xref: /openbmc/linux/fs/ecryptfs/main.c (revision 1fa6ac37)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 1997-2003 Erez Zadok
5  * Copyright (C) 2001-2003 Stony Brook University
6  * Copyright (C) 2004-2007 International Business Machines Corp.
7  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8  *              Michael C. Thompson <mcthomps@us.ibm.com>
9  *              Tyler Hicks <tyhicks@ou.edu>
10  *
11  * This program is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU General Public License as
13  * published by the Free Software Foundation; either version 2 of the
14  * License, or (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
24  * 02111-1307, USA.
25  */
26 
27 #include <linux/dcache.h>
28 #include <linux/file.h>
29 #include <linux/module.h>
30 #include <linux/namei.h>
31 #include <linux/skbuff.h>
32 #include <linux/crypto.h>
33 #include <linux/mount.h>
34 #include <linux/pagemap.h>
35 #include <linux/key.h>
36 #include <linux/parser.h>
37 #include <linux/fs_stack.h>
38 #include <linux/slab.h>
39 #include "ecryptfs_kernel.h"
40 
41 /**
42  * Module parameter that defines the ecryptfs_verbosity level.
43  */
44 int ecryptfs_verbosity = 0;
45 
46 module_param(ecryptfs_verbosity, int, 0);
47 MODULE_PARM_DESC(ecryptfs_verbosity,
48 		 "Initial verbosity level (0 or 1; defaults to "
49 		 "0, which is Quiet)");
50 
51 /**
52  * Module parameter that defines the number of message buffer elements
53  */
54 unsigned int ecryptfs_message_buf_len = ECRYPTFS_DEFAULT_MSG_CTX_ELEMS;
55 
56 module_param(ecryptfs_message_buf_len, uint, 0);
57 MODULE_PARM_DESC(ecryptfs_message_buf_len,
58 		 "Number of message buffer elements");
59 
60 /**
61  * Module parameter that defines the maximum guaranteed amount of time to wait
62  * for a response from ecryptfsd.  The actual sleep time will be, more than
63  * likely, a small amount greater than this specified value, but only less if
64  * the message successfully arrives.
65  */
66 signed long ecryptfs_message_wait_timeout = ECRYPTFS_MAX_MSG_CTX_TTL / HZ;
67 
68 module_param(ecryptfs_message_wait_timeout, long, 0);
69 MODULE_PARM_DESC(ecryptfs_message_wait_timeout,
70 		 "Maximum number of seconds that an operation will "
71 		 "sleep while waiting for a message response from "
72 		 "userspace");
73 
74 /**
75  * Module parameter that is an estimate of the maximum number of users
76  * that will be concurrently using eCryptfs. Set this to the right
77  * value to balance performance and memory use.
78  */
79 unsigned int ecryptfs_number_of_users = ECRYPTFS_DEFAULT_NUM_USERS;
80 
81 module_param(ecryptfs_number_of_users, uint, 0);
82 MODULE_PARM_DESC(ecryptfs_number_of_users, "An estimate of the number of "
83 		 "concurrent users of eCryptfs");
84 
85 void __ecryptfs_printk(const char *fmt, ...)
86 {
87 	va_list args;
88 	va_start(args, fmt);
89 	if (fmt[1] == '7') { /* KERN_DEBUG */
90 		if (ecryptfs_verbosity >= 1)
91 			vprintk(fmt, args);
92 	} else
93 		vprintk(fmt, args);
94 	va_end(args);
95 }
96 
97 /**
98  * ecryptfs_init_persistent_file
99  * @ecryptfs_dentry: Fully initialized eCryptfs dentry object, with
100  *                   the lower dentry and the lower mount set
101  *
102  * eCryptfs only ever keeps a single open file for every lower
103  * inode. All I/O operations to the lower inode occur through that
104  * file. When the first eCryptfs dentry that interposes with the first
105  * lower dentry for that inode is created, this function creates the
106  * persistent file struct and associates it with the eCryptfs
107  * inode. When the eCryptfs inode is destroyed, the file is closed.
108  *
109  * The persistent file will be opened with read/write permissions, if
110  * possible. Otherwise, it is opened read-only.
111  *
112  * This function does nothing if a lower persistent file is already
113  * associated with the eCryptfs inode.
114  *
115  * Returns zero on success; non-zero otherwise
116  */
117 int ecryptfs_init_persistent_file(struct dentry *ecryptfs_dentry)
118 {
119 	const struct cred *cred = current_cred();
120 	struct ecryptfs_inode_info *inode_info =
121 		ecryptfs_inode_to_private(ecryptfs_dentry->d_inode);
122 	int rc = 0;
123 
124 	mutex_lock(&inode_info->lower_file_mutex);
125 	if (!inode_info->lower_file) {
126 		struct dentry *lower_dentry;
127 		struct vfsmount *lower_mnt =
128 			ecryptfs_dentry_to_lower_mnt(ecryptfs_dentry);
129 
130 		lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
131 		rc = ecryptfs_privileged_open(&inode_info->lower_file,
132 					      lower_dentry, lower_mnt, cred);
133 		if (rc) {
134 			printk(KERN_ERR "Error opening lower persistent file "
135 			       "for lower_dentry [0x%p] and lower_mnt [0x%p]; "
136 			       "rc = [%d]\n", lower_dentry, lower_mnt, rc);
137 			inode_info->lower_file = NULL;
138 		}
139 	}
140 	mutex_unlock(&inode_info->lower_file_mutex);
141 	return rc;
142 }
143 
144 /**
145  * ecryptfs_interpose
146  * @lower_dentry: Existing dentry in the lower filesystem
147  * @dentry: ecryptfs' dentry
148  * @sb: ecryptfs's super_block
149  * @flags: flags to govern behavior of interpose procedure
150  *
151  * Interposes upper and lower dentries.
152  *
153  * Returns zero on success; non-zero otherwise
154  */
155 int ecryptfs_interpose(struct dentry *lower_dentry, struct dentry *dentry,
156 		       struct super_block *sb, u32 flags)
157 {
158 	struct inode *lower_inode;
159 	struct inode *inode;
160 	int rc = 0;
161 
162 	lower_inode = lower_dentry->d_inode;
163 	if (lower_inode->i_sb != ecryptfs_superblock_to_lower(sb)) {
164 		rc = -EXDEV;
165 		goto out;
166 	}
167 	if (!igrab(lower_inode)) {
168 		rc = -ESTALE;
169 		goto out;
170 	}
171 	inode = iget5_locked(sb, (unsigned long)lower_inode,
172 			     ecryptfs_inode_test, ecryptfs_inode_set,
173 			     lower_inode);
174 	if (!inode) {
175 		rc = -EACCES;
176 		iput(lower_inode);
177 		goto out;
178 	}
179 	if (inode->i_state & I_NEW)
180 		unlock_new_inode(inode);
181 	else
182 		iput(lower_inode);
183 	if (S_ISLNK(lower_inode->i_mode))
184 		inode->i_op = &ecryptfs_symlink_iops;
185 	else if (S_ISDIR(lower_inode->i_mode))
186 		inode->i_op = &ecryptfs_dir_iops;
187 	if (S_ISDIR(lower_inode->i_mode))
188 		inode->i_fop = &ecryptfs_dir_fops;
189 	if (special_file(lower_inode->i_mode))
190 		init_special_inode(inode, lower_inode->i_mode,
191 				   lower_inode->i_rdev);
192 	dentry->d_op = &ecryptfs_dops;
193 	fsstack_copy_attr_all(inode, lower_inode);
194 	/* This size will be overwritten for real files w/ headers and
195 	 * other metadata */
196 	fsstack_copy_inode_size(inode, lower_inode);
197 	if (flags & ECRYPTFS_INTERPOSE_FLAG_D_ADD)
198 		d_add(dentry, inode);
199 	else
200 		d_instantiate(dentry, inode);
201 out:
202 	return rc;
203 }
204 
205 enum { ecryptfs_opt_sig, ecryptfs_opt_ecryptfs_sig,
206        ecryptfs_opt_cipher, ecryptfs_opt_ecryptfs_cipher,
207        ecryptfs_opt_ecryptfs_key_bytes,
208        ecryptfs_opt_passthrough, ecryptfs_opt_xattr_metadata,
209        ecryptfs_opt_encrypted_view, ecryptfs_opt_fnek_sig,
210        ecryptfs_opt_fn_cipher, ecryptfs_opt_fn_cipher_key_bytes,
211        ecryptfs_opt_unlink_sigs, ecryptfs_opt_err };
212 
213 static const match_table_t tokens = {
214 	{ecryptfs_opt_sig, "sig=%s"},
215 	{ecryptfs_opt_ecryptfs_sig, "ecryptfs_sig=%s"},
216 	{ecryptfs_opt_cipher, "cipher=%s"},
217 	{ecryptfs_opt_ecryptfs_cipher, "ecryptfs_cipher=%s"},
218 	{ecryptfs_opt_ecryptfs_key_bytes, "ecryptfs_key_bytes=%u"},
219 	{ecryptfs_opt_passthrough, "ecryptfs_passthrough"},
220 	{ecryptfs_opt_xattr_metadata, "ecryptfs_xattr_metadata"},
221 	{ecryptfs_opt_encrypted_view, "ecryptfs_encrypted_view"},
222 	{ecryptfs_opt_fnek_sig, "ecryptfs_fnek_sig=%s"},
223 	{ecryptfs_opt_fn_cipher, "ecryptfs_fn_cipher=%s"},
224 	{ecryptfs_opt_fn_cipher_key_bytes, "ecryptfs_fn_key_bytes=%u"},
225 	{ecryptfs_opt_unlink_sigs, "ecryptfs_unlink_sigs"},
226 	{ecryptfs_opt_err, NULL}
227 };
228 
229 static int ecryptfs_init_global_auth_toks(
230 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
231 {
232 	struct ecryptfs_global_auth_tok *global_auth_tok;
233 	int rc = 0;
234 
235 	list_for_each_entry(global_auth_tok,
236 			    &mount_crypt_stat->global_auth_tok_list,
237 			    mount_crypt_stat_list) {
238 		rc = ecryptfs_keyring_auth_tok_for_sig(
239 			&global_auth_tok->global_auth_tok_key,
240 			&global_auth_tok->global_auth_tok,
241 			global_auth_tok->sig);
242 		if (rc) {
243 			printk(KERN_ERR "Could not find valid key in user "
244 			       "session keyring for sig specified in mount "
245 			       "option: [%s]\n", global_auth_tok->sig);
246 			global_auth_tok->flags |= ECRYPTFS_AUTH_TOK_INVALID;
247 			goto out;
248 		} else
249 			global_auth_tok->flags &= ~ECRYPTFS_AUTH_TOK_INVALID;
250 	}
251 out:
252 	return rc;
253 }
254 
255 static void ecryptfs_init_mount_crypt_stat(
256 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
257 {
258 	memset((void *)mount_crypt_stat, 0,
259 	       sizeof(struct ecryptfs_mount_crypt_stat));
260 	INIT_LIST_HEAD(&mount_crypt_stat->global_auth_tok_list);
261 	mutex_init(&mount_crypt_stat->global_auth_tok_list_mutex);
262 	mount_crypt_stat->flags |= ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED;
263 }
264 
265 /**
266  * ecryptfs_parse_options
267  * @sb: The ecryptfs super block
268  * @options: The options pased to the kernel
269  *
270  * Parse mount options:
271  * debug=N 	   - ecryptfs_verbosity level for debug output
272  * sig=XXX	   - description(signature) of the key to use
273  *
274  * Returns the dentry object of the lower-level (lower/interposed)
275  * directory; We want to mount our stackable file system on top of
276  * that lower directory.
277  *
278  * The signature of the key to use must be the description of a key
279  * already in the keyring. Mounting will fail if the key can not be
280  * found.
281  *
282  * Returns zero on success; non-zero on error
283  */
284 static int ecryptfs_parse_options(struct ecryptfs_sb_info *sbi, char *options)
285 {
286 	char *p;
287 	int rc = 0;
288 	int sig_set = 0;
289 	int cipher_name_set = 0;
290 	int fn_cipher_name_set = 0;
291 	int cipher_key_bytes;
292 	int cipher_key_bytes_set = 0;
293 	int fn_cipher_key_bytes;
294 	int fn_cipher_key_bytes_set = 0;
295 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
296 		&sbi->mount_crypt_stat;
297 	substring_t args[MAX_OPT_ARGS];
298 	int token;
299 	char *sig_src;
300 	char *cipher_name_dst;
301 	char *cipher_name_src;
302 	char *fn_cipher_name_dst;
303 	char *fn_cipher_name_src;
304 	char *fnek_dst;
305 	char *fnek_src;
306 	char *cipher_key_bytes_src;
307 	char *fn_cipher_key_bytes_src;
308 
309 	if (!options) {
310 		rc = -EINVAL;
311 		goto out;
312 	}
313 	ecryptfs_init_mount_crypt_stat(mount_crypt_stat);
314 	while ((p = strsep(&options, ",")) != NULL) {
315 		if (!*p)
316 			continue;
317 		token = match_token(p, tokens, args);
318 		switch (token) {
319 		case ecryptfs_opt_sig:
320 		case ecryptfs_opt_ecryptfs_sig:
321 			sig_src = args[0].from;
322 			rc = ecryptfs_add_global_auth_tok(mount_crypt_stat,
323 							  sig_src, 0);
324 			if (rc) {
325 				printk(KERN_ERR "Error attempting to register "
326 				       "global sig; rc = [%d]\n", rc);
327 				goto out;
328 			}
329 			sig_set = 1;
330 			break;
331 		case ecryptfs_opt_cipher:
332 		case ecryptfs_opt_ecryptfs_cipher:
333 			cipher_name_src = args[0].from;
334 			cipher_name_dst =
335 				mount_crypt_stat->
336 				global_default_cipher_name;
337 			strncpy(cipher_name_dst, cipher_name_src,
338 				ECRYPTFS_MAX_CIPHER_NAME_SIZE);
339 			cipher_name_dst[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
340 			cipher_name_set = 1;
341 			break;
342 		case ecryptfs_opt_ecryptfs_key_bytes:
343 			cipher_key_bytes_src = args[0].from;
344 			cipher_key_bytes =
345 				(int)simple_strtol(cipher_key_bytes_src,
346 						   &cipher_key_bytes_src, 0);
347 			mount_crypt_stat->global_default_cipher_key_size =
348 				cipher_key_bytes;
349 			cipher_key_bytes_set = 1;
350 			break;
351 		case ecryptfs_opt_passthrough:
352 			mount_crypt_stat->flags |=
353 				ECRYPTFS_PLAINTEXT_PASSTHROUGH_ENABLED;
354 			break;
355 		case ecryptfs_opt_xattr_metadata:
356 			mount_crypt_stat->flags |=
357 				ECRYPTFS_XATTR_METADATA_ENABLED;
358 			break;
359 		case ecryptfs_opt_encrypted_view:
360 			mount_crypt_stat->flags |=
361 				ECRYPTFS_XATTR_METADATA_ENABLED;
362 			mount_crypt_stat->flags |=
363 				ECRYPTFS_ENCRYPTED_VIEW_ENABLED;
364 			break;
365 		case ecryptfs_opt_fnek_sig:
366 			fnek_src = args[0].from;
367 			fnek_dst =
368 				mount_crypt_stat->global_default_fnek_sig;
369 			strncpy(fnek_dst, fnek_src, ECRYPTFS_SIG_SIZE_HEX);
370 			mount_crypt_stat->global_default_fnek_sig[
371 				ECRYPTFS_SIG_SIZE_HEX] = '\0';
372 			rc = ecryptfs_add_global_auth_tok(
373 				mount_crypt_stat,
374 				mount_crypt_stat->global_default_fnek_sig,
375 				ECRYPTFS_AUTH_TOK_FNEK);
376 			if (rc) {
377 				printk(KERN_ERR "Error attempting to register "
378 				       "global fnek sig [%s]; rc = [%d]\n",
379 				       mount_crypt_stat->global_default_fnek_sig,
380 				       rc);
381 				goto out;
382 			}
383 			mount_crypt_stat->flags |=
384 				(ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
385 				 | ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK);
386 			break;
387 		case ecryptfs_opt_fn_cipher:
388 			fn_cipher_name_src = args[0].from;
389 			fn_cipher_name_dst =
390 				mount_crypt_stat->global_default_fn_cipher_name;
391 			strncpy(fn_cipher_name_dst, fn_cipher_name_src,
392 				ECRYPTFS_MAX_CIPHER_NAME_SIZE);
393 			mount_crypt_stat->global_default_fn_cipher_name[
394 				ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
395 			fn_cipher_name_set = 1;
396 			break;
397 		case ecryptfs_opt_fn_cipher_key_bytes:
398 			fn_cipher_key_bytes_src = args[0].from;
399 			fn_cipher_key_bytes =
400 				(int)simple_strtol(fn_cipher_key_bytes_src,
401 						   &fn_cipher_key_bytes_src, 0);
402 			mount_crypt_stat->global_default_fn_cipher_key_bytes =
403 				fn_cipher_key_bytes;
404 			fn_cipher_key_bytes_set = 1;
405 			break;
406 		case ecryptfs_opt_unlink_sigs:
407 			mount_crypt_stat->flags |= ECRYPTFS_UNLINK_SIGS;
408 			break;
409 		case ecryptfs_opt_err:
410 		default:
411 			printk(KERN_WARNING
412 			       "%s: eCryptfs: unrecognized option [%s]\n",
413 			       __func__, p);
414 		}
415 	}
416 	if (!sig_set) {
417 		rc = -EINVAL;
418 		ecryptfs_printk(KERN_ERR, "You must supply at least one valid "
419 				"auth tok signature as a mount "
420 				"parameter; see the eCryptfs README\n");
421 		goto out;
422 	}
423 	if (!cipher_name_set) {
424 		int cipher_name_len = strlen(ECRYPTFS_DEFAULT_CIPHER);
425 
426 		BUG_ON(cipher_name_len >= ECRYPTFS_MAX_CIPHER_NAME_SIZE);
427 		strcpy(mount_crypt_stat->global_default_cipher_name,
428 		       ECRYPTFS_DEFAULT_CIPHER);
429 	}
430 	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
431 	    && !fn_cipher_name_set)
432 		strcpy(mount_crypt_stat->global_default_fn_cipher_name,
433 		       mount_crypt_stat->global_default_cipher_name);
434 	if (!cipher_key_bytes_set)
435 		mount_crypt_stat->global_default_cipher_key_size = 0;
436 	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
437 	    && !fn_cipher_key_bytes_set)
438 		mount_crypt_stat->global_default_fn_cipher_key_bytes =
439 			mount_crypt_stat->global_default_cipher_key_size;
440 	mutex_lock(&key_tfm_list_mutex);
441 	if (!ecryptfs_tfm_exists(mount_crypt_stat->global_default_cipher_name,
442 				 NULL)) {
443 		rc = ecryptfs_add_new_key_tfm(
444 			NULL, mount_crypt_stat->global_default_cipher_name,
445 			mount_crypt_stat->global_default_cipher_key_size);
446 		if (rc) {
447 			printk(KERN_ERR "Error attempting to initialize "
448 			       "cipher with name = [%s] and key size = [%td]; "
449 			       "rc = [%d]\n",
450 			       mount_crypt_stat->global_default_cipher_name,
451 			       mount_crypt_stat->global_default_cipher_key_size,
452 			       rc);
453 			rc = -EINVAL;
454 			mutex_unlock(&key_tfm_list_mutex);
455 			goto out;
456 		}
457 	}
458 	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
459 	    && !ecryptfs_tfm_exists(
460 		    mount_crypt_stat->global_default_fn_cipher_name, NULL)) {
461 		rc = ecryptfs_add_new_key_tfm(
462 			NULL, mount_crypt_stat->global_default_fn_cipher_name,
463 			mount_crypt_stat->global_default_fn_cipher_key_bytes);
464 		if (rc) {
465 			printk(KERN_ERR "Error attempting to initialize "
466 			       "cipher with name = [%s] and key size = [%td]; "
467 			       "rc = [%d]\n",
468 			       mount_crypt_stat->global_default_fn_cipher_name,
469 			       mount_crypt_stat->global_default_fn_cipher_key_bytes,
470 			       rc);
471 			rc = -EINVAL;
472 			mutex_unlock(&key_tfm_list_mutex);
473 			goto out;
474 		}
475 	}
476 	mutex_unlock(&key_tfm_list_mutex);
477 	rc = ecryptfs_init_global_auth_toks(mount_crypt_stat);
478 	if (rc)
479 		printk(KERN_WARNING "One or more global auth toks could not "
480 		       "properly register; rc = [%d]\n", rc);
481 out:
482 	return rc;
483 }
484 
485 struct kmem_cache *ecryptfs_sb_info_cache;
486 static struct file_system_type ecryptfs_fs_type;
487 
488 /**
489  * ecryptfs_read_super
490  * @sb: The ecryptfs super block
491  * @dev_name: The path to mount over
492  *
493  * Read the super block of the lower filesystem, and use
494  * ecryptfs_interpose to create our initial inode and super block
495  * struct.
496  */
497 static int ecryptfs_read_super(struct super_block *sb, const char *dev_name)
498 {
499 	struct path path;
500 	int rc;
501 
502 	rc = kern_path(dev_name, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &path);
503 	if (rc) {
504 		ecryptfs_printk(KERN_WARNING, "path_lookup() failed\n");
505 		goto out;
506 	}
507 	if (path.dentry->d_sb->s_type == &ecryptfs_fs_type) {
508 		rc = -EINVAL;
509 		printk(KERN_ERR "Mount on filesystem of type "
510 			"eCryptfs explicitly disallowed due to "
511 			"known incompatibilities\n");
512 		goto out_free;
513 	}
514 	ecryptfs_set_superblock_lower(sb, path.dentry->d_sb);
515 	sb->s_maxbytes = path.dentry->d_sb->s_maxbytes;
516 	sb->s_blocksize = path.dentry->d_sb->s_blocksize;
517 	ecryptfs_set_dentry_lower(sb->s_root, path.dentry);
518 	ecryptfs_set_dentry_lower_mnt(sb->s_root, path.mnt);
519 	rc = ecryptfs_interpose(path.dentry, sb->s_root, sb, 0);
520 	if (rc)
521 		goto out_free;
522 	rc = 0;
523 	goto out;
524 out_free:
525 	path_put(&path);
526 out:
527 	return rc;
528 }
529 
530 /**
531  * ecryptfs_get_sb
532  * @fs_type
533  * @flags
534  * @dev_name: The path to mount over
535  * @raw_data: The options passed into the kernel
536  *
537  * The whole ecryptfs_get_sb process is broken into 3 functions:
538  * ecryptfs_parse_options(): handle options passed to ecryptfs, if any
539  * ecryptfs_read_super(): this accesses the lower filesystem and uses
540  *                        ecryptfs_interpose to perform most of the linking
541  * ecryptfs_interpose(): links the lower filesystem into ecryptfs (inode.c)
542  */
543 static int ecryptfs_get_sb(struct file_system_type *fs_type, int flags,
544 			const char *dev_name, void *raw_data,
545 			struct vfsmount *mnt)
546 {
547 	struct super_block *s;
548 	struct ecryptfs_sb_info *sbi;
549 	struct ecryptfs_dentry_info *root_info;
550 	const char *err = "Getting sb failed";
551 	int rc;
552 
553 	sbi = kmem_cache_zalloc(ecryptfs_sb_info_cache, GFP_KERNEL);
554 	if (!sbi) {
555 		rc = -ENOMEM;
556 		goto out;
557 	}
558 
559 	rc = ecryptfs_parse_options(sbi, raw_data);
560 	if (rc) {
561 		err = "Error parsing options";
562 		goto out;
563 	}
564 
565 	s = sget(fs_type, NULL, set_anon_super, NULL);
566 	if (IS_ERR(s)) {
567 		rc = PTR_ERR(s);
568 		goto out;
569 	}
570 
571 	s->s_flags = flags;
572 	rc = bdi_setup_and_register(&sbi->bdi, "ecryptfs", BDI_CAP_MAP_COPY);
573 	if (rc) {
574 		deactivate_locked_super(s);
575 		goto out;
576 	}
577 
578 	ecryptfs_set_superblock_private(s, sbi);
579 	s->s_bdi = &sbi->bdi;
580 
581 	/* ->kill_sb() will take care of sbi after that point */
582 	sbi = NULL;
583 	s->s_op = &ecryptfs_sops;
584 
585 	rc = -ENOMEM;
586 	s->s_root = d_alloc(NULL, &(const struct qstr) {
587 			     .hash = 0,.name = "/",.len = 1});
588 	if (!s->s_root) {
589 		deactivate_locked_super(s);
590 		goto out;
591 	}
592 	s->s_root->d_op = &ecryptfs_dops;
593 	s->s_root->d_sb = s;
594 	s->s_root->d_parent = s->s_root;
595 
596 	root_info = kmem_cache_zalloc(ecryptfs_dentry_info_cache, GFP_KERNEL);
597 	if (!root_info) {
598 		deactivate_locked_super(s);
599 		goto out;
600 	}
601 	/* ->kill_sb() will take care of root_info */
602 	ecryptfs_set_dentry_private(s->s_root, root_info);
603 	s->s_flags |= MS_ACTIVE;
604 	rc = ecryptfs_read_super(s, dev_name);
605 	if (rc) {
606 		deactivate_locked_super(s);
607 		err = "Reading sb failed";
608 		goto out;
609 	}
610 	simple_set_mnt(mnt, s);
611 	return 0;
612 
613 out:
614 	if (sbi) {
615 		ecryptfs_destroy_mount_crypt_stat(&sbi->mount_crypt_stat);
616 		kmem_cache_free(ecryptfs_sb_info_cache, sbi);
617 	}
618 	printk(KERN_ERR "%s; rc = [%d]\n", err, rc);
619 	return rc;
620 }
621 
622 /**
623  * ecryptfs_kill_block_super
624  * @sb: The ecryptfs super block
625  *
626  * Used to bring the superblock down and free the private data.
627  */
628 static void ecryptfs_kill_block_super(struct super_block *sb)
629 {
630 	struct ecryptfs_sb_info *sb_info = ecryptfs_superblock_to_private(sb);
631 	kill_anon_super(sb);
632 	if (!sb_info)
633 		return;
634 	ecryptfs_destroy_mount_crypt_stat(&sb_info->mount_crypt_stat);
635 	bdi_destroy(&sb_info->bdi);
636 	kmem_cache_free(ecryptfs_sb_info_cache, sb_info);
637 }
638 
639 static struct file_system_type ecryptfs_fs_type = {
640 	.owner = THIS_MODULE,
641 	.name = "ecryptfs",
642 	.get_sb = ecryptfs_get_sb,
643 	.kill_sb = ecryptfs_kill_block_super,
644 	.fs_flags = 0
645 };
646 
647 /**
648  * inode_info_init_once
649  *
650  * Initializes the ecryptfs_inode_info_cache when it is created
651  */
652 static void
653 inode_info_init_once(void *vptr)
654 {
655 	struct ecryptfs_inode_info *ei = (struct ecryptfs_inode_info *)vptr;
656 
657 	inode_init_once(&ei->vfs_inode);
658 }
659 
660 static struct ecryptfs_cache_info {
661 	struct kmem_cache **cache;
662 	const char *name;
663 	size_t size;
664 	void (*ctor)(void *obj);
665 } ecryptfs_cache_infos[] = {
666 	{
667 		.cache = &ecryptfs_auth_tok_list_item_cache,
668 		.name = "ecryptfs_auth_tok_list_item",
669 		.size = sizeof(struct ecryptfs_auth_tok_list_item),
670 	},
671 	{
672 		.cache = &ecryptfs_file_info_cache,
673 		.name = "ecryptfs_file_cache",
674 		.size = sizeof(struct ecryptfs_file_info),
675 	},
676 	{
677 		.cache = &ecryptfs_dentry_info_cache,
678 		.name = "ecryptfs_dentry_info_cache",
679 		.size = sizeof(struct ecryptfs_dentry_info),
680 	},
681 	{
682 		.cache = &ecryptfs_inode_info_cache,
683 		.name = "ecryptfs_inode_cache",
684 		.size = sizeof(struct ecryptfs_inode_info),
685 		.ctor = inode_info_init_once,
686 	},
687 	{
688 		.cache = &ecryptfs_sb_info_cache,
689 		.name = "ecryptfs_sb_cache",
690 		.size = sizeof(struct ecryptfs_sb_info),
691 	},
692 	{
693 		.cache = &ecryptfs_header_cache_1,
694 		.name = "ecryptfs_headers_1",
695 		.size = PAGE_CACHE_SIZE,
696 	},
697 	{
698 		.cache = &ecryptfs_header_cache_2,
699 		.name = "ecryptfs_headers_2",
700 		.size = PAGE_CACHE_SIZE,
701 	},
702 	{
703 		.cache = &ecryptfs_xattr_cache,
704 		.name = "ecryptfs_xattr_cache",
705 		.size = PAGE_CACHE_SIZE,
706 	},
707 	{
708 		.cache = &ecryptfs_key_record_cache,
709 		.name = "ecryptfs_key_record_cache",
710 		.size = sizeof(struct ecryptfs_key_record),
711 	},
712 	{
713 		.cache = &ecryptfs_key_sig_cache,
714 		.name = "ecryptfs_key_sig_cache",
715 		.size = sizeof(struct ecryptfs_key_sig),
716 	},
717 	{
718 		.cache = &ecryptfs_global_auth_tok_cache,
719 		.name = "ecryptfs_global_auth_tok_cache",
720 		.size = sizeof(struct ecryptfs_global_auth_tok),
721 	},
722 	{
723 		.cache = &ecryptfs_key_tfm_cache,
724 		.name = "ecryptfs_key_tfm_cache",
725 		.size = sizeof(struct ecryptfs_key_tfm),
726 	},
727 	{
728 		.cache = &ecryptfs_open_req_cache,
729 		.name = "ecryptfs_open_req_cache",
730 		.size = sizeof(struct ecryptfs_open_req),
731 	},
732 };
733 
734 static void ecryptfs_free_kmem_caches(void)
735 {
736 	int i;
737 
738 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cache_infos); i++) {
739 		struct ecryptfs_cache_info *info;
740 
741 		info = &ecryptfs_cache_infos[i];
742 		if (*(info->cache))
743 			kmem_cache_destroy(*(info->cache));
744 	}
745 }
746 
747 /**
748  * ecryptfs_init_kmem_caches
749  *
750  * Returns zero on success; non-zero otherwise
751  */
752 static int ecryptfs_init_kmem_caches(void)
753 {
754 	int i;
755 
756 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cache_infos); i++) {
757 		struct ecryptfs_cache_info *info;
758 
759 		info = &ecryptfs_cache_infos[i];
760 		*(info->cache) = kmem_cache_create(info->name, info->size,
761 				0, SLAB_HWCACHE_ALIGN, info->ctor);
762 		if (!*(info->cache)) {
763 			ecryptfs_free_kmem_caches();
764 			ecryptfs_printk(KERN_WARNING, "%s: "
765 					"kmem_cache_create failed\n",
766 					info->name);
767 			return -ENOMEM;
768 		}
769 	}
770 	return 0;
771 }
772 
773 static struct kobject *ecryptfs_kobj;
774 
775 static ssize_t version_show(struct kobject *kobj,
776 			    struct kobj_attribute *attr, char *buff)
777 {
778 	return snprintf(buff, PAGE_SIZE, "%d\n", ECRYPTFS_VERSIONING_MASK);
779 }
780 
781 static struct kobj_attribute version_attr = __ATTR_RO(version);
782 
783 static struct attribute *attributes[] = {
784 	&version_attr.attr,
785 	NULL,
786 };
787 
788 static struct attribute_group attr_group = {
789 	.attrs = attributes,
790 };
791 
792 static int do_sysfs_registration(void)
793 {
794 	int rc;
795 
796 	ecryptfs_kobj = kobject_create_and_add("ecryptfs", fs_kobj);
797 	if (!ecryptfs_kobj) {
798 		printk(KERN_ERR "Unable to create ecryptfs kset\n");
799 		rc = -ENOMEM;
800 		goto out;
801 	}
802 	rc = sysfs_create_group(ecryptfs_kobj, &attr_group);
803 	if (rc) {
804 		printk(KERN_ERR
805 		       "Unable to create ecryptfs version attributes\n");
806 		kobject_put(ecryptfs_kobj);
807 	}
808 out:
809 	return rc;
810 }
811 
812 static void do_sysfs_unregistration(void)
813 {
814 	sysfs_remove_group(ecryptfs_kobj, &attr_group);
815 	kobject_put(ecryptfs_kobj);
816 }
817 
818 static int __init ecryptfs_init(void)
819 {
820 	int rc;
821 
822 	if (ECRYPTFS_DEFAULT_EXTENT_SIZE > PAGE_CACHE_SIZE) {
823 		rc = -EINVAL;
824 		ecryptfs_printk(KERN_ERR, "The eCryptfs extent size is "
825 				"larger than the host's page size, and so "
826 				"eCryptfs cannot run on this system. The "
827 				"default eCryptfs extent size is [%d] bytes; "
828 				"the page size is [%d] bytes.\n",
829 				ECRYPTFS_DEFAULT_EXTENT_SIZE, PAGE_CACHE_SIZE);
830 		goto out;
831 	}
832 	rc = ecryptfs_init_kmem_caches();
833 	if (rc) {
834 		printk(KERN_ERR
835 		       "Failed to allocate one or more kmem_cache objects\n");
836 		goto out;
837 	}
838 	rc = register_filesystem(&ecryptfs_fs_type);
839 	if (rc) {
840 		printk(KERN_ERR "Failed to register filesystem\n");
841 		goto out_free_kmem_caches;
842 	}
843 	rc = do_sysfs_registration();
844 	if (rc) {
845 		printk(KERN_ERR "sysfs registration failed\n");
846 		goto out_unregister_filesystem;
847 	}
848 	rc = ecryptfs_init_kthread();
849 	if (rc) {
850 		printk(KERN_ERR "%s: kthread initialization failed; "
851 		       "rc = [%d]\n", __func__, rc);
852 		goto out_do_sysfs_unregistration;
853 	}
854 	rc = ecryptfs_init_messaging();
855 	if (rc) {
856 		printk(KERN_ERR "Failure occured while attempting to "
857 				"initialize the communications channel to "
858 				"ecryptfsd\n");
859 		goto out_destroy_kthread;
860 	}
861 	rc = ecryptfs_init_crypto();
862 	if (rc) {
863 		printk(KERN_ERR "Failure whilst attempting to init crypto; "
864 		       "rc = [%d]\n", rc);
865 		goto out_release_messaging;
866 	}
867 	if (ecryptfs_verbosity > 0)
868 		printk(KERN_CRIT "eCryptfs verbosity set to %d. Secret values "
869 			"will be written to the syslog!\n", ecryptfs_verbosity);
870 
871 	goto out;
872 out_release_messaging:
873 	ecryptfs_release_messaging();
874 out_destroy_kthread:
875 	ecryptfs_destroy_kthread();
876 out_do_sysfs_unregistration:
877 	do_sysfs_unregistration();
878 out_unregister_filesystem:
879 	unregister_filesystem(&ecryptfs_fs_type);
880 out_free_kmem_caches:
881 	ecryptfs_free_kmem_caches();
882 out:
883 	return rc;
884 }
885 
886 static void __exit ecryptfs_exit(void)
887 {
888 	int rc;
889 
890 	rc = ecryptfs_destroy_crypto();
891 	if (rc)
892 		printk(KERN_ERR "Failure whilst attempting to destroy crypto; "
893 		       "rc = [%d]\n", rc);
894 	ecryptfs_release_messaging();
895 	ecryptfs_destroy_kthread();
896 	do_sysfs_unregistration();
897 	unregister_filesystem(&ecryptfs_fs_type);
898 	ecryptfs_free_kmem_caches();
899 }
900 
901 MODULE_AUTHOR("Michael A. Halcrow <mhalcrow@us.ibm.com>");
902 MODULE_DESCRIPTION("eCryptfs");
903 
904 MODULE_LICENSE("GPL");
905 
906 module_init(ecryptfs_init)
907 module_exit(ecryptfs_exit)
908