xref: /openbmc/linux/fs/ecryptfs/keystore.c (revision 7ff836f0)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  * In-kernel key management code.  Includes functions to parse and
4  * write authentication token-related packets with the underlying
5  * file.
6  *
7  * Copyright (C) 2004-2006 International Business Machines Corp.
8  *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
9  *              Michael C. Thompson <mcthomps@us.ibm.com>
10  *              Trevor S. Highland <trevor.highland@gmail.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of the
15  * License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
25  * 02111-1307, USA.
26  */
27 
28 #include <crypto/hash.h>
29 #include <crypto/skcipher.h>
30 #include <linux/string.h>
31 #include <linux/pagemap.h>
32 #include <linux/key.h>
33 #include <linux/random.h>
34 #include <linux/scatterlist.h>
35 #include <linux/slab.h>
36 #include "ecryptfs_kernel.h"
37 
38 /**
39  * request_key returned an error instead of a valid key address;
40  * determine the type of error, make appropriate log entries, and
41  * return an error code.
42  */
43 static int process_request_key_err(long err_code)
44 {
45 	int rc = 0;
46 
47 	switch (err_code) {
48 	case -ENOKEY:
49 		ecryptfs_printk(KERN_WARNING, "No key\n");
50 		rc = -ENOENT;
51 		break;
52 	case -EKEYEXPIRED:
53 		ecryptfs_printk(KERN_WARNING, "Key expired\n");
54 		rc = -ETIME;
55 		break;
56 	case -EKEYREVOKED:
57 		ecryptfs_printk(KERN_WARNING, "Key revoked\n");
58 		rc = -EINVAL;
59 		break;
60 	default:
61 		ecryptfs_printk(KERN_WARNING, "Unknown error code: "
62 				"[0x%.16lx]\n", err_code);
63 		rc = -EINVAL;
64 	}
65 	return rc;
66 }
67 
68 static int process_find_global_auth_tok_for_sig_err(int err_code)
69 {
70 	int rc = err_code;
71 
72 	switch (err_code) {
73 	case -ENOENT:
74 		ecryptfs_printk(KERN_WARNING, "Missing auth tok\n");
75 		break;
76 	case -EINVAL:
77 		ecryptfs_printk(KERN_WARNING, "Invalid auth tok\n");
78 		break;
79 	default:
80 		rc = process_request_key_err(err_code);
81 		break;
82 	}
83 	return rc;
84 }
85 
86 /**
87  * ecryptfs_parse_packet_length
88  * @data: Pointer to memory containing length at offset
89  * @size: This function writes the decoded size to this memory
90  *        address; zero on error
91  * @length_size: The number of bytes occupied by the encoded length
92  *
93  * Returns zero on success; non-zero on error
94  */
95 int ecryptfs_parse_packet_length(unsigned char *data, size_t *size,
96 				 size_t *length_size)
97 {
98 	int rc = 0;
99 
100 	(*length_size) = 0;
101 	(*size) = 0;
102 	if (data[0] < 192) {
103 		/* One-byte length */
104 		(*size) = data[0];
105 		(*length_size) = 1;
106 	} else if (data[0] < 224) {
107 		/* Two-byte length */
108 		(*size) = (data[0] - 192) * 256;
109 		(*size) += data[1] + 192;
110 		(*length_size) = 2;
111 	} else if (data[0] == 255) {
112 		/* If support is added, adjust ECRYPTFS_MAX_PKT_LEN_SIZE */
113 		ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
114 				"supported\n");
115 		rc = -EINVAL;
116 		goto out;
117 	} else {
118 		ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
119 		rc = -EINVAL;
120 		goto out;
121 	}
122 out:
123 	return rc;
124 }
125 
126 /**
127  * ecryptfs_write_packet_length
128  * @dest: The byte array target into which to write the length. Must
129  *        have at least ECRYPTFS_MAX_PKT_LEN_SIZE bytes allocated.
130  * @size: The length to write.
131  * @packet_size_length: The number of bytes used to encode the packet
132  *                      length is written to this address.
133  *
134  * Returns zero on success; non-zero on error.
135  */
136 int ecryptfs_write_packet_length(char *dest, size_t size,
137 				 size_t *packet_size_length)
138 {
139 	int rc = 0;
140 
141 	if (size < 192) {
142 		dest[0] = size;
143 		(*packet_size_length) = 1;
144 	} else if (size < 65536) {
145 		dest[0] = (((size - 192) / 256) + 192);
146 		dest[1] = ((size - 192) % 256);
147 		(*packet_size_length) = 2;
148 	} else {
149 		/* If support is added, adjust ECRYPTFS_MAX_PKT_LEN_SIZE */
150 		rc = -EINVAL;
151 		ecryptfs_printk(KERN_WARNING,
152 				"Unsupported packet size: [%zd]\n", size);
153 	}
154 	return rc;
155 }
156 
157 static int
158 write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
159 		    char **packet, size_t *packet_len)
160 {
161 	size_t i = 0;
162 	size_t data_len;
163 	size_t packet_size_len;
164 	char *message;
165 	int rc;
166 
167 	/*
168 	 *              ***** TAG 64 Packet Format *****
169 	 *    | Content Type                       | 1 byte       |
170 	 *    | Key Identifier Size                | 1 or 2 bytes |
171 	 *    | Key Identifier                     | arbitrary    |
172 	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
173 	 *    | Encrypted File Encryption Key      | arbitrary    |
174 	 */
175 	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
176 		    + session_key->encrypted_key_size);
177 	*packet = kmalloc(data_len, GFP_KERNEL);
178 	message = *packet;
179 	if (!message) {
180 		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
181 		rc = -ENOMEM;
182 		goto out;
183 	}
184 	message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
185 	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
186 					  &packet_size_len);
187 	if (rc) {
188 		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
189 				"header; cannot generate packet length\n");
190 		goto out;
191 	}
192 	i += packet_size_len;
193 	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
194 	i += ECRYPTFS_SIG_SIZE_HEX;
195 	rc = ecryptfs_write_packet_length(&message[i],
196 					  session_key->encrypted_key_size,
197 					  &packet_size_len);
198 	if (rc) {
199 		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
200 				"header; cannot generate packet length\n");
201 		goto out;
202 	}
203 	i += packet_size_len;
204 	memcpy(&message[i], session_key->encrypted_key,
205 	       session_key->encrypted_key_size);
206 	i += session_key->encrypted_key_size;
207 	*packet_len = i;
208 out:
209 	return rc;
210 }
211 
212 static int
213 parse_tag_65_packet(struct ecryptfs_session_key *session_key, u8 *cipher_code,
214 		    struct ecryptfs_message *msg)
215 {
216 	size_t i = 0;
217 	char *data;
218 	size_t data_len;
219 	size_t m_size;
220 	size_t message_len;
221 	u16 checksum = 0;
222 	u16 expected_checksum = 0;
223 	int rc;
224 
225 	/*
226 	 *              ***** TAG 65 Packet Format *****
227 	 *         | Content Type             | 1 byte       |
228 	 *         | Status Indicator         | 1 byte       |
229 	 *         | File Encryption Key Size | 1 or 2 bytes |
230 	 *         | File Encryption Key      | arbitrary    |
231 	 */
232 	message_len = msg->data_len;
233 	data = msg->data;
234 	if (message_len < 4) {
235 		rc = -EIO;
236 		goto out;
237 	}
238 	if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
239 		ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
240 		rc = -EIO;
241 		goto out;
242 	}
243 	if (data[i++]) {
244 		ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
245 				"[%d]\n", data[i-1]);
246 		rc = -EIO;
247 		goto out;
248 	}
249 	rc = ecryptfs_parse_packet_length(&data[i], &m_size, &data_len);
250 	if (rc) {
251 		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
252 				"rc = [%d]\n", rc);
253 		goto out;
254 	}
255 	i += data_len;
256 	if (message_len < (i + m_size)) {
257 		ecryptfs_printk(KERN_ERR, "The message received from ecryptfsd "
258 				"is shorter than expected\n");
259 		rc = -EIO;
260 		goto out;
261 	}
262 	if (m_size < 3) {
263 		ecryptfs_printk(KERN_ERR,
264 				"The decrypted key is not long enough to "
265 				"include a cipher code and checksum\n");
266 		rc = -EIO;
267 		goto out;
268 	}
269 	*cipher_code = data[i++];
270 	/* The decrypted key includes 1 byte cipher code and 2 byte checksum */
271 	session_key->decrypted_key_size = m_size - 3;
272 	if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
273 		ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
274 				"the maximum key size [%d]\n",
275 				session_key->decrypted_key_size,
276 				ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
277 		rc = -EIO;
278 		goto out;
279 	}
280 	memcpy(session_key->decrypted_key, &data[i],
281 	       session_key->decrypted_key_size);
282 	i += session_key->decrypted_key_size;
283 	expected_checksum += (unsigned char)(data[i++]) << 8;
284 	expected_checksum += (unsigned char)(data[i++]);
285 	for (i = 0; i < session_key->decrypted_key_size; i++)
286 		checksum += session_key->decrypted_key[i];
287 	if (expected_checksum != checksum) {
288 		ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
289 				"encryption  key; expected [%x]; calculated "
290 				"[%x]\n", expected_checksum, checksum);
291 		rc = -EIO;
292 	}
293 out:
294 	return rc;
295 }
296 
297 
298 static int
299 write_tag_66_packet(char *signature, u8 cipher_code,
300 		    struct ecryptfs_crypt_stat *crypt_stat, char **packet,
301 		    size_t *packet_len)
302 {
303 	size_t i = 0;
304 	size_t j;
305 	size_t data_len;
306 	size_t checksum = 0;
307 	size_t packet_size_len;
308 	char *message;
309 	int rc;
310 
311 	/*
312 	 *              ***** TAG 66 Packet Format *****
313 	 *         | Content Type             | 1 byte       |
314 	 *         | Key Identifier Size      | 1 or 2 bytes |
315 	 *         | Key Identifier           | arbitrary    |
316 	 *         | File Encryption Key Size | 1 or 2 bytes |
317 	 *         | File Encryption Key      | arbitrary    |
318 	 */
319 	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
320 	*packet = kmalloc(data_len, GFP_KERNEL);
321 	message = *packet;
322 	if (!message) {
323 		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
324 		rc = -ENOMEM;
325 		goto out;
326 	}
327 	message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
328 	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
329 					  &packet_size_len);
330 	if (rc) {
331 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
332 				"header; cannot generate packet length\n");
333 		goto out;
334 	}
335 	i += packet_size_len;
336 	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
337 	i += ECRYPTFS_SIG_SIZE_HEX;
338 	/* The encrypted key includes 1 byte cipher code and 2 byte checksum */
339 	rc = ecryptfs_write_packet_length(&message[i], crypt_stat->key_size + 3,
340 					  &packet_size_len);
341 	if (rc) {
342 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
343 				"header; cannot generate packet length\n");
344 		goto out;
345 	}
346 	i += packet_size_len;
347 	message[i++] = cipher_code;
348 	memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
349 	i += crypt_stat->key_size;
350 	for (j = 0; j < crypt_stat->key_size; j++)
351 		checksum += crypt_stat->key[j];
352 	message[i++] = (checksum / 256) % 256;
353 	message[i++] = (checksum % 256);
354 	*packet_len = i;
355 out:
356 	return rc;
357 }
358 
359 static int
360 parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
361 		    struct ecryptfs_message *msg)
362 {
363 	size_t i = 0;
364 	char *data;
365 	size_t data_len;
366 	size_t message_len;
367 	int rc;
368 
369 	/*
370 	 *              ***** TAG 65 Packet Format *****
371 	 *    | Content Type                       | 1 byte       |
372 	 *    | Status Indicator                   | 1 byte       |
373 	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
374 	 *    | Encrypted File Encryption Key      | arbitrary    |
375 	 */
376 	message_len = msg->data_len;
377 	data = msg->data;
378 	/* verify that everything through the encrypted FEK size is present */
379 	if (message_len < 4) {
380 		rc = -EIO;
381 		printk(KERN_ERR "%s: message_len is [%zd]; minimum acceptable "
382 		       "message length is [%d]\n", __func__, message_len, 4);
383 		goto out;
384 	}
385 	if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
386 		rc = -EIO;
387 		printk(KERN_ERR "%s: Type should be ECRYPTFS_TAG_67\n",
388 		       __func__);
389 		goto out;
390 	}
391 	if (data[i++]) {
392 		rc = -EIO;
393 		printk(KERN_ERR "%s: Status indicator has non zero "
394 		       "value [%d]\n", __func__, data[i-1]);
395 
396 		goto out;
397 	}
398 	rc = ecryptfs_parse_packet_length(&data[i], &key_rec->enc_key_size,
399 					  &data_len);
400 	if (rc) {
401 		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
402 				"rc = [%d]\n", rc);
403 		goto out;
404 	}
405 	i += data_len;
406 	if (message_len < (i + key_rec->enc_key_size)) {
407 		rc = -EIO;
408 		printk(KERN_ERR "%s: message_len [%zd]; max len is [%zd]\n",
409 		       __func__, message_len, (i + key_rec->enc_key_size));
410 		goto out;
411 	}
412 	if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
413 		rc = -EIO;
414 		printk(KERN_ERR "%s: Encrypted key_size [%zd] larger than "
415 		       "the maximum key size [%d]\n", __func__,
416 		       key_rec->enc_key_size,
417 		       ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
418 		goto out;
419 	}
420 	memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
421 out:
422 	return rc;
423 }
424 
425 /**
426  * ecryptfs_verify_version
427  * @version: The version number to confirm
428  *
429  * Returns zero on good version; non-zero otherwise
430  */
431 static int ecryptfs_verify_version(u16 version)
432 {
433 	int rc = 0;
434 	unsigned char major;
435 	unsigned char minor;
436 
437 	major = ((version >> 8) & 0xFF);
438 	minor = (version & 0xFF);
439 	if (major != ECRYPTFS_VERSION_MAJOR) {
440 		ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
441 				"Expected [%d]; got [%d]\n",
442 				ECRYPTFS_VERSION_MAJOR, major);
443 		rc = -EINVAL;
444 		goto out;
445 	}
446 	if (minor != ECRYPTFS_VERSION_MINOR) {
447 		ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
448 				"Expected [%d]; got [%d]\n",
449 				ECRYPTFS_VERSION_MINOR, minor);
450 		rc = -EINVAL;
451 		goto out;
452 	}
453 out:
454 	return rc;
455 }
456 
457 /**
458  * ecryptfs_verify_auth_tok_from_key
459  * @auth_tok_key: key containing the authentication token
460  * @auth_tok: authentication token
461  *
462  * Returns zero on valid auth tok; -EINVAL if the payload is invalid; or
463  * -EKEYREVOKED if the key was revoked before we acquired its semaphore.
464  */
465 static int
466 ecryptfs_verify_auth_tok_from_key(struct key *auth_tok_key,
467 				  struct ecryptfs_auth_tok **auth_tok)
468 {
469 	int rc = 0;
470 
471 	(*auth_tok) = ecryptfs_get_key_payload_data(auth_tok_key);
472 	if (IS_ERR(*auth_tok)) {
473 		rc = PTR_ERR(*auth_tok);
474 		*auth_tok = NULL;
475 		goto out;
476 	}
477 
478 	if (ecryptfs_verify_version((*auth_tok)->version)) {
479 		printk(KERN_ERR "Data structure version mismatch. Userspace "
480 		       "tools must match eCryptfs kernel module with major "
481 		       "version [%d] and minor version [%d]\n",
482 		       ECRYPTFS_VERSION_MAJOR, ECRYPTFS_VERSION_MINOR);
483 		rc = -EINVAL;
484 		goto out;
485 	}
486 	if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
487 	    && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
488 		printk(KERN_ERR "Invalid auth_tok structure "
489 		       "returned from key query\n");
490 		rc = -EINVAL;
491 		goto out;
492 	}
493 out:
494 	return rc;
495 }
496 
497 static int
498 ecryptfs_find_global_auth_tok_for_sig(
499 	struct key **auth_tok_key,
500 	struct ecryptfs_auth_tok **auth_tok,
501 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
502 {
503 	struct ecryptfs_global_auth_tok *walker;
504 	int rc = 0;
505 
506 	(*auth_tok_key) = NULL;
507 	(*auth_tok) = NULL;
508 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
509 	list_for_each_entry(walker,
510 			    &mount_crypt_stat->global_auth_tok_list,
511 			    mount_crypt_stat_list) {
512 		if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX))
513 			continue;
514 
515 		if (walker->flags & ECRYPTFS_AUTH_TOK_INVALID) {
516 			rc = -EINVAL;
517 			goto out;
518 		}
519 
520 		rc = key_validate(walker->global_auth_tok_key);
521 		if (rc) {
522 			if (rc == -EKEYEXPIRED)
523 				goto out;
524 			goto out_invalid_auth_tok;
525 		}
526 
527 		down_write(&(walker->global_auth_tok_key->sem));
528 		rc = ecryptfs_verify_auth_tok_from_key(
529 				walker->global_auth_tok_key, auth_tok);
530 		if (rc)
531 			goto out_invalid_auth_tok_unlock;
532 
533 		(*auth_tok_key) = walker->global_auth_tok_key;
534 		key_get(*auth_tok_key);
535 		goto out;
536 	}
537 	rc = -ENOENT;
538 	goto out;
539 out_invalid_auth_tok_unlock:
540 	up_write(&(walker->global_auth_tok_key->sem));
541 out_invalid_auth_tok:
542 	printk(KERN_WARNING "Invalidating auth tok with sig = [%s]\n", sig);
543 	walker->flags |= ECRYPTFS_AUTH_TOK_INVALID;
544 	key_put(walker->global_auth_tok_key);
545 	walker->global_auth_tok_key = NULL;
546 out:
547 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
548 	return rc;
549 }
550 
551 /**
552  * ecryptfs_find_auth_tok_for_sig
553  * @auth_tok: Set to the matching auth_tok; NULL if not found
554  * @crypt_stat: inode crypt_stat crypto context
555  * @sig: Sig of auth_tok to find
556  *
557  * For now, this function simply looks at the registered auth_tok's
558  * linked off the mount_crypt_stat, so all the auth_toks that can be
559  * used must be registered at mount time. This function could
560  * potentially try a lot harder to find auth_tok's (e.g., by calling
561  * out to ecryptfsd to dynamically retrieve an auth_tok object) so
562  * that static registration of auth_tok's will no longer be necessary.
563  *
564  * Returns zero on no error; non-zero on error
565  */
566 static int
567 ecryptfs_find_auth_tok_for_sig(
568 	struct key **auth_tok_key,
569 	struct ecryptfs_auth_tok **auth_tok,
570 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
571 	char *sig)
572 {
573 	int rc = 0;
574 
575 	rc = ecryptfs_find_global_auth_tok_for_sig(auth_tok_key, auth_tok,
576 						   mount_crypt_stat, sig);
577 	if (rc == -ENOENT) {
578 		/* if the flag ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY is set in the
579 		 * mount_crypt_stat structure, we prevent to use auth toks that
580 		 * are not inserted through the ecryptfs_add_global_auth_tok
581 		 * function.
582 		 */
583 		if (mount_crypt_stat->flags
584 				& ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY)
585 			return -EINVAL;
586 
587 		rc = ecryptfs_keyring_auth_tok_for_sig(auth_tok_key, auth_tok,
588 						       sig);
589 	}
590 	return rc;
591 }
592 
593 /**
594  * write_tag_70_packet can gobble a lot of stack space. We stuff most
595  * of the function's parameters in a kmalloc'd struct to help reduce
596  * eCryptfs' overall stack usage.
597  */
598 struct ecryptfs_write_tag_70_packet_silly_stack {
599 	u8 cipher_code;
600 	size_t max_packet_size;
601 	size_t packet_size_len;
602 	size_t block_aligned_filename_size;
603 	size_t block_size;
604 	size_t i;
605 	size_t j;
606 	size_t num_rand_bytes;
607 	struct mutex *tfm_mutex;
608 	char *block_aligned_filename;
609 	struct ecryptfs_auth_tok *auth_tok;
610 	struct scatterlist src_sg[2];
611 	struct scatterlist dst_sg[2];
612 	struct crypto_skcipher *skcipher_tfm;
613 	struct skcipher_request *skcipher_req;
614 	char iv[ECRYPTFS_MAX_IV_BYTES];
615 	char hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
616 	char tmp_hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
617 	struct crypto_shash *hash_tfm;
618 	struct shash_desc *hash_desc;
619 };
620 
621 /**
622  * write_tag_70_packet - Write encrypted filename (EFN) packet against FNEK
623  * @filename: NULL-terminated filename string
624  *
625  * This is the simplest mechanism for achieving filename encryption in
626  * eCryptfs. It encrypts the given filename with the mount-wide
627  * filename encryption key (FNEK) and stores it in a packet to @dest,
628  * which the callee will encode and write directly into the dentry
629  * name.
630  */
631 int
632 ecryptfs_write_tag_70_packet(char *dest, size_t *remaining_bytes,
633 			     size_t *packet_size,
634 			     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
635 			     char *filename, size_t filename_size)
636 {
637 	struct ecryptfs_write_tag_70_packet_silly_stack *s;
638 	struct key *auth_tok_key = NULL;
639 	int rc = 0;
640 
641 	s = kzalloc(sizeof(*s), GFP_KERNEL);
642 	if (!s)
643 		return -ENOMEM;
644 
645 	(*packet_size) = 0;
646 	rc = ecryptfs_find_auth_tok_for_sig(
647 		&auth_tok_key,
648 		&s->auth_tok, mount_crypt_stat,
649 		mount_crypt_stat->global_default_fnek_sig);
650 	if (rc) {
651 		printk(KERN_ERR "%s: Error attempting to find auth tok for "
652 		       "fnek sig [%s]; rc = [%d]\n", __func__,
653 		       mount_crypt_stat->global_default_fnek_sig, rc);
654 		goto out;
655 	}
656 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(
657 		&s->skcipher_tfm,
658 		&s->tfm_mutex, mount_crypt_stat->global_default_fn_cipher_name);
659 	if (unlikely(rc)) {
660 		printk(KERN_ERR "Internal error whilst attempting to get "
661 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
662 		       mount_crypt_stat->global_default_fn_cipher_name, rc);
663 		goto out;
664 	}
665 	mutex_lock(s->tfm_mutex);
666 	s->block_size = crypto_skcipher_blocksize(s->skcipher_tfm);
667 	/* Plus one for the \0 separator between the random prefix
668 	 * and the plaintext filename */
669 	s->num_rand_bytes = (ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES + 1);
670 	s->block_aligned_filename_size = (s->num_rand_bytes + filename_size);
671 	if ((s->block_aligned_filename_size % s->block_size) != 0) {
672 		s->num_rand_bytes += (s->block_size
673 				      - (s->block_aligned_filename_size
674 					 % s->block_size));
675 		s->block_aligned_filename_size = (s->num_rand_bytes
676 						  + filename_size);
677 	}
678 	/* Octet 0: Tag 70 identifier
679 	 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
680 	 *              and block-aligned encrypted filename size)
681 	 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
682 	 * Octet N2-N3: Cipher identifier (1 octet)
683 	 * Octets N3-N4: Block-aligned encrypted filename
684 	 *  - Consists of a minimum number of random characters, a \0
685 	 *    separator, and then the filename */
686 	s->max_packet_size = (ECRYPTFS_TAG_70_MAX_METADATA_SIZE
687 			      + s->block_aligned_filename_size);
688 	if (!dest) {
689 		(*packet_size) = s->max_packet_size;
690 		goto out_unlock;
691 	}
692 	if (s->max_packet_size > (*remaining_bytes)) {
693 		printk(KERN_WARNING "%s: Require [%zd] bytes to write; only "
694 		       "[%zd] available\n", __func__, s->max_packet_size,
695 		       (*remaining_bytes));
696 		rc = -EINVAL;
697 		goto out_unlock;
698 	}
699 
700 	s->skcipher_req = skcipher_request_alloc(s->skcipher_tfm, GFP_KERNEL);
701 	if (!s->skcipher_req) {
702 		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
703 		       "skcipher_request_alloc for %s\n", __func__,
704 		       crypto_skcipher_driver_name(s->skcipher_tfm));
705 		rc = -ENOMEM;
706 		goto out_unlock;
707 	}
708 
709 	skcipher_request_set_callback(s->skcipher_req,
710 				      CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
711 
712 	s->block_aligned_filename = kzalloc(s->block_aligned_filename_size,
713 					    GFP_KERNEL);
714 	if (!s->block_aligned_filename) {
715 		rc = -ENOMEM;
716 		goto out_unlock;
717 	}
718 	dest[s->i++] = ECRYPTFS_TAG_70_PACKET_TYPE;
719 	rc = ecryptfs_write_packet_length(&dest[s->i],
720 					  (ECRYPTFS_SIG_SIZE
721 					   + 1 /* Cipher code */
722 					   + s->block_aligned_filename_size),
723 					  &s->packet_size_len);
724 	if (rc) {
725 		printk(KERN_ERR "%s: Error generating tag 70 packet "
726 		       "header; cannot generate packet length; rc = [%d]\n",
727 		       __func__, rc);
728 		goto out_free_unlock;
729 	}
730 	s->i += s->packet_size_len;
731 	ecryptfs_from_hex(&dest[s->i],
732 			  mount_crypt_stat->global_default_fnek_sig,
733 			  ECRYPTFS_SIG_SIZE);
734 	s->i += ECRYPTFS_SIG_SIZE;
735 	s->cipher_code = ecryptfs_code_for_cipher_string(
736 		mount_crypt_stat->global_default_fn_cipher_name,
737 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
738 	if (s->cipher_code == 0) {
739 		printk(KERN_WARNING "%s: Unable to generate code for "
740 		       "cipher [%s] with key bytes [%zd]\n", __func__,
741 		       mount_crypt_stat->global_default_fn_cipher_name,
742 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
743 		rc = -EINVAL;
744 		goto out_free_unlock;
745 	}
746 	dest[s->i++] = s->cipher_code;
747 	/* TODO: Support other key modules than passphrase for
748 	 * filename encryption */
749 	if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
750 		rc = -EOPNOTSUPP;
751 		printk(KERN_INFO "%s: Filename encryption only supports "
752 		       "password tokens\n", __func__);
753 		goto out_free_unlock;
754 	}
755 	s->hash_tfm = crypto_alloc_shash(ECRYPTFS_TAG_70_DIGEST, 0, 0);
756 	if (IS_ERR(s->hash_tfm)) {
757 			rc = PTR_ERR(s->hash_tfm);
758 			printk(KERN_ERR "%s: Error attempting to "
759 			       "allocate hash crypto context; rc = [%d]\n",
760 			       __func__, rc);
761 			goto out_free_unlock;
762 	}
763 
764 	s->hash_desc = kmalloc(sizeof(*s->hash_desc) +
765 			       crypto_shash_descsize(s->hash_tfm), GFP_KERNEL);
766 	if (!s->hash_desc) {
767 		rc = -ENOMEM;
768 		goto out_release_free_unlock;
769 	}
770 
771 	s->hash_desc->tfm = s->hash_tfm;
772 
773 	rc = crypto_shash_digest(s->hash_desc,
774 				 (u8 *)s->auth_tok->token.password.session_key_encryption_key,
775 				 s->auth_tok->token.password.session_key_encryption_key_bytes,
776 				 s->hash);
777 	if (rc) {
778 		printk(KERN_ERR
779 		       "%s: Error computing crypto hash; rc = [%d]\n",
780 		       __func__, rc);
781 		goto out_release_free_unlock;
782 	}
783 	for (s->j = 0; s->j < (s->num_rand_bytes - 1); s->j++) {
784 		s->block_aligned_filename[s->j] =
785 			s->hash[(s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)];
786 		if ((s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)
787 		    == (ECRYPTFS_TAG_70_DIGEST_SIZE - 1)) {
788 			rc = crypto_shash_digest(s->hash_desc, (u8 *)s->hash,
789 						ECRYPTFS_TAG_70_DIGEST_SIZE,
790 						s->tmp_hash);
791 			if (rc) {
792 				printk(KERN_ERR
793 				       "%s: Error computing crypto hash; "
794 				       "rc = [%d]\n", __func__, rc);
795 				goto out_release_free_unlock;
796 			}
797 			memcpy(s->hash, s->tmp_hash,
798 			       ECRYPTFS_TAG_70_DIGEST_SIZE);
799 		}
800 		if (s->block_aligned_filename[s->j] == '\0')
801 			s->block_aligned_filename[s->j] = ECRYPTFS_NON_NULL;
802 	}
803 	memcpy(&s->block_aligned_filename[s->num_rand_bytes], filename,
804 	       filename_size);
805 	rc = virt_to_scatterlist(s->block_aligned_filename,
806 				 s->block_aligned_filename_size, s->src_sg, 2);
807 	if (rc < 1) {
808 		printk(KERN_ERR "%s: Internal error whilst attempting to "
809 		       "convert filename memory to scatterlist; rc = [%d]. "
810 		       "block_aligned_filename_size = [%zd]\n", __func__, rc,
811 		       s->block_aligned_filename_size);
812 		goto out_release_free_unlock;
813 	}
814 	rc = virt_to_scatterlist(&dest[s->i], s->block_aligned_filename_size,
815 				 s->dst_sg, 2);
816 	if (rc < 1) {
817 		printk(KERN_ERR "%s: Internal error whilst attempting to "
818 		       "convert encrypted filename memory to scatterlist; "
819 		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
820 		       __func__, rc, s->block_aligned_filename_size);
821 		goto out_release_free_unlock;
822 	}
823 	/* The characters in the first block effectively do the job
824 	 * of the IV here, so we just use 0's for the IV. Note the
825 	 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
826 	 * >= ECRYPTFS_MAX_IV_BYTES. */
827 	rc = crypto_skcipher_setkey(
828 		s->skcipher_tfm,
829 		s->auth_tok->token.password.session_key_encryption_key,
830 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
831 	if (rc < 0) {
832 		printk(KERN_ERR "%s: Error setting key for crypto context; "
833 		       "rc = [%d]. s->auth_tok->token.password.session_key_"
834 		       "encryption_key = [0x%p]; mount_crypt_stat->"
835 		       "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
836 		       rc,
837 		       s->auth_tok->token.password.session_key_encryption_key,
838 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
839 		goto out_release_free_unlock;
840 	}
841 	skcipher_request_set_crypt(s->skcipher_req, s->src_sg, s->dst_sg,
842 				   s->block_aligned_filename_size, s->iv);
843 	rc = crypto_skcipher_encrypt(s->skcipher_req);
844 	if (rc) {
845 		printk(KERN_ERR "%s: Error attempting to encrypt filename; "
846 		       "rc = [%d]\n", __func__, rc);
847 		goto out_release_free_unlock;
848 	}
849 	s->i += s->block_aligned_filename_size;
850 	(*packet_size) = s->i;
851 	(*remaining_bytes) -= (*packet_size);
852 out_release_free_unlock:
853 	crypto_free_shash(s->hash_tfm);
854 out_free_unlock:
855 	kzfree(s->block_aligned_filename);
856 out_unlock:
857 	mutex_unlock(s->tfm_mutex);
858 out:
859 	if (auth_tok_key) {
860 		up_write(&(auth_tok_key->sem));
861 		key_put(auth_tok_key);
862 	}
863 	skcipher_request_free(s->skcipher_req);
864 	kzfree(s->hash_desc);
865 	kfree(s);
866 	return rc;
867 }
868 
869 struct ecryptfs_parse_tag_70_packet_silly_stack {
870 	u8 cipher_code;
871 	size_t max_packet_size;
872 	size_t packet_size_len;
873 	size_t parsed_tag_70_packet_size;
874 	size_t block_aligned_filename_size;
875 	size_t block_size;
876 	size_t i;
877 	struct mutex *tfm_mutex;
878 	char *decrypted_filename;
879 	struct ecryptfs_auth_tok *auth_tok;
880 	struct scatterlist src_sg[2];
881 	struct scatterlist dst_sg[2];
882 	struct crypto_skcipher *skcipher_tfm;
883 	struct skcipher_request *skcipher_req;
884 	char fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX + 1];
885 	char iv[ECRYPTFS_MAX_IV_BYTES];
886 	char cipher_string[ECRYPTFS_MAX_CIPHER_NAME_SIZE + 1];
887 };
888 
889 /**
890  * parse_tag_70_packet - Parse and process FNEK-encrypted passphrase packet
891  * @filename: This function kmalloc's the memory for the filename
892  * @filename_size: This function sets this to the amount of memory
893  *                 kmalloc'd for the filename
894  * @packet_size: This function sets this to the the number of octets
895  *               in the packet parsed
896  * @mount_crypt_stat: The mount-wide cryptographic context
897  * @data: The memory location containing the start of the tag 70
898  *        packet
899  * @max_packet_size: The maximum legal size of the packet to be parsed
900  *                   from @data
901  *
902  * Returns zero on success; non-zero otherwise
903  */
904 int
905 ecryptfs_parse_tag_70_packet(char **filename, size_t *filename_size,
906 			     size_t *packet_size,
907 			     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
908 			     char *data, size_t max_packet_size)
909 {
910 	struct ecryptfs_parse_tag_70_packet_silly_stack *s;
911 	struct key *auth_tok_key = NULL;
912 	int rc = 0;
913 
914 	(*packet_size) = 0;
915 	(*filename_size) = 0;
916 	(*filename) = NULL;
917 	s = kzalloc(sizeof(*s), GFP_KERNEL);
918 	if (!s)
919 		return -ENOMEM;
920 
921 	if (max_packet_size < ECRYPTFS_TAG_70_MIN_METADATA_SIZE) {
922 		printk(KERN_WARNING "%s: max_packet_size is [%zd]; it must be "
923 		       "at least [%d]\n", __func__, max_packet_size,
924 		       ECRYPTFS_TAG_70_MIN_METADATA_SIZE);
925 		rc = -EINVAL;
926 		goto out;
927 	}
928 	/* Octet 0: Tag 70 identifier
929 	 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
930 	 *              and block-aligned encrypted filename size)
931 	 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
932 	 * Octet N2-N3: Cipher identifier (1 octet)
933 	 * Octets N3-N4: Block-aligned encrypted filename
934 	 *  - Consists of a minimum number of random numbers, a \0
935 	 *    separator, and then the filename */
936 	if (data[(*packet_size)++] != ECRYPTFS_TAG_70_PACKET_TYPE) {
937 		printk(KERN_WARNING "%s: Invalid packet tag [0x%.2x]; must be "
938 		       "tag [0x%.2x]\n", __func__,
939 		       data[((*packet_size) - 1)], ECRYPTFS_TAG_70_PACKET_TYPE);
940 		rc = -EINVAL;
941 		goto out;
942 	}
943 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)],
944 					  &s->parsed_tag_70_packet_size,
945 					  &s->packet_size_len);
946 	if (rc) {
947 		printk(KERN_WARNING "%s: Error parsing packet length; "
948 		       "rc = [%d]\n", __func__, rc);
949 		goto out;
950 	}
951 	s->block_aligned_filename_size = (s->parsed_tag_70_packet_size
952 					  - ECRYPTFS_SIG_SIZE - 1);
953 	if ((1 + s->packet_size_len + s->parsed_tag_70_packet_size)
954 	    > max_packet_size) {
955 		printk(KERN_WARNING "%s: max_packet_size is [%zd]; real packet "
956 		       "size is [%zd]\n", __func__, max_packet_size,
957 		       (1 + s->packet_size_len + 1
958 			+ s->block_aligned_filename_size));
959 		rc = -EINVAL;
960 		goto out;
961 	}
962 	(*packet_size) += s->packet_size_len;
963 	ecryptfs_to_hex(s->fnek_sig_hex, &data[(*packet_size)],
964 			ECRYPTFS_SIG_SIZE);
965 	s->fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX] = '\0';
966 	(*packet_size) += ECRYPTFS_SIG_SIZE;
967 	s->cipher_code = data[(*packet_size)++];
968 	rc = ecryptfs_cipher_code_to_string(s->cipher_string, s->cipher_code);
969 	if (rc) {
970 		printk(KERN_WARNING "%s: Cipher code [%d] is invalid\n",
971 		       __func__, s->cipher_code);
972 		goto out;
973 	}
974 	rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
975 					    &s->auth_tok, mount_crypt_stat,
976 					    s->fnek_sig_hex);
977 	if (rc) {
978 		printk(KERN_ERR "%s: Error attempting to find auth tok for "
979 		       "fnek sig [%s]; rc = [%d]\n", __func__, s->fnek_sig_hex,
980 		       rc);
981 		goto out;
982 	}
983 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&s->skcipher_tfm,
984 							&s->tfm_mutex,
985 							s->cipher_string);
986 	if (unlikely(rc)) {
987 		printk(KERN_ERR "Internal error whilst attempting to get "
988 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
989 		       s->cipher_string, rc);
990 		goto out;
991 	}
992 	mutex_lock(s->tfm_mutex);
993 	rc = virt_to_scatterlist(&data[(*packet_size)],
994 				 s->block_aligned_filename_size, s->src_sg, 2);
995 	if (rc < 1) {
996 		printk(KERN_ERR "%s: Internal error whilst attempting to "
997 		       "convert encrypted filename memory to scatterlist; "
998 		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
999 		       __func__, rc, s->block_aligned_filename_size);
1000 		goto out_unlock;
1001 	}
1002 	(*packet_size) += s->block_aligned_filename_size;
1003 	s->decrypted_filename = kmalloc(s->block_aligned_filename_size,
1004 					GFP_KERNEL);
1005 	if (!s->decrypted_filename) {
1006 		rc = -ENOMEM;
1007 		goto out_unlock;
1008 	}
1009 	rc = virt_to_scatterlist(s->decrypted_filename,
1010 				 s->block_aligned_filename_size, s->dst_sg, 2);
1011 	if (rc < 1) {
1012 		printk(KERN_ERR "%s: Internal error whilst attempting to "
1013 		       "convert decrypted filename memory to scatterlist; "
1014 		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
1015 		       __func__, rc, s->block_aligned_filename_size);
1016 		goto out_free_unlock;
1017 	}
1018 
1019 	s->skcipher_req = skcipher_request_alloc(s->skcipher_tfm, GFP_KERNEL);
1020 	if (!s->skcipher_req) {
1021 		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
1022 		       "skcipher_request_alloc for %s\n", __func__,
1023 		       crypto_skcipher_driver_name(s->skcipher_tfm));
1024 		rc = -ENOMEM;
1025 		goto out_free_unlock;
1026 	}
1027 
1028 	skcipher_request_set_callback(s->skcipher_req,
1029 				      CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
1030 
1031 	/* The characters in the first block effectively do the job of
1032 	 * the IV here, so we just use 0's for the IV. Note the
1033 	 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
1034 	 * >= ECRYPTFS_MAX_IV_BYTES. */
1035 	/* TODO: Support other key modules than passphrase for
1036 	 * filename encryption */
1037 	if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
1038 		rc = -EOPNOTSUPP;
1039 		printk(KERN_INFO "%s: Filename encryption only supports "
1040 		       "password tokens\n", __func__);
1041 		goto out_free_unlock;
1042 	}
1043 	rc = crypto_skcipher_setkey(
1044 		s->skcipher_tfm,
1045 		s->auth_tok->token.password.session_key_encryption_key,
1046 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
1047 	if (rc < 0) {
1048 		printk(KERN_ERR "%s: Error setting key for crypto context; "
1049 		       "rc = [%d]. s->auth_tok->token.password.session_key_"
1050 		       "encryption_key = [0x%p]; mount_crypt_stat->"
1051 		       "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
1052 		       rc,
1053 		       s->auth_tok->token.password.session_key_encryption_key,
1054 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
1055 		goto out_free_unlock;
1056 	}
1057 	skcipher_request_set_crypt(s->skcipher_req, s->src_sg, s->dst_sg,
1058 				   s->block_aligned_filename_size, s->iv);
1059 	rc = crypto_skcipher_decrypt(s->skcipher_req);
1060 	if (rc) {
1061 		printk(KERN_ERR "%s: Error attempting to decrypt filename; "
1062 		       "rc = [%d]\n", __func__, rc);
1063 		goto out_free_unlock;
1064 	}
1065 	while (s->decrypted_filename[s->i] != '\0'
1066 	       && s->i < s->block_aligned_filename_size)
1067 		s->i++;
1068 	if (s->i == s->block_aligned_filename_size) {
1069 		printk(KERN_WARNING "%s: Invalid tag 70 packet; could not "
1070 		       "find valid separator between random characters and "
1071 		       "the filename\n", __func__);
1072 		rc = -EINVAL;
1073 		goto out_free_unlock;
1074 	}
1075 	s->i++;
1076 	(*filename_size) = (s->block_aligned_filename_size - s->i);
1077 	if (!((*filename_size) > 0 && (*filename_size < PATH_MAX))) {
1078 		printk(KERN_WARNING "%s: Filename size is [%zd], which is "
1079 		       "invalid\n", __func__, (*filename_size));
1080 		rc = -EINVAL;
1081 		goto out_free_unlock;
1082 	}
1083 	(*filename) = kmalloc(((*filename_size) + 1), GFP_KERNEL);
1084 	if (!(*filename)) {
1085 		rc = -ENOMEM;
1086 		goto out_free_unlock;
1087 	}
1088 	memcpy((*filename), &s->decrypted_filename[s->i], (*filename_size));
1089 	(*filename)[(*filename_size)] = '\0';
1090 out_free_unlock:
1091 	kfree(s->decrypted_filename);
1092 out_unlock:
1093 	mutex_unlock(s->tfm_mutex);
1094 out:
1095 	if (rc) {
1096 		(*packet_size) = 0;
1097 		(*filename_size) = 0;
1098 		(*filename) = NULL;
1099 	}
1100 	if (auth_tok_key) {
1101 		up_write(&(auth_tok_key->sem));
1102 		key_put(auth_tok_key);
1103 	}
1104 	skcipher_request_free(s->skcipher_req);
1105 	kfree(s);
1106 	return rc;
1107 }
1108 
1109 static int
1110 ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
1111 {
1112 	int rc = 0;
1113 
1114 	(*sig) = NULL;
1115 	switch (auth_tok->token_type) {
1116 	case ECRYPTFS_PASSWORD:
1117 		(*sig) = auth_tok->token.password.signature;
1118 		break;
1119 	case ECRYPTFS_PRIVATE_KEY:
1120 		(*sig) = auth_tok->token.private_key.signature;
1121 		break;
1122 	default:
1123 		printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
1124 		       auth_tok->token_type);
1125 		rc = -EINVAL;
1126 	}
1127 	return rc;
1128 }
1129 
1130 /**
1131  * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok.
1132  * @auth_tok: The key authentication token used to decrypt the session key
1133  * @crypt_stat: The cryptographic context
1134  *
1135  * Returns zero on success; non-zero error otherwise.
1136  */
1137 static int
1138 decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1139 				  struct ecryptfs_crypt_stat *crypt_stat)
1140 {
1141 	u8 cipher_code = 0;
1142 	struct ecryptfs_msg_ctx *msg_ctx;
1143 	struct ecryptfs_message *msg = NULL;
1144 	char *auth_tok_sig;
1145 	char *payload = NULL;
1146 	size_t payload_len = 0;
1147 	int rc;
1148 
1149 	rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok);
1150 	if (rc) {
1151 		printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
1152 		       auth_tok->token_type);
1153 		goto out;
1154 	}
1155 	rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
1156 				 &payload, &payload_len);
1157 	if (rc) {
1158 		ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet\n");
1159 		goto out;
1160 	}
1161 	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1162 	if (rc) {
1163 		ecryptfs_printk(KERN_ERR, "Error sending message to "
1164 				"ecryptfsd: %d\n", rc);
1165 		goto out;
1166 	}
1167 	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1168 	if (rc) {
1169 		ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
1170 				"from the user space daemon\n");
1171 		rc = -EIO;
1172 		goto out;
1173 	}
1174 	rc = parse_tag_65_packet(&(auth_tok->session_key),
1175 				 &cipher_code, msg);
1176 	if (rc) {
1177 		printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
1178 		       rc);
1179 		goto out;
1180 	}
1181 	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1182 	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1183 	       auth_tok->session_key.decrypted_key_size);
1184 	crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
1185 	rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code);
1186 	if (rc) {
1187 		ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
1188 				cipher_code)
1189 		goto out;
1190 	}
1191 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1192 	if (ecryptfs_verbosity > 0) {
1193 		ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
1194 		ecryptfs_dump_hex(crypt_stat->key,
1195 				  crypt_stat->key_size);
1196 	}
1197 out:
1198 	kfree(msg);
1199 	kfree(payload);
1200 	return rc;
1201 }
1202 
1203 static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
1204 {
1205 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1206 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1207 
1208 	list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
1209 				 auth_tok_list_head, list) {
1210 		list_del(&auth_tok_list_item->list);
1211 		kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1212 				auth_tok_list_item);
1213 	}
1214 }
1215 
1216 struct kmem_cache *ecryptfs_auth_tok_list_item_cache;
1217 
1218 /**
1219  * parse_tag_1_packet
1220  * @crypt_stat: The cryptographic context to modify based on packet contents
1221  * @data: The raw bytes of the packet.
1222  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1223  *                 a new authentication token will be placed at the
1224  *                 end of this list for this packet.
1225  * @new_auth_tok: Pointer to a pointer to memory that this function
1226  *                allocates; sets the memory address of the pointer to
1227  *                NULL on error. This object is added to the
1228  *                auth_tok_list.
1229  * @packet_size: This function writes the size of the parsed packet
1230  *               into this memory location; zero on error.
1231  * @max_packet_size: The maximum allowable packet size
1232  *
1233  * Returns zero on success; non-zero on error.
1234  */
1235 static int
1236 parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
1237 		   unsigned char *data, struct list_head *auth_tok_list,
1238 		   struct ecryptfs_auth_tok **new_auth_tok,
1239 		   size_t *packet_size, size_t max_packet_size)
1240 {
1241 	size_t body_size;
1242 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1243 	size_t length_size;
1244 	int rc = 0;
1245 
1246 	(*packet_size) = 0;
1247 	(*new_auth_tok) = NULL;
1248 	/**
1249 	 * This format is inspired by OpenPGP; see RFC 2440
1250 	 * packet tag 1
1251 	 *
1252 	 * Tag 1 identifier (1 byte)
1253 	 * Max Tag 1 packet size (max 3 bytes)
1254 	 * Version (1 byte)
1255 	 * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
1256 	 * Cipher identifier (1 byte)
1257 	 * Encrypted key size (arbitrary)
1258 	 *
1259 	 * 12 bytes minimum packet size
1260 	 */
1261 	if (unlikely(max_packet_size < 12)) {
1262 		printk(KERN_ERR "Invalid max packet size; must be >=12\n");
1263 		rc = -EINVAL;
1264 		goto out;
1265 	}
1266 	if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
1267 		printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n",
1268 		       ECRYPTFS_TAG_1_PACKET_TYPE);
1269 		rc = -EINVAL;
1270 		goto out;
1271 	}
1272 	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1273 	 * at end of function upon failure */
1274 	auth_tok_list_item =
1275 		kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache,
1276 				  GFP_KERNEL);
1277 	if (!auth_tok_list_item) {
1278 		printk(KERN_ERR "Unable to allocate memory\n");
1279 		rc = -ENOMEM;
1280 		goto out;
1281 	}
1282 	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1283 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1284 					  &length_size);
1285 	if (rc) {
1286 		printk(KERN_WARNING "Error parsing packet length; "
1287 		       "rc = [%d]\n", rc);
1288 		goto out_free;
1289 	}
1290 	if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) {
1291 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1292 		rc = -EINVAL;
1293 		goto out_free;
1294 	}
1295 	(*packet_size) += length_size;
1296 	if (unlikely((*packet_size) + body_size > max_packet_size)) {
1297 		printk(KERN_WARNING "Packet size exceeds max\n");
1298 		rc = -EINVAL;
1299 		goto out_free;
1300 	}
1301 	if (unlikely(data[(*packet_size)++] != 0x03)) {
1302 		printk(KERN_WARNING "Unknown version number [%d]\n",
1303 		       data[(*packet_size) - 1]);
1304 		rc = -EINVAL;
1305 		goto out_free;
1306 	}
1307 	ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
1308 			&data[(*packet_size)], ECRYPTFS_SIG_SIZE);
1309 	*packet_size += ECRYPTFS_SIG_SIZE;
1310 	/* This byte is skipped because the kernel does not need to
1311 	 * know which public key encryption algorithm was used */
1312 	(*packet_size)++;
1313 	(*new_auth_tok)->session_key.encrypted_key_size =
1314 		body_size - (ECRYPTFS_SIG_SIZE + 2);
1315 	if ((*new_auth_tok)->session_key.encrypted_key_size
1316 	    > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1317 		printk(KERN_WARNING "Tag 1 packet contains key larger "
1318 		       "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1319 		rc = -EINVAL;
1320 		goto out;
1321 	}
1322 	memcpy((*new_auth_tok)->session_key.encrypted_key,
1323 	       &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2)));
1324 	(*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
1325 	(*new_auth_tok)->session_key.flags &=
1326 		~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1327 	(*new_auth_tok)->session_key.flags |=
1328 		ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1329 	(*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
1330 	(*new_auth_tok)->flags = 0;
1331 	(*new_auth_tok)->session_key.flags &=
1332 		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1333 	(*new_auth_tok)->session_key.flags &=
1334 		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1335 	list_add(&auth_tok_list_item->list, auth_tok_list);
1336 	goto out;
1337 out_free:
1338 	(*new_auth_tok) = NULL;
1339 	memset(auth_tok_list_item, 0,
1340 	       sizeof(struct ecryptfs_auth_tok_list_item));
1341 	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1342 			auth_tok_list_item);
1343 out:
1344 	if (rc)
1345 		(*packet_size) = 0;
1346 	return rc;
1347 }
1348 
1349 /**
1350  * parse_tag_3_packet
1351  * @crypt_stat: The cryptographic context to modify based on packet
1352  *              contents.
1353  * @data: The raw bytes of the packet.
1354  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1355  *                 a new authentication token will be placed at the end
1356  *                 of this list for this packet.
1357  * @new_auth_tok: Pointer to a pointer to memory that this function
1358  *                allocates; sets the memory address of the pointer to
1359  *                NULL on error. This object is added to the
1360  *                auth_tok_list.
1361  * @packet_size: This function writes the size of the parsed packet
1362  *               into this memory location; zero on error.
1363  * @max_packet_size: maximum number of bytes to parse
1364  *
1365  * Returns zero on success; non-zero on error.
1366  */
1367 static int
1368 parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
1369 		   unsigned char *data, struct list_head *auth_tok_list,
1370 		   struct ecryptfs_auth_tok **new_auth_tok,
1371 		   size_t *packet_size, size_t max_packet_size)
1372 {
1373 	size_t body_size;
1374 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1375 	size_t length_size;
1376 	int rc = 0;
1377 
1378 	(*packet_size) = 0;
1379 	(*new_auth_tok) = NULL;
1380 	/**
1381 	 *This format is inspired by OpenPGP; see RFC 2440
1382 	 * packet tag 3
1383 	 *
1384 	 * Tag 3 identifier (1 byte)
1385 	 * Max Tag 3 packet size (max 3 bytes)
1386 	 * Version (1 byte)
1387 	 * Cipher code (1 byte)
1388 	 * S2K specifier (1 byte)
1389 	 * Hash identifier (1 byte)
1390 	 * Salt (ECRYPTFS_SALT_SIZE)
1391 	 * Hash iterations (1 byte)
1392 	 * Encrypted key (arbitrary)
1393 	 *
1394 	 * (ECRYPTFS_SALT_SIZE + 7) minimum packet size
1395 	 */
1396 	if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) {
1397 		printk(KERN_ERR "Max packet size too large\n");
1398 		rc = -EINVAL;
1399 		goto out;
1400 	}
1401 	if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
1402 		printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n",
1403 		       ECRYPTFS_TAG_3_PACKET_TYPE);
1404 		rc = -EINVAL;
1405 		goto out;
1406 	}
1407 	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1408 	 * at end of function upon failure */
1409 	auth_tok_list_item =
1410 	    kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
1411 	if (!auth_tok_list_item) {
1412 		printk(KERN_ERR "Unable to allocate memory\n");
1413 		rc = -ENOMEM;
1414 		goto out;
1415 	}
1416 	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1417 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1418 					  &length_size);
1419 	if (rc) {
1420 		printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n",
1421 		       rc);
1422 		goto out_free;
1423 	}
1424 	if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) {
1425 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1426 		rc = -EINVAL;
1427 		goto out_free;
1428 	}
1429 	(*packet_size) += length_size;
1430 	if (unlikely((*packet_size) + body_size > max_packet_size)) {
1431 		printk(KERN_ERR "Packet size exceeds max\n");
1432 		rc = -EINVAL;
1433 		goto out_free;
1434 	}
1435 	(*new_auth_tok)->session_key.encrypted_key_size =
1436 		(body_size - (ECRYPTFS_SALT_SIZE + 5));
1437 	if ((*new_auth_tok)->session_key.encrypted_key_size
1438 	    > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1439 		printk(KERN_WARNING "Tag 3 packet contains key larger "
1440 		       "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1441 		rc = -EINVAL;
1442 		goto out_free;
1443 	}
1444 	if (unlikely(data[(*packet_size)++] != 0x04)) {
1445 		printk(KERN_WARNING "Unknown version number [%d]\n",
1446 		       data[(*packet_size) - 1]);
1447 		rc = -EINVAL;
1448 		goto out_free;
1449 	}
1450 	rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher,
1451 					    (u16)data[(*packet_size)]);
1452 	if (rc)
1453 		goto out_free;
1454 	/* A little extra work to differentiate among the AES key
1455 	 * sizes; see RFC2440 */
1456 	switch(data[(*packet_size)++]) {
1457 	case RFC2440_CIPHER_AES_192:
1458 		crypt_stat->key_size = 24;
1459 		break;
1460 	default:
1461 		crypt_stat->key_size =
1462 			(*new_auth_tok)->session_key.encrypted_key_size;
1463 	}
1464 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1465 	if (rc)
1466 		goto out_free;
1467 	if (unlikely(data[(*packet_size)++] != 0x03)) {
1468 		printk(KERN_WARNING "Only S2K ID 3 is currently supported\n");
1469 		rc = -ENOSYS;
1470 		goto out_free;
1471 	}
1472 	/* TODO: finish the hash mapping */
1473 	switch (data[(*packet_size)++]) {
1474 	case 0x01: /* See RFC2440 for these numbers and their mappings */
1475 		/* Choose MD5 */
1476 		memcpy((*new_auth_tok)->token.password.salt,
1477 		       &data[(*packet_size)], ECRYPTFS_SALT_SIZE);
1478 		(*packet_size) += ECRYPTFS_SALT_SIZE;
1479 		/* This conversion was taken straight from RFC2440 */
1480 		(*new_auth_tok)->token.password.hash_iterations =
1481 			((u32) 16 + (data[(*packet_size)] & 15))
1482 				<< ((data[(*packet_size)] >> 4) + 6);
1483 		(*packet_size)++;
1484 		/* Friendly reminder:
1485 		 * (*new_auth_tok)->session_key.encrypted_key_size =
1486 		 *         (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
1487 		memcpy((*new_auth_tok)->session_key.encrypted_key,
1488 		       &data[(*packet_size)],
1489 		       (*new_auth_tok)->session_key.encrypted_key_size);
1490 		(*packet_size) +=
1491 			(*new_auth_tok)->session_key.encrypted_key_size;
1492 		(*new_auth_tok)->session_key.flags &=
1493 			~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1494 		(*new_auth_tok)->session_key.flags |=
1495 			ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1496 		(*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */
1497 		break;
1498 	default:
1499 		ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
1500 				"[%d]\n", data[(*packet_size) - 1]);
1501 		rc = -ENOSYS;
1502 		goto out_free;
1503 	}
1504 	(*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
1505 	/* TODO: Parametarize; we might actually want userspace to
1506 	 * decrypt the session key. */
1507 	(*new_auth_tok)->session_key.flags &=
1508 			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1509 	(*new_auth_tok)->session_key.flags &=
1510 			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1511 	list_add(&auth_tok_list_item->list, auth_tok_list);
1512 	goto out;
1513 out_free:
1514 	(*new_auth_tok) = NULL;
1515 	memset(auth_tok_list_item, 0,
1516 	       sizeof(struct ecryptfs_auth_tok_list_item));
1517 	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1518 			auth_tok_list_item);
1519 out:
1520 	if (rc)
1521 		(*packet_size) = 0;
1522 	return rc;
1523 }
1524 
1525 /**
1526  * parse_tag_11_packet
1527  * @data: The raw bytes of the packet
1528  * @contents: This function writes the data contents of the literal
1529  *            packet into this memory location
1530  * @max_contents_bytes: The maximum number of bytes that this function
1531  *                      is allowed to write into contents
1532  * @tag_11_contents_size: This function writes the size of the parsed
1533  *                        contents into this memory location; zero on
1534  *                        error
1535  * @packet_size: This function writes the size of the parsed packet
1536  *               into this memory location; zero on error
1537  * @max_packet_size: maximum number of bytes to parse
1538  *
1539  * Returns zero on success; non-zero on error.
1540  */
1541 static int
1542 parse_tag_11_packet(unsigned char *data, unsigned char *contents,
1543 		    size_t max_contents_bytes, size_t *tag_11_contents_size,
1544 		    size_t *packet_size, size_t max_packet_size)
1545 {
1546 	size_t body_size;
1547 	size_t length_size;
1548 	int rc = 0;
1549 
1550 	(*packet_size) = 0;
1551 	(*tag_11_contents_size) = 0;
1552 	/* This format is inspired by OpenPGP; see RFC 2440
1553 	 * packet tag 11
1554 	 *
1555 	 * Tag 11 identifier (1 byte)
1556 	 * Max Tag 11 packet size (max 3 bytes)
1557 	 * Binary format specifier (1 byte)
1558 	 * Filename length (1 byte)
1559 	 * Filename ("_CONSOLE") (8 bytes)
1560 	 * Modification date (4 bytes)
1561 	 * Literal data (arbitrary)
1562 	 *
1563 	 * We need at least 16 bytes of data for the packet to even be
1564 	 * valid.
1565 	 */
1566 	if (max_packet_size < 16) {
1567 		printk(KERN_ERR "Maximum packet size too small\n");
1568 		rc = -EINVAL;
1569 		goto out;
1570 	}
1571 	if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
1572 		printk(KERN_WARNING "Invalid tag 11 packet format\n");
1573 		rc = -EINVAL;
1574 		goto out;
1575 	}
1576 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1577 					  &length_size);
1578 	if (rc) {
1579 		printk(KERN_WARNING "Invalid tag 11 packet format\n");
1580 		goto out;
1581 	}
1582 	if (body_size < 14) {
1583 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1584 		rc = -EINVAL;
1585 		goto out;
1586 	}
1587 	(*packet_size) += length_size;
1588 	(*tag_11_contents_size) = (body_size - 14);
1589 	if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
1590 		printk(KERN_ERR "Packet size exceeds max\n");
1591 		rc = -EINVAL;
1592 		goto out;
1593 	}
1594 	if (unlikely((*tag_11_contents_size) > max_contents_bytes)) {
1595 		printk(KERN_ERR "Literal data section in tag 11 packet exceeds "
1596 		       "expected size\n");
1597 		rc = -EINVAL;
1598 		goto out;
1599 	}
1600 	if (data[(*packet_size)++] != 0x62) {
1601 		printk(KERN_WARNING "Unrecognizable packet\n");
1602 		rc = -EINVAL;
1603 		goto out;
1604 	}
1605 	if (data[(*packet_size)++] != 0x08) {
1606 		printk(KERN_WARNING "Unrecognizable packet\n");
1607 		rc = -EINVAL;
1608 		goto out;
1609 	}
1610 	(*packet_size) += 12; /* Ignore filename and modification date */
1611 	memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
1612 	(*packet_size) += (*tag_11_contents_size);
1613 out:
1614 	if (rc) {
1615 		(*packet_size) = 0;
1616 		(*tag_11_contents_size) = 0;
1617 	}
1618 	return rc;
1619 }
1620 
1621 int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
1622 				      struct ecryptfs_auth_tok **auth_tok,
1623 				      char *sig)
1624 {
1625 	int rc = 0;
1626 
1627 	(*auth_tok_key) = request_key(&key_type_user, sig, NULL);
1628 	if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
1629 		(*auth_tok_key) = ecryptfs_get_encrypted_key(sig);
1630 		if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
1631 			printk(KERN_ERR "Could not find key with description: [%s]\n",
1632 			      sig);
1633 			rc = process_request_key_err(PTR_ERR(*auth_tok_key));
1634 			(*auth_tok_key) = NULL;
1635 			goto out;
1636 		}
1637 	}
1638 	down_write(&(*auth_tok_key)->sem);
1639 	rc = ecryptfs_verify_auth_tok_from_key(*auth_tok_key, auth_tok);
1640 	if (rc) {
1641 		up_write(&(*auth_tok_key)->sem);
1642 		key_put(*auth_tok_key);
1643 		(*auth_tok_key) = NULL;
1644 		goto out;
1645 	}
1646 out:
1647 	return rc;
1648 }
1649 
1650 /**
1651  * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok.
1652  * @auth_tok: The passphrase authentication token to use to encrypt the FEK
1653  * @crypt_stat: The cryptographic context
1654  *
1655  * Returns zero on success; non-zero error otherwise
1656  */
1657 static int
1658 decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1659 					 struct ecryptfs_crypt_stat *crypt_stat)
1660 {
1661 	struct scatterlist dst_sg[2];
1662 	struct scatterlist src_sg[2];
1663 	struct mutex *tfm_mutex;
1664 	struct crypto_skcipher *tfm;
1665 	struct skcipher_request *req = NULL;
1666 	int rc = 0;
1667 
1668 	if (unlikely(ecryptfs_verbosity > 0)) {
1669 		ecryptfs_printk(
1670 			KERN_DEBUG, "Session key encryption key (size [%d]):\n",
1671 			auth_tok->token.password.session_key_encryption_key_bytes);
1672 		ecryptfs_dump_hex(
1673 			auth_tok->token.password.session_key_encryption_key,
1674 			auth_tok->token.password.session_key_encryption_key_bytes);
1675 	}
1676 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
1677 							crypt_stat->cipher);
1678 	if (unlikely(rc)) {
1679 		printk(KERN_ERR "Internal error whilst attempting to get "
1680 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1681 		       crypt_stat->cipher, rc);
1682 		goto out;
1683 	}
1684 	rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
1685 				 auth_tok->session_key.encrypted_key_size,
1686 				 src_sg, 2);
1687 	if (rc < 1 || rc > 2) {
1688 		printk(KERN_ERR "Internal error whilst attempting to convert "
1689 			"auth_tok->session_key.encrypted_key to scatterlist; "
1690 			"expected rc = 1; got rc = [%d]. "
1691 		       "auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
1692 			auth_tok->session_key.encrypted_key_size);
1693 		goto out;
1694 	}
1695 	auth_tok->session_key.decrypted_key_size =
1696 		auth_tok->session_key.encrypted_key_size;
1697 	rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
1698 				 auth_tok->session_key.decrypted_key_size,
1699 				 dst_sg, 2);
1700 	if (rc < 1 || rc > 2) {
1701 		printk(KERN_ERR "Internal error whilst attempting to convert "
1702 			"auth_tok->session_key.decrypted_key to scatterlist; "
1703 			"expected rc = 1; got rc = [%d]\n", rc);
1704 		goto out;
1705 	}
1706 	mutex_lock(tfm_mutex);
1707 	req = skcipher_request_alloc(tfm, GFP_KERNEL);
1708 	if (!req) {
1709 		mutex_unlock(tfm_mutex);
1710 		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
1711 		       "skcipher_request_alloc for %s\n", __func__,
1712 		       crypto_skcipher_driver_name(tfm));
1713 		rc = -ENOMEM;
1714 		goto out;
1715 	}
1716 
1717 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP,
1718 				      NULL, NULL);
1719 	rc = crypto_skcipher_setkey(
1720 		tfm, auth_tok->token.password.session_key_encryption_key,
1721 		crypt_stat->key_size);
1722 	if (unlikely(rc < 0)) {
1723 		mutex_unlock(tfm_mutex);
1724 		printk(KERN_ERR "Error setting key for crypto context\n");
1725 		rc = -EINVAL;
1726 		goto out;
1727 	}
1728 	skcipher_request_set_crypt(req, src_sg, dst_sg,
1729 				   auth_tok->session_key.encrypted_key_size,
1730 				   NULL);
1731 	rc = crypto_skcipher_decrypt(req);
1732 	mutex_unlock(tfm_mutex);
1733 	if (unlikely(rc)) {
1734 		printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1735 		goto out;
1736 	}
1737 	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1738 	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1739 	       auth_tok->session_key.decrypted_key_size);
1740 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1741 	if (unlikely(ecryptfs_verbosity > 0)) {
1742 		ecryptfs_printk(KERN_DEBUG, "FEK of size [%zd]:\n",
1743 				crypt_stat->key_size);
1744 		ecryptfs_dump_hex(crypt_stat->key,
1745 				  crypt_stat->key_size);
1746 	}
1747 out:
1748 	skcipher_request_free(req);
1749 	return rc;
1750 }
1751 
1752 /**
1753  * ecryptfs_parse_packet_set
1754  * @crypt_stat: The cryptographic context
1755  * @src: Virtual address of region of memory containing the packets
1756  * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set
1757  *
1758  * Get crypt_stat to have the file's session key if the requisite key
1759  * is available to decrypt the session key.
1760  *
1761  * Returns Zero if a valid authentication token was retrieved and
1762  * processed; negative value for file not encrypted or for error
1763  * conditions.
1764  */
1765 int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
1766 			      unsigned char *src,
1767 			      struct dentry *ecryptfs_dentry)
1768 {
1769 	size_t i = 0;
1770 	size_t found_auth_tok;
1771 	size_t next_packet_is_auth_tok_packet;
1772 	struct list_head auth_tok_list;
1773 	struct ecryptfs_auth_tok *matching_auth_tok;
1774 	struct ecryptfs_auth_tok *candidate_auth_tok;
1775 	char *candidate_auth_tok_sig;
1776 	size_t packet_size;
1777 	struct ecryptfs_auth_tok *new_auth_tok;
1778 	unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1779 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1780 	size_t tag_11_contents_size;
1781 	size_t tag_11_packet_size;
1782 	struct key *auth_tok_key = NULL;
1783 	int rc = 0;
1784 
1785 	INIT_LIST_HEAD(&auth_tok_list);
1786 	/* Parse the header to find as many packets as we can; these will be
1787 	 * added the our &auth_tok_list */
1788 	next_packet_is_auth_tok_packet = 1;
1789 	while (next_packet_is_auth_tok_packet) {
1790 		size_t max_packet_size = ((PAGE_SIZE - 8) - i);
1791 
1792 		switch (src[i]) {
1793 		case ECRYPTFS_TAG_3_PACKET_TYPE:
1794 			rc = parse_tag_3_packet(crypt_stat,
1795 						(unsigned char *)&src[i],
1796 						&auth_tok_list, &new_auth_tok,
1797 						&packet_size, max_packet_size);
1798 			if (rc) {
1799 				ecryptfs_printk(KERN_ERR, "Error parsing "
1800 						"tag 3 packet\n");
1801 				rc = -EIO;
1802 				goto out_wipe_list;
1803 			}
1804 			i += packet_size;
1805 			rc = parse_tag_11_packet((unsigned char *)&src[i],
1806 						 sig_tmp_space,
1807 						 ECRYPTFS_SIG_SIZE,
1808 						 &tag_11_contents_size,
1809 						 &tag_11_packet_size,
1810 						 max_packet_size);
1811 			if (rc) {
1812 				ecryptfs_printk(KERN_ERR, "No valid "
1813 						"(ecryptfs-specific) literal "
1814 						"packet containing "
1815 						"authentication token "
1816 						"signature found after "
1817 						"tag 3 packet\n");
1818 				rc = -EIO;
1819 				goto out_wipe_list;
1820 			}
1821 			i += tag_11_packet_size;
1822 			if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
1823 				ecryptfs_printk(KERN_ERR, "Expected "
1824 						"signature of size [%d]; "
1825 						"read size [%zd]\n",
1826 						ECRYPTFS_SIG_SIZE,
1827 						tag_11_contents_size);
1828 				rc = -EIO;
1829 				goto out_wipe_list;
1830 			}
1831 			ecryptfs_to_hex(new_auth_tok->token.password.signature,
1832 					sig_tmp_space, tag_11_contents_size);
1833 			new_auth_tok->token.password.signature[
1834 				ECRYPTFS_PASSWORD_SIG_SIZE] = '\0';
1835 			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1836 			break;
1837 		case ECRYPTFS_TAG_1_PACKET_TYPE:
1838 			rc = parse_tag_1_packet(crypt_stat,
1839 						(unsigned char *)&src[i],
1840 						&auth_tok_list, &new_auth_tok,
1841 						&packet_size, max_packet_size);
1842 			if (rc) {
1843 				ecryptfs_printk(KERN_ERR, "Error parsing "
1844 						"tag 1 packet\n");
1845 				rc = -EIO;
1846 				goto out_wipe_list;
1847 			}
1848 			i += packet_size;
1849 			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1850 			break;
1851 		case ECRYPTFS_TAG_11_PACKET_TYPE:
1852 			ecryptfs_printk(KERN_WARNING, "Invalid packet set "
1853 					"(Tag 11 not allowed by itself)\n");
1854 			rc = -EIO;
1855 			goto out_wipe_list;
1856 		default:
1857 			ecryptfs_printk(KERN_DEBUG, "No packet at offset [%zd] "
1858 					"of the file header; hex value of "
1859 					"character is [0x%.2x]\n", i, src[i]);
1860 			next_packet_is_auth_tok_packet = 0;
1861 		}
1862 	}
1863 	if (list_empty(&auth_tok_list)) {
1864 		printk(KERN_ERR "The lower file appears to be a non-encrypted "
1865 		       "eCryptfs file; this is not supported in this version "
1866 		       "of the eCryptfs kernel module\n");
1867 		rc = -EINVAL;
1868 		goto out;
1869 	}
1870 	/* auth_tok_list contains the set of authentication tokens
1871 	 * parsed from the metadata. We need to find a matching
1872 	 * authentication token that has the secret component(s)
1873 	 * necessary to decrypt the EFEK in the auth_tok parsed from
1874 	 * the metadata. There may be several potential matches, but
1875 	 * just one will be sufficient to decrypt to get the FEK. */
1876 find_next_matching_auth_tok:
1877 	found_auth_tok = 0;
1878 	list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1879 		candidate_auth_tok = &auth_tok_list_item->auth_tok;
1880 		if (unlikely(ecryptfs_verbosity > 0)) {
1881 			ecryptfs_printk(KERN_DEBUG,
1882 					"Considering candidate auth tok:\n");
1883 			ecryptfs_dump_auth_tok(candidate_auth_tok);
1884 		}
1885 		rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
1886 					       candidate_auth_tok);
1887 		if (rc) {
1888 			printk(KERN_ERR
1889 			       "Unrecognized candidate auth tok type: [%d]\n",
1890 			       candidate_auth_tok->token_type);
1891 			rc = -EINVAL;
1892 			goto out_wipe_list;
1893 		}
1894 		rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
1895 					       &matching_auth_tok,
1896 					       crypt_stat->mount_crypt_stat,
1897 					       candidate_auth_tok_sig);
1898 		if (!rc) {
1899 			found_auth_tok = 1;
1900 			goto found_matching_auth_tok;
1901 		}
1902 	}
1903 	if (!found_auth_tok) {
1904 		ecryptfs_printk(KERN_ERR, "Could not find a usable "
1905 				"authentication token\n");
1906 		rc = -EIO;
1907 		goto out_wipe_list;
1908 	}
1909 found_matching_auth_tok:
1910 	if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1911 		memcpy(&(candidate_auth_tok->token.private_key),
1912 		       &(matching_auth_tok->token.private_key),
1913 		       sizeof(struct ecryptfs_private_key));
1914 		up_write(&(auth_tok_key->sem));
1915 		key_put(auth_tok_key);
1916 		rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1917 						       crypt_stat);
1918 	} else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1919 		memcpy(&(candidate_auth_tok->token.password),
1920 		       &(matching_auth_tok->token.password),
1921 		       sizeof(struct ecryptfs_password));
1922 		up_write(&(auth_tok_key->sem));
1923 		key_put(auth_tok_key);
1924 		rc = decrypt_passphrase_encrypted_session_key(
1925 			candidate_auth_tok, crypt_stat);
1926 	} else {
1927 		up_write(&(auth_tok_key->sem));
1928 		key_put(auth_tok_key);
1929 		rc = -EINVAL;
1930 	}
1931 	if (rc) {
1932 		struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1933 
1934 		ecryptfs_printk(KERN_WARNING, "Error decrypting the "
1935 				"session key for authentication token with sig "
1936 				"[%.*s]; rc = [%d]. Removing auth tok "
1937 				"candidate from the list and searching for "
1938 				"the next match.\n", ECRYPTFS_SIG_SIZE_HEX,
1939 				candidate_auth_tok_sig,	rc);
1940 		list_for_each_entry_safe(auth_tok_list_item,
1941 					 auth_tok_list_item_tmp,
1942 					 &auth_tok_list, list) {
1943 			if (candidate_auth_tok
1944 			    == &auth_tok_list_item->auth_tok) {
1945 				list_del(&auth_tok_list_item->list);
1946 				kmem_cache_free(
1947 					ecryptfs_auth_tok_list_item_cache,
1948 					auth_tok_list_item);
1949 				goto find_next_matching_auth_tok;
1950 			}
1951 		}
1952 		BUG();
1953 	}
1954 	rc = ecryptfs_compute_root_iv(crypt_stat);
1955 	if (rc) {
1956 		ecryptfs_printk(KERN_ERR, "Error computing "
1957 				"the root IV\n");
1958 		goto out_wipe_list;
1959 	}
1960 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1961 	if (rc) {
1962 		ecryptfs_printk(KERN_ERR, "Error initializing crypto "
1963 				"context for cipher [%s]; rc = [%d]\n",
1964 				crypt_stat->cipher, rc);
1965 	}
1966 out_wipe_list:
1967 	wipe_auth_tok_list(&auth_tok_list);
1968 out:
1969 	return rc;
1970 }
1971 
1972 static int
1973 pki_encrypt_session_key(struct key *auth_tok_key,
1974 			struct ecryptfs_auth_tok *auth_tok,
1975 			struct ecryptfs_crypt_stat *crypt_stat,
1976 			struct ecryptfs_key_record *key_rec)
1977 {
1978 	struct ecryptfs_msg_ctx *msg_ctx = NULL;
1979 	char *payload = NULL;
1980 	size_t payload_len = 0;
1981 	struct ecryptfs_message *msg;
1982 	int rc;
1983 
1984 	rc = write_tag_66_packet(auth_tok->token.private_key.signature,
1985 				 ecryptfs_code_for_cipher_string(
1986 					 crypt_stat->cipher,
1987 					 crypt_stat->key_size),
1988 				 crypt_stat, &payload, &payload_len);
1989 	up_write(&(auth_tok_key->sem));
1990 	key_put(auth_tok_key);
1991 	if (rc) {
1992 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
1993 		goto out;
1994 	}
1995 	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1996 	if (rc) {
1997 		ecryptfs_printk(KERN_ERR, "Error sending message to "
1998 				"ecryptfsd: %d\n", rc);
1999 		goto out;
2000 	}
2001 	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
2002 	if (rc) {
2003 		ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
2004 				"from the user space daemon\n");
2005 		rc = -EIO;
2006 		goto out;
2007 	}
2008 	rc = parse_tag_67_packet(key_rec, msg);
2009 	if (rc)
2010 		ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
2011 	kfree(msg);
2012 out:
2013 	kfree(payload);
2014 	return rc;
2015 }
2016 /**
2017  * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
2018  * @dest: Buffer into which to write the packet
2019  * @remaining_bytes: Maximum number of bytes that can be writtn
2020  * @auth_tok_key: The authentication token key to unlock and put when done with
2021  *                @auth_tok
2022  * @auth_tok: The authentication token used for generating the tag 1 packet
2023  * @crypt_stat: The cryptographic context
2024  * @key_rec: The key record struct for the tag 1 packet
2025  * @packet_size: This function will write the number of bytes that end
2026  *               up constituting the packet; set to zero on error
2027  *
2028  * Returns zero on success; non-zero on error.
2029  */
2030 static int
2031 write_tag_1_packet(char *dest, size_t *remaining_bytes,
2032 		   struct key *auth_tok_key, struct ecryptfs_auth_tok *auth_tok,
2033 		   struct ecryptfs_crypt_stat *crypt_stat,
2034 		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
2035 {
2036 	size_t i;
2037 	size_t encrypted_session_key_valid = 0;
2038 	size_t packet_size_length;
2039 	size_t max_packet_size;
2040 	int rc = 0;
2041 
2042 	(*packet_size) = 0;
2043 	ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
2044 			  ECRYPTFS_SIG_SIZE);
2045 	encrypted_session_key_valid = 0;
2046 	for (i = 0; i < crypt_stat->key_size; i++)
2047 		encrypted_session_key_valid |=
2048 			auth_tok->session_key.encrypted_key[i];
2049 	if (encrypted_session_key_valid) {
2050 		memcpy(key_rec->enc_key,
2051 		       auth_tok->session_key.encrypted_key,
2052 		       auth_tok->session_key.encrypted_key_size);
2053 		up_write(&(auth_tok_key->sem));
2054 		key_put(auth_tok_key);
2055 		goto encrypted_session_key_set;
2056 	}
2057 	if (auth_tok->session_key.encrypted_key_size == 0)
2058 		auth_tok->session_key.encrypted_key_size =
2059 			auth_tok->token.private_key.key_size;
2060 	rc = pki_encrypt_session_key(auth_tok_key, auth_tok, crypt_stat,
2061 				     key_rec);
2062 	if (rc) {
2063 		printk(KERN_ERR "Failed to encrypt session key via a key "
2064 		       "module; rc = [%d]\n", rc);
2065 		goto out;
2066 	}
2067 	if (ecryptfs_verbosity > 0) {
2068 		ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
2069 		ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
2070 	}
2071 encrypted_session_key_set:
2072 	/* This format is inspired by OpenPGP; see RFC 2440
2073 	 * packet tag 1 */
2074 	max_packet_size = (1                         /* Tag 1 identifier */
2075 			   + 3                       /* Max Tag 1 packet size */
2076 			   + 1                       /* Version */
2077 			   + ECRYPTFS_SIG_SIZE       /* Key identifier */
2078 			   + 1                       /* Cipher identifier */
2079 			   + key_rec->enc_key_size); /* Encrypted key size */
2080 	if (max_packet_size > (*remaining_bytes)) {
2081 		printk(KERN_ERR "Packet length larger than maximum allowable; "
2082 		       "need up to [%td] bytes, but there are only [%td] "
2083 		       "available\n", max_packet_size, (*remaining_bytes));
2084 		rc = -EINVAL;
2085 		goto out;
2086 	}
2087 	dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
2088 	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2089 					  (max_packet_size - 4),
2090 					  &packet_size_length);
2091 	if (rc) {
2092 		ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
2093 				"header; cannot generate packet length\n");
2094 		goto out;
2095 	}
2096 	(*packet_size) += packet_size_length;
2097 	dest[(*packet_size)++] = 0x03; /* version 3 */
2098 	memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
2099 	(*packet_size) += ECRYPTFS_SIG_SIZE;
2100 	dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
2101 	memcpy(&dest[(*packet_size)], key_rec->enc_key,
2102 	       key_rec->enc_key_size);
2103 	(*packet_size) += key_rec->enc_key_size;
2104 out:
2105 	if (rc)
2106 		(*packet_size) = 0;
2107 	else
2108 		(*remaining_bytes) -= (*packet_size);
2109 	return rc;
2110 }
2111 
2112 /**
2113  * write_tag_11_packet
2114  * @dest: Target into which Tag 11 packet is to be written
2115  * @remaining_bytes: Maximum packet length
2116  * @contents: Byte array of contents to copy in
2117  * @contents_length: Number of bytes in contents
2118  * @packet_length: Length of the Tag 11 packet written; zero on error
2119  *
2120  * Returns zero on success; non-zero on error.
2121  */
2122 static int
2123 write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents,
2124 		    size_t contents_length, size_t *packet_length)
2125 {
2126 	size_t packet_size_length;
2127 	size_t max_packet_size;
2128 	int rc = 0;
2129 
2130 	(*packet_length) = 0;
2131 	/* This format is inspired by OpenPGP; see RFC 2440
2132 	 * packet tag 11 */
2133 	max_packet_size = (1                   /* Tag 11 identifier */
2134 			   + 3                 /* Max Tag 11 packet size */
2135 			   + 1                 /* Binary format specifier */
2136 			   + 1                 /* Filename length */
2137 			   + 8                 /* Filename ("_CONSOLE") */
2138 			   + 4                 /* Modification date */
2139 			   + contents_length); /* Literal data */
2140 	if (max_packet_size > (*remaining_bytes)) {
2141 		printk(KERN_ERR "Packet length larger than maximum allowable; "
2142 		       "need up to [%td] bytes, but there are only [%td] "
2143 		       "available\n", max_packet_size, (*remaining_bytes));
2144 		rc = -EINVAL;
2145 		goto out;
2146 	}
2147 	dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
2148 	rc = ecryptfs_write_packet_length(&dest[(*packet_length)],
2149 					  (max_packet_size - 4),
2150 					  &packet_size_length);
2151 	if (rc) {
2152 		printk(KERN_ERR "Error generating tag 11 packet header; cannot "
2153 		       "generate packet length. rc = [%d]\n", rc);
2154 		goto out;
2155 	}
2156 	(*packet_length) += packet_size_length;
2157 	dest[(*packet_length)++] = 0x62; /* binary data format specifier */
2158 	dest[(*packet_length)++] = 8;
2159 	memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
2160 	(*packet_length) += 8;
2161 	memset(&dest[(*packet_length)], 0x00, 4);
2162 	(*packet_length) += 4;
2163 	memcpy(&dest[(*packet_length)], contents, contents_length);
2164 	(*packet_length) += contents_length;
2165  out:
2166 	if (rc)
2167 		(*packet_length) = 0;
2168 	else
2169 		(*remaining_bytes) -= (*packet_length);
2170 	return rc;
2171 }
2172 
2173 /**
2174  * write_tag_3_packet
2175  * @dest: Buffer into which to write the packet
2176  * @remaining_bytes: Maximum number of bytes that can be written
2177  * @auth_tok: Authentication token
2178  * @crypt_stat: The cryptographic context
2179  * @key_rec: encrypted key
2180  * @packet_size: This function will write the number of bytes that end
2181  *               up constituting the packet; set to zero on error
2182  *
2183  * Returns zero on success; non-zero on error.
2184  */
2185 static int
2186 write_tag_3_packet(char *dest, size_t *remaining_bytes,
2187 		   struct ecryptfs_auth_tok *auth_tok,
2188 		   struct ecryptfs_crypt_stat *crypt_stat,
2189 		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
2190 {
2191 	size_t i;
2192 	size_t encrypted_session_key_valid = 0;
2193 	char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
2194 	struct scatterlist dst_sg[2];
2195 	struct scatterlist src_sg[2];
2196 	struct mutex *tfm_mutex = NULL;
2197 	u8 cipher_code;
2198 	size_t packet_size_length;
2199 	size_t max_packet_size;
2200 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2201 		crypt_stat->mount_crypt_stat;
2202 	struct crypto_skcipher *tfm;
2203 	struct skcipher_request *req;
2204 	int rc = 0;
2205 
2206 	(*packet_size) = 0;
2207 	ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
2208 			  ECRYPTFS_SIG_SIZE);
2209 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2210 							crypt_stat->cipher);
2211 	if (unlikely(rc)) {
2212 		printk(KERN_ERR "Internal error whilst attempting to get "
2213 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
2214 		       crypt_stat->cipher, rc);
2215 		goto out;
2216 	}
2217 	if (mount_crypt_stat->global_default_cipher_key_size == 0) {
2218 		printk(KERN_WARNING "No key size specified at mount; "
2219 		       "defaulting to [%d]\n",
2220 		       crypto_skcipher_default_keysize(tfm));
2221 		mount_crypt_stat->global_default_cipher_key_size =
2222 			crypto_skcipher_default_keysize(tfm);
2223 	}
2224 	if (crypt_stat->key_size == 0)
2225 		crypt_stat->key_size =
2226 			mount_crypt_stat->global_default_cipher_key_size;
2227 	if (auth_tok->session_key.encrypted_key_size == 0)
2228 		auth_tok->session_key.encrypted_key_size =
2229 			crypt_stat->key_size;
2230 	if (crypt_stat->key_size == 24
2231 	    && strcmp("aes", crypt_stat->cipher) == 0) {
2232 		memset((crypt_stat->key + 24), 0, 8);
2233 		auth_tok->session_key.encrypted_key_size = 32;
2234 	} else
2235 		auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
2236 	key_rec->enc_key_size =
2237 		auth_tok->session_key.encrypted_key_size;
2238 	encrypted_session_key_valid = 0;
2239 	for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
2240 		encrypted_session_key_valid |=
2241 			auth_tok->session_key.encrypted_key[i];
2242 	if (encrypted_session_key_valid) {
2243 		ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
2244 				"using auth_tok->session_key.encrypted_key, "
2245 				"where key_rec->enc_key_size = [%zd]\n",
2246 				key_rec->enc_key_size);
2247 		memcpy(key_rec->enc_key,
2248 		       auth_tok->session_key.encrypted_key,
2249 		       key_rec->enc_key_size);
2250 		goto encrypted_session_key_set;
2251 	}
2252 	if (auth_tok->token.password.flags &
2253 	    ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
2254 		ecryptfs_printk(KERN_DEBUG, "Using previously generated "
2255 				"session key encryption key of size [%d]\n",
2256 				auth_tok->token.password.
2257 				session_key_encryption_key_bytes);
2258 		memcpy(session_key_encryption_key,
2259 		       auth_tok->token.password.session_key_encryption_key,
2260 		       crypt_stat->key_size);
2261 		ecryptfs_printk(KERN_DEBUG,
2262 				"Cached session key encryption key:\n");
2263 		if (ecryptfs_verbosity > 0)
2264 			ecryptfs_dump_hex(session_key_encryption_key, 16);
2265 	}
2266 	if (unlikely(ecryptfs_verbosity > 0)) {
2267 		ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
2268 		ecryptfs_dump_hex(session_key_encryption_key, 16);
2269 	}
2270 	rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size,
2271 				 src_sg, 2);
2272 	if (rc < 1 || rc > 2) {
2273 		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2274 				"for crypt_stat session key; expected rc = 1; "
2275 				"got rc = [%d]. key_rec->enc_key_size = [%zd]\n",
2276 				rc, key_rec->enc_key_size);
2277 		rc = -ENOMEM;
2278 		goto out;
2279 	}
2280 	rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size,
2281 				 dst_sg, 2);
2282 	if (rc < 1 || rc > 2) {
2283 		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2284 				"for crypt_stat encrypted session key; "
2285 				"expected rc = 1; got rc = [%d]. "
2286 				"key_rec->enc_key_size = [%zd]\n", rc,
2287 				key_rec->enc_key_size);
2288 		rc = -ENOMEM;
2289 		goto out;
2290 	}
2291 	mutex_lock(tfm_mutex);
2292 	rc = crypto_skcipher_setkey(tfm, session_key_encryption_key,
2293 				    crypt_stat->key_size);
2294 	if (rc < 0) {
2295 		mutex_unlock(tfm_mutex);
2296 		ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
2297 				"context; rc = [%d]\n", rc);
2298 		goto out;
2299 	}
2300 
2301 	req = skcipher_request_alloc(tfm, GFP_KERNEL);
2302 	if (!req) {
2303 		mutex_unlock(tfm_mutex);
2304 		ecryptfs_printk(KERN_ERR, "Out of kernel memory whilst "
2305 				"attempting to skcipher_request_alloc for "
2306 				"%s\n", crypto_skcipher_driver_name(tfm));
2307 		rc = -ENOMEM;
2308 		goto out;
2309 	}
2310 
2311 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP,
2312 				      NULL, NULL);
2313 
2314 	rc = 0;
2315 	ecryptfs_printk(KERN_DEBUG, "Encrypting [%zd] bytes of the key\n",
2316 			crypt_stat->key_size);
2317 	skcipher_request_set_crypt(req, src_sg, dst_sg,
2318 				   (*key_rec).enc_key_size, NULL);
2319 	rc = crypto_skcipher_encrypt(req);
2320 	mutex_unlock(tfm_mutex);
2321 	skcipher_request_free(req);
2322 	if (rc) {
2323 		printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
2324 		goto out;
2325 	}
2326 	ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
2327 	if (ecryptfs_verbosity > 0) {
2328 		ecryptfs_printk(KERN_DEBUG, "EFEK of size [%zd]:\n",
2329 				key_rec->enc_key_size);
2330 		ecryptfs_dump_hex(key_rec->enc_key,
2331 				  key_rec->enc_key_size);
2332 	}
2333 encrypted_session_key_set:
2334 	/* This format is inspired by OpenPGP; see RFC 2440
2335 	 * packet tag 3 */
2336 	max_packet_size = (1                         /* Tag 3 identifier */
2337 			   + 3                       /* Max Tag 3 packet size */
2338 			   + 1                       /* Version */
2339 			   + 1                       /* Cipher code */
2340 			   + 1                       /* S2K specifier */
2341 			   + 1                       /* Hash identifier */
2342 			   + ECRYPTFS_SALT_SIZE      /* Salt */
2343 			   + 1                       /* Hash iterations */
2344 			   + key_rec->enc_key_size); /* Encrypted key size */
2345 	if (max_packet_size > (*remaining_bytes)) {
2346 		printk(KERN_ERR "Packet too large; need up to [%td] bytes, but "
2347 		       "there are only [%td] available\n", max_packet_size,
2348 		       (*remaining_bytes));
2349 		rc = -EINVAL;
2350 		goto out;
2351 	}
2352 	dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
2353 	/* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
2354 	 * to get the number of octets in the actual Tag 3 packet */
2355 	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2356 					  (max_packet_size - 4),
2357 					  &packet_size_length);
2358 	if (rc) {
2359 		printk(KERN_ERR "Error generating tag 3 packet header; cannot "
2360 		       "generate packet length. rc = [%d]\n", rc);
2361 		goto out;
2362 	}
2363 	(*packet_size) += packet_size_length;
2364 	dest[(*packet_size)++] = 0x04; /* version 4 */
2365 	/* TODO: Break from RFC2440 so that arbitrary ciphers can be
2366 	 * specified with strings */
2367 	cipher_code = ecryptfs_code_for_cipher_string(crypt_stat->cipher,
2368 						      crypt_stat->key_size);
2369 	if (cipher_code == 0) {
2370 		ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
2371 				"cipher [%s]\n", crypt_stat->cipher);
2372 		rc = -EINVAL;
2373 		goto out;
2374 	}
2375 	dest[(*packet_size)++] = cipher_code;
2376 	dest[(*packet_size)++] = 0x03;	/* S2K */
2377 	dest[(*packet_size)++] = 0x01;	/* MD5 (TODO: parameterize) */
2378 	memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
2379 	       ECRYPTFS_SALT_SIZE);
2380 	(*packet_size) += ECRYPTFS_SALT_SIZE;	/* salt */
2381 	dest[(*packet_size)++] = 0x60;	/* hash iterations (65536) */
2382 	memcpy(&dest[(*packet_size)], key_rec->enc_key,
2383 	       key_rec->enc_key_size);
2384 	(*packet_size) += key_rec->enc_key_size;
2385 out:
2386 	if (rc)
2387 		(*packet_size) = 0;
2388 	else
2389 		(*remaining_bytes) -= (*packet_size);
2390 	return rc;
2391 }
2392 
2393 struct kmem_cache *ecryptfs_key_record_cache;
2394 
2395 /**
2396  * ecryptfs_generate_key_packet_set
2397  * @dest_base: Virtual address from which to write the key record set
2398  * @crypt_stat: The cryptographic context from which the
2399  *              authentication tokens will be retrieved
2400  * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
2401  *                   for the global parameters
2402  * @len: The amount written
2403  * @max: The maximum amount of data allowed to be written
2404  *
2405  * Generates a key packet set and writes it to the virtual address
2406  * passed in.
2407  *
2408  * Returns zero on success; non-zero on error.
2409  */
2410 int
2411 ecryptfs_generate_key_packet_set(char *dest_base,
2412 				 struct ecryptfs_crypt_stat *crypt_stat,
2413 				 struct dentry *ecryptfs_dentry, size_t *len,
2414 				 size_t max)
2415 {
2416 	struct ecryptfs_auth_tok *auth_tok;
2417 	struct key *auth_tok_key = NULL;
2418 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2419 		&ecryptfs_superblock_to_private(
2420 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
2421 	size_t written;
2422 	struct ecryptfs_key_record *key_rec;
2423 	struct ecryptfs_key_sig *key_sig;
2424 	int rc = 0;
2425 
2426 	(*len) = 0;
2427 	mutex_lock(&crypt_stat->keysig_list_mutex);
2428 	key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
2429 	if (!key_rec) {
2430 		rc = -ENOMEM;
2431 		goto out;
2432 	}
2433 	list_for_each_entry(key_sig, &crypt_stat->keysig_list,
2434 			    crypt_stat_list) {
2435 		memset(key_rec, 0, sizeof(*key_rec));
2436 		rc = ecryptfs_find_global_auth_tok_for_sig(&auth_tok_key,
2437 							   &auth_tok,
2438 							   mount_crypt_stat,
2439 							   key_sig->keysig);
2440 		if (rc) {
2441 			printk(KERN_WARNING "Unable to retrieve auth tok with "
2442 			       "sig = [%s]\n", key_sig->keysig);
2443 			rc = process_find_global_auth_tok_for_sig_err(rc);
2444 			goto out_free;
2445 		}
2446 		if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
2447 			rc = write_tag_3_packet((dest_base + (*len)),
2448 						&max, auth_tok,
2449 						crypt_stat, key_rec,
2450 						&written);
2451 			up_write(&(auth_tok_key->sem));
2452 			key_put(auth_tok_key);
2453 			if (rc) {
2454 				ecryptfs_printk(KERN_WARNING, "Error "
2455 						"writing tag 3 packet\n");
2456 				goto out_free;
2457 			}
2458 			(*len) += written;
2459 			/* Write auth tok signature packet */
2460 			rc = write_tag_11_packet((dest_base + (*len)), &max,
2461 						 key_rec->sig,
2462 						 ECRYPTFS_SIG_SIZE, &written);
2463 			if (rc) {
2464 				ecryptfs_printk(KERN_ERR, "Error writing "
2465 						"auth tok signature packet\n");
2466 				goto out_free;
2467 			}
2468 			(*len) += written;
2469 		} else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
2470 			rc = write_tag_1_packet(dest_base + (*len), &max,
2471 						auth_tok_key, auth_tok,
2472 						crypt_stat, key_rec, &written);
2473 			if (rc) {
2474 				ecryptfs_printk(KERN_WARNING, "Error "
2475 						"writing tag 1 packet\n");
2476 				goto out_free;
2477 			}
2478 			(*len) += written;
2479 		} else {
2480 			up_write(&(auth_tok_key->sem));
2481 			key_put(auth_tok_key);
2482 			ecryptfs_printk(KERN_WARNING, "Unsupported "
2483 					"authentication token type\n");
2484 			rc = -EINVAL;
2485 			goto out_free;
2486 		}
2487 	}
2488 	if (likely(max > 0)) {
2489 		dest_base[(*len)] = 0x00;
2490 	} else {
2491 		ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
2492 		rc = -EIO;
2493 	}
2494 out_free:
2495 	kmem_cache_free(ecryptfs_key_record_cache, key_rec);
2496 out:
2497 	if (rc)
2498 		(*len) = 0;
2499 	mutex_unlock(&crypt_stat->keysig_list_mutex);
2500 	return rc;
2501 }
2502 
2503 struct kmem_cache *ecryptfs_key_sig_cache;
2504 
2505 int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
2506 {
2507 	struct ecryptfs_key_sig *new_key_sig;
2508 
2509 	new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
2510 	if (!new_key_sig)
2511 		return -ENOMEM;
2512 
2513 	memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
2514 	new_key_sig->keysig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2515 	/* Caller must hold keysig_list_mutex */
2516 	list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
2517 
2518 	return 0;
2519 }
2520 
2521 struct kmem_cache *ecryptfs_global_auth_tok_cache;
2522 
2523 int
2524 ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2525 			     char *sig, u32 global_auth_tok_flags)
2526 {
2527 	struct ecryptfs_global_auth_tok *new_auth_tok;
2528 
2529 	new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache,
2530 					GFP_KERNEL);
2531 	if (!new_auth_tok)
2532 		return -ENOMEM;
2533 
2534 	memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
2535 	new_auth_tok->flags = global_auth_tok_flags;
2536 	new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2537 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
2538 	list_add(&new_auth_tok->mount_crypt_stat_list,
2539 		 &mount_crypt_stat->global_auth_tok_list);
2540 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
2541 	return 0;
2542 }
2543 
2544