xref: /openbmc/linux/fs/ecryptfs/keystore.c (revision b627b4ed)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  * In-kernel key management code.  Includes functions to parse and
4  * write authentication token-related packets with the underlying
5  * file.
6  *
7  * Copyright (C) 2004-2006 International Business Machines Corp.
8  *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
9  *              Michael C. Thompson <mcthomps@us.ibm.com>
10  *              Trevor S. Highland <trevor.highland@gmail.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of the
15  * License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
25  * 02111-1307, USA.
26  */
27 
28 #include <linux/string.h>
29 #include <linux/syscalls.h>
30 #include <linux/pagemap.h>
31 #include <linux/key.h>
32 #include <linux/random.h>
33 #include <linux/crypto.h>
34 #include <linux/scatterlist.h>
35 #include "ecryptfs_kernel.h"
36 
37 /**
38  * request_key returned an error instead of a valid key address;
39  * determine the type of error, make appropriate log entries, and
40  * return an error code.
41  */
42 static int process_request_key_err(long err_code)
43 {
44 	int rc = 0;
45 
46 	switch (err_code) {
47 	case -ENOKEY:
48 		ecryptfs_printk(KERN_WARNING, "No key\n");
49 		rc = -ENOENT;
50 		break;
51 	case -EKEYEXPIRED:
52 		ecryptfs_printk(KERN_WARNING, "Key expired\n");
53 		rc = -ETIME;
54 		break;
55 	case -EKEYREVOKED:
56 		ecryptfs_printk(KERN_WARNING, "Key revoked\n");
57 		rc = -EINVAL;
58 		break;
59 	default:
60 		ecryptfs_printk(KERN_WARNING, "Unknown error code: "
61 				"[0x%.16x]\n", err_code);
62 		rc = -EINVAL;
63 	}
64 	return rc;
65 }
66 
67 /**
68  * ecryptfs_parse_packet_length
69  * @data: Pointer to memory containing length at offset
70  * @size: This function writes the decoded size to this memory
71  *        address; zero on error
72  * @length_size: The number of bytes occupied by the encoded length
73  *
74  * Returns zero on success; non-zero on error
75  */
76 int ecryptfs_parse_packet_length(unsigned char *data, size_t *size,
77 				 size_t *length_size)
78 {
79 	int rc = 0;
80 
81 	(*length_size) = 0;
82 	(*size) = 0;
83 	if (data[0] < 192) {
84 		/* One-byte length */
85 		(*size) = (unsigned char)data[0];
86 		(*length_size) = 1;
87 	} else if (data[0] < 224) {
88 		/* Two-byte length */
89 		(*size) = (((unsigned char)(data[0]) - 192) * 256);
90 		(*size) += ((unsigned char)(data[1]) + 192);
91 		(*length_size) = 2;
92 	} else if (data[0] == 255) {
93 		/* Five-byte length; we're not supposed to see this */
94 		ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
95 				"supported\n");
96 		rc = -EINVAL;
97 		goto out;
98 	} else {
99 		ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
100 		rc = -EINVAL;
101 		goto out;
102 	}
103 out:
104 	return rc;
105 }
106 
107 /**
108  * ecryptfs_write_packet_length
109  * @dest: The byte array target into which to write the length. Must
110  *        have at least 5 bytes allocated.
111  * @size: The length to write.
112  * @packet_size_length: The number of bytes used to encode the packet
113  *                      length is written to this address.
114  *
115  * Returns zero on success; non-zero on error.
116  */
117 int ecryptfs_write_packet_length(char *dest, size_t size,
118 				 size_t *packet_size_length)
119 {
120 	int rc = 0;
121 
122 	if (size < 192) {
123 		dest[0] = size;
124 		(*packet_size_length) = 1;
125 	} else if (size < 65536) {
126 		dest[0] = (((size - 192) / 256) + 192);
127 		dest[1] = ((size - 192) % 256);
128 		(*packet_size_length) = 2;
129 	} else {
130 		rc = -EINVAL;
131 		ecryptfs_printk(KERN_WARNING,
132 				"Unsupported packet size: [%d]\n", size);
133 	}
134 	return rc;
135 }
136 
137 static int
138 write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
139 		    char **packet, size_t *packet_len)
140 {
141 	size_t i = 0;
142 	size_t data_len;
143 	size_t packet_size_len;
144 	char *message;
145 	int rc;
146 
147 	/*
148 	 *              ***** TAG 64 Packet Format *****
149 	 *    | Content Type                       | 1 byte       |
150 	 *    | Key Identifier Size                | 1 or 2 bytes |
151 	 *    | Key Identifier                     | arbitrary    |
152 	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
153 	 *    | Encrypted File Encryption Key      | arbitrary    |
154 	 */
155 	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
156 		    + session_key->encrypted_key_size);
157 	*packet = kmalloc(data_len, GFP_KERNEL);
158 	message = *packet;
159 	if (!message) {
160 		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
161 		rc = -ENOMEM;
162 		goto out;
163 	}
164 	message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
165 	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
166 					  &packet_size_len);
167 	if (rc) {
168 		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
169 				"header; cannot generate packet length\n");
170 		goto out;
171 	}
172 	i += packet_size_len;
173 	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
174 	i += ECRYPTFS_SIG_SIZE_HEX;
175 	rc = ecryptfs_write_packet_length(&message[i],
176 					  session_key->encrypted_key_size,
177 					  &packet_size_len);
178 	if (rc) {
179 		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
180 				"header; cannot generate packet length\n");
181 		goto out;
182 	}
183 	i += packet_size_len;
184 	memcpy(&message[i], session_key->encrypted_key,
185 	       session_key->encrypted_key_size);
186 	i += session_key->encrypted_key_size;
187 	*packet_len = i;
188 out:
189 	return rc;
190 }
191 
192 static int
193 parse_tag_65_packet(struct ecryptfs_session_key *session_key, u8 *cipher_code,
194 		    struct ecryptfs_message *msg)
195 {
196 	size_t i = 0;
197 	char *data;
198 	size_t data_len;
199 	size_t m_size;
200 	size_t message_len;
201 	u16 checksum = 0;
202 	u16 expected_checksum = 0;
203 	int rc;
204 
205 	/*
206 	 *              ***** TAG 65 Packet Format *****
207 	 *         | Content Type             | 1 byte       |
208 	 *         | Status Indicator         | 1 byte       |
209 	 *         | File Encryption Key Size | 1 or 2 bytes |
210 	 *         | File Encryption Key      | arbitrary    |
211 	 */
212 	message_len = msg->data_len;
213 	data = msg->data;
214 	if (message_len < 4) {
215 		rc = -EIO;
216 		goto out;
217 	}
218 	if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
219 		ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
220 		rc = -EIO;
221 		goto out;
222 	}
223 	if (data[i++]) {
224 		ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
225 				"[%d]\n", data[i-1]);
226 		rc = -EIO;
227 		goto out;
228 	}
229 	rc = ecryptfs_parse_packet_length(&data[i], &m_size, &data_len);
230 	if (rc) {
231 		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
232 				"rc = [%d]\n", rc);
233 		goto out;
234 	}
235 	i += data_len;
236 	if (message_len < (i + m_size)) {
237 		ecryptfs_printk(KERN_ERR, "The message received from ecryptfsd "
238 				"is shorter than expected\n");
239 		rc = -EIO;
240 		goto out;
241 	}
242 	if (m_size < 3) {
243 		ecryptfs_printk(KERN_ERR,
244 				"The decrypted key is not long enough to "
245 				"include a cipher code and checksum\n");
246 		rc = -EIO;
247 		goto out;
248 	}
249 	*cipher_code = data[i++];
250 	/* The decrypted key includes 1 byte cipher code and 2 byte checksum */
251 	session_key->decrypted_key_size = m_size - 3;
252 	if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
253 		ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
254 				"the maximum key size [%d]\n",
255 				session_key->decrypted_key_size,
256 				ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
257 		rc = -EIO;
258 		goto out;
259 	}
260 	memcpy(session_key->decrypted_key, &data[i],
261 	       session_key->decrypted_key_size);
262 	i += session_key->decrypted_key_size;
263 	expected_checksum += (unsigned char)(data[i++]) << 8;
264 	expected_checksum += (unsigned char)(data[i++]);
265 	for (i = 0; i < session_key->decrypted_key_size; i++)
266 		checksum += session_key->decrypted_key[i];
267 	if (expected_checksum != checksum) {
268 		ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
269 				"encryption  key; expected [%x]; calculated "
270 				"[%x]\n", expected_checksum, checksum);
271 		rc = -EIO;
272 	}
273 out:
274 	return rc;
275 }
276 
277 
278 static int
279 write_tag_66_packet(char *signature, u8 cipher_code,
280 		    struct ecryptfs_crypt_stat *crypt_stat, char **packet,
281 		    size_t *packet_len)
282 {
283 	size_t i = 0;
284 	size_t j;
285 	size_t data_len;
286 	size_t checksum = 0;
287 	size_t packet_size_len;
288 	char *message;
289 	int rc;
290 
291 	/*
292 	 *              ***** TAG 66 Packet Format *****
293 	 *         | Content Type             | 1 byte       |
294 	 *         | Key Identifier Size      | 1 or 2 bytes |
295 	 *         | Key Identifier           | arbitrary    |
296 	 *         | File Encryption Key Size | 1 or 2 bytes |
297 	 *         | File Encryption Key      | arbitrary    |
298 	 */
299 	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
300 	*packet = kmalloc(data_len, GFP_KERNEL);
301 	message = *packet;
302 	if (!message) {
303 		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
304 		rc = -ENOMEM;
305 		goto out;
306 	}
307 	message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
308 	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
309 					  &packet_size_len);
310 	if (rc) {
311 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
312 				"header; cannot generate packet length\n");
313 		goto out;
314 	}
315 	i += packet_size_len;
316 	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
317 	i += ECRYPTFS_SIG_SIZE_HEX;
318 	/* The encrypted key includes 1 byte cipher code and 2 byte checksum */
319 	rc = ecryptfs_write_packet_length(&message[i], crypt_stat->key_size + 3,
320 					  &packet_size_len);
321 	if (rc) {
322 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
323 				"header; cannot generate packet length\n");
324 		goto out;
325 	}
326 	i += packet_size_len;
327 	message[i++] = cipher_code;
328 	memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
329 	i += crypt_stat->key_size;
330 	for (j = 0; j < crypt_stat->key_size; j++)
331 		checksum += crypt_stat->key[j];
332 	message[i++] = (checksum / 256) % 256;
333 	message[i++] = (checksum % 256);
334 	*packet_len = i;
335 out:
336 	return rc;
337 }
338 
339 static int
340 parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
341 		    struct ecryptfs_message *msg)
342 {
343 	size_t i = 0;
344 	char *data;
345 	size_t data_len;
346 	size_t message_len;
347 	int rc;
348 
349 	/*
350 	 *              ***** TAG 65 Packet Format *****
351 	 *    | Content Type                       | 1 byte       |
352 	 *    | Status Indicator                   | 1 byte       |
353 	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
354 	 *    | Encrypted File Encryption Key      | arbitrary    |
355 	 */
356 	message_len = msg->data_len;
357 	data = msg->data;
358 	/* verify that everything through the encrypted FEK size is present */
359 	if (message_len < 4) {
360 		rc = -EIO;
361 		printk(KERN_ERR "%s: message_len is [%zd]; minimum acceptable "
362 		       "message length is [%d]\n", __func__, message_len, 4);
363 		goto out;
364 	}
365 	if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
366 		rc = -EIO;
367 		printk(KERN_ERR "%s: Type should be ECRYPTFS_TAG_67\n",
368 		       __func__);
369 		goto out;
370 	}
371 	if (data[i++]) {
372 		rc = -EIO;
373 		printk(KERN_ERR "%s: Status indicator has non zero "
374 		       "value [%d]\n", __func__, data[i-1]);
375 
376 		goto out;
377 	}
378 	rc = ecryptfs_parse_packet_length(&data[i], &key_rec->enc_key_size,
379 					  &data_len);
380 	if (rc) {
381 		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
382 				"rc = [%d]\n", rc);
383 		goto out;
384 	}
385 	i += data_len;
386 	if (message_len < (i + key_rec->enc_key_size)) {
387 		rc = -EIO;
388 		printk(KERN_ERR "%s: message_len [%zd]; max len is [%zd]\n",
389 		       __func__, message_len, (i + key_rec->enc_key_size));
390 		goto out;
391 	}
392 	if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
393 		rc = -EIO;
394 		printk(KERN_ERR "%s: Encrypted key_size [%zd] larger than "
395 		       "the maximum key size [%d]\n", __func__,
396 		       key_rec->enc_key_size,
397 		       ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
398 		goto out;
399 	}
400 	memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
401 out:
402 	return rc;
403 }
404 
405 static int
406 ecryptfs_find_global_auth_tok_for_sig(
407 	struct ecryptfs_global_auth_tok **global_auth_tok,
408 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
409 {
410 	struct ecryptfs_global_auth_tok *walker;
411 	int rc = 0;
412 
413 	(*global_auth_tok) = NULL;
414 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
415 	list_for_each_entry(walker,
416 			    &mount_crypt_stat->global_auth_tok_list,
417 			    mount_crypt_stat_list) {
418 		if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX) == 0) {
419 			(*global_auth_tok) = walker;
420 			goto out;
421 		}
422 	}
423 	rc = -EINVAL;
424 out:
425 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
426 	return rc;
427 }
428 
429 /**
430  * ecryptfs_find_auth_tok_for_sig
431  * @auth_tok: Set to the matching auth_tok; NULL if not found
432  * @crypt_stat: inode crypt_stat crypto context
433  * @sig: Sig of auth_tok to find
434  *
435  * For now, this function simply looks at the registered auth_tok's
436  * linked off the mount_crypt_stat, so all the auth_toks that can be
437  * used must be registered at mount time. This function could
438  * potentially try a lot harder to find auth_tok's (e.g., by calling
439  * out to ecryptfsd to dynamically retrieve an auth_tok object) so
440  * that static registration of auth_tok's will no longer be necessary.
441  *
442  * Returns zero on no error; non-zero on error
443  */
444 static int
445 ecryptfs_find_auth_tok_for_sig(
446 	struct ecryptfs_auth_tok **auth_tok,
447 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
448 	char *sig)
449 {
450 	struct ecryptfs_global_auth_tok *global_auth_tok;
451 	int rc = 0;
452 
453 	(*auth_tok) = NULL;
454 	if (ecryptfs_find_global_auth_tok_for_sig(&global_auth_tok,
455 						  mount_crypt_stat, sig)) {
456 		struct key *auth_tok_key;
457 
458 		rc = ecryptfs_keyring_auth_tok_for_sig(&auth_tok_key, auth_tok,
459 						       sig);
460 	} else
461 		(*auth_tok) = global_auth_tok->global_auth_tok;
462 	return rc;
463 }
464 
465 /**
466  * write_tag_70_packet can gobble a lot of stack space. We stuff most
467  * of the function's parameters in a kmalloc'd struct to help reduce
468  * eCryptfs' overall stack usage.
469  */
470 struct ecryptfs_write_tag_70_packet_silly_stack {
471 	u8 cipher_code;
472 	size_t max_packet_size;
473 	size_t packet_size_len;
474 	size_t block_aligned_filename_size;
475 	size_t block_size;
476 	size_t i;
477 	size_t j;
478 	size_t num_rand_bytes;
479 	struct mutex *tfm_mutex;
480 	char *block_aligned_filename;
481 	struct ecryptfs_auth_tok *auth_tok;
482 	struct scatterlist src_sg;
483 	struct scatterlist dst_sg;
484 	struct blkcipher_desc desc;
485 	char iv[ECRYPTFS_MAX_IV_BYTES];
486 	char hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
487 	char tmp_hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
488 	struct hash_desc hash_desc;
489 	struct scatterlist hash_sg;
490 };
491 
492 /**
493  * write_tag_70_packet - Write encrypted filename (EFN) packet against FNEK
494  * @filename: NULL-terminated filename string
495  *
496  * This is the simplest mechanism for achieving filename encryption in
497  * eCryptfs. It encrypts the given filename with the mount-wide
498  * filename encryption key (FNEK) and stores it in a packet to @dest,
499  * which the callee will encode and write directly into the dentry
500  * name.
501  */
502 int
503 ecryptfs_write_tag_70_packet(char *dest, size_t *remaining_bytes,
504 			     size_t *packet_size,
505 			     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
506 			     char *filename, size_t filename_size)
507 {
508 	struct ecryptfs_write_tag_70_packet_silly_stack *s;
509 	int rc = 0;
510 
511 	s = kmalloc(sizeof(*s), GFP_KERNEL);
512 	if (!s) {
513 		printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
514 		       "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
515 		goto out;
516 	}
517 	s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
518 	(*packet_size) = 0;
519 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(
520 		&s->desc.tfm,
521 		&s->tfm_mutex, mount_crypt_stat->global_default_fn_cipher_name);
522 	if (unlikely(rc)) {
523 		printk(KERN_ERR "Internal error whilst attempting to get "
524 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
525 		       mount_crypt_stat->global_default_fn_cipher_name, rc);
526 		goto out;
527 	}
528 	mutex_lock(s->tfm_mutex);
529 	s->block_size = crypto_blkcipher_blocksize(s->desc.tfm);
530 	/* Plus one for the \0 separator between the random prefix
531 	 * and the plaintext filename */
532 	s->num_rand_bytes = (ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES + 1);
533 	s->block_aligned_filename_size = (s->num_rand_bytes + filename_size);
534 	if ((s->block_aligned_filename_size % s->block_size) != 0) {
535 		s->num_rand_bytes += (s->block_size
536 				      - (s->block_aligned_filename_size
537 					 % s->block_size));
538 		s->block_aligned_filename_size = (s->num_rand_bytes
539 						  + filename_size);
540 	}
541 	/* Octet 0: Tag 70 identifier
542 	 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
543 	 *              and block-aligned encrypted filename size)
544 	 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
545 	 * Octet N2-N3: Cipher identifier (1 octet)
546 	 * Octets N3-N4: Block-aligned encrypted filename
547 	 *  - Consists of a minimum number of random characters, a \0
548 	 *    separator, and then the filename */
549 	s->max_packet_size = (1                   /* Tag 70 identifier */
550 			      + 3                 /* Max Tag 70 packet size */
551 			      + ECRYPTFS_SIG_SIZE /* FNEK sig */
552 			      + 1                 /* Cipher identifier */
553 			      + s->block_aligned_filename_size);
554 	if (dest == NULL) {
555 		(*packet_size) = s->max_packet_size;
556 		goto out_unlock;
557 	}
558 	if (s->max_packet_size > (*remaining_bytes)) {
559 		printk(KERN_WARNING "%s: Require [%zd] bytes to write; only "
560 		       "[%zd] available\n", __func__, s->max_packet_size,
561 		       (*remaining_bytes));
562 		rc = -EINVAL;
563 		goto out_unlock;
564 	}
565 	s->block_aligned_filename = kzalloc(s->block_aligned_filename_size,
566 					    GFP_KERNEL);
567 	if (!s->block_aligned_filename) {
568 		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
569 		       "kzalloc [%zd] bytes\n", __func__,
570 		       s->block_aligned_filename_size);
571 		rc = -ENOMEM;
572 		goto out_unlock;
573 	}
574 	s->i = 0;
575 	dest[s->i++] = ECRYPTFS_TAG_70_PACKET_TYPE;
576 	rc = ecryptfs_write_packet_length(&dest[s->i],
577 					  (ECRYPTFS_SIG_SIZE
578 					   + 1 /* Cipher code */
579 					   + s->block_aligned_filename_size),
580 					  &s->packet_size_len);
581 	if (rc) {
582 		printk(KERN_ERR "%s: Error generating tag 70 packet "
583 		       "header; cannot generate packet length; rc = [%d]\n",
584 		       __func__, rc);
585 		goto out_free_unlock;
586 	}
587 	s->i += s->packet_size_len;
588 	ecryptfs_from_hex(&dest[s->i],
589 			  mount_crypt_stat->global_default_fnek_sig,
590 			  ECRYPTFS_SIG_SIZE);
591 	s->i += ECRYPTFS_SIG_SIZE;
592 	s->cipher_code = ecryptfs_code_for_cipher_string(
593 		mount_crypt_stat->global_default_fn_cipher_name,
594 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
595 	if (s->cipher_code == 0) {
596 		printk(KERN_WARNING "%s: Unable to generate code for "
597 		       "cipher [%s] with key bytes [%zd]\n", __func__,
598 		       mount_crypt_stat->global_default_fn_cipher_name,
599 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
600 		rc = -EINVAL;
601 		goto out_free_unlock;
602 	}
603 	dest[s->i++] = s->cipher_code;
604 	rc = ecryptfs_find_auth_tok_for_sig(
605 		&s->auth_tok, mount_crypt_stat,
606 		mount_crypt_stat->global_default_fnek_sig);
607 	if (rc) {
608 		printk(KERN_ERR "%s: Error attempting to find auth tok for "
609 		       "fnek sig [%s]; rc = [%d]\n", __func__,
610 		       mount_crypt_stat->global_default_fnek_sig, rc);
611 		goto out_free_unlock;
612 	}
613 	/* TODO: Support other key modules than passphrase for
614 	 * filename encryption */
615 	BUG_ON(s->auth_tok->token_type != ECRYPTFS_PASSWORD);
616 	sg_init_one(
617 		&s->hash_sg,
618 		(u8 *)s->auth_tok->token.password.session_key_encryption_key,
619 		s->auth_tok->token.password.session_key_encryption_key_bytes);
620 	s->hash_desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
621 	s->hash_desc.tfm = crypto_alloc_hash(ECRYPTFS_TAG_70_DIGEST, 0,
622 					     CRYPTO_ALG_ASYNC);
623 	if (IS_ERR(s->hash_desc.tfm)) {
624 			rc = PTR_ERR(s->hash_desc.tfm);
625 			printk(KERN_ERR "%s: Error attempting to "
626 			       "allocate hash crypto context; rc = [%d]\n",
627 			       __func__, rc);
628 			goto out_free_unlock;
629 	}
630 	rc = crypto_hash_init(&s->hash_desc);
631 	if (rc) {
632 		printk(KERN_ERR
633 		       "%s: Error initializing crypto hash; rc = [%d]\n",
634 		       __func__, rc);
635 		goto out_release_free_unlock;
636 	}
637 	rc = crypto_hash_update(
638 		&s->hash_desc, &s->hash_sg,
639 		s->auth_tok->token.password.session_key_encryption_key_bytes);
640 	if (rc) {
641 		printk(KERN_ERR
642 		       "%s: Error updating crypto hash; rc = [%d]\n",
643 		       __func__, rc);
644 		goto out_release_free_unlock;
645 	}
646 	rc = crypto_hash_final(&s->hash_desc, s->hash);
647 	if (rc) {
648 		printk(KERN_ERR
649 		       "%s: Error finalizing crypto hash; rc = [%d]\n",
650 		       __func__, rc);
651 		goto out_release_free_unlock;
652 	}
653 	for (s->j = 0; s->j < (s->num_rand_bytes - 1); s->j++) {
654 		s->block_aligned_filename[s->j] =
655 			s->hash[(s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)];
656 		if ((s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)
657 		    == (ECRYPTFS_TAG_70_DIGEST_SIZE - 1)) {
658 			sg_init_one(&s->hash_sg, (u8 *)s->hash,
659 				    ECRYPTFS_TAG_70_DIGEST_SIZE);
660 			rc = crypto_hash_init(&s->hash_desc);
661 			if (rc) {
662 				printk(KERN_ERR
663 				       "%s: Error initializing crypto hash; "
664 				       "rc = [%d]\n", __func__, rc);
665 				goto out_release_free_unlock;
666 			}
667 			rc = crypto_hash_update(&s->hash_desc, &s->hash_sg,
668 						ECRYPTFS_TAG_70_DIGEST_SIZE);
669 			if (rc) {
670 				printk(KERN_ERR
671 				       "%s: Error updating crypto hash; "
672 				       "rc = [%d]\n", __func__, rc);
673 				goto out_release_free_unlock;
674 			}
675 			rc = crypto_hash_final(&s->hash_desc, s->tmp_hash);
676 			if (rc) {
677 				printk(KERN_ERR
678 				       "%s: Error finalizing crypto hash; "
679 				       "rc = [%d]\n", __func__, rc);
680 				goto out_release_free_unlock;
681 			}
682 			memcpy(s->hash, s->tmp_hash,
683 			       ECRYPTFS_TAG_70_DIGEST_SIZE);
684 		}
685 		if (s->block_aligned_filename[s->j] == '\0')
686 			s->block_aligned_filename[s->j] = ECRYPTFS_NON_NULL;
687 	}
688 	memcpy(&s->block_aligned_filename[s->num_rand_bytes], filename,
689 	       filename_size);
690 	rc = virt_to_scatterlist(s->block_aligned_filename,
691 				 s->block_aligned_filename_size, &s->src_sg, 1);
692 	if (rc != 1) {
693 		printk(KERN_ERR "%s: Internal error whilst attempting to "
694 		       "convert filename memory to scatterlist; "
695 		       "expected rc = 1; got rc = [%d]. "
696 		       "block_aligned_filename_size = [%zd]\n", __func__, rc,
697 		       s->block_aligned_filename_size);
698 		goto out_release_free_unlock;
699 	}
700 	rc = virt_to_scatterlist(&dest[s->i], s->block_aligned_filename_size,
701 				 &s->dst_sg, 1);
702 	if (rc != 1) {
703 		printk(KERN_ERR "%s: Internal error whilst attempting to "
704 		       "convert encrypted filename memory to scatterlist; "
705 		       "expected rc = 1; got rc = [%d]. "
706 		       "block_aligned_filename_size = [%zd]\n", __func__, rc,
707 		       s->block_aligned_filename_size);
708 		goto out_release_free_unlock;
709 	}
710 	/* The characters in the first block effectively do the job
711 	 * of the IV here, so we just use 0's for the IV. Note the
712 	 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
713 	 * >= ECRYPTFS_MAX_IV_BYTES. */
714 	memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
715 	s->desc.info = s->iv;
716 	rc = crypto_blkcipher_setkey(
717 		s->desc.tfm,
718 		s->auth_tok->token.password.session_key_encryption_key,
719 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
720 	if (rc < 0) {
721 		printk(KERN_ERR "%s: Error setting key for crypto context; "
722 		       "rc = [%d]. s->auth_tok->token.password.session_key_"
723 		       "encryption_key = [0x%p]; mount_crypt_stat->"
724 		       "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
725 		       rc,
726 		       s->auth_tok->token.password.session_key_encryption_key,
727 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
728 		goto out_release_free_unlock;
729 	}
730 	rc = crypto_blkcipher_encrypt_iv(&s->desc, &s->dst_sg, &s->src_sg,
731 					 s->block_aligned_filename_size);
732 	if (rc) {
733 		printk(KERN_ERR "%s: Error attempting to encrypt filename; "
734 		       "rc = [%d]\n", __func__, rc);
735 		goto out_release_free_unlock;
736 	}
737 	s->i += s->block_aligned_filename_size;
738 	(*packet_size) = s->i;
739 	(*remaining_bytes) -= (*packet_size);
740 out_release_free_unlock:
741 	crypto_free_hash(s->hash_desc.tfm);
742 out_free_unlock:
743 	kzfree(s->block_aligned_filename);
744 out_unlock:
745 	mutex_unlock(s->tfm_mutex);
746 out:
747 	kfree(s);
748 	return rc;
749 }
750 
751 struct ecryptfs_parse_tag_70_packet_silly_stack {
752 	u8 cipher_code;
753 	size_t max_packet_size;
754 	size_t packet_size_len;
755 	size_t parsed_tag_70_packet_size;
756 	size_t block_aligned_filename_size;
757 	size_t block_size;
758 	size_t i;
759 	struct mutex *tfm_mutex;
760 	char *decrypted_filename;
761 	struct ecryptfs_auth_tok *auth_tok;
762 	struct scatterlist src_sg;
763 	struct scatterlist dst_sg;
764 	struct blkcipher_desc desc;
765 	char fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX + 1];
766 	char iv[ECRYPTFS_MAX_IV_BYTES];
767 	char cipher_string[ECRYPTFS_MAX_CIPHER_NAME_SIZE];
768 };
769 
770 /**
771  * parse_tag_70_packet - Parse and process FNEK-encrypted passphrase packet
772  * @filename: This function kmalloc's the memory for the filename
773  * @filename_size: This function sets this to the amount of memory
774  *                 kmalloc'd for the filename
775  * @packet_size: This function sets this to the the number of octets
776  *               in the packet parsed
777  * @mount_crypt_stat: The mount-wide cryptographic context
778  * @data: The memory location containing the start of the tag 70
779  *        packet
780  * @max_packet_size: The maximum legal size of the packet to be parsed
781  *                   from @data
782  *
783  * Returns zero on success; non-zero otherwise
784  */
785 int
786 ecryptfs_parse_tag_70_packet(char **filename, size_t *filename_size,
787 			     size_t *packet_size,
788 			     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
789 			     char *data, size_t max_packet_size)
790 {
791 	struct ecryptfs_parse_tag_70_packet_silly_stack *s;
792 	int rc = 0;
793 
794 	(*packet_size) = 0;
795 	(*filename_size) = 0;
796 	(*filename) = NULL;
797 	s = kmalloc(sizeof(*s), GFP_KERNEL);
798 	if (!s) {
799 		printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
800 		       "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
801 		goto out;
802 	}
803 	s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
804 	if (max_packet_size < (1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1)) {
805 		printk(KERN_WARNING "%s: max_packet_size is [%zd]; it must be "
806 		       "at least [%d]\n", __func__, max_packet_size,
807 			(1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1));
808 		rc = -EINVAL;
809 		goto out;
810 	}
811 	/* Octet 0: Tag 70 identifier
812 	 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
813 	 *              and block-aligned encrypted filename size)
814 	 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
815 	 * Octet N2-N3: Cipher identifier (1 octet)
816 	 * Octets N3-N4: Block-aligned encrypted filename
817 	 *  - Consists of a minimum number of random numbers, a \0
818 	 *    separator, and then the filename */
819 	if (data[(*packet_size)++] != ECRYPTFS_TAG_70_PACKET_TYPE) {
820 		printk(KERN_WARNING "%s: Invalid packet tag [0x%.2x]; must be "
821 		       "tag [0x%.2x]\n", __func__,
822 		       data[((*packet_size) - 1)], ECRYPTFS_TAG_70_PACKET_TYPE);
823 		rc = -EINVAL;
824 		goto out;
825 	}
826 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)],
827 					  &s->parsed_tag_70_packet_size,
828 					  &s->packet_size_len);
829 	if (rc) {
830 		printk(KERN_WARNING "%s: Error parsing packet length; "
831 		       "rc = [%d]\n", __func__, rc);
832 		goto out;
833 	}
834 	s->block_aligned_filename_size = (s->parsed_tag_70_packet_size
835 					  - ECRYPTFS_SIG_SIZE - 1);
836 	if ((1 + s->packet_size_len + s->parsed_tag_70_packet_size)
837 	    > max_packet_size) {
838 		printk(KERN_WARNING "%s: max_packet_size is [%zd]; real packet "
839 		       "size is [%zd]\n", __func__, max_packet_size,
840 		       (1 + s->packet_size_len + 1
841 			+ s->block_aligned_filename_size));
842 		rc = -EINVAL;
843 		goto out;
844 	}
845 	(*packet_size) += s->packet_size_len;
846 	ecryptfs_to_hex(s->fnek_sig_hex, &data[(*packet_size)],
847 			ECRYPTFS_SIG_SIZE);
848 	s->fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX] = '\0';
849 	(*packet_size) += ECRYPTFS_SIG_SIZE;
850 	s->cipher_code = data[(*packet_size)++];
851 	rc = ecryptfs_cipher_code_to_string(s->cipher_string, s->cipher_code);
852 	if (rc) {
853 		printk(KERN_WARNING "%s: Cipher code [%d] is invalid\n",
854 		       __func__, s->cipher_code);
855 		goto out;
856 	}
857 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&s->desc.tfm,
858 							&s->tfm_mutex,
859 							s->cipher_string);
860 	if (unlikely(rc)) {
861 		printk(KERN_ERR "Internal error whilst attempting to get "
862 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
863 		       s->cipher_string, rc);
864 		goto out;
865 	}
866 	mutex_lock(s->tfm_mutex);
867 	rc = virt_to_scatterlist(&data[(*packet_size)],
868 				 s->block_aligned_filename_size, &s->src_sg, 1);
869 	if (rc != 1) {
870 		printk(KERN_ERR "%s: Internal error whilst attempting to "
871 		       "convert encrypted filename memory to scatterlist; "
872 		       "expected rc = 1; got rc = [%d]. "
873 		       "block_aligned_filename_size = [%zd]\n", __func__, rc,
874 		       s->block_aligned_filename_size);
875 		goto out_unlock;
876 	}
877 	(*packet_size) += s->block_aligned_filename_size;
878 	s->decrypted_filename = kmalloc(s->block_aligned_filename_size,
879 					GFP_KERNEL);
880 	if (!s->decrypted_filename) {
881 		printk(KERN_ERR "%s: Out of memory whilst attempting to "
882 		       "kmalloc [%zd] bytes\n", __func__,
883 		       s->block_aligned_filename_size);
884 		rc = -ENOMEM;
885 		goto out_unlock;
886 	}
887 	rc = virt_to_scatterlist(s->decrypted_filename,
888 				 s->block_aligned_filename_size, &s->dst_sg, 1);
889 	if (rc != 1) {
890 		printk(KERN_ERR "%s: Internal error whilst attempting to "
891 		       "convert decrypted filename memory to scatterlist; "
892 		       "expected rc = 1; got rc = [%d]. "
893 		       "block_aligned_filename_size = [%zd]\n", __func__, rc,
894 		       s->block_aligned_filename_size);
895 		goto out_free_unlock;
896 	}
897 	/* The characters in the first block effectively do the job of
898 	 * the IV here, so we just use 0's for the IV. Note the
899 	 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
900 	 * >= ECRYPTFS_MAX_IV_BYTES. */
901 	memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
902 	s->desc.info = s->iv;
903 	rc = ecryptfs_find_auth_tok_for_sig(&s->auth_tok, mount_crypt_stat,
904 					    s->fnek_sig_hex);
905 	if (rc) {
906 		printk(KERN_ERR "%s: Error attempting to find auth tok for "
907 		       "fnek sig [%s]; rc = [%d]\n", __func__, s->fnek_sig_hex,
908 		       rc);
909 		goto out_free_unlock;
910 	}
911 	/* TODO: Support other key modules than passphrase for
912 	 * filename encryption */
913 	BUG_ON(s->auth_tok->token_type != ECRYPTFS_PASSWORD);
914 	rc = crypto_blkcipher_setkey(
915 		s->desc.tfm,
916 		s->auth_tok->token.password.session_key_encryption_key,
917 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
918 	if (rc < 0) {
919 		printk(KERN_ERR "%s: Error setting key for crypto context; "
920 		       "rc = [%d]. s->auth_tok->token.password.session_key_"
921 		       "encryption_key = [0x%p]; mount_crypt_stat->"
922 		       "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
923 		       rc,
924 		       s->auth_tok->token.password.session_key_encryption_key,
925 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
926 		goto out_free_unlock;
927 	}
928 	rc = crypto_blkcipher_decrypt_iv(&s->desc, &s->dst_sg, &s->src_sg,
929 					 s->block_aligned_filename_size);
930 	if (rc) {
931 		printk(KERN_ERR "%s: Error attempting to decrypt filename; "
932 		       "rc = [%d]\n", __func__, rc);
933 		goto out_free_unlock;
934 	}
935 	s->i = 0;
936 	while (s->decrypted_filename[s->i] != '\0'
937 	       && s->i < s->block_aligned_filename_size)
938 		s->i++;
939 	if (s->i == s->block_aligned_filename_size) {
940 		printk(KERN_WARNING "%s: Invalid tag 70 packet; could not "
941 		       "find valid separator between random characters and "
942 		       "the filename\n", __func__);
943 		rc = -EINVAL;
944 		goto out_free_unlock;
945 	}
946 	s->i++;
947 	(*filename_size) = (s->block_aligned_filename_size - s->i);
948 	if (!((*filename_size) > 0 && (*filename_size < PATH_MAX))) {
949 		printk(KERN_WARNING "%s: Filename size is [%zd], which is "
950 		       "invalid\n", __func__, (*filename_size));
951 		rc = -EINVAL;
952 		goto out_free_unlock;
953 	}
954 	(*filename) = kmalloc(((*filename_size) + 1), GFP_KERNEL);
955 	if (!(*filename)) {
956 		printk(KERN_ERR "%s: Out of memory whilst attempting to "
957 		       "kmalloc [%zd] bytes\n", __func__,
958 		       ((*filename_size) + 1));
959 		rc = -ENOMEM;
960 		goto out_free_unlock;
961 	}
962 	memcpy((*filename), &s->decrypted_filename[s->i], (*filename_size));
963 	(*filename)[(*filename_size)] = '\0';
964 out_free_unlock:
965 	kfree(s->decrypted_filename);
966 out_unlock:
967 	mutex_unlock(s->tfm_mutex);
968 out:
969 	if (rc) {
970 		(*packet_size) = 0;
971 		(*filename_size) = 0;
972 		(*filename) = NULL;
973 	}
974 	kfree(s);
975 	return rc;
976 }
977 
978 static int
979 ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
980 {
981 	int rc = 0;
982 
983 	(*sig) = NULL;
984 	switch (auth_tok->token_type) {
985 	case ECRYPTFS_PASSWORD:
986 		(*sig) = auth_tok->token.password.signature;
987 		break;
988 	case ECRYPTFS_PRIVATE_KEY:
989 		(*sig) = auth_tok->token.private_key.signature;
990 		break;
991 	default:
992 		printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
993 		       auth_tok->token_type);
994 		rc = -EINVAL;
995 	}
996 	return rc;
997 }
998 
999 /**
1000  * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok.
1001  * @auth_tok: The key authentication token used to decrypt the session key
1002  * @crypt_stat: The cryptographic context
1003  *
1004  * Returns zero on success; non-zero error otherwise.
1005  */
1006 static int
1007 decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1008 				  struct ecryptfs_crypt_stat *crypt_stat)
1009 {
1010 	u8 cipher_code = 0;
1011 	struct ecryptfs_msg_ctx *msg_ctx;
1012 	struct ecryptfs_message *msg = NULL;
1013 	char *auth_tok_sig;
1014 	char *payload;
1015 	size_t payload_len;
1016 	int rc;
1017 
1018 	rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok);
1019 	if (rc) {
1020 		printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
1021 		       auth_tok->token_type);
1022 		goto out;
1023 	}
1024 	rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
1025 				 &payload, &payload_len);
1026 	if (rc) {
1027 		ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet\n");
1028 		goto out;
1029 	}
1030 	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1031 	if (rc) {
1032 		ecryptfs_printk(KERN_ERR, "Error sending message to "
1033 				"ecryptfsd\n");
1034 		goto out;
1035 	}
1036 	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1037 	if (rc) {
1038 		ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
1039 				"from the user space daemon\n");
1040 		rc = -EIO;
1041 		goto out;
1042 	}
1043 	rc = parse_tag_65_packet(&(auth_tok->session_key),
1044 				 &cipher_code, msg);
1045 	if (rc) {
1046 		printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
1047 		       rc);
1048 		goto out;
1049 	}
1050 	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1051 	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1052 	       auth_tok->session_key.decrypted_key_size);
1053 	crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
1054 	rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code);
1055 	if (rc) {
1056 		ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
1057 				cipher_code)
1058 		goto out;
1059 	}
1060 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1061 	if (ecryptfs_verbosity > 0) {
1062 		ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
1063 		ecryptfs_dump_hex(crypt_stat->key,
1064 				  crypt_stat->key_size);
1065 	}
1066 out:
1067 	if (msg)
1068 		kfree(msg);
1069 	return rc;
1070 }
1071 
1072 static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
1073 {
1074 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1075 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1076 
1077 	list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
1078 				 auth_tok_list_head, list) {
1079 		list_del(&auth_tok_list_item->list);
1080 		kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1081 				auth_tok_list_item);
1082 	}
1083 }
1084 
1085 struct kmem_cache *ecryptfs_auth_tok_list_item_cache;
1086 
1087 /**
1088  * parse_tag_1_packet
1089  * @crypt_stat: The cryptographic context to modify based on packet contents
1090  * @data: The raw bytes of the packet.
1091  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1092  *                 a new authentication token will be placed at the
1093  *                 end of this list for this packet.
1094  * @new_auth_tok: Pointer to a pointer to memory that this function
1095  *                allocates; sets the memory address of the pointer to
1096  *                NULL on error. This object is added to the
1097  *                auth_tok_list.
1098  * @packet_size: This function writes the size of the parsed packet
1099  *               into this memory location; zero on error.
1100  * @max_packet_size: The maximum allowable packet size
1101  *
1102  * Returns zero on success; non-zero on error.
1103  */
1104 static int
1105 parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
1106 		   unsigned char *data, struct list_head *auth_tok_list,
1107 		   struct ecryptfs_auth_tok **new_auth_tok,
1108 		   size_t *packet_size, size_t max_packet_size)
1109 {
1110 	size_t body_size;
1111 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1112 	size_t length_size;
1113 	int rc = 0;
1114 
1115 	(*packet_size) = 0;
1116 	(*new_auth_tok) = NULL;
1117 	/**
1118 	 * This format is inspired by OpenPGP; see RFC 2440
1119 	 * packet tag 1
1120 	 *
1121 	 * Tag 1 identifier (1 byte)
1122 	 * Max Tag 1 packet size (max 3 bytes)
1123 	 * Version (1 byte)
1124 	 * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
1125 	 * Cipher identifier (1 byte)
1126 	 * Encrypted key size (arbitrary)
1127 	 *
1128 	 * 12 bytes minimum packet size
1129 	 */
1130 	if (unlikely(max_packet_size < 12)) {
1131 		printk(KERN_ERR "Invalid max packet size; must be >=12\n");
1132 		rc = -EINVAL;
1133 		goto out;
1134 	}
1135 	if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
1136 		printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n",
1137 		       ECRYPTFS_TAG_1_PACKET_TYPE);
1138 		rc = -EINVAL;
1139 		goto out;
1140 	}
1141 	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1142 	 * at end of function upon failure */
1143 	auth_tok_list_item =
1144 		kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache,
1145 				  GFP_KERNEL);
1146 	if (!auth_tok_list_item) {
1147 		printk(KERN_ERR "Unable to allocate memory\n");
1148 		rc = -ENOMEM;
1149 		goto out;
1150 	}
1151 	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1152 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1153 					  &length_size);
1154 	if (rc) {
1155 		printk(KERN_WARNING "Error parsing packet length; "
1156 		       "rc = [%d]\n", rc);
1157 		goto out_free;
1158 	}
1159 	if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) {
1160 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1161 		rc = -EINVAL;
1162 		goto out_free;
1163 	}
1164 	(*packet_size) += length_size;
1165 	if (unlikely((*packet_size) + body_size > max_packet_size)) {
1166 		printk(KERN_WARNING "Packet size exceeds max\n");
1167 		rc = -EINVAL;
1168 		goto out_free;
1169 	}
1170 	if (unlikely(data[(*packet_size)++] != 0x03)) {
1171 		printk(KERN_WARNING "Unknown version number [%d]\n",
1172 		       data[(*packet_size) - 1]);
1173 		rc = -EINVAL;
1174 		goto out_free;
1175 	}
1176 	ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
1177 			&data[(*packet_size)], ECRYPTFS_SIG_SIZE);
1178 	*packet_size += ECRYPTFS_SIG_SIZE;
1179 	/* This byte is skipped because the kernel does not need to
1180 	 * know which public key encryption algorithm was used */
1181 	(*packet_size)++;
1182 	(*new_auth_tok)->session_key.encrypted_key_size =
1183 		body_size - (ECRYPTFS_SIG_SIZE + 2);
1184 	if ((*new_auth_tok)->session_key.encrypted_key_size
1185 	    > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1186 		printk(KERN_WARNING "Tag 1 packet contains key larger "
1187 		       "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES");
1188 		rc = -EINVAL;
1189 		goto out;
1190 	}
1191 	memcpy((*new_auth_tok)->session_key.encrypted_key,
1192 	       &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2)));
1193 	(*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
1194 	(*new_auth_tok)->session_key.flags &=
1195 		~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1196 	(*new_auth_tok)->session_key.flags |=
1197 		ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1198 	(*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
1199 	(*new_auth_tok)->flags = 0;
1200 	(*new_auth_tok)->session_key.flags &=
1201 		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1202 	(*new_auth_tok)->session_key.flags &=
1203 		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1204 	list_add(&auth_tok_list_item->list, auth_tok_list);
1205 	goto out;
1206 out_free:
1207 	(*new_auth_tok) = NULL;
1208 	memset(auth_tok_list_item, 0,
1209 	       sizeof(struct ecryptfs_auth_tok_list_item));
1210 	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1211 			auth_tok_list_item);
1212 out:
1213 	if (rc)
1214 		(*packet_size) = 0;
1215 	return rc;
1216 }
1217 
1218 /**
1219  * parse_tag_3_packet
1220  * @crypt_stat: The cryptographic context to modify based on packet
1221  *              contents.
1222  * @data: The raw bytes of the packet.
1223  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1224  *                 a new authentication token will be placed at the end
1225  *                 of this list for this packet.
1226  * @new_auth_tok: Pointer to a pointer to memory that this function
1227  *                allocates; sets the memory address of the pointer to
1228  *                NULL on error. This object is added to the
1229  *                auth_tok_list.
1230  * @packet_size: This function writes the size of the parsed packet
1231  *               into this memory location; zero on error.
1232  * @max_packet_size: maximum number of bytes to parse
1233  *
1234  * Returns zero on success; non-zero on error.
1235  */
1236 static int
1237 parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
1238 		   unsigned char *data, struct list_head *auth_tok_list,
1239 		   struct ecryptfs_auth_tok **new_auth_tok,
1240 		   size_t *packet_size, size_t max_packet_size)
1241 {
1242 	size_t body_size;
1243 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1244 	size_t length_size;
1245 	int rc = 0;
1246 
1247 	(*packet_size) = 0;
1248 	(*new_auth_tok) = NULL;
1249 	/**
1250 	 *This format is inspired by OpenPGP; see RFC 2440
1251 	 * packet tag 3
1252 	 *
1253 	 * Tag 3 identifier (1 byte)
1254 	 * Max Tag 3 packet size (max 3 bytes)
1255 	 * Version (1 byte)
1256 	 * Cipher code (1 byte)
1257 	 * S2K specifier (1 byte)
1258 	 * Hash identifier (1 byte)
1259 	 * Salt (ECRYPTFS_SALT_SIZE)
1260 	 * Hash iterations (1 byte)
1261 	 * Encrypted key (arbitrary)
1262 	 *
1263 	 * (ECRYPTFS_SALT_SIZE + 7) minimum packet size
1264 	 */
1265 	if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) {
1266 		printk(KERN_ERR "Max packet size too large\n");
1267 		rc = -EINVAL;
1268 		goto out;
1269 	}
1270 	if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
1271 		printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n",
1272 		       ECRYPTFS_TAG_3_PACKET_TYPE);
1273 		rc = -EINVAL;
1274 		goto out;
1275 	}
1276 	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1277 	 * at end of function upon failure */
1278 	auth_tok_list_item =
1279 	    kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
1280 	if (!auth_tok_list_item) {
1281 		printk(KERN_ERR "Unable to allocate memory\n");
1282 		rc = -ENOMEM;
1283 		goto out;
1284 	}
1285 	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1286 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1287 					  &length_size);
1288 	if (rc) {
1289 		printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n",
1290 		       rc);
1291 		goto out_free;
1292 	}
1293 	if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) {
1294 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1295 		rc = -EINVAL;
1296 		goto out_free;
1297 	}
1298 	(*packet_size) += length_size;
1299 	if (unlikely((*packet_size) + body_size > max_packet_size)) {
1300 		printk(KERN_ERR "Packet size exceeds max\n");
1301 		rc = -EINVAL;
1302 		goto out_free;
1303 	}
1304 	(*new_auth_tok)->session_key.encrypted_key_size =
1305 		(body_size - (ECRYPTFS_SALT_SIZE + 5));
1306 	if (unlikely(data[(*packet_size)++] != 0x04)) {
1307 		printk(KERN_WARNING "Unknown version number [%d]\n",
1308 		       data[(*packet_size) - 1]);
1309 		rc = -EINVAL;
1310 		goto out_free;
1311 	}
1312 	ecryptfs_cipher_code_to_string(crypt_stat->cipher,
1313 				       (u16)data[(*packet_size)]);
1314 	/* A little extra work to differentiate among the AES key
1315 	 * sizes; see RFC2440 */
1316 	switch(data[(*packet_size)++]) {
1317 	case RFC2440_CIPHER_AES_192:
1318 		crypt_stat->key_size = 24;
1319 		break;
1320 	default:
1321 		crypt_stat->key_size =
1322 			(*new_auth_tok)->session_key.encrypted_key_size;
1323 	}
1324 	ecryptfs_init_crypt_ctx(crypt_stat);
1325 	if (unlikely(data[(*packet_size)++] != 0x03)) {
1326 		printk(KERN_WARNING "Only S2K ID 3 is currently supported\n");
1327 		rc = -ENOSYS;
1328 		goto out_free;
1329 	}
1330 	/* TODO: finish the hash mapping */
1331 	switch (data[(*packet_size)++]) {
1332 	case 0x01: /* See RFC2440 for these numbers and their mappings */
1333 		/* Choose MD5 */
1334 		memcpy((*new_auth_tok)->token.password.salt,
1335 		       &data[(*packet_size)], ECRYPTFS_SALT_SIZE);
1336 		(*packet_size) += ECRYPTFS_SALT_SIZE;
1337 		/* This conversion was taken straight from RFC2440 */
1338 		(*new_auth_tok)->token.password.hash_iterations =
1339 			((u32) 16 + (data[(*packet_size)] & 15))
1340 				<< ((data[(*packet_size)] >> 4) + 6);
1341 		(*packet_size)++;
1342 		/* Friendly reminder:
1343 		 * (*new_auth_tok)->session_key.encrypted_key_size =
1344 		 *         (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
1345 		memcpy((*new_auth_tok)->session_key.encrypted_key,
1346 		       &data[(*packet_size)],
1347 		       (*new_auth_tok)->session_key.encrypted_key_size);
1348 		(*packet_size) +=
1349 			(*new_auth_tok)->session_key.encrypted_key_size;
1350 		(*new_auth_tok)->session_key.flags &=
1351 			~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1352 		(*new_auth_tok)->session_key.flags |=
1353 			ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1354 		(*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */
1355 		break;
1356 	default:
1357 		ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
1358 				"[%d]\n", data[(*packet_size) - 1]);
1359 		rc = -ENOSYS;
1360 		goto out_free;
1361 	}
1362 	(*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
1363 	/* TODO: Parametarize; we might actually want userspace to
1364 	 * decrypt the session key. */
1365 	(*new_auth_tok)->session_key.flags &=
1366 			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1367 	(*new_auth_tok)->session_key.flags &=
1368 			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1369 	list_add(&auth_tok_list_item->list, auth_tok_list);
1370 	goto out;
1371 out_free:
1372 	(*new_auth_tok) = NULL;
1373 	memset(auth_tok_list_item, 0,
1374 	       sizeof(struct ecryptfs_auth_tok_list_item));
1375 	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1376 			auth_tok_list_item);
1377 out:
1378 	if (rc)
1379 		(*packet_size) = 0;
1380 	return rc;
1381 }
1382 
1383 /**
1384  * parse_tag_11_packet
1385  * @data: The raw bytes of the packet
1386  * @contents: This function writes the data contents of the literal
1387  *            packet into this memory location
1388  * @max_contents_bytes: The maximum number of bytes that this function
1389  *                      is allowed to write into contents
1390  * @tag_11_contents_size: This function writes the size of the parsed
1391  *                        contents into this memory location; zero on
1392  *                        error
1393  * @packet_size: This function writes the size of the parsed packet
1394  *               into this memory location; zero on error
1395  * @max_packet_size: maximum number of bytes to parse
1396  *
1397  * Returns zero on success; non-zero on error.
1398  */
1399 static int
1400 parse_tag_11_packet(unsigned char *data, unsigned char *contents,
1401 		    size_t max_contents_bytes, size_t *tag_11_contents_size,
1402 		    size_t *packet_size, size_t max_packet_size)
1403 {
1404 	size_t body_size;
1405 	size_t length_size;
1406 	int rc = 0;
1407 
1408 	(*packet_size) = 0;
1409 	(*tag_11_contents_size) = 0;
1410 	/* This format is inspired by OpenPGP; see RFC 2440
1411 	 * packet tag 11
1412 	 *
1413 	 * Tag 11 identifier (1 byte)
1414 	 * Max Tag 11 packet size (max 3 bytes)
1415 	 * Binary format specifier (1 byte)
1416 	 * Filename length (1 byte)
1417 	 * Filename ("_CONSOLE") (8 bytes)
1418 	 * Modification date (4 bytes)
1419 	 * Literal data (arbitrary)
1420 	 *
1421 	 * We need at least 16 bytes of data for the packet to even be
1422 	 * valid.
1423 	 */
1424 	if (max_packet_size < 16) {
1425 		printk(KERN_ERR "Maximum packet size too small\n");
1426 		rc = -EINVAL;
1427 		goto out;
1428 	}
1429 	if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
1430 		printk(KERN_WARNING "Invalid tag 11 packet format\n");
1431 		rc = -EINVAL;
1432 		goto out;
1433 	}
1434 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1435 					  &length_size);
1436 	if (rc) {
1437 		printk(KERN_WARNING "Invalid tag 11 packet format\n");
1438 		goto out;
1439 	}
1440 	if (body_size < 14) {
1441 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1442 		rc = -EINVAL;
1443 		goto out;
1444 	}
1445 	(*packet_size) += length_size;
1446 	(*tag_11_contents_size) = (body_size - 14);
1447 	if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
1448 		printk(KERN_ERR "Packet size exceeds max\n");
1449 		rc = -EINVAL;
1450 		goto out;
1451 	}
1452 	if (data[(*packet_size)++] != 0x62) {
1453 		printk(KERN_WARNING "Unrecognizable packet\n");
1454 		rc = -EINVAL;
1455 		goto out;
1456 	}
1457 	if (data[(*packet_size)++] != 0x08) {
1458 		printk(KERN_WARNING "Unrecognizable packet\n");
1459 		rc = -EINVAL;
1460 		goto out;
1461 	}
1462 	(*packet_size) += 12; /* Ignore filename and modification date */
1463 	memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
1464 	(*packet_size) += (*tag_11_contents_size);
1465 out:
1466 	if (rc) {
1467 		(*packet_size) = 0;
1468 		(*tag_11_contents_size) = 0;
1469 	}
1470 	return rc;
1471 }
1472 
1473 /**
1474  * ecryptfs_verify_version
1475  * @version: The version number to confirm
1476  *
1477  * Returns zero on good version; non-zero otherwise
1478  */
1479 static int ecryptfs_verify_version(u16 version)
1480 {
1481 	int rc = 0;
1482 	unsigned char major;
1483 	unsigned char minor;
1484 
1485 	major = ((version >> 8) & 0xFF);
1486 	minor = (version & 0xFF);
1487 	if (major != ECRYPTFS_VERSION_MAJOR) {
1488 		ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
1489 				"Expected [%d]; got [%d]\n",
1490 				ECRYPTFS_VERSION_MAJOR, major);
1491 		rc = -EINVAL;
1492 		goto out;
1493 	}
1494 	if (minor != ECRYPTFS_VERSION_MINOR) {
1495 		ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
1496 				"Expected [%d]; got [%d]\n",
1497 				ECRYPTFS_VERSION_MINOR, minor);
1498 		rc = -EINVAL;
1499 		goto out;
1500 	}
1501 out:
1502 	return rc;
1503 }
1504 
1505 int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
1506 				      struct ecryptfs_auth_tok **auth_tok,
1507 				      char *sig)
1508 {
1509 	int rc = 0;
1510 
1511 	(*auth_tok_key) = request_key(&key_type_user, sig, NULL);
1512 	if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
1513 		printk(KERN_ERR "Could not find key with description: [%s]\n",
1514 		       sig);
1515 		rc = process_request_key_err(PTR_ERR(*auth_tok_key));
1516 		goto out;
1517 	}
1518 	(*auth_tok) = ecryptfs_get_key_payload_data(*auth_tok_key);
1519 	if (ecryptfs_verify_version((*auth_tok)->version)) {
1520 		printk(KERN_ERR
1521 		       "Data structure version mismatch. "
1522 		       "Userspace tools must match eCryptfs "
1523 		       "kernel module with major version [%d] "
1524 		       "and minor version [%d]\n",
1525 		       ECRYPTFS_VERSION_MAJOR,
1526 		       ECRYPTFS_VERSION_MINOR);
1527 		rc = -EINVAL;
1528 		goto out;
1529 	}
1530 	if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
1531 	    && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
1532 		printk(KERN_ERR "Invalid auth_tok structure "
1533 		       "returned from key query\n");
1534 		rc = -EINVAL;
1535 		goto out;
1536 	}
1537 out:
1538 	return rc;
1539 }
1540 
1541 /**
1542  * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok.
1543  * @auth_tok: The passphrase authentication token to use to encrypt the FEK
1544  * @crypt_stat: The cryptographic context
1545  *
1546  * Returns zero on success; non-zero error otherwise
1547  */
1548 static int
1549 decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1550 					 struct ecryptfs_crypt_stat *crypt_stat)
1551 {
1552 	struct scatterlist dst_sg[2];
1553 	struct scatterlist src_sg[2];
1554 	struct mutex *tfm_mutex;
1555 	struct blkcipher_desc desc = {
1556 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
1557 	};
1558 	int rc = 0;
1559 
1560 	if (unlikely(ecryptfs_verbosity > 0)) {
1561 		ecryptfs_printk(
1562 			KERN_DEBUG, "Session key encryption key (size [%d]):\n",
1563 			auth_tok->token.password.session_key_encryption_key_bytes);
1564 		ecryptfs_dump_hex(
1565 			auth_tok->token.password.session_key_encryption_key,
1566 			auth_tok->token.password.session_key_encryption_key_bytes);
1567 	}
1568 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
1569 							crypt_stat->cipher);
1570 	if (unlikely(rc)) {
1571 		printk(KERN_ERR "Internal error whilst attempting to get "
1572 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1573 		       crypt_stat->cipher, rc);
1574 		goto out;
1575 	}
1576 	rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
1577 				 auth_tok->session_key.encrypted_key_size,
1578 				 src_sg, 2);
1579 	if (rc < 1 || rc > 2) {
1580 		printk(KERN_ERR "Internal error whilst attempting to convert "
1581 			"auth_tok->session_key.encrypted_key to scatterlist; "
1582 			"expected rc = 1; got rc = [%d]. "
1583 		       "auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
1584 			auth_tok->session_key.encrypted_key_size);
1585 		goto out;
1586 	}
1587 	auth_tok->session_key.decrypted_key_size =
1588 		auth_tok->session_key.encrypted_key_size;
1589 	rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
1590 				 auth_tok->session_key.decrypted_key_size,
1591 				 dst_sg, 2);
1592 	if (rc < 1 || rc > 2) {
1593 		printk(KERN_ERR "Internal error whilst attempting to convert "
1594 			"auth_tok->session_key.decrypted_key to scatterlist; "
1595 			"expected rc = 1; got rc = [%d]\n", rc);
1596 		goto out;
1597 	}
1598 	mutex_lock(tfm_mutex);
1599 	rc = crypto_blkcipher_setkey(
1600 		desc.tfm, auth_tok->token.password.session_key_encryption_key,
1601 		crypt_stat->key_size);
1602 	if (unlikely(rc < 0)) {
1603 		mutex_unlock(tfm_mutex);
1604 		printk(KERN_ERR "Error setting key for crypto context\n");
1605 		rc = -EINVAL;
1606 		goto out;
1607 	}
1608 	rc = crypto_blkcipher_decrypt(&desc, dst_sg, src_sg,
1609 				      auth_tok->session_key.encrypted_key_size);
1610 	mutex_unlock(tfm_mutex);
1611 	if (unlikely(rc)) {
1612 		printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1613 		goto out;
1614 	}
1615 	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1616 	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1617 	       auth_tok->session_key.decrypted_key_size);
1618 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1619 	if (unlikely(ecryptfs_verbosity > 0)) {
1620 		ecryptfs_printk(KERN_DEBUG, "FEK of size [%d]:\n",
1621 				crypt_stat->key_size);
1622 		ecryptfs_dump_hex(crypt_stat->key,
1623 				  crypt_stat->key_size);
1624 	}
1625 out:
1626 	return rc;
1627 }
1628 
1629 /**
1630  * ecryptfs_parse_packet_set
1631  * @crypt_stat: The cryptographic context
1632  * @src: Virtual address of region of memory containing the packets
1633  * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set
1634  *
1635  * Get crypt_stat to have the file's session key if the requisite key
1636  * is available to decrypt the session key.
1637  *
1638  * Returns Zero if a valid authentication token was retrieved and
1639  * processed; negative value for file not encrypted or for error
1640  * conditions.
1641  */
1642 int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
1643 			      unsigned char *src,
1644 			      struct dentry *ecryptfs_dentry)
1645 {
1646 	size_t i = 0;
1647 	size_t found_auth_tok;
1648 	size_t next_packet_is_auth_tok_packet;
1649 	struct list_head auth_tok_list;
1650 	struct ecryptfs_auth_tok *matching_auth_tok;
1651 	struct ecryptfs_auth_tok *candidate_auth_tok;
1652 	char *candidate_auth_tok_sig;
1653 	size_t packet_size;
1654 	struct ecryptfs_auth_tok *new_auth_tok;
1655 	unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1656 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1657 	size_t tag_11_contents_size;
1658 	size_t tag_11_packet_size;
1659 	int rc = 0;
1660 
1661 	INIT_LIST_HEAD(&auth_tok_list);
1662 	/* Parse the header to find as many packets as we can; these will be
1663 	 * added the our &auth_tok_list */
1664 	next_packet_is_auth_tok_packet = 1;
1665 	while (next_packet_is_auth_tok_packet) {
1666 		size_t max_packet_size = ((PAGE_CACHE_SIZE - 8) - i);
1667 
1668 		switch (src[i]) {
1669 		case ECRYPTFS_TAG_3_PACKET_TYPE:
1670 			rc = parse_tag_3_packet(crypt_stat,
1671 						(unsigned char *)&src[i],
1672 						&auth_tok_list, &new_auth_tok,
1673 						&packet_size, max_packet_size);
1674 			if (rc) {
1675 				ecryptfs_printk(KERN_ERR, "Error parsing "
1676 						"tag 3 packet\n");
1677 				rc = -EIO;
1678 				goto out_wipe_list;
1679 			}
1680 			i += packet_size;
1681 			rc = parse_tag_11_packet((unsigned char *)&src[i],
1682 						 sig_tmp_space,
1683 						 ECRYPTFS_SIG_SIZE,
1684 						 &tag_11_contents_size,
1685 						 &tag_11_packet_size,
1686 						 max_packet_size);
1687 			if (rc) {
1688 				ecryptfs_printk(KERN_ERR, "No valid "
1689 						"(ecryptfs-specific) literal "
1690 						"packet containing "
1691 						"authentication token "
1692 						"signature found after "
1693 						"tag 3 packet\n");
1694 				rc = -EIO;
1695 				goto out_wipe_list;
1696 			}
1697 			i += tag_11_packet_size;
1698 			if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
1699 				ecryptfs_printk(KERN_ERR, "Expected "
1700 						"signature of size [%d]; "
1701 						"read size [%d]\n",
1702 						ECRYPTFS_SIG_SIZE,
1703 						tag_11_contents_size);
1704 				rc = -EIO;
1705 				goto out_wipe_list;
1706 			}
1707 			ecryptfs_to_hex(new_auth_tok->token.password.signature,
1708 					sig_tmp_space, tag_11_contents_size);
1709 			new_auth_tok->token.password.signature[
1710 				ECRYPTFS_PASSWORD_SIG_SIZE] = '\0';
1711 			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1712 			break;
1713 		case ECRYPTFS_TAG_1_PACKET_TYPE:
1714 			rc = parse_tag_1_packet(crypt_stat,
1715 						(unsigned char *)&src[i],
1716 						&auth_tok_list, &new_auth_tok,
1717 						&packet_size, max_packet_size);
1718 			if (rc) {
1719 				ecryptfs_printk(KERN_ERR, "Error parsing "
1720 						"tag 1 packet\n");
1721 				rc = -EIO;
1722 				goto out_wipe_list;
1723 			}
1724 			i += packet_size;
1725 			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1726 			break;
1727 		case ECRYPTFS_TAG_11_PACKET_TYPE:
1728 			ecryptfs_printk(KERN_WARNING, "Invalid packet set "
1729 					"(Tag 11 not allowed by itself)\n");
1730 			rc = -EIO;
1731 			goto out_wipe_list;
1732 			break;
1733 		default:
1734 			ecryptfs_printk(KERN_DEBUG, "No packet at offset "
1735 					"[%d] of the file header; hex value of "
1736 					"character is [0x%.2x]\n", i, src[i]);
1737 			next_packet_is_auth_tok_packet = 0;
1738 		}
1739 	}
1740 	if (list_empty(&auth_tok_list)) {
1741 		printk(KERN_ERR "The lower file appears to be a non-encrypted "
1742 		       "eCryptfs file; this is not supported in this version "
1743 		       "of the eCryptfs kernel module\n");
1744 		rc = -EINVAL;
1745 		goto out;
1746 	}
1747 	/* auth_tok_list contains the set of authentication tokens
1748 	 * parsed from the metadata. We need to find a matching
1749 	 * authentication token that has the secret component(s)
1750 	 * necessary to decrypt the EFEK in the auth_tok parsed from
1751 	 * the metadata. There may be several potential matches, but
1752 	 * just one will be sufficient to decrypt to get the FEK. */
1753 find_next_matching_auth_tok:
1754 	found_auth_tok = 0;
1755 	list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1756 		candidate_auth_tok = &auth_tok_list_item->auth_tok;
1757 		if (unlikely(ecryptfs_verbosity > 0)) {
1758 			ecryptfs_printk(KERN_DEBUG,
1759 					"Considering cadidate auth tok:\n");
1760 			ecryptfs_dump_auth_tok(candidate_auth_tok);
1761 		}
1762 		rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
1763 					       candidate_auth_tok);
1764 		if (rc) {
1765 			printk(KERN_ERR
1766 			       "Unrecognized candidate auth tok type: [%d]\n",
1767 			       candidate_auth_tok->token_type);
1768 			rc = -EINVAL;
1769 			goto out_wipe_list;
1770 		}
1771 		ecryptfs_find_auth_tok_for_sig(&matching_auth_tok,
1772 					       crypt_stat->mount_crypt_stat,
1773 					       candidate_auth_tok_sig);
1774 		if (matching_auth_tok) {
1775 			found_auth_tok = 1;
1776 			goto found_matching_auth_tok;
1777 		}
1778 	}
1779 	if (!found_auth_tok) {
1780 		ecryptfs_printk(KERN_ERR, "Could not find a usable "
1781 				"authentication token\n");
1782 		rc = -EIO;
1783 		goto out_wipe_list;
1784 	}
1785 found_matching_auth_tok:
1786 	if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1787 		memcpy(&(candidate_auth_tok->token.private_key),
1788 		       &(matching_auth_tok->token.private_key),
1789 		       sizeof(struct ecryptfs_private_key));
1790 		rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1791 						       crypt_stat);
1792 	} else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1793 		memcpy(&(candidate_auth_tok->token.password),
1794 		       &(matching_auth_tok->token.password),
1795 		       sizeof(struct ecryptfs_password));
1796 		rc = decrypt_passphrase_encrypted_session_key(
1797 			candidate_auth_tok, crypt_stat);
1798 	}
1799 	if (rc) {
1800 		struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1801 
1802 		ecryptfs_printk(KERN_WARNING, "Error decrypting the "
1803 				"session key for authentication token with sig "
1804 				"[%.*s]; rc = [%d]. Removing auth tok "
1805 				"candidate from the list and searching for "
1806 				"the next match.\n", candidate_auth_tok_sig,
1807 				ECRYPTFS_SIG_SIZE_HEX, rc);
1808 		list_for_each_entry_safe(auth_tok_list_item,
1809 					 auth_tok_list_item_tmp,
1810 					 &auth_tok_list, list) {
1811 			if (candidate_auth_tok
1812 			    == &auth_tok_list_item->auth_tok) {
1813 				list_del(&auth_tok_list_item->list);
1814 				kmem_cache_free(
1815 					ecryptfs_auth_tok_list_item_cache,
1816 					auth_tok_list_item);
1817 				goto find_next_matching_auth_tok;
1818 			}
1819 		}
1820 		BUG();
1821 	}
1822 	rc = ecryptfs_compute_root_iv(crypt_stat);
1823 	if (rc) {
1824 		ecryptfs_printk(KERN_ERR, "Error computing "
1825 				"the root IV\n");
1826 		goto out_wipe_list;
1827 	}
1828 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1829 	if (rc) {
1830 		ecryptfs_printk(KERN_ERR, "Error initializing crypto "
1831 				"context for cipher [%s]; rc = [%d]\n",
1832 				crypt_stat->cipher, rc);
1833 	}
1834 out_wipe_list:
1835 	wipe_auth_tok_list(&auth_tok_list);
1836 out:
1837 	return rc;
1838 }
1839 
1840 static int
1841 pki_encrypt_session_key(struct ecryptfs_auth_tok *auth_tok,
1842 			struct ecryptfs_crypt_stat *crypt_stat,
1843 			struct ecryptfs_key_record *key_rec)
1844 {
1845 	struct ecryptfs_msg_ctx *msg_ctx = NULL;
1846 	char *payload = NULL;
1847 	size_t payload_len;
1848 	struct ecryptfs_message *msg;
1849 	int rc;
1850 
1851 	rc = write_tag_66_packet(auth_tok->token.private_key.signature,
1852 				 ecryptfs_code_for_cipher_string(
1853 					 crypt_stat->cipher,
1854 					 crypt_stat->key_size),
1855 				 crypt_stat, &payload, &payload_len);
1856 	if (rc) {
1857 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
1858 		goto out;
1859 	}
1860 	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1861 	if (rc) {
1862 		ecryptfs_printk(KERN_ERR, "Error sending message to "
1863 				"ecryptfsd\n");
1864 		goto out;
1865 	}
1866 	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1867 	if (rc) {
1868 		ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
1869 				"from the user space daemon\n");
1870 		rc = -EIO;
1871 		goto out;
1872 	}
1873 	rc = parse_tag_67_packet(key_rec, msg);
1874 	if (rc)
1875 		ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
1876 	kfree(msg);
1877 out:
1878 	kfree(payload);
1879 	return rc;
1880 }
1881 /**
1882  * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
1883  * @dest: Buffer into which to write the packet
1884  * @remaining_bytes: Maximum number of bytes that can be writtn
1885  * @auth_tok: The authentication token used for generating the tag 1 packet
1886  * @crypt_stat: The cryptographic context
1887  * @key_rec: The key record struct for the tag 1 packet
1888  * @packet_size: This function will write the number of bytes that end
1889  *               up constituting the packet; set to zero on error
1890  *
1891  * Returns zero on success; non-zero on error.
1892  */
1893 static int
1894 write_tag_1_packet(char *dest, size_t *remaining_bytes,
1895 		   struct ecryptfs_auth_tok *auth_tok,
1896 		   struct ecryptfs_crypt_stat *crypt_stat,
1897 		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
1898 {
1899 	size_t i;
1900 	size_t encrypted_session_key_valid = 0;
1901 	size_t packet_size_length;
1902 	size_t max_packet_size;
1903 	int rc = 0;
1904 
1905 	(*packet_size) = 0;
1906 	ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
1907 			  ECRYPTFS_SIG_SIZE);
1908 	encrypted_session_key_valid = 0;
1909 	for (i = 0; i < crypt_stat->key_size; i++)
1910 		encrypted_session_key_valid |=
1911 			auth_tok->session_key.encrypted_key[i];
1912 	if (encrypted_session_key_valid) {
1913 		memcpy(key_rec->enc_key,
1914 		       auth_tok->session_key.encrypted_key,
1915 		       auth_tok->session_key.encrypted_key_size);
1916 		goto encrypted_session_key_set;
1917 	}
1918 	if (auth_tok->session_key.encrypted_key_size == 0)
1919 		auth_tok->session_key.encrypted_key_size =
1920 			auth_tok->token.private_key.key_size;
1921 	rc = pki_encrypt_session_key(auth_tok, crypt_stat, key_rec);
1922 	if (rc) {
1923 		printk(KERN_ERR "Failed to encrypt session key via a key "
1924 		       "module; rc = [%d]\n", rc);
1925 		goto out;
1926 	}
1927 	if (ecryptfs_verbosity > 0) {
1928 		ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
1929 		ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
1930 	}
1931 encrypted_session_key_set:
1932 	/* This format is inspired by OpenPGP; see RFC 2440
1933 	 * packet tag 1 */
1934 	max_packet_size = (1                         /* Tag 1 identifier */
1935 			   + 3                       /* Max Tag 1 packet size */
1936 			   + 1                       /* Version */
1937 			   + ECRYPTFS_SIG_SIZE       /* Key identifier */
1938 			   + 1                       /* Cipher identifier */
1939 			   + key_rec->enc_key_size); /* Encrypted key size */
1940 	if (max_packet_size > (*remaining_bytes)) {
1941 		printk(KERN_ERR "Packet length larger than maximum allowable; "
1942 		       "need up to [%td] bytes, but there are only [%td] "
1943 		       "available\n", max_packet_size, (*remaining_bytes));
1944 		rc = -EINVAL;
1945 		goto out;
1946 	}
1947 	dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
1948 	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
1949 					  (max_packet_size - 4),
1950 					  &packet_size_length);
1951 	if (rc) {
1952 		ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
1953 				"header; cannot generate packet length\n");
1954 		goto out;
1955 	}
1956 	(*packet_size) += packet_size_length;
1957 	dest[(*packet_size)++] = 0x03; /* version 3 */
1958 	memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
1959 	(*packet_size) += ECRYPTFS_SIG_SIZE;
1960 	dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
1961 	memcpy(&dest[(*packet_size)], key_rec->enc_key,
1962 	       key_rec->enc_key_size);
1963 	(*packet_size) += key_rec->enc_key_size;
1964 out:
1965 	if (rc)
1966 		(*packet_size) = 0;
1967 	else
1968 		(*remaining_bytes) -= (*packet_size);
1969 	return rc;
1970 }
1971 
1972 /**
1973  * write_tag_11_packet
1974  * @dest: Target into which Tag 11 packet is to be written
1975  * @remaining_bytes: Maximum packet length
1976  * @contents: Byte array of contents to copy in
1977  * @contents_length: Number of bytes in contents
1978  * @packet_length: Length of the Tag 11 packet written; zero on error
1979  *
1980  * Returns zero on success; non-zero on error.
1981  */
1982 static int
1983 write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents,
1984 		    size_t contents_length, size_t *packet_length)
1985 {
1986 	size_t packet_size_length;
1987 	size_t max_packet_size;
1988 	int rc = 0;
1989 
1990 	(*packet_length) = 0;
1991 	/* This format is inspired by OpenPGP; see RFC 2440
1992 	 * packet tag 11 */
1993 	max_packet_size = (1                   /* Tag 11 identifier */
1994 			   + 3                 /* Max Tag 11 packet size */
1995 			   + 1                 /* Binary format specifier */
1996 			   + 1                 /* Filename length */
1997 			   + 8                 /* Filename ("_CONSOLE") */
1998 			   + 4                 /* Modification date */
1999 			   + contents_length); /* Literal data */
2000 	if (max_packet_size > (*remaining_bytes)) {
2001 		printk(KERN_ERR "Packet length larger than maximum allowable; "
2002 		       "need up to [%td] bytes, but there are only [%td] "
2003 		       "available\n", max_packet_size, (*remaining_bytes));
2004 		rc = -EINVAL;
2005 		goto out;
2006 	}
2007 	dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
2008 	rc = ecryptfs_write_packet_length(&dest[(*packet_length)],
2009 					  (max_packet_size - 4),
2010 					  &packet_size_length);
2011 	if (rc) {
2012 		printk(KERN_ERR "Error generating tag 11 packet header; cannot "
2013 		       "generate packet length. rc = [%d]\n", rc);
2014 		goto out;
2015 	}
2016 	(*packet_length) += packet_size_length;
2017 	dest[(*packet_length)++] = 0x62; /* binary data format specifier */
2018 	dest[(*packet_length)++] = 8;
2019 	memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
2020 	(*packet_length) += 8;
2021 	memset(&dest[(*packet_length)], 0x00, 4);
2022 	(*packet_length) += 4;
2023 	memcpy(&dest[(*packet_length)], contents, contents_length);
2024 	(*packet_length) += contents_length;
2025  out:
2026 	if (rc)
2027 		(*packet_length) = 0;
2028 	else
2029 		(*remaining_bytes) -= (*packet_length);
2030 	return rc;
2031 }
2032 
2033 /**
2034  * write_tag_3_packet
2035  * @dest: Buffer into which to write the packet
2036  * @remaining_bytes: Maximum number of bytes that can be written
2037  * @auth_tok: Authentication token
2038  * @crypt_stat: The cryptographic context
2039  * @key_rec: encrypted key
2040  * @packet_size: This function will write the number of bytes that end
2041  *               up constituting the packet; set to zero on error
2042  *
2043  * Returns zero on success; non-zero on error.
2044  */
2045 static int
2046 write_tag_3_packet(char *dest, size_t *remaining_bytes,
2047 		   struct ecryptfs_auth_tok *auth_tok,
2048 		   struct ecryptfs_crypt_stat *crypt_stat,
2049 		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
2050 {
2051 	size_t i;
2052 	size_t encrypted_session_key_valid = 0;
2053 	char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
2054 	struct scatterlist dst_sg[2];
2055 	struct scatterlist src_sg[2];
2056 	struct mutex *tfm_mutex = NULL;
2057 	u8 cipher_code;
2058 	size_t packet_size_length;
2059 	size_t max_packet_size;
2060 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2061 		crypt_stat->mount_crypt_stat;
2062 	struct blkcipher_desc desc = {
2063 		.tfm = NULL,
2064 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
2065 	};
2066 	int rc = 0;
2067 
2068 	(*packet_size) = 0;
2069 	ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
2070 			  ECRYPTFS_SIG_SIZE);
2071 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2072 							crypt_stat->cipher);
2073 	if (unlikely(rc)) {
2074 		printk(KERN_ERR "Internal error whilst attempting to get "
2075 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
2076 		       crypt_stat->cipher, rc);
2077 		goto out;
2078 	}
2079 	if (mount_crypt_stat->global_default_cipher_key_size == 0) {
2080 		struct blkcipher_alg *alg = crypto_blkcipher_alg(desc.tfm);
2081 
2082 		printk(KERN_WARNING "No key size specified at mount; "
2083 		       "defaulting to [%d]\n", alg->max_keysize);
2084 		mount_crypt_stat->global_default_cipher_key_size =
2085 			alg->max_keysize;
2086 	}
2087 	if (crypt_stat->key_size == 0)
2088 		crypt_stat->key_size =
2089 			mount_crypt_stat->global_default_cipher_key_size;
2090 	if (auth_tok->session_key.encrypted_key_size == 0)
2091 		auth_tok->session_key.encrypted_key_size =
2092 			crypt_stat->key_size;
2093 	if (crypt_stat->key_size == 24
2094 	    && strcmp("aes", crypt_stat->cipher) == 0) {
2095 		memset((crypt_stat->key + 24), 0, 8);
2096 		auth_tok->session_key.encrypted_key_size = 32;
2097 	} else
2098 		auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
2099 	key_rec->enc_key_size =
2100 		auth_tok->session_key.encrypted_key_size;
2101 	encrypted_session_key_valid = 0;
2102 	for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
2103 		encrypted_session_key_valid |=
2104 			auth_tok->session_key.encrypted_key[i];
2105 	if (encrypted_session_key_valid) {
2106 		ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
2107 				"using auth_tok->session_key.encrypted_key, "
2108 				"where key_rec->enc_key_size = [%d]\n",
2109 				key_rec->enc_key_size);
2110 		memcpy(key_rec->enc_key,
2111 		       auth_tok->session_key.encrypted_key,
2112 		       key_rec->enc_key_size);
2113 		goto encrypted_session_key_set;
2114 	}
2115 	if (auth_tok->token.password.flags &
2116 	    ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
2117 		ecryptfs_printk(KERN_DEBUG, "Using previously generated "
2118 				"session key encryption key of size [%d]\n",
2119 				auth_tok->token.password.
2120 				session_key_encryption_key_bytes);
2121 		memcpy(session_key_encryption_key,
2122 		       auth_tok->token.password.session_key_encryption_key,
2123 		       crypt_stat->key_size);
2124 		ecryptfs_printk(KERN_DEBUG,
2125 				"Cached session key " "encryption key: \n");
2126 		if (ecryptfs_verbosity > 0)
2127 			ecryptfs_dump_hex(session_key_encryption_key, 16);
2128 	}
2129 	if (unlikely(ecryptfs_verbosity > 0)) {
2130 		ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
2131 		ecryptfs_dump_hex(session_key_encryption_key, 16);
2132 	}
2133 	rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size,
2134 				 src_sg, 2);
2135 	if (rc < 1 || rc > 2) {
2136 		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2137 				"for crypt_stat session key; expected rc = 1; "
2138 				"got rc = [%d]. key_rec->enc_key_size = [%d]\n",
2139 				rc, key_rec->enc_key_size);
2140 		rc = -ENOMEM;
2141 		goto out;
2142 	}
2143 	rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size,
2144 				 dst_sg, 2);
2145 	if (rc < 1 || rc > 2) {
2146 		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2147 				"for crypt_stat encrypted session key; "
2148 				"expected rc = 1; got rc = [%d]. "
2149 				"key_rec->enc_key_size = [%d]\n", rc,
2150 				key_rec->enc_key_size);
2151 		rc = -ENOMEM;
2152 		goto out;
2153 	}
2154 	mutex_lock(tfm_mutex);
2155 	rc = crypto_blkcipher_setkey(desc.tfm, session_key_encryption_key,
2156 				     crypt_stat->key_size);
2157 	if (rc < 0) {
2158 		mutex_unlock(tfm_mutex);
2159 		ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
2160 				"context; rc = [%d]\n", rc);
2161 		goto out;
2162 	}
2163 	rc = 0;
2164 	ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes of the key\n",
2165 			crypt_stat->key_size);
2166 	rc = crypto_blkcipher_encrypt(&desc, dst_sg, src_sg,
2167 				      (*key_rec).enc_key_size);
2168 	mutex_unlock(tfm_mutex);
2169 	if (rc) {
2170 		printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
2171 		goto out;
2172 	}
2173 	ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
2174 	if (ecryptfs_verbosity > 0) {
2175 		ecryptfs_printk(KERN_DEBUG, "EFEK of size [%d]:\n",
2176 				key_rec->enc_key_size);
2177 		ecryptfs_dump_hex(key_rec->enc_key,
2178 				  key_rec->enc_key_size);
2179 	}
2180 encrypted_session_key_set:
2181 	/* This format is inspired by OpenPGP; see RFC 2440
2182 	 * packet tag 3 */
2183 	max_packet_size = (1                         /* Tag 3 identifier */
2184 			   + 3                       /* Max Tag 3 packet size */
2185 			   + 1                       /* Version */
2186 			   + 1                       /* Cipher code */
2187 			   + 1                       /* S2K specifier */
2188 			   + 1                       /* Hash identifier */
2189 			   + ECRYPTFS_SALT_SIZE      /* Salt */
2190 			   + 1                       /* Hash iterations */
2191 			   + key_rec->enc_key_size); /* Encrypted key size */
2192 	if (max_packet_size > (*remaining_bytes)) {
2193 		printk(KERN_ERR "Packet too large; need up to [%td] bytes, but "
2194 		       "there are only [%td] available\n", max_packet_size,
2195 		       (*remaining_bytes));
2196 		rc = -EINVAL;
2197 		goto out;
2198 	}
2199 	dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
2200 	/* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
2201 	 * to get the number of octets in the actual Tag 3 packet */
2202 	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2203 					  (max_packet_size - 4),
2204 					  &packet_size_length);
2205 	if (rc) {
2206 		printk(KERN_ERR "Error generating tag 3 packet header; cannot "
2207 		       "generate packet length. rc = [%d]\n", rc);
2208 		goto out;
2209 	}
2210 	(*packet_size) += packet_size_length;
2211 	dest[(*packet_size)++] = 0x04; /* version 4 */
2212 	/* TODO: Break from RFC2440 so that arbitrary ciphers can be
2213 	 * specified with strings */
2214 	cipher_code = ecryptfs_code_for_cipher_string(crypt_stat->cipher,
2215 						      crypt_stat->key_size);
2216 	if (cipher_code == 0) {
2217 		ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
2218 				"cipher [%s]\n", crypt_stat->cipher);
2219 		rc = -EINVAL;
2220 		goto out;
2221 	}
2222 	dest[(*packet_size)++] = cipher_code;
2223 	dest[(*packet_size)++] = 0x03;	/* S2K */
2224 	dest[(*packet_size)++] = 0x01;	/* MD5 (TODO: parameterize) */
2225 	memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
2226 	       ECRYPTFS_SALT_SIZE);
2227 	(*packet_size) += ECRYPTFS_SALT_SIZE;	/* salt */
2228 	dest[(*packet_size)++] = 0x60;	/* hash iterations (65536) */
2229 	memcpy(&dest[(*packet_size)], key_rec->enc_key,
2230 	       key_rec->enc_key_size);
2231 	(*packet_size) += key_rec->enc_key_size;
2232 out:
2233 	if (rc)
2234 		(*packet_size) = 0;
2235 	else
2236 		(*remaining_bytes) -= (*packet_size);
2237 	return rc;
2238 }
2239 
2240 struct kmem_cache *ecryptfs_key_record_cache;
2241 
2242 /**
2243  * ecryptfs_generate_key_packet_set
2244  * @dest_base: Virtual address from which to write the key record set
2245  * @crypt_stat: The cryptographic context from which the
2246  *              authentication tokens will be retrieved
2247  * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
2248  *                   for the global parameters
2249  * @len: The amount written
2250  * @max: The maximum amount of data allowed to be written
2251  *
2252  * Generates a key packet set and writes it to the virtual address
2253  * passed in.
2254  *
2255  * Returns zero on success; non-zero on error.
2256  */
2257 int
2258 ecryptfs_generate_key_packet_set(char *dest_base,
2259 				 struct ecryptfs_crypt_stat *crypt_stat,
2260 				 struct dentry *ecryptfs_dentry, size_t *len,
2261 				 size_t max)
2262 {
2263 	struct ecryptfs_auth_tok *auth_tok;
2264 	struct ecryptfs_global_auth_tok *global_auth_tok;
2265 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2266 		&ecryptfs_superblock_to_private(
2267 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
2268 	size_t written;
2269 	struct ecryptfs_key_record *key_rec;
2270 	struct ecryptfs_key_sig *key_sig;
2271 	int rc = 0;
2272 
2273 	(*len) = 0;
2274 	mutex_lock(&crypt_stat->keysig_list_mutex);
2275 	key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
2276 	if (!key_rec) {
2277 		rc = -ENOMEM;
2278 		goto out;
2279 	}
2280 	list_for_each_entry(key_sig, &crypt_stat->keysig_list,
2281 			    crypt_stat_list) {
2282 		memset(key_rec, 0, sizeof(*key_rec));
2283 		rc = ecryptfs_find_global_auth_tok_for_sig(&global_auth_tok,
2284 							   mount_crypt_stat,
2285 							   key_sig->keysig);
2286 		if (rc) {
2287 			printk(KERN_ERR "Error attempting to get the global "
2288 			       "auth_tok; rc = [%d]\n", rc);
2289 			goto out_free;
2290 		}
2291 		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID) {
2292 			printk(KERN_WARNING
2293 			       "Skipping invalid auth tok with sig = [%s]\n",
2294 			       global_auth_tok->sig);
2295 			continue;
2296 		}
2297 		auth_tok = global_auth_tok->global_auth_tok;
2298 		if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
2299 			rc = write_tag_3_packet((dest_base + (*len)),
2300 						&max, auth_tok,
2301 						crypt_stat, key_rec,
2302 						&written);
2303 			if (rc) {
2304 				ecryptfs_printk(KERN_WARNING, "Error "
2305 						"writing tag 3 packet\n");
2306 				goto out_free;
2307 			}
2308 			(*len) += written;
2309 			/* Write auth tok signature packet */
2310 			rc = write_tag_11_packet((dest_base + (*len)), &max,
2311 						 key_rec->sig,
2312 						 ECRYPTFS_SIG_SIZE, &written);
2313 			if (rc) {
2314 				ecryptfs_printk(KERN_ERR, "Error writing "
2315 						"auth tok signature packet\n");
2316 				goto out_free;
2317 			}
2318 			(*len) += written;
2319 		} else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
2320 			rc = write_tag_1_packet(dest_base + (*len),
2321 						&max, auth_tok,
2322 						crypt_stat, key_rec, &written);
2323 			if (rc) {
2324 				ecryptfs_printk(KERN_WARNING, "Error "
2325 						"writing tag 1 packet\n");
2326 				goto out_free;
2327 			}
2328 			(*len) += written;
2329 		} else {
2330 			ecryptfs_printk(KERN_WARNING, "Unsupported "
2331 					"authentication token type\n");
2332 			rc = -EINVAL;
2333 			goto out_free;
2334 		}
2335 	}
2336 	if (likely(max > 0)) {
2337 		dest_base[(*len)] = 0x00;
2338 	} else {
2339 		ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
2340 		rc = -EIO;
2341 	}
2342 out_free:
2343 	kmem_cache_free(ecryptfs_key_record_cache, key_rec);
2344 out:
2345 	if (rc)
2346 		(*len) = 0;
2347 	mutex_unlock(&crypt_stat->keysig_list_mutex);
2348 	return rc;
2349 }
2350 
2351 struct kmem_cache *ecryptfs_key_sig_cache;
2352 
2353 int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
2354 {
2355 	struct ecryptfs_key_sig *new_key_sig;
2356 	int rc = 0;
2357 
2358 	new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
2359 	if (!new_key_sig) {
2360 		rc = -ENOMEM;
2361 		printk(KERN_ERR
2362 		       "Error allocating from ecryptfs_key_sig_cache\n");
2363 		goto out;
2364 	}
2365 	memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
2366 	mutex_lock(&crypt_stat->keysig_list_mutex);
2367 	list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
2368 	mutex_unlock(&crypt_stat->keysig_list_mutex);
2369 out:
2370 	return rc;
2371 }
2372 
2373 struct kmem_cache *ecryptfs_global_auth_tok_cache;
2374 
2375 int
2376 ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2377 			     char *sig, u32 global_auth_tok_flags)
2378 {
2379 	struct ecryptfs_global_auth_tok *new_auth_tok;
2380 	int rc = 0;
2381 
2382 	new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache,
2383 					GFP_KERNEL);
2384 	if (!new_auth_tok) {
2385 		rc = -ENOMEM;
2386 		printk(KERN_ERR "Error allocating from "
2387 		       "ecryptfs_global_auth_tok_cache\n");
2388 		goto out;
2389 	}
2390 	memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
2391 	new_auth_tok->flags = global_auth_tok_flags;
2392 	new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2393 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
2394 	list_add(&new_auth_tok->mount_crypt_stat_list,
2395 		 &mount_crypt_stat->global_auth_tok_list);
2396 	mount_crypt_stat->num_global_auth_toks++;
2397 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
2398 out:
2399 	return rc;
2400 }
2401 
2402