ 477 /* through deactivate_super(sb) from get_sb_nodev() */ 478 ecryptfs_set_dentry_private(sb->s_root, 479 kmem_cache_zalloc(ecryptfs_dentry_info_cache, 480 GFP_KERNEL)); 481 if (!ecryptfs_dentry_to_private(sb->s_root)) { 482 ecryptfs_printk(KERN_ERR, 483 "dentry_info_cache alloc failed\n"); 484 rc = -ENOMEM; 485 goto out; 486 } 487 rc = 0; 488 out: 489 /* Should be able to rely on deactivate_super called from 490 * get_sb_nodev */ 491 return rc; 492 } 493 494 /** 495 * ecryptfs_read_super 496 * @sb: The ecryptfs super block 497 * @dev_name: The path to mount over 498 * 499 * Read the super block of the lower filesystem, and use 500 * ecryptfs_interpose to create our initial inode and super block 501 * struct. 502 */ 503 static int ecryptfs_read_super(struct super_block *sb, const char *dev_name) 504 { 505 int rc; 506 struct nameidata nd; 507 struct dentry *lower_root; 508 struct vfsmount *lower_mnt; 509 510 memset(&nd, 0, sizeof(struct nameidata)); 511 rc = path_lookup(dev_name, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &nd); 512 if (rc) { 513 ecryptfs_printk(KERN_WARNING, "path_lookup() failed\n"); 514 goto out; 515 } 516 lower_root = nd.path.dentry; 517 lower_mnt = nd.path.mnt; 518 ecryptfs_set_superblock_lower(sb, lower_root->d_sb); 519 sb->s_maxbytes = lower_root->d_sb->s_maxbytes; 520 sb->s_blocksize = lower_root->d_sb->s_blocksize; 521 ecryptfs_set_dentry_lower(sb->s_root, lower_root); 522 ecryptfs_set_dentry_lower_mnt(sb->s_root, lower_mnt); 523 rc = ecryptfs_interpose(lower_root, sb->s_root, sb, 0); 524 if (rc) 525 goto out_free; 526 rc = 0; 527 goto out; 528 out_free: 529 path_put(&nd.path); 530 out: 531 return rc; 532 } 533 534 /** 535 * ecryptfs_get_sb 536 * @fs_type 537 * @flags 538 * @dev_name: The path to mount over 539 * @raw_data: The options passed into the kernel 540 * 541 * The whole ecryptfs_get_sb process is broken into 4 functions: 542 * ecryptfs_parse_options(): handle options passed to ecryptfs, if any 543 * ecryptfs_fill_super(): used by get_sb_nodev, fills out the super_block 544 * with as much information as it can before needing 545 * the lower filesystem. 546 * ecryptfs_read_super(): this accesses the lower filesystem and uses 547 * ecryptfs_interpolate to perform most of the linking 548 * ecryptfs_interpolate(): links the lower filesystem into ecryptfs 549 */ 550 static int ecryptfs_get_sb(struct file_system_type *fs_type, int flags, 551 const char *dev_name, void *raw_data, 552 struct vfsmount *mnt) 553 { 554 int rc; 555 struct super_block *sb; 556 557 rc = get_sb_nodev(fs_type, flags, raw_data, ecryptfs_fill_super, mnt); 558 if (rc < 0) { 559 printk(KERN_ERR "Getting sb failed; rc = [%d]\n", rc); 560 goto out; 561 } 562 sb = mnt->mnt_sb; 563 rc = ecryptfs_parse_options(sb, raw_data); 564 if (rc) { 565 printk(KERN_ERR "Error parsing options; rc = [%d]\n", rc); 566 goto out_abort; 567 } 568 rc = ecryptfs_read_super(sb, dev_name); 569 if (rc) { 570 printk(KERN_ERR "Reading sb failed; rc = [%d]\n", rc); 571 goto out_abort; 572 } 573 goto out; 574 out_abort: 575 dput(sb->s_root); 576 up_write(&sb->s_umount); 577 deactivate_super(sb); 578 out: 579 return rc; 580 } 581 582 /** 583 * ecryptfs_kill_block_super 584 * @sb: The ecryptfs super block 585 * 586 * Used to bring the superblock down and free the private data. 587 * Private data is free'd in ecryptfs_put_super() 588 */ 589 static void ecryptfs_kill_block_super(struct super_block *sb) 590 { 591 generic_shutdown_super(sb); 592 } 593 594 static struct file_system_type ecryptfs_fs_type = { 595 .owner = THIS_MODULE, 596 .name = "ecryptfs", 597 .get_sb = ecryptfs_get_sb, 598 .kill_sb = ecryptfs_kill_block_super, 599 .fs_flags = 0 600 }; 601 602 /** 603 * inode_info_init_once 604 * 605 * Initializes the ecryptfs_inode_info_cache when it is created 606 */ 607 static void 608 inode_info_init_once(struct kmem_cache *cachep, void *vptr) 609 { 610 struct ecryptfs_inode_info *ei = (struct ecryptfs_inode_info *)vptr; 611 612 inode_init_once(&ei->vfs_inode); 613 } 614 615 static struct ecryptfs_cache_info { 616 struct kmem_cache **cache; 617 const char *name; 618 size_t size; 619 void (*ctor)(struct kmem_cache *cache, void *obj); 620 } ecryptfs_cache_infos[] = { 621 { 622 .cache = &ecryptfs_auth_tok_list_item_cache, 623 .name = "ecryptfs_auth_tok_list_item", 624 .size = sizeof(struct ecryptfs_auth_tok_list_item), 625 }, 626 { 627 .cache = &ecryptfs_file_info_cache, 628 .name = "ecryptfs_file_cache", 629 .size = sizeof(struct ecryptfs_file_info), 630 }, 631 { 632 .cache = &ecryptfs_dentry_info_cache, 633 .name = "ecryptfs_dentry_info_cache", 634 .size = sizeof(struct ecryptfs_dentry_info), 635 }, 636 { 637 .cache = &ecryptfs_inode_info_cache, 638 .name = "ecryptfs_inode_cache", 639 .size = sizeof(struct ecryptfs_inode_info), 640 .ctor = inode_info_init_once, 641 }, 642 { 643 .cache = &ecryptfs_sb_info_cache, 644 .name = "ecryptfs_sb_cache", 645 .size = sizeof(struct ecryptfs_sb_info), 646 }, 647 { 648 .cache = &ecryptfs_header_cache_1, 649 .name = "ecryptfs_headers_1", 650 .size = PAGE_CACHE_SIZE, 651 }, 652 { 653 .cache = &ecryptfs_header_cache_2, 654 .name = "ecryptfs_headers_2", 655 .size = PAGE_CACHE_SIZE, 656 }, 657 { 658 .cache = &ecryptfs_xattr_cache, 659 .name = "ecryptfs_xattr_cache", 660 .size = PAGE_CACHE_SIZE, 661 }, 662 { 663 .cache = &ecryptfs_key_record_cache, 664 .name = "ecryptfs_key_record_cache", 665 .size = sizeof(struct ecryptfs_key_record), 666 }, 667 { 668 .cache = &ecryptfs_key_sig_cache, 669 .name = "ecryptfs_key_sig_cache", 670 .size = sizeof(struct ecryptfs_key_sig), 671 }, 672 { 673 .cache = &ecryptfs_global_auth_tok_cache, 674 .name = "ecryptfs_global_auth_tok_cache", 675 .size = sizeof(struct ecryptfs_global_auth_tok), 676 }, 677 { 678 .cache = &ecryptfs_key_tfm_cache, 679 .name = "ecryptfs_key_tfm_cache", 680 .size = sizeof(struct ecryptfs_key_tfm), 681 }, 682 }; 683 684 static void ecryptfs_free_kmem_caches(void) 685 { 686 int i; 687 688 for (i = 0; i < ARRAY_SIZE(ecryptfs_cache_infos); i++) { 689 struct ecryptfs_cache_info *info; 690 691 info = &ecryptfs_cache_infos[i]; 692 if (*(info->cache)) 693 kmem_cache_destroy(*(info->cache)); 694 } 695 } 696 697 /** 698 * ecryptfs_init_kmem_caches 699 * 700 * Returns zero on success; non-zero otherwise 701 */ 702 static int ecryptfs_init_kmem_caches(void) 703 { 704 int i; 705 706 for (i = 0; i < ARRAY_SIZE(ecryptfs_cache_infos); i++) { 707 struct ecryptfs_cache_info *info; 708 709 info = &ecryptfs_cache_infos[i]; 710 *(info->cache) = kmem_cache_create(info->name, info->size, 711 0, SLAB_HWCACHE_ALIGN, info->ctor); 712 if (!*(info->cache)) { 713 ecryptfs_free_kmem_caches(); 714 ecryptfs_printk(KERN_WARNING, "%s: " 715 "kmem_cache_create failed\n", 716 info->name); 717 return -ENOMEM; 718 } 719 } 720 return 0; 721 } 722 723 static struct kobject *ecryptfs_kobj; 724 725 static ssize_t version_show(struct kobject *kobj, 726 struct kobj_attribute *attr, char *buff) 727 { 728 return snprintf(buff, PAGE_SIZE, "%d\n", ECRYPTFS_VERSIONING_MASK); 729 } 730 731 static struct kobj_attribute version_attr = __ATTR_RO(version); 732 733 static struct attribute *attributes[] = { 734 &version_attr.attr, 735 NULL, 736 }; 737 738 static struct attribute_group attr_group = { 739 .attrs = attributes, 740 }; 741 742 static int do_sysfs_registration(void) 743 { 744 int rc; 745 746 ecryptfs_kobj = kobject_create_and_add("ecryptfs", fs_kobj); 747 if (!ecryptfs_kobj) { 748 printk(KERN_ERR "Unable to create ecryptfs kset\n"); 749 rc = -ENOMEM; 750 goto out; 751 } 752 rc = sysfs_create_group(ecryptfs_kobj, &attr_group); 753 if (rc) { 754 printk(KERN_ERR 755 "Unable to create ecryptfs version attributes\n"); 756 kobject_put(ecryptfs_kobj); 757 } 758 out: 759 return rc; 760 } 761 762 static void do_sysfs_unregistration(void) 763 { 764 sysfs_remove_group(ecryptfs_kobj, &attr_group); 765 kobject_put(ecryptfs_kobj); 766 } 767 768 static int __init ecryptfs_init(void) 769 { 770 int rc; 771 772 if (ECRYPTFS_DEFAULT_EXTENT_SIZE > PAGE_CACHE_SIZE) { 773 rc = -EINVAL; 774 ecryptfs_printk(KERN_ERR, "The eCryptfs extent size is " 775 "larger than the host's page size, and so " 776 "eCryptfs cannot run on this system. The " 777 "default eCryptfs extent size is [%d] bytes; " 778 "the page size is [%d] bytes.\n", 779 ECRYPTFS_DEFAULT_EXTENT_SIZE, PAGE_CACHE_SIZE); 780 goto out; 781 } 782 rc = ecryptfs_init_kmem_caches(); 783 if (rc) { 784 printk(KERN_ERR 785 "Failed to allocate one or more kmem_cache objects\n"); 786 goto out; 787 } 788 rc = register_filesystem(&ecryptfs_fs_type); 789 if (rc) { 790 printk(KERN_ERR "Failed to register filesystem\n"); 791 goto out_free_kmem_caches; 792 } 793 rc = do_sysfs_registration(); 794 if (rc) { 795 printk(KERN_ERR "sysfs registration failed\n"); 796 goto out_unregister_filesystem; 797 } 798 rc = ecryptfs_init_messaging(ecryptfs_transport); 799 if (rc) { 800 ecryptfs_printk(KERN_ERR, "Failure occured while attempting to " 801 "initialize the eCryptfs netlink socket\n"); 802 goto out_do_sysfs_unregistration; 803 } 804 rc = ecryptfs_init_crypto(); 805 if (rc) { 806 printk(KERN_ERR "Failure whilst attempting to init crypto; " 807 "rc = [%d]\n", rc); 808 goto out_release_messaging; 809 } 810 if (ecryptfs_verbosity > 0) 811 printk(KERN_CRIT "eCryptfs verbosity set to %d. Secret values " 812 "will be written to the syslog!\n", ecryptfs_verbosity); 813 814 goto out; 815 out_release_messaging: 816 ecryptfs_release_messaging(ecryptfs_transport); 817 out_do_sysfs_unregistration: 818 do_sysfs_unregistration(); 819 out_unregister_filesystem: 820 unregister_filesystem(&ecryptfs_fs_type); 821 out_free_kmem_caches: 822 ecryptfs_free_kmem_caches(); 823 out: 824 return rc; 825 } 826 827 static void __exit ecryptfs_exit(void) 828 { 829 int rc; 830 831 rc = ecryptfs_destroy_crypto(); 832 if (rc) 833 printk(KERN_ERR "Failure whilst attempting to destroy crypto; " 834 "rc = [%d]\n", rc); 835 ecryptfs_release_messaging(ecryptfs_transport); 836 do_sysfs_unregistration(); 837 unregister_filesystem(&ecryptfs_fs_type); 838 ecryptfs_free_kmem_caches(); 839 } 840 841 MODULE_AUTHOR("Michael A. Halcrow <mhalcrow@us.ibm.com>"); 842 MODULE_DESCRIPTION("eCryptfs"); 843 844 MODULE_LICENSE("GPL"); 845 846 module_init(ecryptfs_init) 847 module_exit(ecryptfs_exit) 848