xref: /openbmc/linux/fs/ecryptfs/main.c (revision 22246614)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 1997-2003 Erez Zadok
5  * Copyright (C) 2001-2003 Stony Brook University
6  * Copyright (C) 2004-2007 International Business Machines Corp.
7  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8  *              Michael C. Thompson <mcthomps@us.ibm.com>
9  *              Tyler Hicks <tyhicks@ou.edu>
10  *
11  * This program is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU General Public License as
13  * published by the Free Software Foundation; either version 2 of the
14  * License, or (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
24  * 02111-1307, USA.
25  */
26 
27 #include <linux/dcache.h>
28 #include <linux/file.h>
29 #include <linux/module.h>
30 #include <linux/namei.h>
31 #include <linux/skbuff.h>
32 #include <linux/crypto.h>
33 #include <linux/netlink.h>
34 #include <linux/mount.h>
35 #include <linux/pagemap.h>
36 #include <linux/key.h>
37 #include <linux/parser.h>
38 #include <linux/fs_stack.h>
39 #include "ecryptfs_kernel.h"
40 
41 /**
42  * Module parameter that defines the ecryptfs_verbosity level.
43  */
44 int ecryptfs_verbosity = 0;
45 
46 module_param(ecryptfs_verbosity, int, 0);
47 MODULE_PARM_DESC(ecryptfs_verbosity,
48 		 "Initial verbosity level (0 or 1; defaults to "
49 		 "0, which is Quiet)");
50 
51 /**
52  * Module parameter that defines the number of netlink message buffer
53  * elements
54  */
55 unsigned int ecryptfs_message_buf_len = ECRYPTFS_DEFAULT_MSG_CTX_ELEMS;
56 
57 module_param(ecryptfs_message_buf_len, uint, 0);
58 MODULE_PARM_DESC(ecryptfs_message_buf_len,
59 		 "Number of message buffer elements");
60 
61 /**
62  * Module parameter that defines the maximum guaranteed amount of time to wait
63  * for a response through netlink.  The actual sleep time will be, more than
64  * likely, a small amount greater than this specified value, but only less if
65  * the netlink message successfully arrives.
66  */
67 signed long ecryptfs_message_wait_timeout = ECRYPTFS_MAX_MSG_CTX_TTL / HZ;
68 
69 module_param(ecryptfs_message_wait_timeout, long, 0);
70 MODULE_PARM_DESC(ecryptfs_message_wait_timeout,
71 		 "Maximum number of seconds that an operation will "
72 		 "sleep while waiting for a message response from "
73 		 "userspace");
74 
75 /**
76  * Module parameter that is an estimate of the maximum number of users
77  * that will be concurrently using eCryptfs. Set this to the right
78  * value to balance performance and memory use.
79  */
80 unsigned int ecryptfs_number_of_users = ECRYPTFS_DEFAULT_NUM_USERS;
81 
82 module_param(ecryptfs_number_of_users, uint, 0);
83 MODULE_PARM_DESC(ecryptfs_number_of_users, "An estimate of the number of "
84 		 "concurrent users of eCryptfs");
85 
86 unsigned int ecryptfs_transport = ECRYPTFS_DEFAULT_TRANSPORT;
87 
88 void __ecryptfs_printk(const char *fmt, ...)
89 {
90 	va_list args;
91 	va_start(args, fmt);
92 	if (fmt[1] == '7') { /* KERN_DEBUG */
93 		if (ecryptfs_verbosity >= 1)
94 			vprintk(fmt, args);
95 	} else
96 		vprintk(fmt, args);
97 	va_end(args);
98 }
99 
100 /**
101  * ecryptfs_init_persistent_file
102  * @ecryptfs_dentry: Fully initialized eCryptfs dentry object, with
103  *                   the lower dentry and the lower mount set
104  *
105  * eCryptfs only ever keeps a single open file for every lower
106  * inode. All I/O operations to the lower inode occur through that
107  * file. When the first eCryptfs dentry that interposes with the first
108  * lower dentry for that inode is created, this function creates the
109  * persistent file struct and associates it with the eCryptfs
110  * inode. When the eCryptfs inode is destroyed, the file is closed.
111  *
112  * The persistent file will be opened with read/write permissions, if
113  * possible. Otherwise, it is opened read-only.
114  *
115  * This function does nothing if a lower persistent file is already
116  * associated with the eCryptfs inode.
117  *
118  * Returns zero on success; non-zero otherwise
119  */
120 static int ecryptfs_init_persistent_file(struct dentry *ecryptfs_dentry)
121 {
122 	struct ecryptfs_inode_info *inode_info =
123 		ecryptfs_inode_to_private(ecryptfs_dentry->d_inode);
124 	int rc = 0;
125 
126 	mutex_lock(&inode_info->lower_file_mutex);
127 	if (!inode_info->lower_file) {
128 		struct dentry *lower_dentry;
129 		struct vfsmount *lower_mnt =
130 			ecryptfs_dentry_to_lower_mnt(ecryptfs_dentry);
131 
132 		lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
133 		/* Corresponding dput() and mntput() are done when the
134 		 * persistent file is fput() when the eCryptfs inode
135 		 * is destroyed. */
136 		dget(lower_dentry);
137 		mntget(lower_mnt);
138 		inode_info->lower_file = dentry_open(lower_dentry,
139 						     lower_mnt,
140 						     (O_RDWR | O_LARGEFILE));
141 		if (IS_ERR(inode_info->lower_file)) {
142 			dget(lower_dentry);
143 			mntget(lower_mnt);
144 			inode_info->lower_file = dentry_open(lower_dentry,
145 							     lower_mnt,
146 							     (O_RDONLY
147 							      | O_LARGEFILE));
148 		}
149 		if (IS_ERR(inode_info->lower_file)) {
150 			printk(KERN_ERR "Error opening lower persistent file "
151 			       "for lower_dentry [0x%p] and lower_mnt [0x%p]\n",
152 			       lower_dentry, lower_mnt);
153 			rc = PTR_ERR(inode_info->lower_file);
154 			inode_info->lower_file = NULL;
155 		}
156 	}
157 	mutex_unlock(&inode_info->lower_file_mutex);
158 	return rc;
159 }
160 
161 /**
162  * ecryptfs_interpose
163  * @lower_dentry: Existing dentry in the lower filesystem
164  * @dentry: ecryptfs' dentry
165  * @sb: ecryptfs's super_block
166  * @flag: If set to true, then d_add is called, else d_instantiate is called
167  *
168  * Interposes upper and lower dentries.
169  *
170  * Returns zero on success; non-zero otherwise
171  */
172 int ecryptfs_interpose(struct dentry *lower_dentry, struct dentry *dentry,
173 		       struct super_block *sb, int flag)
174 {
175 	struct inode *lower_inode;
176 	struct inode *inode;
177 	int rc = 0;
178 
179 	lower_inode = lower_dentry->d_inode;
180 	if (lower_inode->i_sb != ecryptfs_superblock_to_lower(sb)) {
181 		rc = -EXDEV;
182 		goto out;
183 	}
184 	if (!igrab(lower_inode)) {
185 		rc = -ESTALE;
186 		goto out;
187 	}
188 	inode = iget5_locked(sb, (unsigned long)lower_inode,
189 			     ecryptfs_inode_test, ecryptfs_inode_set,
190 			     lower_inode);
191 	if (!inode) {
192 		rc = -EACCES;
193 		iput(lower_inode);
194 		goto out;
195 	}
196 	if (inode->i_state & I_NEW)
197 		unlock_new_inode(inode);
198 	else
199 		iput(lower_inode);
200 	if (S_ISLNK(lower_inode->i_mode))
201 		inode->i_op = &ecryptfs_symlink_iops;
202 	else if (S_ISDIR(lower_inode->i_mode))
203 		inode->i_op = &ecryptfs_dir_iops;
204 	if (S_ISDIR(lower_inode->i_mode))
205 		inode->i_fop = &ecryptfs_dir_fops;
206 	if (special_file(lower_inode->i_mode))
207 		init_special_inode(inode, lower_inode->i_mode,
208 				   lower_inode->i_rdev);
209 	dentry->d_op = &ecryptfs_dops;
210 	if (flag)
211 		d_add(dentry, inode);
212 	else
213 		d_instantiate(dentry, inode);
214 	fsstack_copy_attr_all(inode, lower_inode, NULL);
215 	/* This size will be overwritten for real files w/ headers and
216 	 * other metadata */
217 	fsstack_copy_inode_size(inode, lower_inode);
218 	rc = ecryptfs_init_persistent_file(dentry);
219 	if (rc) {
220 		printk(KERN_ERR "%s: Error attempting to initialize the "
221 		       "persistent file for the dentry with name [%s]; "
222 		       "rc = [%d]\n", __func__, dentry->d_name.name, rc);
223 		goto out;
224 	}
225 out:
226 	return rc;
227 }
228 
229 enum { ecryptfs_opt_sig, ecryptfs_opt_ecryptfs_sig,
230        ecryptfs_opt_cipher, ecryptfs_opt_ecryptfs_cipher,
231        ecryptfs_opt_ecryptfs_key_bytes,
232        ecryptfs_opt_passthrough, ecryptfs_opt_xattr_metadata,
233        ecryptfs_opt_encrypted_view, ecryptfs_opt_err };
234 
235 static match_table_t tokens = {
236 	{ecryptfs_opt_sig, "sig=%s"},
237 	{ecryptfs_opt_ecryptfs_sig, "ecryptfs_sig=%s"},
238 	{ecryptfs_opt_cipher, "cipher=%s"},
239 	{ecryptfs_opt_ecryptfs_cipher, "ecryptfs_cipher=%s"},
240 	{ecryptfs_opt_ecryptfs_key_bytes, "ecryptfs_key_bytes=%u"},
241 	{ecryptfs_opt_passthrough, "ecryptfs_passthrough"},
242 	{ecryptfs_opt_xattr_metadata, "ecryptfs_xattr_metadata"},
243 	{ecryptfs_opt_encrypted_view, "ecryptfs_encrypted_view"},
244 	{ecryptfs_opt_err, NULL}
245 };
246 
247 static int ecryptfs_init_global_auth_toks(
248 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
249 {
250 	struct ecryptfs_global_auth_tok *global_auth_tok;
251 	int rc = 0;
252 
253 	list_for_each_entry(global_auth_tok,
254 			    &mount_crypt_stat->global_auth_tok_list,
255 			    mount_crypt_stat_list) {
256 		rc = ecryptfs_keyring_auth_tok_for_sig(
257 			&global_auth_tok->global_auth_tok_key,
258 			&global_auth_tok->global_auth_tok,
259 			global_auth_tok->sig);
260 		if (rc) {
261 			printk(KERN_ERR "Could not find valid key in user "
262 			       "session keyring for sig specified in mount "
263 			       "option: [%s]\n", global_auth_tok->sig);
264 			global_auth_tok->flags |= ECRYPTFS_AUTH_TOK_INVALID;
265 			rc = 0;
266 		} else
267 			global_auth_tok->flags &= ~ECRYPTFS_AUTH_TOK_INVALID;
268 	}
269 	return rc;
270 }
271 
272 static void ecryptfs_init_mount_crypt_stat(
273 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
274 {
275 	memset((void *)mount_crypt_stat, 0,
276 	       sizeof(struct ecryptfs_mount_crypt_stat));
277 	INIT_LIST_HEAD(&mount_crypt_stat->global_auth_tok_list);
278 	mutex_init(&mount_crypt_stat->global_auth_tok_list_mutex);
279 	mount_crypt_stat->flags |= ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED;
280 }
281 
282 /**
283  * ecryptfs_parse_options
284  * @sb: The ecryptfs super block
285  * @options: The options pased to the kernel
286  *
287  * Parse mount options:
288  * debug=N 	   - ecryptfs_verbosity level for debug output
289  * sig=XXX	   - description(signature) of the key to use
290  *
291  * Returns the dentry object of the lower-level (lower/interposed)
292  * directory; We want to mount our stackable file system on top of
293  * that lower directory.
294  *
295  * The signature of the key to use must be the description of a key
296  * already in the keyring. Mounting will fail if the key can not be
297  * found.
298  *
299  * Returns zero on success; non-zero on error
300  */
301 static int ecryptfs_parse_options(struct super_block *sb, char *options)
302 {
303 	char *p;
304 	int rc = 0;
305 	int sig_set = 0;
306 	int cipher_name_set = 0;
307 	int cipher_key_bytes;
308 	int cipher_key_bytes_set = 0;
309 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
310 		&ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
311 	substring_t args[MAX_OPT_ARGS];
312 	int token;
313 	char *sig_src;
314 	char *cipher_name_dst;
315 	char *cipher_name_src;
316 	char *cipher_key_bytes_src;
317 	int cipher_name_len;
318 
319 	if (!options) {
320 		rc = -EINVAL;
321 		goto out;
322 	}
323 	ecryptfs_init_mount_crypt_stat(mount_crypt_stat);
324 	while ((p = strsep(&options, ",")) != NULL) {
325 		if (!*p)
326 			continue;
327 		token = match_token(p, tokens, args);
328 		switch (token) {
329 		case ecryptfs_opt_sig:
330 		case ecryptfs_opt_ecryptfs_sig:
331 			sig_src = args[0].from;
332 			rc = ecryptfs_add_global_auth_tok(mount_crypt_stat,
333 							  sig_src);
334 			if (rc) {
335 				printk(KERN_ERR "Error attempting to register "
336 				       "global sig; rc = [%d]\n", rc);
337 				goto out;
338 			}
339 			sig_set = 1;
340 			break;
341 		case ecryptfs_opt_cipher:
342 		case ecryptfs_opt_ecryptfs_cipher:
343 			cipher_name_src = args[0].from;
344 			cipher_name_dst =
345 				mount_crypt_stat->
346 				global_default_cipher_name;
347 			strncpy(cipher_name_dst, cipher_name_src,
348 				ECRYPTFS_MAX_CIPHER_NAME_SIZE);
349 			ecryptfs_printk(KERN_DEBUG,
350 					"The mount_crypt_stat "
351 					"global_default_cipher_name set to: "
352 					"[%s]\n", cipher_name_dst);
353 			cipher_name_set = 1;
354 			break;
355 		case ecryptfs_opt_ecryptfs_key_bytes:
356 			cipher_key_bytes_src = args[0].from;
357 			cipher_key_bytes =
358 				(int)simple_strtol(cipher_key_bytes_src,
359 						   &cipher_key_bytes_src, 0);
360 			mount_crypt_stat->global_default_cipher_key_size =
361 				cipher_key_bytes;
362 			ecryptfs_printk(KERN_DEBUG,
363 					"The mount_crypt_stat "
364 					"global_default_cipher_key_size "
365 					"set to: [%d]\n", mount_crypt_stat->
366 					global_default_cipher_key_size);
367 			cipher_key_bytes_set = 1;
368 			break;
369 		case ecryptfs_opt_passthrough:
370 			mount_crypt_stat->flags |=
371 				ECRYPTFS_PLAINTEXT_PASSTHROUGH_ENABLED;
372 			break;
373 		case ecryptfs_opt_xattr_metadata:
374 			mount_crypt_stat->flags |=
375 				ECRYPTFS_XATTR_METADATA_ENABLED;
376 			break;
377 		case ecryptfs_opt_encrypted_view:
378 			mount_crypt_stat->flags |=
379 				ECRYPTFS_XATTR_METADATA_ENABLED;
380 			mount_crypt_stat->flags |=
381 				ECRYPTFS_ENCRYPTED_VIEW_ENABLED;
382 			break;
383 		case ecryptfs_opt_err:
384 		default:
385 			ecryptfs_printk(KERN_WARNING,
386 					"eCryptfs: unrecognized option '%s'\n",
387 					p);
388 		}
389 	}
390 	if (!sig_set) {
391 		rc = -EINVAL;
392 		ecryptfs_printk(KERN_ERR, "You must supply at least one valid "
393 				"auth tok signature as a mount "
394 				"parameter; see the eCryptfs README\n");
395 		goto out;
396 	}
397 	if (!cipher_name_set) {
398 		cipher_name_len = strlen(ECRYPTFS_DEFAULT_CIPHER);
399 		if (unlikely(cipher_name_len
400 			     >= ECRYPTFS_MAX_CIPHER_NAME_SIZE)) {
401 			rc = -EINVAL;
402 			BUG();
403 			goto out;
404 		}
405 		memcpy(mount_crypt_stat->global_default_cipher_name,
406 		       ECRYPTFS_DEFAULT_CIPHER, cipher_name_len);
407 		mount_crypt_stat->global_default_cipher_name[cipher_name_len]
408 		    = '\0';
409 	}
410 	if (!cipher_key_bytes_set) {
411 		mount_crypt_stat->global_default_cipher_key_size = 0;
412 	}
413 	mutex_lock(&key_tfm_list_mutex);
414 	if (!ecryptfs_tfm_exists(mount_crypt_stat->global_default_cipher_name,
415 				 NULL))
416 		rc = ecryptfs_add_new_key_tfm(
417 			NULL, mount_crypt_stat->global_default_cipher_name,
418 			mount_crypt_stat->global_default_cipher_key_size);
419 	mutex_unlock(&key_tfm_list_mutex);
420 	if (rc) {
421 		printk(KERN_ERR "Error attempting to initialize cipher with "
422 		       "name = [%s] and key size = [%td]; rc = [%d]\n",
423 		       mount_crypt_stat->global_default_cipher_name,
424 		       mount_crypt_stat->global_default_cipher_key_size, rc);
425 		rc = -EINVAL;
426 		goto out;
427 	}
428 	rc = ecryptfs_init_global_auth_toks(mount_crypt_stat);
429 	if (rc) {
430 		printk(KERN_WARNING "One or more global auth toks could not "
431 		       "properly register; rc = [%d]\n", rc);
432 	}
433 	rc = 0;
434 out:
435 	return rc;
436 }
437 
438 struct kmem_cache *ecryptfs_sb_info_cache;
439 
440 /**
441  * ecryptfs_fill_super
442  * @sb: The ecryptfs super block
443  * @raw_data: The options passed to mount
444  * @silent: Not used but required by function prototype
445  *
446  * Sets up what we can of the sb, rest is done in ecryptfs_read_super
447  *
448  * Returns zero on success; non-zero otherwise
449  */
450 static int
451 ecryptfs_fill_super(struct super_block *sb, void *raw_data, int silent)
452 {
453 	int rc = 0;
454 
455 	/* Released in ecryptfs_put_super() */
456 	ecryptfs_set_superblock_private(sb,
457 					kmem_cache_zalloc(ecryptfs_sb_info_cache,
458 							 GFP_KERNEL));
459 	if (!ecryptfs_superblock_to_private(sb)) {
460 		ecryptfs_printk(KERN_WARNING, "Out of memory\n");
461 		rc = -ENOMEM;
462 		goto out;
463 	}
464 	sb->s_op = &ecryptfs_sops;
465 	/* Released through deactivate_super(sb) from get_sb_nodev */
466 	sb->s_root = d_alloc(NULL, &(const struct qstr) {
467 			     .hash = 0,.name = "/",.len = 1});
468 	if (!sb->s_root) {
469 		ecryptfs_printk(KERN_ERR, "d_alloc failed\n");
470 		rc = -ENOMEM;
471 		goto out;
472 	}
473 	sb->s_root->d_op = &ecryptfs_dops;
474 	sb->s_root->d_sb = sb;
475 	sb->s_root->d_parent = sb->s_root;
476 	/* Released in d_release when dput(sb->s_root) is called */
477 	/* through deactivate_super(sb) from get_sb_nodev() */
478 	ecryptfs_set_dentry_private(sb->s_root,
479 				    kmem_cache_zalloc(ecryptfs_dentry_info_cache,
480 						     GFP_KERNEL));
481 	if (!ecryptfs_dentry_to_private(sb->s_root)) {
482 		ecryptfs_printk(KERN_ERR,
483 				"dentry_info_cache alloc failed\n");
484 		rc = -ENOMEM;
485 		goto out;
486 	}
487 	rc = 0;
488 out:
489 	/* Should be able to rely on deactivate_super called from
490 	 * get_sb_nodev */
491 	return rc;
492 }
493 
494 /**
495  * ecryptfs_read_super
496  * @sb: The ecryptfs super block
497  * @dev_name: The path to mount over
498  *
499  * Read the super block of the lower filesystem, and use
500  * ecryptfs_interpose to create our initial inode and super block
501  * struct.
502  */
503 static int ecryptfs_read_super(struct super_block *sb, const char *dev_name)
504 {
505 	int rc;
506 	struct nameidata nd;
507 	struct dentry *lower_root;
508 	struct vfsmount *lower_mnt;
509 
510 	memset(&nd, 0, sizeof(struct nameidata));
511 	rc = path_lookup(dev_name, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &nd);
512 	if (rc) {
513 		ecryptfs_printk(KERN_WARNING, "path_lookup() failed\n");
514 		goto out;
515 	}
516 	lower_root = nd.path.dentry;
517 	lower_mnt = nd.path.mnt;
518 	ecryptfs_set_superblock_lower(sb, lower_root->d_sb);
519 	sb->s_maxbytes = lower_root->d_sb->s_maxbytes;
520 	sb->s_blocksize = lower_root->d_sb->s_blocksize;
521 	ecryptfs_set_dentry_lower(sb->s_root, lower_root);
522 	ecryptfs_set_dentry_lower_mnt(sb->s_root, lower_mnt);
523 	rc = ecryptfs_interpose(lower_root, sb->s_root, sb, 0);
524 	if (rc)
525 		goto out_free;
526 	rc = 0;
527 	goto out;
528 out_free:
529 	path_put(&nd.path);
530 out:
531 	return rc;
532 }
533 
534 /**
535  * ecryptfs_get_sb
536  * @fs_type
537  * @flags
538  * @dev_name: The path to mount over
539  * @raw_data: The options passed into the kernel
540  *
541  * The whole ecryptfs_get_sb process is broken into 4 functions:
542  * ecryptfs_parse_options(): handle options passed to ecryptfs, if any
543  * ecryptfs_fill_super(): used by get_sb_nodev, fills out the super_block
544  *                        with as much information as it can before needing
545  *                        the lower filesystem.
546  * ecryptfs_read_super(): this accesses the lower filesystem and uses
547  *                        ecryptfs_interpolate to perform most of the linking
548  * ecryptfs_interpolate(): links the lower filesystem into ecryptfs
549  */
550 static int ecryptfs_get_sb(struct file_system_type *fs_type, int flags,
551 			const char *dev_name, void *raw_data,
552 			struct vfsmount *mnt)
553 {
554 	int rc;
555 	struct super_block *sb;
556 
557 	rc = get_sb_nodev(fs_type, flags, raw_data, ecryptfs_fill_super, mnt);
558 	if (rc < 0) {
559 		printk(KERN_ERR "Getting sb failed; rc = [%d]\n", rc);
560 		goto out;
561 	}
562 	sb = mnt->mnt_sb;
563 	rc = ecryptfs_parse_options(sb, raw_data);
564 	if (rc) {
565 		printk(KERN_ERR "Error parsing options; rc = [%d]\n", rc);
566 		goto out_abort;
567 	}
568 	rc = ecryptfs_read_super(sb, dev_name);
569 	if (rc) {
570 		printk(KERN_ERR "Reading sb failed; rc = [%d]\n", rc);
571 		goto out_abort;
572 	}
573 	goto out;
574 out_abort:
575 	dput(sb->s_root);
576 	up_write(&sb->s_umount);
577 	deactivate_super(sb);
578 out:
579 	return rc;
580 }
581 
582 /**
583  * ecryptfs_kill_block_super
584  * @sb: The ecryptfs super block
585  *
586  * Used to bring the superblock down and free the private data.
587  * Private data is free'd in ecryptfs_put_super()
588  */
589 static void ecryptfs_kill_block_super(struct super_block *sb)
590 {
591 	generic_shutdown_super(sb);
592 }
593 
594 static struct file_system_type ecryptfs_fs_type = {
595 	.owner = THIS_MODULE,
596 	.name = "ecryptfs",
597 	.get_sb = ecryptfs_get_sb,
598 	.kill_sb = ecryptfs_kill_block_super,
599 	.fs_flags = 0
600 };
601 
602 /**
603  * inode_info_init_once
604  *
605  * Initializes the ecryptfs_inode_info_cache when it is created
606  */
607 static void
608 inode_info_init_once(struct kmem_cache *cachep, void *vptr)
609 {
610 	struct ecryptfs_inode_info *ei = (struct ecryptfs_inode_info *)vptr;
611 
612 	inode_init_once(&ei->vfs_inode);
613 }
614 
615 static struct ecryptfs_cache_info {
616 	struct kmem_cache **cache;
617 	const char *name;
618 	size_t size;
619 	void (*ctor)(struct kmem_cache *cache, void *obj);
620 } ecryptfs_cache_infos[] = {
621 	{
622 		.cache = &ecryptfs_auth_tok_list_item_cache,
623 		.name = "ecryptfs_auth_tok_list_item",
624 		.size = sizeof(struct ecryptfs_auth_tok_list_item),
625 	},
626 	{
627 		.cache = &ecryptfs_file_info_cache,
628 		.name = "ecryptfs_file_cache",
629 		.size = sizeof(struct ecryptfs_file_info),
630 	},
631 	{
632 		.cache = &ecryptfs_dentry_info_cache,
633 		.name = "ecryptfs_dentry_info_cache",
634 		.size = sizeof(struct ecryptfs_dentry_info),
635 	},
636 	{
637 		.cache = &ecryptfs_inode_info_cache,
638 		.name = "ecryptfs_inode_cache",
639 		.size = sizeof(struct ecryptfs_inode_info),
640 		.ctor = inode_info_init_once,
641 	},
642 	{
643 		.cache = &ecryptfs_sb_info_cache,
644 		.name = "ecryptfs_sb_cache",
645 		.size = sizeof(struct ecryptfs_sb_info),
646 	},
647 	{
648 		.cache = &ecryptfs_header_cache_1,
649 		.name = "ecryptfs_headers_1",
650 		.size = PAGE_CACHE_SIZE,
651 	},
652 	{
653 		.cache = &ecryptfs_header_cache_2,
654 		.name = "ecryptfs_headers_2",
655 		.size = PAGE_CACHE_SIZE,
656 	},
657 	{
658 		.cache = &ecryptfs_xattr_cache,
659 		.name = "ecryptfs_xattr_cache",
660 		.size = PAGE_CACHE_SIZE,
661 	},
662 	{
663 		.cache = &ecryptfs_key_record_cache,
664 		.name = "ecryptfs_key_record_cache",
665 		.size = sizeof(struct ecryptfs_key_record),
666 	},
667 	{
668 		.cache = &ecryptfs_key_sig_cache,
669 		.name = "ecryptfs_key_sig_cache",
670 		.size = sizeof(struct ecryptfs_key_sig),
671 	},
672 	{
673 		.cache = &ecryptfs_global_auth_tok_cache,
674 		.name = "ecryptfs_global_auth_tok_cache",
675 		.size = sizeof(struct ecryptfs_global_auth_tok),
676 	},
677 	{
678 		.cache = &ecryptfs_key_tfm_cache,
679 		.name = "ecryptfs_key_tfm_cache",
680 		.size = sizeof(struct ecryptfs_key_tfm),
681 	},
682 };
683 
684 static void ecryptfs_free_kmem_caches(void)
685 {
686 	int i;
687 
688 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cache_infos); i++) {
689 		struct ecryptfs_cache_info *info;
690 
691 		info = &ecryptfs_cache_infos[i];
692 		if (*(info->cache))
693 			kmem_cache_destroy(*(info->cache));
694 	}
695 }
696 
697 /**
698  * ecryptfs_init_kmem_caches
699  *
700  * Returns zero on success; non-zero otherwise
701  */
702 static int ecryptfs_init_kmem_caches(void)
703 {
704 	int i;
705 
706 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cache_infos); i++) {
707 		struct ecryptfs_cache_info *info;
708 
709 		info = &ecryptfs_cache_infos[i];
710 		*(info->cache) = kmem_cache_create(info->name, info->size,
711 				0, SLAB_HWCACHE_ALIGN, info->ctor);
712 		if (!*(info->cache)) {
713 			ecryptfs_free_kmem_caches();
714 			ecryptfs_printk(KERN_WARNING, "%s: "
715 					"kmem_cache_create failed\n",
716 					info->name);
717 			return -ENOMEM;
718 		}
719 	}
720 	return 0;
721 }
722 
723 static struct kobject *ecryptfs_kobj;
724 
725 static ssize_t version_show(struct kobject *kobj,
726 			    struct kobj_attribute *attr, char *buff)
727 {
728 	return snprintf(buff, PAGE_SIZE, "%d\n", ECRYPTFS_VERSIONING_MASK);
729 }
730 
731 static struct kobj_attribute version_attr = __ATTR_RO(version);
732 
733 static struct attribute *attributes[] = {
734 	&version_attr.attr,
735 	NULL,
736 };
737 
738 static struct attribute_group attr_group = {
739 	.attrs = attributes,
740 };
741 
742 static int do_sysfs_registration(void)
743 {
744 	int rc;
745 
746 	ecryptfs_kobj = kobject_create_and_add("ecryptfs", fs_kobj);
747 	if (!ecryptfs_kobj) {
748 		printk(KERN_ERR "Unable to create ecryptfs kset\n");
749 		rc = -ENOMEM;
750 		goto out;
751 	}
752 	rc = sysfs_create_group(ecryptfs_kobj, &attr_group);
753 	if (rc) {
754 		printk(KERN_ERR
755 		       "Unable to create ecryptfs version attributes\n");
756 		kobject_put(ecryptfs_kobj);
757 	}
758 out:
759 	return rc;
760 }
761 
762 static void do_sysfs_unregistration(void)
763 {
764 	sysfs_remove_group(ecryptfs_kobj, &attr_group);
765 	kobject_put(ecryptfs_kobj);
766 }
767 
768 static int __init ecryptfs_init(void)
769 {
770 	int rc;
771 
772 	if (ECRYPTFS_DEFAULT_EXTENT_SIZE > PAGE_CACHE_SIZE) {
773 		rc = -EINVAL;
774 		ecryptfs_printk(KERN_ERR, "The eCryptfs extent size is "
775 				"larger than the host's page size, and so "
776 				"eCryptfs cannot run on this system. The "
777 				"default eCryptfs extent size is [%d] bytes; "
778 				"the page size is [%d] bytes.\n",
779 				ECRYPTFS_DEFAULT_EXTENT_SIZE, PAGE_CACHE_SIZE);
780 		goto out;
781 	}
782 	rc = ecryptfs_init_kmem_caches();
783 	if (rc) {
784 		printk(KERN_ERR
785 		       "Failed to allocate one or more kmem_cache objects\n");
786 		goto out;
787 	}
788 	rc = register_filesystem(&ecryptfs_fs_type);
789 	if (rc) {
790 		printk(KERN_ERR "Failed to register filesystem\n");
791 		goto out_free_kmem_caches;
792 	}
793 	rc = do_sysfs_registration();
794 	if (rc) {
795 		printk(KERN_ERR "sysfs registration failed\n");
796 		goto out_unregister_filesystem;
797 	}
798 	rc = ecryptfs_init_messaging(ecryptfs_transport);
799 	if (rc) {
800 		ecryptfs_printk(KERN_ERR, "Failure occured while attempting to "
801 				"initialize the eCryptfs netlink socket\n");
802 		goto out_do_sysfs_unregistration;
803 	}
804 	rc = ecryptfs_init_crypto();
805 	if (rc) {
806 		printk(KERN_ERR "Failure whilst attempting to init crypto; "
807 		       "rc = [%d]\n", rc);
808 		goto out_release_messaging;
809 	}
810 	if (ecryptfs_verbosity > 0)
811 		printk(KERN_CRIT "eCryptfs verbosity set to %d. Secret values "
812 			"will be written to the syslog!\n", ecryptfs_verbosity);
813 
814 	goto out;
815 out_release_messaging:
816 	ecryptfs_release_messaging(ecryptfs_transport);
817 out_do_sysfs_unregistration:
818 	do_sysfs_unregistration();
819 out_unregister_filesystem:
820 	unregister_filesystem(&ecryptfs_fs_type);
821 out_free_kmem_caches:
822 	ecryptfs_free_kmem_caches();
823 out:
824 	return rc;
825 }
826 
827 static void __exit ecryptfs_exit(void)
828 {
829 	int rc;
830 
831 	rc = ecryptfs_destroy_crypto();
832 	if (rc)
833 		printk(KERN_ERR "Failure whilst attempting to destroy crypto; "
834 		       "rc = [%d]\n", rc);
835 	ecryptfs_release_messaging(ecryptfs_transport);
836 	do_sysfs_unregistration();
837 	unregister_filesystem(&ecryptfs_fs_type);
838 	ecryptfs_free_kmem_caches();
839 }
840 
841 MODULE_AUTHOR("Michael A. Halcrow <mhalcrow@us.ibm.com>");
842 MODULE_DESCRIPTION("eCryptfs");
843 
844 MODULE_LICENSE("GPL");
845 
846 module_init(ecryptfs_init)
847 module_exit(ecryptfs_exit)
848