xref: /openbmc/linux/fs/ecryptfs/keystore.c (revision 75f25bd3)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  * In-kernel key management code.  Includes functions to parse and
4  * write authentication token-related packets with the underlying
5  * file.
6  *
7  * Copyright (C) 2004-2006 International Business Machines Corp.
8  *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
9  *              Michael C. Thompson <mcthomps@us.ibm.com>
10  *              Trevor S. Highland <trevor.highland@gmail.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of the
15  * License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
25  * 02111-1307, USA.
26  */
27 
28 #include <linux/string.h>
29 #include <linux/syscalls.h>
30 #include <linux/pagemap.h>
31 #include <linux/key.h>
32 #include <linux/random.h>
33 #include <linux/crypto.h>
34 #include <linux/scatterlist.h>
35 #include <linux/slab.h>
36 #include "ecryptfs_kernel.h"
37 
38 /**
39  * request_key returned an error instead of a valid key address;
40  * determine the type of error, make appropriate log entries, and
41  * return an error code.
42  */
43 static int process_request_key_err(long err_code)
44 {
45 	int rc = 0;
46 
47 	switch (err_code) {
48 	case -ENOKEY:
49 		ecryptfs_printk(KERN_WARNING, "No key\n");
50 		rc = -ENOENT;
51 		break;
52 	case -EKEYEXPIRED:
53 		ecryptfs_printk(KERN_WARNING, "Key expired\n");
54 		rc = -ETIME;
55 		break;
56 	case -EKEYREVOKED:
57 		ecryptfs_printk(KERN_WARNING, "Key revoked\n");
58 		rc = -EINVAL;
59 		break;
60 	default:
61 		ecryptfs_printk(KERN_WARNING, "Unknown error code: "
62 				"[0x%.16lx]\n", err_code);
63 		rc = -EINVAL;
64 	}
65 	return rc;
66 }
67 
68 static int process_find_global_auth_tok_for_sig_err(int err_code)
69 {
70 	int rc = err_code;
71 
72 	switch (err_code) {
73 	case -ENOENT:
74 		ecryptfs_printk(KERN_WARNING, "Missing auth tok\n");
75 		break;
76 	case -EINVAL:
77 		ecryptfs_printk(KERN_WARNING, "Invalid auth tok\n");
78 		break;
79 	default:
80 		rc = process_request_key_err(err_code);
81 		break;
82 	}
83 	return rc;
84 }
85 
86 /**
87  * ecryptfs_parse_packet_length
88  * @data: Pointer to memory containing length at offset
89  * @size: This function writes the decoded size to this memory
90  *        address; zero on error
91  * @length_size: The number of bytes occupied by the encoded length
92  *
93  * Returns zero on success; non-zero on error
94  */
95 int ecryptfs_parse_packet_length(unsigned char *data, size_t *size,
96 				 size_t *length_size)
97 {
98 	int rc = 0;
99 
100 	(*length_size) = 0;
101 	(*size) = 0;
102 	if (data[0] < 192) {
103 		/* One-byte length */
104 		(*size) = (unsigned char)data[0];
105 		(*length_size) = 1;
106 	} else if (data[0] < 224) {
107 		/* Two-byte length */
108 		(*size) = (((unsigned char)(data[0]) - 192) * 256);
109 		(*size) += ((unsigned char)(data[1]) + 192);
110 		(*length_size) = 2;
111 	} else if (data[0] == 255) {
112 		/* Five-byte length; we're not supposed to see this */
113 		ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
114 				"supported\n");
115 		rc = -EINVAL;
116 		goto out;
117 	} else {
118 		ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
119 		rc = -EINVAL;
120 		goto out;
121 	}
122 out:
123 	return rc;
124 }
125 
126 /**
127  * ecryptfs_write_packet_length
128  * @dest: The byte array target into which to write the length. Must
129  *        have at least 5 bytes allocated.
130  * @size: The length to write.
131  * @packet_size_length: The number of bytes used to encode the packet
132  *                      length is written to this address.
133  *
134  * Returns zero on success; non-zero on error.
135  */
136 int ecryptfs_write_packet_length(char *dest, size_t size,
137 				 size_t *packet_size_length)
138 {
139 	int rc = 0;
140 
141 	if (size < 192) {
142 		dest[0] = size;
143 		(*packet_size_length) = 1;
144 	} else if (size < 65536) {
145 		dest[0] = (((size - 192) / 256) + 192);
146 		dest[1] = ((size - 192) % 256);
147 		(*packet_size_length) = 2;
148 	} else {
149 		rc = -EINVAL;
150 		ecryptfs_printk(KERN_WARNING,
151 				"Unsupported packet size: [%zd]\n", size);
152 	}
153 	return rc;
154 }
155 
156 static int
157 write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
158 		    char **packet, size_t *packet_len)
159 {
160 	size_t i = 0;
161 	size_t data_len;
162 	size_t packet_size_len;
163 	char *message;
164 	int rc;
165 
166 	/*
167 	 *              ***** TAG 64 Packet Format *****
168 	 *    | Content Type                       | 1 byte       |
169 	 *    | Key Identifier Size                | 1 or 2 bytes |
170 	 *    | Key Identifier                     | arbitrary    |
171 	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
172 	 *    | Encrypted File Encryption Key      | arbitrary    |
173 	 */
174 	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
175 		    + session_key->encrypted_key_size);
176 	*packet = kmalloc(data_len, GFP_KERNEL);
177 	message = *packet;
178 	if (!message) {
179 		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
180 		rc = -ENOMEM;
181 		goto out;
182 	}
183 	message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
184 	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
185 					  &packet_size_len);
186 	if (rc) {
187 		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
188 				"header; cannot generate packet length\n");
189 		goto out;
190 	}
191 	i += packet_size_len;
192 	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
193 	i += ECRYPTFS_SIG_SIZE_HEX;
194 	rc = ecryptfs_write_packet_length(&message[i],
195 					  session_key->encrypted_key_size,
196 					  &packet_size_len);
197 	if (rc) {
198 		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
199 				"header; cannot generate packet length\n");
200 		goto out;
201 	}
202 	i += packet_size_len;
203 	memcpy(&message[i], session_key->encrypted_key,
204 	       session_key->encrypted_key_size);
205 	i += session_key->encrypted_key_size;
206 	*packet_len = i;
207 out:
208 	return rc;
209 }
210 
211 static int
212 parse_tag_65_packet(struct ecryptfs_session_key *session_key, u8 *cipher_code,
213 		    struct ecryptfs_message *msg)
214 {
215 	size_t i = 0;
216 	char *data;
217 	size_t data_len;
218 	size_t m_size;
219 	size_t message_len;
220 	u16 checksum = 0;
221 	u16 expected_checksum = 0;
222 	int rc;
223 
224 	/*
225 	 *              ***** TAG 65 Packet Format *****
226 	 *         | Content Type             | 1 byte       |
227 	 *         | Status Indicator         | 1 byte       |
228 	 *         | File Encryption Key Size | 1 or 2 bytes |
229 	 *         | File Encryption Key      | arbitrary    |
230 	 */
231 	message_len = msg->data_len;
232 	data = msg->data;
233 	if (message_len < 4) {
234 		rc = -EIO;
235 		goto out;
236 	}
237 	if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
238 		ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
239 		rc = -EIO;
240 		goto out;
241 	}
242 	if (data[i++]) {
243 		ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
244 				"[%d]\n", data[i-1]);
245 		rc = -EIO;
246 		goto out;
247 	}
248 	rc = ecryptfs_parse_packet_length(&data[i], &m_size, &data_len);
249 	if (rc) {
250 		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
251 				"rc = [%d]\n", rc);
252 		goto out;
253 	}
254 	i += data_len;
255 	if (message_len < (i + m_size)) {
256 		ecryptfs_printk(KERN_ERR, "The message received from ecryptfsd "
257 				"is shorter than expected\n");
258 		rc = -EIO;
259 		goto out;
260 	}
261 	if (m_size < 3) {
262 		ecryptfs_printk(KERN_ERR,
263 				"The decrypted key is not long enough to "
264 				"include a cipher code and checksum\n");
265 		rc = -EIO;
266 		goto out;
267 	}
268 	*cipher_code = data[i++];
269 	/* The decrypted key includes 1 byte cipher code and 2 byte checksum */
270 	session_key->decrypted_key_size = m_size - 3;
271 	if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
272 		ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
273 				"the maximum key size [%d]\n",
274 				session_key->decrypted_key_size,
275 				ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
276 		rc = -EIO;
277 		goto out;
278 	}
279 	memcpy(session_key->decrypted_key, &data[i],
280 	       session_key->decrypted_key_size);
281 	i += session_key->decrypted_key_size;
282 	expected_checksum += (unsigned char)(data[i++]) << 8;
283 	expected_checksum += (unsigned char)(data[i++]);
284 	for (i = 0; i < session_key->decrypted_key_size; i++)
285 		checksum += session_key->decrypted_key[i];
286 	if (expected_checksum != checksum) {
287 		ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
288 				"encryption  key; expected [%x]; calculated "
289 				"[%x]\n", expected_checksum, checksum);
290 		rc = -EIO;
291 	}
292 out:
293 	return rc;
294 }
295 
296 
297 static int
298 write_tag_66_packet(char *signature, u8 cipher_code,
299 		    struct ecryptfs_crypt_stat *crypt_stat, char **packet,
300 		    size_t *packet_len)
301 {
302 	size_t i = 0;
303 	size_t j;
304 	size_t data_len;
305 	size_t checksum = 0;
306 	size_t packet_size_len;
307 	char *message;
308 	int rc;
309 
310 	/*
311 	 *              ***** TAG 66 Packet Format *****
312 	 *         | Content Type             | 1 byte       |
313 	 *         | Key Identifier Size      | 1 or 2 bytes |
314 	 *         | Key Identifier           | arbitrary    |
315 	 *         | File Encryption Key Size | 1 or 2 bytes |
316 	 *         | File Encryption Key      | arbitrary    |
317 	 */
318 	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
319 	*packet = kmalloc(data_len, GFP_KERNEL);
320 	message = *packet;
321 	if (!message) {
322 		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
323 		rc = -ENOMEM;
324 		goto out;
325 	}
326 	message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
327 	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
328 					  &packet_size_len);
329 	if (rc) {
330 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
331 				"header; cannot generate packet length\n");
332 		goto out;
333 	}
334 	i += packet_size_len;
335 	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
336 	i += ECRYPTFS_SIG_SIZE_HEX;
337 	/* The encrypted key includes 1 byte cipher code and 2 byte checksum */
338 	rc = ecryptfs_write_packet_length(&message[i], crypt_stat->key_size + 3,
339 					  &packet_size_len);
340 	if (rc) {
341 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
342 				"header; cannot generate packet length\n");
343 		goto out;
344 	}
345 	i += packet_size_len;
346 	message[i++] = cipher_code;
347 	memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
348 	i += crypt_stat->key_size;
349 	for (j = 0; j < crypt_stat->key_size; j++)
350 		checksum += crypt_stat->key[j];
351 	message[i++] = (checksum / 256) % 256;
352 	message[i++] = (checksum % 256);
353 	*packet_len = i;
354 out:
355 	return rc;
356 }
357 
358 static int
359 parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
360 		    struct ecryptfs_message *msg)
361 {
362 	size_t i = 0;
363 	char *data;
364 	size_t data_len;
365 	size_t message_len;
366 	int rc;
367 
368 	/*
369 	 *              ***** TAG 65 Packet Format *****
370 	 *    | Content Type                       | 1 byte       |
371 	 *    | Status Indicator                   | 1 byte       |
372 	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
373 	 *    | Encrypted File Encryption Key      | arbitrary    |
374 	 */
375 	message_len = msg->data_len;
376 	data = msg->data;
377 	/* verify that everything through the encrypted FEK size is present */
378 	if (message_len < 4) {
379 		rc = -EIO;
380 		printk(KERN_ERR "%s: message_len is [%zd]; minimum acceptable "
381 		       "message length is [%d]\n", __func__, message_len, 4);
382 		goto out;
383 	}
384 	if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
385 		rc = -EIO;
386 		printk(KERN_ERR "%s: Type should be ECRYPTFS_TAG_67\n",
387 		       __func__);
388 		goto out;
389 	}
390 	if (data[i++]) {
391 		rc = -EIO;
392 		printk(KERN_ERR "%s: Status indicator has non zero "
393 		       "value [%d]\n", __func__, data[i-1]);
394 
395 		goto out;
396 	}
397 	rc = ecryptfs_parse_packet_length(&data[i], &key_rec->enc_key_size,
398 					  &data_len);
399 	if (rc) {
400 		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
401 				"rc = [%d]\n", rc);
402 		goto out;
403 	}
404 	i += data_len;
405 	if (message_len < (i + key_rec->enc_key_size)) {
406 		rc = -EIO;
407 		printk(KERN_ERR "%s: message_len [%zd]; max len is [%zd]\n",
408 		       __func__, message_len, (i + key_rec->enc_key_size));
409 		goto out;
410 	}
411 	if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
412 		rc = -EIO;
413 		printk(KERN_ERR "%s: Encrypted key_size [%zd] larger than "
414 		       "the maximum key size [%d]\n", __func__,
415 		       key_rec->enc_key_size,
416 		       ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
417 		goto out;
418 	}
419 	memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
420 out:
421 	return rc;
422 }
423 
424 /**
425  * ecryptfs_verify_version
426  * @version: The version number to confirm
427  *
428  * Returns zero on good version; non-zero otherwise
429  */
430 static int ecryptfs_verify_version(u16 version)
431 {
432 	int rc = 0;
433 	unsigned char major;
434 	unsigned char minor;
435 
436 	major = ((version >> 8) & 0xFF);
437 	minor = (version & 0xFF);
438 	if (major != ECRYPTFS_VERSION_MAJOR) {
439 		ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
440 				"Expected [%d]; got [%d]\n",
441 				ECRYPTFS_VERSION_MAJOR, major);
442 		rc = -EINVAL;
443 		goto out;
444 	}
445 	if (minor != ECRYPTFS_VERSION_MINOR) {
446 		ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
447 				"Expected [%d]; got [%d]\n",
448 				ECRYPTFS_VERSION_MINOR, minor);
449 		rc = -EINVAL;
450 		goto out;
451 	}
452 out:
453 	return rc;
454 }
455 
456 /**
457  * ecryptfs_verify_auth_tok_from_key
458  * @auth_tok_key: key containing the authentication token
459  * @auth_tok: authentication token
460  *
461  * Returns zero on valid auth tok; -EINVAL otherwise
462  */
463 static int
464 ecryptfs_verify_auth_tok_from_key(struct key *auth_tok_key,
465 				  struct ecryptfs_auth_tok **auth_tok)
466 {
467 	int rc = 0;
468 
469 	(*auth_tok) = ecryptfs_get_key_payload_data(auth_tok_key);
470 	if (ecryptfs_verify_version((*auth_tok)->version)) {
471 		printk(KERN_ERR "Data structure version mismatch. Userspace "
472 		       "tools must match eCryptfs kernel module with major "
473 		       "version [%d] and minor version [%d]\n",
474 		       ECRYPTFS_VERSION_MAJOR, ECRYPTFS_VERSION_MINOR);
475 		rc = -EINVAL;
476 		goto out;
477 	}
478 	if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
479 	    && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
480 		printk(KERN_ERR "Invalid auth_tok structure "
481 		       "returned from key query\n");
482 		rc = -EINVAL;
483 		goto out;
484 	}
485 out:
486 	return rc;
487 }
488 
489 static int
490 ecryptfs_find_global_auth_tok_for_sig(
491 	struct key **auth_tok_key,
492 	struct ecryptfs_auth_tok **auth_tok,
493 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
494 {
495 	struct ecryptfs_global_auth_tok *walker;
496 	int rc = 0;
497 
498 	(*auth_tok_key) = NULL;
499 	(*auth_tok) = NULL;
500 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
501 	list_for_each_entry(walker,
502 			    &mount_crypt_stat->global_auth_tok_list,
503 			    mount_crypt_stat_list) {
504 		if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX))
505 			continue;
506 
507 		if (walker->flags & ECRYPTFS_AUTH_TOK_INVALID) {
508 			rc = -EINVAL;
509 			goto out;
510 		}
511 
512 		rc = key_validate(walker->global_auth_tok_key);
513 		if (rc) {
514 			if (rc == -EKEYEXPIRED)
515 				goto out;
516 			goto out_invalid_auth_tok;
517 		}
518 
519 		down_write(&(walker->global_auth_tok_key->sem));
520 		rc = ecryptfs_verify_auth_tok_from_key(
521 				walker->global_auth_tok_key, auth_tok);
522 		if (rc)
523 			goto out_invalid_auth_tok_unlock;
524 
525 		(*auth_tok_key) = walker->global_auth_tok_key;
526 		key_get(*auth_tok_key);
527 		goto out;
528 	}
529 	rc = -ENOENT;
530 	goto out;
531 out_invalid_auth_tok_unlock:
532 	up_write(&(walker->global_auth_tok_key->sem));
533 out_invalid_auth_tok:
534 	printk(KERN_WARNING "Invalidating auth tok with sig = [%s]\n", sig);
535 	walker->flags |= ECRYPTFS_AUTH_TOK_INVALID;
536 	key_put(walker->global_auth_tok_key);
537 	walker->global_auth_tok_key = NULL;
538 out:
539 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
540 	return rc;
541 }
542 
543 /**
544  * ecryptfs_find_auth_tok_for_sig
545  * @auth_tok: Set to the matching auth_tok; NULL if not found
546  * @crypt_stat: inode crypt_stat crypto context
547  * @sig: Sig of auth_tok to find
548  *
549  * For now, this function simply looks at the registered auth_tok's
550  * linked off the mount_crypt_stat, so all the auth_toks that can be
551  * used must be registered at mount time. This function could
552  * potentially try a lot harder to find auth_tok's (e.g., by calling
553  * out to ecryptfsd to dynamically retrieve an auth_tok object) so
554  * that static registration of auth_tok's will no longer be necessary.
555  *
556  * Returns zero on no error; non-zero on error
557  */
558 static int
559 ecryptfs_find_auth_tok_for_sig(
560 	struct key **auth_tok_key,
561 	struct ecryptfs_auth_tok **auth_tok,
562 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
563 	char *sig)
564 {
565 	int rc = 0;
566 
567 	rc = ecryptfs_find_global_auth_tok_for_sig(auth_tok_key, auth_tok,
568 						   mount_crypt_stat, sig);
569 	if (rc == -ENOENT) {
570 		/* if the flag ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY is set in the
571 		 * mount_crypt_stat structure, we prevent to use auth toks that
572 		 * are not inserted through the ecryptfs_add_global_auth_tok
573 		 * function.
574 		 */
575 		if (mount_crypt_stat->flags
576 				& ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY)
577 			return -EINVAL;
578 
579 		rc = ecryptfs_keyring_auth_tok_for_sig(auth_tok_key, auth_tok,
580 						       sig);
581 	}
582 	return rc;
583 }
584 
585 /**
586  * write_tag_70_packet can gobble a lot of stack space. We stuff most
587  * of the function's parameters in a kmalloc'd struct to help reduce
588  * eCryptfs' overall stack usage.
589  */
590 struct ecryptfs_write_tag_70_packet_silly_stack {
591 	u8 cipher_code;
592 	size_t max_packet_size;
593 	size_t packet_size_len;
594 	size_t block_aligned_filename_size;
595 	size_t block_size;
596 	size_t i;
597 	size_t j;
598 	size_t num_rand_bytes;
599 	struct mutex *tfm_mutex;
600 	char *block_aligned_filename;
601 	struct ecryptfs_auth_tok *auth_tok;
602 	struct scatterlist src_sg[2];
603 	struct scatterlist dst_sg[2];
604 	struct blkcipher_desc desc;
605 	char iv[ECRYPTFS_MAX_IV_BYTES];
606 	char hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
607 	char tmp_hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
608 	struct hash_desc hash_desc;
609 	struct scatterlist hash_sg;
610 };
611 
612 /**
613  * write_tag_70_packet - Write encrypted filename (EFN) packet against FNEK
614  * @filename: NULL-terminated filename string
615  *
616  * This is the simplest mechanism for achieving filename encryption in
617  * eCryptfs. It encrypts the given filename with the mount-wide
618  * filename encryption key (FNEK) and stores it in a packet to @dest,
619  * which the callee will encode and write directly into the dentry
620  * name.
621  */
622 int
623 ecryptfs_write_tag_70_packet(char *dest, size_t *remaining_bytes,
624 			     size_t *packet_size,
625 			     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
626 			     char *filename, size_t filename_size)
627 {
628 	struct ecryptfs_write_tag_70_packet_silly_stack *s;
629 	struct key *auth_tok_key = NULL;
630 	int rc = 0;
631 
632 	s = kmalloc(sizeof(*s), GFP_KERNEL);
633 	if (!s) {
634 		printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
635 		       "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
636 		rc = -ENOMEM;
637 		goto out;
638 	}
639 	s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
640 	(*packet_size) = 0;
641 	rc = ecryptfs_find_auth_tok_for_sig(
642 		&auth_tok_key,
643 		&s->auth_tok, mount_crypt_stat,
644 		mount_crypt_stat->global_default_fnek_sig);
645 	if (rc) {
646 		printk(KERN_ERR "%s: Error attempting to find auth tok for "
647 		       "fnek sig [%s]; rc = [%d]\n", __func__,
648 		       mount_crypt_stat->global_default_fnek_sig, rc);
649 		goto out;
650 	}
651 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(
652 		&s->desc.tfm,
653 		&s->tfm_mutex, mount_crypt_stat->global_default_fn_cipher_name);
654 	if (unlikely(rc)) {
655 		printk(KERN_ERR "Internal error whilst attempting to get "
656 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
657 		       mount_crypt_stat->global_default_fn_cipher_name, rc);
658 		goto out;
659 	}
660 	mutex_lock(s->tfm_mutex);
661 	s->block_size = crypto_blkcipher_blocksize(s->desc.tfm);
662 	/* Plus one for the \0 separator between the random prefix
663 	 * and the plaintext filename */
664 	s->num_rand_bytes = (ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES + 1);
665 	s->block_aligned_filename_size = (s->num_rand_bytes + filename_size);
666 	if ((s->block_aligned_filename_size % s->block_size) != 0) {
667 		s->num_rand_bytes += (s->block_size
668 				      - (s->block_aligned_filename_size
669 					 % s->block_size));
670 		s->block_aligned_filename_size = (s->num_rand_bytes
671 						  + filename_size);
672 	}
673 	/* Octet 0: Tag 70 identifier
674 	 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
675 	 *              and block-aligned encrypted filename size)
676 	 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
677 	 * Octet N2-N3: Cipher identifier (1 octet)
678 	 * Octets N3-N4: Block-aligned encrypted filename
679 	 *  - Consists of a minimum number of random characters, a \0
680 	 *    separator, and then the filename */
681 	s->max_packet_size = (1                   /* Tag 70 identifier */
682 			      + 3                 /* Max Tag 70 packet size */
683 			      + ECRYPTFS_SIG_SIZE /* FNEK sig */
684 			      + 1                 /* Cipher identifier */
685 			      + s->block_aligned_filename_size);
686 	if (dest == NULL) {
687 		(*packet_size) = s->max_packet_size;
688 		goto out_unlock;
689 	}
690 	if (s->max_packet_size > (*remaining_bytes)) {
691 		printk(KERN_WARNING "%s: Require [%zd] bytes to write; only "
692 		       "[%zd] available\n", __func__, s->max_packet_size,
693 		       (*remaining_bytes));
694 		rc = -EINVAL;
695 		goto out_unlock;
696 	}
697 	s->block_aligned_filename = kzalloc(s->block_aligned_filename_size,
698 					    GFP_KERNEL);
699 	if (!s->block_aligned_filename) {
700 		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
701 		       "kzalloc [%zd] bytes\n", __func__,
702 		       s->block_aligned_filename_size);
703 		rc = -ENOMEM;
704 		goto out_unlock;
705 	}
706 	s->i = 0;
707 	dest[s->i++] = ECRYPTFS_TAG_70_PACKET_TYPE;
708 	rc = ecryptfs_write_packet_length(&dest[s->i],
709 					  (ECRYPTFS_SIG_SIZE
710 					   + 1 /* Cipher code */
711 					   + s->block_aligned_filename_size),
712 					  &s->packet_size_len);
713 	if (rc) {
714 		printk(KERN_ERR "%s: Error generating tag 70 packet "
715 		       "header; cannot generate packet length; rc = [%d]\n",
716 		       __func__, rc);
717 		goto out_free_unlock;
718 	}
719 	s->i += s->packet_size_len;
720 	ecryptfs_from_hex(&dest[s->i],
721 			  mount_crypt_stat->global_default_fnek_sig,
722 			  ECRYPTFS_SIG_SIZE);
723 	s->i += ECRYPTFS_SIG_SIZE;
724 	s->cipher_code = ecryptfs_code_for_cipher_string(
725 		mount_crypt_stat->global_default_fn_cipher_name,
726 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
727 	if (s->cipher_code == 0) {
728 		printk(KERN_WARNING "%s: Unable to generate code for "
729 		       "cipher [%s] with key bytes [%zd]\n", __func__,
730 		       mount_crypt_stat->global_default_fn_cipher_name,
731 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
732 		rc = -EINVAL;
733 		goto out_free_unlock;
734 	}
735 	dest[s->i++] = s->cipher_code;
736 	/* TODO: Support other key modules than passphrase for
737 	 * filename encryption */
738 	if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
739 		rc = -EOPNOTSUPP;
740 		printk(KERN_INFO "%s: Filename encryption only supports "
741 		       "password tokens\n", __func__);
742 		goto out_free_unlock;
743 	}
744 	sg_init_one(
745 		&s->hash_sg,
746 		(u8 *)s->auth_tok->token.password.session_key_encryption_key,
747 		s->auth_tok->token.password.session_key_encryption_key_bytes);
748 	s->hash_desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
749 	s->hash_desc.tfm = crypto_alloc_hash(ECRYPTFS_TAG_70_DIGEST, 0,
750 					     CRYPTO_ALG_ASYNC);
751 	if (IS_ERR(s->hash_desc.tfm)) {
752 			rc = PTR_ERR(s->hash_desc.tfm);
753 			printk(KERN_ERR "%s: Error attempting to "
754 			       "allocate hash crypto context; rc = [%d]\n",
755 			       __func__, rc);
756 			goto out_free_unlock;
757 	}
758 	rc = crypto_hash_init(&s->hash_desc);
759 	if (rc) {
760 		printk(KERN_ERR
761 		       "%s: Error initializing crypto hash; rc = [%d]\n",
762 		       __func__, rc);
763 		goto out_release_free_unlock;
764 	}
765 	rc = crypto_hash_update(
766 		&s->hash_desc, &s->hash_sg,
767 		s->auth_tok->token.password.session_key_encryption_key_bytes);
768 	if (rc) {
769 		printk(KERN_ERR
770 		       "%s: Error updating crypto hash; rc = [%d]\n",
771 		       __func__, rc);
772 		goto out_release_free_unlock;
773 	}
774 	rc = crypto_hash_final(&s->hash_desc, s->hash);
775 	if (rc) {
776 		printk(KERN_ERR
777 		       "%s: Error finalizing crypto hash; rc = [%d]\n",
778 		       __func__, rc);
779 		goto out_release_free_unlock;
780 	}
781 	for (s->j = 0; s->j < (s->num_rand_bytes - 1); s->j++) {
782 		s->block_aligned_filename[s->j] =
783 			s->hash[(s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)];
784 		if ((s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)
785 		    == (ECRYPTFS_TAG_70_DIGEST_SIZE - 1)) {
786 			sg_init_one(&s->hash_sg, (u8 *)s->hash,
787 				    ECRYPTFS_TAG_70_DIGEST_SIZE);
788 			rc = crypto_hash_init(&s->hash_desc);
789 			if (rc) {
790 				printk(KERN_ERR
791 				       "%s: Error initializing crypto hash; "
792 				       "rc = [%d]\n", __func__, rc);
793 				goto out_release_free_unlock;
794 			}
795 			rc = crypto_hash_update(&s->hash_desc, &s->hash_sg,
796 						ECRYPTFS_TAG_70_DIGEST_SIZE);
797 			if (rc) {
798 				printk(KERN_ERR
799 				       "%s: Error updating crypto hash; "
800 				       "rc = [%d]\n", __func__, rc);
801 				goto out_release_free_unlock;
802 			}
803 			rc = crypto_hash_final(&s->hash_desc, s->tmp_hash);
804 			if (rc) {
805 				printk(KERN_ERR
806 				       "%s: Error finalizing crypto hash; "
807 				       "rc = [%d]\n", __func__, rc);
808 				goto out_release_free_unlock;
809 			}
810 			memcpy(s->hash, s->tmp_hash,
811 			       ECRYPTFS_TAG_70_DIGEST_SIZE);
812 		}
813 		if (s->block_aligned_filename[s->j] == '\0')
814 			s->block_aligned_filename[s->j] = ECRYPTFS_NON_NULL;
815 	}
816 	memcpy(&s->block_aligned_filename[s->num_rand_bytes], filename,
817 	       filename_size);
818 	rc = virt_to_scatterlist(s->block_aligned_filename,
819 				 s->block_aligned_filename_size, s->src_sg, 2);
820 	if (rc < 1) {
821 		printk(KERN_ERR "%s: Internal error whilst attempting to "
822 		       "convert filename memory to scatterlist; rc = [%d]. "
823 		       "block_aligned_filename_size = [%zd]\n", __func__, rc,
824 		       s->block_aligned_filename_size);
825 		goto out_release_free_unlock;
826 	}
827 	rc = virt_to_scatterlist(&dest[s->i], s->block_aligned_filename_size,
828 				 s->dst_sg, 2);
829 	if (rc < 1) {
830 		printk(KERN_ERR "%s: Internal error whilst attempting to "
831 		       "convert encrypted filename memory to scatterlist; "
832 		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
833 		       __func__, rc, s->block_aligned_filename_size);
834 		goto out_release_free_unlock;
835 	}
836 	/* The characters in the first block effectively do the job
837 	 * of the IV here, so we just use 0's for the IV. Note the
838 	 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
839 	 * >= ECRYPTFS_MAX_IV_BYTES. */
840 	memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
841 	s->desc.info = s->iv;
842 	rc = crypto_blkcipher_setkey(
843 		s->desc.tfm,
844 		s->auth_tok->token.password.session_key_encryption_key,
845 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
846 	if (rc < 0) {
847 		printk(KERN_ERR "%s: Error setting key for crypto context; "
848 		       "rc = [%d]. s->auth_tok->token.password.session_key_"
849 		       "encryption_key = [0x%p]; mount_crypt_stat->"
850 		       "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
851 		       rc,
852 		       s->auth_tok->token.password.session_key_encryption_key,
853 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
854 		goto out_release_free_unlock;
855 	}
856 	rc = crypto_blkcipher_encrypt_iv(&s->desc, s->dst_sg, s->src_sg,
857 					 s->block_aligned_filename_size);
858 	if (rc) {
859 		printk(KERN_ERR "%s: Error attempting to encrypt filename; "
860 		       "rc = [%d]\n", __func__, rc);
861 		goto out_release_free_unlock;
862 	}
863 	s->i += s->block_aligned_filename_size;
864 	(*packet_size) = s->i;
865 	(*remaining_bytes) -= (*packet_size);
866 out_release_free_unlock:
867 	crypto_free_hash(s->hash_desc.tfm);
868 out_free_unlock:
869 	kzfree(s->block_aligned_filename);
870 out_unlock:
871 	mutex_unlock(s->tfm_mutex);
872 out:
873 	if (auth_tok_key) {
874 		up_write(&(auth_tok_key->sem));
875 		key_put(auth_tok_key);
876 	}
877 	kfree(s);
878 	return rc;
879 }
880 
881 struct ecryptfs_parse_tag_70_packet_silly_stack {
882 	u8 cipher_code;
883 	size_t max_packet_size;
884 	size_t packet_size_len;
885 	size_t parsed_tag_70_packet_size;
886 	size_t block_aligned_filename_size;
887 	size_t block_size;
888 	size_t i;
889 	struct mutex *tfm_mutex;
890 	char *decrypted_filename;
891 	struct ecryptfs_auth_tok *auth_tok;
892 	struct scatterlist src_sg[2];
893 	struct scatterlist dst_sg[2];
894 	struct blkcipher_desc desc;
895 	char fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX + 1];
896 	char iv[ECRYPTFS_MAX_IV_BYTES];
897 	char cipher_string[ECRYPTFS_MAX_CIPHER_NAME_SIZE];
898 };
899 
900 /**
901  * parse_tag_70_packet - Parse and process FNEK-encrypted passphrase packet
902  * @filename: This function kmalloc's the memory for the filename
903  * @filename_size: This function sets this to the amount of memory
904  *                 kmalloc'd for the filename
905  * @packet_size: This function sets this to the the number of octets
906  *               in the packet parsed
907  * @mount_crypt_stat: The mount-wide cryptographic context
908  * @data: The memory location containing the start of the tag 70
909  *        packet
910  * @max_packet_size: The maximum legal size of the packet to be parsed
911  *                   from @data
912  *
913  * Returns zero on success; non-zero otherwise
914  */
915 int
916 ecryptfs_parse_tag_70_packet(char **filename, size_t *filename_size,
917 			     size_t *packet_size,
918 			     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
919 			     char *data, size_t max_packet_size)
920 {
921 	struct ecryptfs_parse_tag_70_packet_silly_stack *s;
922 	struct key *auth_tok_key = NULL;
923 	int rc = 0;
924 
925 	(*packet_size) = 0;
926 	(*filename_size) = 0;
927 	(*filename) = NULL;
928 	s = kmalloc(sizeof(*s), GFP_KERNEL);
929 	if (!s) {
930 		printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
931 		       "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
932 		rc = -ENOMEM;
933 		goto out;
934 	}
935 	s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
936 	if (max_packet_size < (1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1)) {
937 		printk(KERN_WARNING "%s: max_packet_size is [%zd]; it must be "
938 		       "at least [%d]\n", __func__, max_packet_size,
939 			(1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1));
940 		rc = -EINVAL;
941 		goto out;
942 	}
943 	/* Octet 0: Tag 70 identifier
944 	 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
945 	 *              and block-aligned encrypted filename size)
946 	 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
947 	 * Octet N2-N3: Cipher identifier (1 octet)
948 	 * Octets N3-N4: Block-aligned encrypted filename
949 	 *  - Consists of a minimum number of random numbers, a \0
950 	 *    separator, and then the filename */
951 	if (data[(*packet_size)++] != ECRYPTFS_TAG_70_PACKET_TYPE) {
952 		printk(KERN_WARNING "%s: Invalid packet tag [0x%.2x]; must be "
953 		       "tag [0x%.2x]\n", __func__,
954 		       data[((*packet_size) - 1)], ECRYPTFS_TAG_70_PACKET_TYPE);
955 		rc = -EINVAL;
956 		goto out;
957 	}
958 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)],
959 					  &s->parsed_tag_70_packet_size,
960 					  &s->packet_size_len);
961 	if (rc) {
962 		printk(KERN_WARNING "%s: Error parsing packet length; "
963 		       "rc = [%d]\n", __func__, rc);
964 		goto out;
965 	}
966 	s->block_aligned_filename_size = (s->parsed_tag_70_packet_size
967 					  - ECRYPTFS_SIG_SIZE - 1);
968 	if ((1 + s->packet_size_len + s->parsed_tag_70_packet_size)
969 	    > max_packet_size) {
970 		printk(KERN_WARNING "%s: max_packet_size is [%zd]; real packet "
971 		       "size is [%zd]\n", __func__, max_packet_size,
972 		       (1 + s->packet_size_len + 1
973 			+ s->block_aligned_filename_size));
974 		rc = -EINVAL;
975 		goto out;
976 	}
977 	(*packet_size) += s->packet_size_len;
978 	ecryptfs_to_hex(s->fnek_sig_hex, &data[(*packet_size)],
979 			ECRYPTFS_SIG_SIZE);
980 	s->fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX] = '\0';
981 	(*packet_size) += ECRYPTFS_SIG_SIZE;
982 	s->cipher_code = data[(*packet_size)++];
983 	rc = ecryptfs_cipher_code_to_string(s->cipher_string, s->cipher_code);
984 	if (rc) {
985 		printk(KERN_WARNING "%s: Cipher code [%d] is invalid\n",
986 		       __func__, s->cipher_code);
987 		goto out;
988 	}
989 	rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
990 					    &s->auth_tok, mount_crypt_stat,
991 					    s->fnek_sig_hex);
992 	if (rc) {
993 		printk(KERN_ERR "%s: Error attempting to find auth tok for "
994 		       "fnek sig [%s]; rc = [%d]\n", __func__, s->fnek_sig_hex,
995 		       rc);
996 		goto out;
997 	}
998 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&s->desc.tfm,
999 							&s->tfm_mutex,
1000 							s->cipher_string);
1001 	if (unlikely(rc)) {
1002 		printk(KERN_ERR "Internal error whilst attempting to get "
1003 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1004 		       s->cipher_string, rc);
1005 		goto out;
1006 	}
1007 	mutex_lock(s->tfm_mutex);
1008 	rc = virt_to_scatterlist(&data[(*packet_size)],
1009 				 s->block_aligned_filename_size, s->src_sg, 2);
1010 	if (rc < 1) {
1011 		printk(KERN_ERR "%s: Internal error whilst attempting to "
1012 		       "convert encrypted filename memory to scatterlist; "
1013 		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
1014 		       __func__, rc, s->block_aligned_filename_size);
1015 		goto out_unlock;
1016 	}
1017 	(*packet_size) += s->block_aligned_filename_size;
1018 	s->decrypted_filename = kmalloc(s->block_aligned_filename_size,
1019 					GFP_KERNEL);
1020 	if (!s->decrypted_filename) {
1021 		printk(KERN_ERR "%s: Out of memory whilst attempting to "
1022 		       "kmalloc [%zd] bytes\n", __func__,
1023 		       s->block_aligned_filename_size);
1024 		rc = -ENOMEM;
1025 		goto out_unlock;
1026 	}
1027 	rc = virt_to_scatterlist(s->decrypted_filename,
1028 				 s->block_aligned_filename_size, s->dst_sg, 2);
1029 	if (rc < 1) {
1030 		printk(KERN_ERR "%s: Internal error whilst attempting to "
1031 		       "convert decrypted filename memory to scatterlist; "
1032 		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
1033 		       __func__, rc, s->block_aligned_filename_size);
1034 		goto out_free_unlock;
1035 	}
1036 	/* The characters in the first block effectively do the job of
1037 	 * the IV here, so we just use 0's for the IV. Note the
1038 	 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
1039 	 * >= ECRYPTFS_MAX_IV_BYTES. */
1040 	memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
1041 	s->desc.info = s->iv;
1042 	/* TODO: Support other key modules than passphrase for
1043 	 * filename encryption */
1044 	if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
1045 		rc = -EOPNOTSUPP;
1046 		printk(KERN_INFO "%s: Filename encryption only supports "
1047 		       "password tokens\n", __func__);
1048 		goto out_free_unlock;
1049 	}
1050 	rc = crypto_blkcipher_setkey(
1051 		s->desc.tfm,
1052 		s->auth_tok->token.password.session_key_encryption_key,
1053 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
1054 	if (rc < 0) {
1055 		printk(KERN_ERR "%s: Error setting key for crypto context; "
1056 		       "rc = [%d]. s->auth_tok->token.password.session_key_"
1057 		       "encryption_key = [0x%p]; mount_crypt_stat->"
1058 		       "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
1059 		       rc,
1060 		       s->auth_tok->token.password.session_key_encryption_key,
1061 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
1062 		goto out_free_unlock;
1063 	}
1064 	rc = crypto_blkcipher_decrypt_iv(&s->desc, s->dst_sg, s->src_sg,
1065 					 s->block_aligned_filename_size);
1066 	if (rc) {
1067 		printk(KERN_ERR "%s: Error attempting to decrypt filename; "
1068 		       "rc = [%d]\n", __func__, rc);
1069 		goto out_free_unlock;
1070 	}
1071 	s->i = 0;
1072 	while (s->decrypted_filename[s->i] != '\0'
1073 	       && s->i < s->block_aligned_filename_size)
1074 		s->i++;
1075 	if (s->i == s->block_aligned_filename_size) {
1076 		printk(KERN_WARNING "%s: Invalid tag 70 packet; could not "
1077 		       "find valid separator between random characters and "
1078 		       "the filename\n", __func__);
1079 		rc = -EINVAL;
1080 		goto out_free_unlock;
1081 	}
1082 	s->i++;
1083 	(*filename_size) = (s->block_aligned_filename_size - s->i);
1084 	if (!((*filename_size) > 0 && (*filename_size < PATH_MAX))) {
1085 		printk(KERN_WARNING "%s: Filename size is [%zd], which is "
1086 		       "invalid\n", __func__, (*filename_size));
1087 		rc = -EINVAL;
1088 		goto out_free_unlock;
1089 	}
1090 	(*filename) = kmalloc(((*filename_size) + 1), GFP_KERNEL);
1091 	if (!(*filename)) {
1092 		printk(KERN_ERR "%s: Out of memory whilst attempting to "
1093 		       "kmalloc [%zd] bytes\n", __func__,
1094 		       ((*filename_size) + 1));
1095 		rc = -ENOMEM;
1096 		goto out_free_unlock;
1097 	}
1098 	memcpy((*filename), &s->decrypted_filename[s->i], (*filename_size));
1099 	(*filename)[(*filename_size)] = '\0';
1100 out_free_unlock:
1101 	kfree(s->decrypted_filename);
1102 out_unlock:
1103 	mutex_unlock(s->tfm_mutex);
1104 out:
1105 	if (rc) {
1106 		(*packet_size) = 0;
1107 		(*filename_size) = 0;
1108 		(*filename) = NULL;
1109 	}
1110 	if (auth_tok_key) {
1111 		up_write(&(auth_tok_key->sem));
1112 		key_put(auth_tok_key);
1113 	}
1114 	kfree(s);
1115 	return rc;
1116 }
1117 
1118 static int
1119 ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
1120 {
1121 	int rc = 0;
1122 
1123 	(*sig) = NULL;
1124 	switch (auth_tok->token_type) {
1125 	case ECRYPTFS_PASSWORD:
1126 		(*sig) = auth_tok->token.password.signature;
1127 		break;
1128 	case ECRYPTFS_PRIVATE_KEY:
1129 		(*sig) = auth_tok->token.private_key.signature;
1130 		break;
1131 	default:
1132 		printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
1133 		       auth_tok->token_type);
1134 		rc = -EINVAL;
1135 	}
1136 	return rc;
1137 }
1138 
1139 /**
1140  * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok.
1141  * @auth_tok: The key authentication token used to decrypt the session key
1142  * @crypt_stat: The cryptographic context
1143  *
1144  * Returns zero on success; non-zero error otherwise.
1145  */
1146 static int
1147 decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1148 				  struct ecryptfs_crypt_stat *crypt_stat)
1149 {
1150 	u8 cipher_code = 0;
1151 	struct ecryptfs_msg_ctx *msg_ctx;
1152 	struct ecryptfs_message *msg = NULL;
1153 	char *auth_tok_sig;
1154 	char *payload;
1155 	size_t payload_len;
1156 	int rc;
1157 
1158 	rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok);
1159 	if (rc) {
1160 		printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
1161 		       auth_tok->token_type);
1162 		goto out;
1163 	}
1164 	rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
1165 				 &payload, &payload_len);
1166 	if (rc) {
1167 		ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet\n");
1168 		goto out;
1169 	}
1170 	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1171 	if (rc) {
1172 		ecryptfs_printk(KERN_ERR, "Error sending message to "
1173 				"ecryptfsd\n");
1174 		goto out;
1175 	}
1176 	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1177 	if (rc) {
1178 		ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
1179 				"from the user space daemon\n");
1180 		rc = -EIO;
1181 		goto out;
1182 	}
1183 	rc = parse_tag_65_packet(&(auth_tok->session_key),
1184 				 &cipher_code, msg);
1185 	if (rc) {
1186 		printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
1187 		       rc);
1188 		goto out;
1189 	}
1190 	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1191 	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1192 	       auth_tok->session_key.decrypted_key_size);
1193 	crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
1194 	rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code);
1195 	if (rc) {
1196 		ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
1197 				cipher_code)
1198 		goto out;
1199 	}
1200 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1201 	if (ecryptfs_verbosity > 0) {
1202 		ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
1203 		ecryptfs_dump_hex(crypt_stat->key,
1204 				  crypt_stat->key_size);
1205 	}
1206 out:
1207 	if (msg)
1208 		kfree(msg);
1209 	return rc;
1210 }
1211 
1212 static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
1213 {
1214 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1215 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1216 
1217 	list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
1218 				 auth_tok_list_head, list) {
1219 		list_del(&auth_tok_list_item->list);
1220 		kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1221 				auth_tok_list_item);
1222 	}
1223 }
1224 
1225 struct kmem_cache *ecryptfs_auth_tok_list_item_cache;
1226 
1227 /**
1228  * parse_tag_1_packet
1229  * @crypt_stat: The cryptographic context to modify based on packet contents
1230  * @data: The raw bytes of the packet.
1231  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1232  *                 a new authentication token will be placed at the
1233  *                 end of this list for this packet.
1234  * @new_auth_tok: Pointer to a pointer to memory that this function
1235  *                allocates; sets the memory address of the pointer to
1236  *                NULL on error. This object is added to the
1237  *                auth_tok_list.
1238  * @packet_size: This function writes the size of the parsed packet
1239  *               into this memory location; zero on error.
1240  * @max_packet_size: The maximum allowable packet size
1241  *
1242  * Returns zero on success; non-zero on error.
1243  */
1244 static int
1245 parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
1246 		   unsigned char *data, struct list_head *auth_tok_list,
1247 		   struct ecryptfs_auth_tok **new_auth_tok,
1248 		   size_t *packet_size, size_t max_packet_size)
1249 {
1250 	size_t body_size;
1251 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1252 	size_t length_size;
1253 	int rc = 0;
1254 
1255 	(*packet_size) = 0;
1256 	(*new_auth_tok) = NULL;
1257 	/**
1258 	 * This format is inspired by OpenPGP; see RFC 2440
1259 	 * packet tag 1
1260 	 *
1261 	 * Tag 1 identifier (1 byte)
1262 	 * Max Tag 1 packet size (max 3 bytes)
1263 	 * Version (1 byte)
1264 	 * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
1265 	 * Cipher identifier (1 byte)
1266 	 * Encrypted key size (arbitrary)
1267 	 *
1268 	 * 12 bytes minimum packet size
1269 	 */
1270 	if (unlikely(max_packet_size < 12)) {
1271 		printk(KERN_ERR "Invalid max packet size; must be >=12\n");
1272 		rc = -EINVAL;
1273 		goto out;
1274 	}
1275 	if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
1276 		printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n",
1277 		       ECRYPTFS_TAG_1_PACKET_TYPE);
1278 		rc = -EINVAL;
1279 		goto out;
1280 	}
1281 	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1282 	 * at end of function upon failure */
1283 	auth_tok_list_item =
1284 		kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache,
1285 				  GFP_KERNEL);
1286 	if (!auth_tok_list_item) {
1287 		printk(KERN_ERR "Unable to allocate memory\n");
1288 		rc = -ENOMEM;
1289 		goto out;
1290 	}
1291 	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1292 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1293 					  &length_size);
1294 	if (rc) {
1295 		printk(KERN_WARNING "Error parsing packet length; "
1296 		       "rc = [%d]\n", rc);
1297 		goto out_free;
1298 	}
1299 	if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) {
1300 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1301 		rc = -EINVAL;
1302 		goto out_free;
1303 	}
1304 	(*packet_size) += length_size;
1305 	if (unlikely((*packet_size) + body_size > max_packet_size)) {
1306 		printk(KERN_WARNING "Packet size exceeds max\n");
1307 		rc = -EINVAL;
1308 		goto out_free;
1309 	}
1310 	if (unlikely(data[(*packet_size)++] != 0x03)) {
1311 		printk(KERN_WARNING "Unknown version number [%d]\n",
1312 		       data[(*packet_size) - 1]);
1313 		rc = -EINVAL;
1314 		goto out_free;
1315 	}
1316 	ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
1317 			&data[(*packet_size)], ECRYPTFS_SIG_SIZE);
1318 	*packet_size += ECRYPTFS_SIG_SIZE;
1319 	/* This byte is skipped because the kernel does not need to
1320 	 * know which public key encryption algorithm was used */
1321 	(*packet_size)++;
1322 	(*new_auth_tok)->session_key.encrypted_key_size =
1323 		body_size - (ECRYPTFS_SIG_SIZE + 2);
1324 	if ((*new_auth_tok)->session_key.encrypted_key_size
1325 	    > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1326 		printk(KERN_WARNING "Tag 1 packet contains key larger "
1327 		       "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES");
1328 		rc = -EINVAL;
1329 		goto out;
1330 	}
1331 	memcpy((*new_auth_tok)->session_key.encrypted_key,
1332 	       &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2)));
1333 	(*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
1334 	(*new_auth_tok)->session_key.flags &=
1335 		~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1336 	(*new_auth_tok)->session_key.flags |=
1337 		ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1338 	(*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
1339 	(*new_auth_tok)->flags = 0;
1340 	(*new_auth_tok)->session_key.flags &=
1341 		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1342 	(*new_auth_tok)->session_key.flags &=
1343 		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1344 	list_add(&auth_tok_list_item->list, auth_tok_list);
1345 	goto out;
1346 out_free:
1347 	(*new_auth_tok) = NULL;
1348 	memset(auth_tok_list_item, 0,
1349 	       sizeof(struct ecryptfs_auth_tok_list_item));
1350 	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1351 			auth_tok_list_item);
1352 out:
1353 	if (rc)
1354 		(*packet_size) = 0;
1355 	return rc;
1356 }
1357 
1358 /**
1359  * parse_tag_3_packet
1360  * @crypt_stat: The cryptographic context to modify based on packet
1361  *              contents.
1362  * @data: The raw bytes of the packet.
1363  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1364  *                 a new authentication token will be placed at the end
1365  *                 of this list for this packet.
1366  * @new_auth_tok: Pointer to a pointer to memory that this function
1367  *                allocates; sets the memory address of the pointer to
1368  *                NULL on error. This object is added to the
1369  *                auth_tok_list.
1370  * @packet_size: This function writes the size of the parsed packet
1371  *               into this memory location; zero on error.
1372  * @max_packet_size: maximum number of bytes to parse
1373  *
1374  * Returns zero on success; non-zero on error.
1375  */
1376 static int
1377 parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
1378 		   unsigned char *data, struct list_head *auth_tok_list,
1379 		   struct ecryptfs_auth_tok **new_auth_tok,
1380 		   size_t *packet_size, size_t max_packet_size)
1381 {
1382 	size_t body_size;
1383 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1384 	size_t length_size;
1385 	int rc = 0;
1386 
1387 	(*packet_size) = 0;
1388 	(*new_auth_tok) = NULL;
1389 	/**
1390 	 *This format is inspired by OpenPGP; see RFC 2440
1391 	 * packet tag 3
1392 	 *
1393 	 * Tag 3 identifier (1 byte)
1394 	 * Max Tag 3 packet size (max 3 bytes)
1395 	 * Version (1 byte)
1396 	 * Cipher code (1 byte)
1397 	 * S2K specifier (1 byte)
1398 	 * Hash identifier (1 byte)
1399 	 * Salt (ECRYPTFS_SALT_SIZE)
1400 	 * Hash iterations (1 byte)
1401 	 * Encrypted key (arbitrary)
1402 	 *
1403 	 * (ECRYPTFS_SALT_SIZE + 7) minimum packet size
1404 	 */
1405 	if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) {
1406 		printk(KERN_ERR "Max packet size too large\n");
1407 		rc = -EINVAL;
1408 		goto out;
1409 	}
1410 	if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
1411 		printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n",
1412 		       ECRYPTFS_TAG_3_PACKET_TYPE);
1413 		rc = -EINVAL;
1414 		goto out;
1415 	}
1416 	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1417 	 * at end of function upon failure */
1418 	auth_tok_list_item =
1419 	    kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
1420 	if (!auth_tok_list_item) {
1421 		printk(KERN_ERR "Unable to allocate memory\n");
1422 		rc = -ENOMEM;
1423 		goto out;
1424 	}
1425 	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1426 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1427 					  &length_size);
1428 	if (rc) {
1429 		printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n",
1430 		       rc);
1431 		goto out_free;
1432 	}
1433 	if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) {
1434 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1435 		rc = -EINVAL;
1436 		goto out_free;
1437 	}
1438 	(*packet_size) += length_size;
1439 	if (unlikely((*packet_size) + body_size > max_packet_size)) {
1440 		printk(KERN_ERR "Packet size exceeds max\n");
1441 		rc = -EINVAL;
1442 		goto out_free;
1443 	}
1444 	(*new_auth_tok)->session_key.encrypted_key_size =
1445 		(body_size - (ECRYPTFS_SALT_SIZE + 5));
1446 	if ((*new_auth_tok)->session_key.encrypted_key_size
1447 	    > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1448 		printk(KERN_WARNING "Tag 3 packet contains key larger "
1449 		       "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1450 		rc = -EINVAL;
1451 		goto out_free;
1452 	}
1453 	if (unlikely(data[(*packet_size)++] != 0x04)) {
1454 		printk(KERN_WARNING "Unknown version number [%d]\n",
1455 		       data[(*packet_size) - 1]);
1456 		rc = -EINVAL;
1457 		goto out_free;
1458 	}
1459 	rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher,
1460 					    (u16)data[(*packet_size)]);
1461 	if (rc)
1462 		goto out_free;
1463 	/* A little extra work to differentiate among the AES key
1464 	 * sizes; see RFC2440 */
1465 	switch(data[(*packet_size)++]) {
1466 	case RFC2440_CIPHER_AES_192:
1467 		crypt_stat->key_size = 24;
1468 		break;
1469 	default:
1470 		crypt_stat->key_size =
1471 			(*new_auth_tok)->session_key.encrypted_key_size;
1472 	}
1473 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1474 	if (rc)
1475 		goto out_free;
1476 	if (unlikely(data[(*packet_size)++] != 0x03)) {
1477 		printk(KERN_WARNING "Only S2K ID 3 is currently supported\n");
1478 		rc = -ENOSYS;
1479 		goto out_free;
1480 	}
1481 	/* TODO: finish the hash mapping */
1482 	switch (data[(*packet_size)++]) {
1483 	case 0x01: /* See RFC2440 for these numbers and their mappings */
1484 		/* Choose MD5 */
1485 		memcpy((*new_auth_tok)->token.password.salt,
1486 		       &data[(*packet_size)], ECRYPTFS_SALT_SIZE);
1487 		(*packet_size) += ECRYPTFS_SALT_SIZE;
1488 		/* This conversion was taken straight from RFC2440 */
1489 		(*new_auth_tok)->token.password.hash_iterations =
1490 			((u32) 16 + (data[(*packet_size)] & 15))
1491 				<< ((data[(*packet_size)] >> 4) + 6);
1492 		(*packet_size)++;
1493 		/* Friendly reminder:
1494 		 * (*new_auth_tok)->session_key.encrypted_key_size =
1495 		 *         (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
1496 		memcpy((*new_auth_tok)->session_key.encrypted_key,
1497 		       &data[(*packet_size)],
1498 		       (*new_auth_tok)->session_key.encrypted_key_size);
1499 		(*packet_size) +=
1500 			(*new_auth_tok)->session_key.encrypted_key_size;
1501 		(*new_auth_tok)->session_key.flags &=
1502 			~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1503 		(*new_auth_tok)->session_key.flags |=
1504 			ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1505 		(*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */
1506 		break;
1507 	default:
1508 		ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
1509 				"[%d]\n", data[(*packet_size) - 1]);
1510 		rc = -ENOSYS;
1511 		goto out_free;
1512 	}
1513 	(*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
1514 	/* TODO: Parametarize; we might actually want userspace to
1515 	 * decrypt the session key. */
1516 	(*new_auth_tok)->session_key.flags &=
1517 			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1518 	(*new_auth_tok)->session_key.flags &=
1519 			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1520 	list_add(&auth_tok_list_item->list, auth_tok_list);
1521 	goto out;
1522 out_free:
1523 	(*new_auth_tok) = NULL;
1524 	memset(auth_tok_list_item, 0,
1525 	       sizeof(struct ecryptfs_auth_tok_list_item));
1526 	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1527 			auth_tok_list_item);
1528 out:
1529 	if (rc)
1530 		(*packet_size) = 0;
1531 	return rc;
1532 }
1533 
1534 /**
1535  * parse_tag_11_packet
1536  * @data: The raw bytes of the packet
1537  * @contents: This function writes the data contents of the literal
1538  *            packet into this memory location
1539  * @max_contents_bytes: The maximum number of bytes that this function
1540  *                      is allowed to write into contents
1541  * @tag_11_contents_size: This function writes the size of the parsed
1542  *                        contents into this memory location; zero on
1543  *                        error
1544  * @packet_size: This function writes the size of the parsed packet
1545  *               into this memory location; zero on error
1546  * @max_packet_size: maximum number of bytes to parse
1547  *
1548  * Returns zero on success; non-zero on error.
1549  */
1550 static int
1551 parse_tag_11_packet(unsigned char *data, unsigned char *contents,
1552 		    size_t max_contents_bytes, size_t *tag_11_contents_size,
1553 		    size_t *packet_size, size_t max_packet_size)
1554 {
1555 	size_t body_size;
1556 	size_t length_size;
1557 	int rc = 0;
1558 
1559 	(*packet_size) = 0;
1560 	(*tag_11_contents_size) = 0;
1561 	/* This format is inspired by OpenPGP; see RFC 2440
1562 	 * packet tag 11
1563 	 *
1564 	 * Tag 11 identifier (1 byte)
1565 	 * Max Tag 11 packet size (max 3 bytes)
1566 	 * Binary format specifier (1 byte)
1567 	 * Filename length (1 byte)
1568 	 * Filename ("_CONSOLE") (8 bytes)
1569 	 * Modification date (4 bytes)
1570 	 * Literal data (arbitrary)
1571 	 *
1572 	 * We need at least 16 bytes of data for the packet to even be
1573 	 * valid.
1574 	 */
1575 	if (max_packet_size < 16) {
1576 		printk(KERN_ERR "Maximum packet size too small\n");
1577 		rc = -EINVAL;
1578 		goto out;
1579 	}
1580 	if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
1581 		printk(KERN_WARNING "Invalid tag 11 packet format\n");
1582 		rc = -EINVAL;
1583 		goto out;
1584 	}
1585 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1586 					  &length_size);
1587 	if (rc) {
1588 		printk(KERN_WARNING "Invalid tag 11 packet format\n");
1589 		goto out;
1590 	}
1591 	if (body_size < 14) {
1592 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1593 		rc = -EINVAL;
1594 		goto out;
1595 	}
1596 	(*packet_size) += length_size;
1597 	(*tag_11_contents_size) = (body_size - 14);
1598 	if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
1599 		printk(KERN_ERR "Packet size exceeds max\n");
1600 		rc = -EINVAL;
1601 		goto out;
1602 	}
1603 	if (unlikely((*tag_11_contents_size) > max_contents_bytes)) {
1604 		printk(KERN_ERR "Literal data section in tag 11 packet exceeds "
1605 		       "expected size\n");
1606 		rc = -EINVAL;
1607 		goto out;
1608 	}
1609 	if (data[(*packet_size)++] != 0x62) {
1610 		printk(KERN_WARNING "Unrecognizable packet\n");
1611 		rc = -EINVAL;
1612 		goto out;
1613 	}
1614 	if (data[(*packet_size)++] != 0x08) {
1615 		printk(KERN_WARNING "Unrecognizable packet\n");
1616 		rc = -EINVAL;
1617 		goto out;
1618 	}
1619 	(*packet_size) += 12; /* Ignore filename and modification date */
1620 	memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
1621 	(*packet_size) += (*tag_11_contents_size);
1622 out:
1623 	if (rc) {
1624 		(*packet_size) = 0;
1625 		(*tag_11_contents_size) = 0;
1626 	}
1627 	return rc;
1628 }
1629 
1630 int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
1631 				      struct ecryptfs_auth_tok **auth_tok,
1632 				      char *sig)
1633 {
1634 	int rc = 0;
1635 
1636 	(*auth_tok_key) = request_key(&key_type_user, sig, NULL);
1637 	if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
1638 		(*auth_tok_key) = ecryptfs_get_encrypted_key(sig);
1639 		if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
1640 			printk(KERN_ERR "Could not find key with description: [%s]\n",
1641 			      sig);
1642 			rc = process_request_key_err(PTR_ERR(*auth_tok_key));
1643 			(*auth_tok_key) = NULL;
1644 			goto out;
1645 		}
1646 	}
1647 	down_write(&(*auth_tok_key)->sem);
1648 	rc = ecryptfs_verify_auth_tok_from_key(*auth_tok_key, auth_tok);
1649 	if (rc) {
1650 		up_write(&(*auth_tok_key)->sem);
1651 		key_put(*auth_tok_key);
1652 		(*auth_tok_key) = NULL;
1653 		goto out;
1654 	}
1655 out:
1656 	return rc;
1657 }
1658 
1659 /**
1660  * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok.
1661  * @auth_tok: The passphrase authentication token to use to encrypt the FEK
1662  * @crypt_stat: The cryptographic context
1663  *
1664  * Returns zero on success; non-zero error otherwise
1665  */
1666 static int
1667 decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1668 					 struct ecryptfs_crypt_stat *crypt_stat)
1669 {
1670 	struct scatterlist dst_sg[2];
1671 	struct scatterlist src_sg[2];
1672 	struct mutex *tfm_mutex;
1673 	struct blkcipher_desc desc = {
1674 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
1675 	};
1676 	int rc = 0;
1677 
1678 	if (unlikely(ecryptfs_verbosity > 0)) {
1679 		ecryptfs_printk(
1680 			KERN_DEBUG, "Session key encryption key (size [%d]):\n",
1681 			auth_tok->token.password.session_key_encryption_key_bytes);
1682 		ecryptfs_dump_hex(
1683 			auth_tok->token.password.session_key_encryption_key,
1684 			auth_tok->token.password.session_key_encryption_key_bytes);
1685 	}
1686 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
1687 							crypt_stat->cipher);
1688 	if (unlikely(rc)) {
1689 		printk(KERN_ERR "Internal error whilst attempting to get "
1690 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1691 		       crypt_stat->cipher, rc);
1692 		goto out;
1693 	}
1694 	rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
1695 				 auth_tok->session_key.encrypted_key_size,
1696 				 src_sg, 2);
1697 	if (rc < 1 || rc > 2) {
1698 		printk(KERN_ERR "Internal error whilst attempting to convert "
1699 			"auth_tok->session_key.encrypted_key to scatterlist; "
1700 			"expected rc = 1; got rc = [%d]. "
1701 		       "auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
1702 			auth_tok->session_key.encrypted_key_size);
1703 		goto out;
1704 	}
1705 	auth_tok->session_key.decrypted_key_size =
1706 		auth_tok->session_key.encrypted_key_size;
1707 	rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
1708 				 auth_tok->session_key.decrypted_key_size,
1709 				 dst_sg, 2);
1710 	if (rc < 1 || rc > 2) {
1711 		printk(KERN_ERR "Internal error whilst attempting to convert "
1712 			"auth_tok->session_key.decrypted_key to scatterlist; "
1713 			"expected rc = 1; got rc = [%d]\n", rc);
1714 		goto out;
1715 	}
1716 	mutex_lock(tfm_mutex);
1717 	rc = crypto_blkcipher_setkey(
1718 		desc.tfm, auth_tok->token.password.session_key_encryption_key,
1719 		crypt_stat->key_size);
1720 	if (unlikely(rc < 0)) {
1721 		mutex_unlock(tfm_mutex);
1722 		printk(KERN_ERR "Error setting key for crypto context\n");
1723 		rc = -EINVAL;
1724 		goto out;
1725 	}
1726 	rc = crypto_blkcipher_decrypt(&desc, dst_sg, src_sg,
1727 				      auth_tok->session_key.encrypted_key_size);
1728 	mutex_unlock(tfm_mutex);
1729 	if (unlikely(rc)) {
1730 		printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1731 		goto out;
1732 	}
1733 	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1734 	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1735 	       auth_tok->session_key.decrypted_key_size);
1736 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1737 	if (unlikely(ecryptfs_verbosity > 0)) {
1738 		ecryptfs_printk(KERN_DEBUG, "FEK of size [%zd]:\n",
1739 				crypt_stat->key_size);
1740 		ecryptfs_dump_hex(crypt_stat->key,
1741 				  crypt_stat->key_size);
1742 	}
1743 out:
1744 	return rc;
1745 }
1746 
1747 /**
1748  * ecryptfs_parse_packet_set
1749  * @crypt_stat: The cryptographic context
1750  * @src: Virtual address of region of memory containing the packets
1751  * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set
1752  *
1753  * Get crypt_stat to have the file's session key if the requisite key
1754  * is available to decrypt the session key.
1755  *
1756  * Returns Zero if a valid authentication token was retrieved and
1757  * processed; negative value for file not encrypted or for error
1758  * conditions.
1759  */
1760 int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
1761 			      unsigned char *src,
1762 			      struct dentry *ecryptfs_dentry)
1763 {
1764 	size_t i = 0;
1765 	size_t found_auth_tok;
1766 	size_t next_packet_is_auth_tok_packet;
1767 	struct list_head auth_tok_list;
1768 	struct ecryptfs_auth_tok *matching_auth_tok;
1769 	struct ecryptfs_auth_tok *candidate_auth_tok;
1770 	char *candidate_auth_tok_sig;
1771 	size_t packet_size;
1772 	struct ecryptfs_auth_tok *new_auth_tok;
1773 	unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1774 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1775 	size_t tag_11_contents_size;
1776 	size_t tag_11_packet_size;
1777 	struct key *auth_tok_key = NULL;
1778 	int rc = 0;
1779 
1780 	INIT_LIST_HEAD(&auth_tok_list);
1781 	/* Parse the header to find as many packets as we can; these will be
1782 	 * added the our &auth_tok_list */
1783 	next_packet_is_auth_tok_packet = 1;
1784 	while (next_packet_is_auth_tok_packet) {
1785 		size_t max_packet_size = ((PAGE_CACHE_SIZE - 8) - i);
1786 
1787 		switch (src[i]) {
1788 		case ECRYPTFS_TAG_3_PACKET_TYPE:
1789 			rc = parse_tag_3_packet(crypt_stat,
1790 						(unsigned char *)&src[i],
1791 						&auth_tok_list, &new_auth_tok,
1792 						&packet_size, max_packet_size);
1793 			if (rc) {
1794 				ecryptfs_printk(KERN_ERR, "Error parsing "
1795 						"tag 3 packet\n");
1796 				rc = -EIO;
1797 				goto out_wipe_list;
1798 			}
1799 			i += packet_size;
1800 			rc = parse_tag_11_packet((unsigned char *)&src[i],
1801 						 sig_tmp_space,
1802 						 ECRYPTFS_SIG_SIZE,
1803 						 &tag_11_contents_size,
1804 						 &tag_11_packet_size,
1805 						 max_packet_size);
1806 			if (rc) {
1807 				ecryptfs_printk(KERN_ERR, "No valid "
1808 						"(ecryptfs-specific) literal "
1809 						"packet containing "
1810 						"authentication token "
1811 						"signature found after "
1812 						"tag 3 packet\n");
1813 				rc = -EIO;
1814 				goto out_wipe_list;
1815 			}
1816 			i += tag_11_packet_size;
1817 			if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
1818 				ecryptfs_printk(KERN_ERR, "Expected "
1819 						"signature of size [%d]; "
1820 						"read size [%zd]\n",
1821 						ECRYPTFS_SIG_SIZE,
1822 						tag_11_contents_size);
1823 				rc = -EIO;
1824 				goto out_wipe_list;
1825 			}
1826 			ecryptfs_to_hex(new_auth_tok->token.password.signature,
1827 					sig_tmp_space, tag_11_contents_size);
1828 			new_auth_tok->token.password.signature[
1829 				ECRYPTFS_PASSWORD_SIG_SIZE] = '\0';
1830 			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1831 			break;
1832 		case ECRYPTFS_TAG_1_PACKET_TYPE:
1833 			rc = parse_tag_1_packet(crypt_stat,
1834 						(unsigned char *)&src[i],
1835 						&auth_tok_list, &new_auth_tok,
1836 						&packet_size, max_packet_size);
1837 			if (rc) {
1838 				ecryptfs_printk(KERN_ERR, "Error parsing "
1839 						"tag 1 packet\n");
1840 				rc = -EIO;
1841 				goto out_wipe_list;
1842 			}
1843 			i += packet_size;
1844 			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1845 			break;
1846 		case ECRYPTFS_TAG_11_PACKET_TYPE:
1847 			ecryptfs_printk(KERN_WARNING, "Invalid packet set "
1848 					"(Tag 11 not allowed by itself)\n");
1849 			rc = -EIO;
1850 			goto out_wipe_list;
1851 			break;
1852 		default:
1853 			ecryptfs_printk(KERN_DEBUG, "No packet at offset [%zd] "
1854 					"of the file header; hex value of "
1855 					"character is [0x%.2x]\n", i, src[i]);
1856 			next_packet_is_auth_tok_packet = 0;
1857 		}
1858 	}
1859 	if (list_empty(&auth_tok_list)) {
1860 		printk(KERN_ERR "The lower file appears to be a non-encrypted "
1861 		       "eCryptfs file; this is not supported in this version "
1862 		       "of the eCryptfs kernel module\n");
1863 		rc = -EINVAL;
1864 		goto out;
1865 	}
1866 	/* auth_tok_list contains the set of authentication tokens
1867 	 * parsed from the metadata. We need to find a matching
1868 	 * authentication token that has the secret component(s)
1869 	 * necessary to decrypt the EFEK in the auth_tok parsed from
1870 	 * the metadata. There may be several potential matches, but
1871 	 * just one will be sufficient to decrypt to get the FEK. */
1872 find_next_matching_auth_tok:
1873 	found_auth_tok = 0;
1874 	list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1875 		candidate_auth_tok = &auth_tok_list_item->auth_tok;
1876 		if (unlikely(ecryptfs_verbosity > 0)) {
1877 			ecryptfs_printk(KERN_DEBUG,
1878 					"Considering cadidate auth tok:\n");
1879 			ecryptfs_dump_auth_tok(candidate_auth_tok);
1880 		}
1881 		rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
1882 					       candidate_auth_tok);
1883 		if (rc) {
1884 			printk(KERN_ERR
1885 			       "Unrecognized candidate auth tok type: [%d]\n",
1886 			       candidate_auth_tok->token_type);
1887 			rc = -EINVAL;
1888 			goto out_wipe_list;
1889 		}
1890 		rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
1891 					       &matching_auth_tok,
1892 					       crypt_stat->mount_crypt_stat,
1893 					       candidate_auth_tok_sig);
1894 		if (!rc) {
1895 			found_auth_tok = 1;
1896 			goto found_matching_auth_tok;
1897 		}
1898 	}
1899 	if (!found_auth_tok) {
1900 		ecryptfs_printk(KERN_ERR, "Could not find a usable "
1901 				"authentication token\n");
1902 		rc = -EIO;
1903 		goto out_wipe_list;
1904 	}
1905 found_matching_auth_tok:
1906 	if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1907 		memcpy(&(candidate_auth_tok->token.private_key),
1908 		       &(matching_auth_tok->token.private_key),
1909 		       sizeof(struct ecryptfs_private_key));
1910 		up_write(&(auth_tok_key->sem));
1911 		key_put(auth_tok_key);
1912 		rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1913 						       crypt_stat);
1914 	} else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1915 		memcpy(&(candidate_auth_tok->token.password),
1916 		       &(matching_auth_tok->token.password),
1917 		       sizeof(struct ecryptfs_password));
1918 		up_write(&(auth_tok_key->sem));
1919 		key_put(auth_tok_key);
1920 		rc = decrypt_passphrase_encrypted_session_key(
1921 			candidate_auth_tok, crypt_stat);
1922 	} else {
1923 		up_write(&(auth_tok_key->sem));
1924 		key_put(auth_tok_key);
1925 		rc = -EINVAL;
1926 	}
1927 	if (rc) {
1928 		struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1929 
1930 		ecryptfs_printk(KERN_WARNING, "Error decrypting the "
1931 				"session key for authentication token with sig "
1932 				"[%.*s]; rc = [%d]. Removing auth tok "
1933 				"candidate from the list and searching for "
1934 				"the next match.\n", ECRYPTFS_SIG_SIZE_HEX,
1935 				candidate_auth_tok_sig,	rc);
1936 		list_for_each_entry_safe(auth_tok_list_item,
1937 					 auth_tok_list_item_tmp,
1938 					 &auth_tok_list, list) {
1939 			if (candidate_auth_tok
1940 			    == &auth_tok_list_item->auth_tok) {
1941 				list_del(&auth_tok_list_item->list);
1942 				kmem_cache_free(
1943 					ecryptfs_auth_tok_list_item_cache,
1944 					auth_tok_list_item);
1945 				goto find_next_matching_auth_tok;
1946 			}
1947 		}
1948 		BUG();
1949 	}
1950 	rc = ecryptfs_compute_root_iv(crypt_stat);
1951 	if (rc) {
1952 		ecryptfs_printk(KERN_ERR, "Error computing "
1953 				"the root IV\n");
1954 		goto out_wipe_list;
1955 	}
1956 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1957 	if (rc) {
1958 		ecryptfs_printk(KERN_ERR, "Error initializing crypto "
1959 				"context for cipher [%s]; rc = [%d]\n",
1960 				crypt_stat->cipher, rc);
1961 	}
1962 out_wipe_list:
1963 	wipe_auth_tok_list(&auth_tok_list);
1964 out:
1965 	return rc;
1966 }
1967 
1968 static int
1969 pki_encrypt_session_key(struct key *auth_tok_key,
1970 			struct ecryptfs_auth_tok *auth_tok,
1971 			struct ecryptfs_crypt_stat *crypt_stat,
1972 			struct ecryptfs_key_record *key_rec)
1973 {
1974 	struct ecryptfs_msg_ctx *msg_ctx = NULL;
1975 	char *payload = NULL;
1976 	size_t payload_len;
1977 	struct ecryptfs_message *msg;
1978 	int rc;
1979 
1980 	rc = write_tag_66_packet(auth_tok->token.private_key.signature,
1981 				 ecryptfs_code_for_cipher_string(
1982 					 crypt_stat->cipher,
1983 					 crypt_stat->key_size),
1984 				 crypt_stat, &payload, &payload_len);
1985 	up_write(&(auth_tok_key->sem));
1986 	key_put(auth_tok_key);
1987 	if (rc) {
1988 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
1989 		goto out;
1990 	}
1991 	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1992 	if (rc) {
1993 		ecryptfs_printk(KERN_ERR, "Error sending message to "
1994 				"ecryptfsd\n");
1995 		goto out;
1996 	}
1997 	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1998 	if (rc) {
1999 		ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
2000 				"from the user space daemon\n");
2001 		rc = -EIO;
2002 		goto out;
2003 	}
2004 	rc = parse_tag_67_packet(key_rec, msg);
2005 	if (rc)
2006 		ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
2007 	kfree(msg);
2008 out:
2009 	kfree(payload);
2010 	return rc;
2011 }
2012 /**
2013  * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
2014  * @dest: Buffer into which to write the packet
2015  * @remaining_bytes: Maximum number of bytes that can be writtn
2016  * @auth_tok_key: The authentication token key to unlock and put when done with
2017  *                @auth_tok
2018  * @auth_tok: The authentication token used for generating the tag 1 packet
2019  * @crypt_stat: The cryptographic context
2020  * @key_rec: The key record struct for the tag 1 packet
2021  * @packet_size: This function will write the number of bytes that end
2022  *               up constituting the packet; set to zero on error
2023  *
2024  * Returns zero on success; non-zero on error.
2025  */
2026 static int
2027 write_tag_1_packet(char *dest, size_t *remaining_bytes,
2028 		   struct key *auth_tok_key, struct ecryptfs_auth_tok *auth_tok,
2029 		   struct ecryptfs_crypt_stat *crypt_stat,
2030 		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
2031 {
2032 	size_t i;
2033 	size_t encrypted_session_key_valid = 0;
2034 	size_t packet_size_length;
2035 	size_t max_packet_size;
2036 	int rc = 0;
2037 
2038 	(*packet_size) = 0;
2039 	ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
2040 			  ECRYPTFS_SIG_SIZE);
2041 	encrypted_session_key_valid = 0;
2042 	for (i = 0; i < crypt_stat->key_size; i++)
2043 		encrypted_session_key_valid |=
2044 			auth_tok->session_key.encrypted_key[i];
2045 	if (encrypted_session_key_valid) {
2046 		memcpy(key_rec->enc_key,
2047 		       auth_tok->session_key.encrypted_key,
2048 		       auth_tok->session_key.encrypted_key_size);
2049 		up_write(&(auth_tok_key->sem));
2050 		key_put(auth_tok_key);
2051 		goto encrypted_session_key_set;
2052 	}
2053 	if (auth_tok->session_key.encrypted_key_size == 0)
2054 		auth_tok->session_key.encrypted_key_size =
2055 			auth_tok->token.private_key.key_size;
2056 	rc = pki_encrypt_session_key(auth_tok_key, auth_tok, crypt_stat,
2057 				     key_rec);
2058 	if (rc) {
2059 		printk(KERN_ERR "Failed to encrypt session key via a key "
2060 		       "module; rc = [%d]\n", rc);
2061 		goto out;
2062 	}
2063 	if (ecryptfs_verbosity > 0) {
2064 		ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
2065 		ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
2066 	}
2067 encrypted_session_key_set:
2068 	/* This format is inspired by OpenPGP; see RFC 2440
2069 	 * packet tag 1 */
2070 	max_packet_size = (1                         /* Tag 1 identifier */
2071 			   + 3                       /* Max Tag 1 packet size */
2072 			   + 1                       /* Version */
2073 			   + ECRYPTFS_SIG_SIZE       /* Key identifier */
2074 			   + 1                       /* Cipher identifier */
2075 			   + key_rec->enc_key_size); /* Encrypted key size */
2076 	if (max_packet_size > (*remaining_bytes)) {
2077 		printk(KERN_ERR "Packet length larger than maximum allowable; "
2078 		       "need up to [%td] bytes, but there are only [%td] "
2079 		       "available\n", max_packet_size, (*remaining_bytes));
2080 		rc = -EINVAL;
2081 		goto out;
2082 	}
2083 	dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
2084 	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2085 					  (max_packet_size - 4),
2086 					  &packet_size_length);
2087 	if (rc) {
2088 		ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
2089 				"header; cannot generate packet length\n");
2090 		goto out;
2091 	}
2092 	(*packet_size) += packet_size_length;
2093 	dest[(*packet_size)++] = 0x03; /* version 3 */
2094 	memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
2095 	(*packet_size) += ECRYPTFS_SIG_SIZE;
2096 	dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
2097 	memcpy(&dest[(*packet_size)], key_rec->enc_key,
2098 	       key_rec->enc_key_size);
2099 	(*packet_size) += key_rec->enc_key_size;
2100 out:
2101 	if (rc)
2102 		(*packet_size) = 0;
2103 	else
2104 		(*remaining_bytes) -= (*packet_size);
2105 	return rc;
2106 }
2107 
2108 /**
2109  * write_tag_11_packet
2110  * @dest: Target into which Tag 11 packet is to be written
2111  * @remaining_bytes: Maximum packet length
2112  * @contents: Byte array of contents to copy in
2113  * @contents_length: Number of bytes in contents
2114  * @packet_length: Length of the Tag 11 packet written; zero on error
2115  *
2116  * Returns zero on success; non-zero on error.
2117  */
2118 static int
2119 write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents,
2120 		    size_t contents_length, size_t *packet_length)
2121 {
2122 	size_t packet_size_length;
2123 	size_t max_packet_size;
2124 	int rc = 0;
2125 
2126 	(*packet_length) = 0;
2127 	/* This format is inspired by OpenPGP; see RFC 2440
2128 	 * packet tag 11 */
2129 	max_packet_size = (1                   /* Tag 11 identifier */
2130 			   + 3                 /* Max Tag 11 packet size */
2131 			   + 1                 /* Binary format specifier */
2132 			   + 1                 /* Filename length */
2133 			   + 8                 /* Filename ("_CONSOLE") */
2134 			   + 4                 /* Modification date */
2135 			   + contents_length); /* Literal data */
2136 	if (max_packet_size > (*remaining_bytes)) {
2137 		printk(KERN_ERR "Packet length larger than maximum allowable; "
2138 		       "need up to [%td] bytes, but there are only [%td] "
2139 		       "available\n", max_packet_size, (*remaining_bytes));
2140 		rc = -EINVAL;
2141 		goto out;
2142 	}
2143 	dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
2144 	rc = ecryptfs_write_packet_length(&dest[(*packet_length)],
2145 					  (max_packet_size - 4),
2146 					  &packet_size_length);
2147 	if (rc) {
2148 		printk(KERN_ERR "Error generating tag 11 packet header; cannot "
2149 		       "generate packet length. rc = [%d]\n", rc);
2150 		goto out;
2151 	}
2152 	(*packet_length) += packet_size_length;
2153 	dest[(*packet_length)++] = 0x62; /* binary data format specifier */
2154 	dest[(*packet_length)++] = 8;
2155 	memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
2156 	(*packet_length) += 8;
2157 	memset(&dest[(*packet_length)], 0x00, 4);
2158 	(*packet_length) += 4;
2159 	memcpy(&dest[(*packet_length)], contents, contents_length);
2160 	(*packet_length) += contents_length;
2161  out:
2162 	if (rc)
2163 		(*packet_length) = 0;
2164 	else
2165 		(*remaining_bytes) -= (*packet_length);
2166 	return rc;
2167 }
2168 
2169 /**
2170  * write_tag_3_packet
2171  * @dest: Buffer into which to write the packet
2172  * @remaining_bytes: Maximum number of bytes that can be written
2173  * @auth_tok: Authentication token
2174  * @crypt_stat: The cryptographic context
2175  * @key_rec: encrypted key
2176  * @packet_size: This function will write the number of bytes that end
2177  *               up constituting the packet; set to zero on error
2178  *
2179  * Returns zero on success; non-zero on error.
2180  */
2181 static int
2182 write_tag_3_packet(char *dest, size_t *remaining_bytes,
2183 		   struct ecryptfs_auth_tok *auth_tok,
2184 		   struct ecryptfs_crypt_stat *crypt_stat,
2185 		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
2186 {
2187 	size_t i;
2188 	size_t encrypted_session_key_valid = 0;
2189 	char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
2190 	struct scatterlist dst_sg[2];
2191 	struct scatterlist src_sg[2];
2192 	struct mutex *tfm_mutex = NULL;
2193 	u8 cipher_code;
2194 	size_t packet_size_length;
2195 	size_t max_packet_size;
2196 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2197 		crypt_stat->mount_crypt_stat;
2198 	struct blkcipher_desc desc = {
2199 		.tfm = NULL,
2200 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
2201 	};
2202 	int rc = 0;
2203 
2204 	(*packet_size) = 0;
2205 	ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
2206 			  ECRYPTFS_SIG_SIZE);
2207 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2208 							crypt_stat->cipher);
2209 	if (unlikely(rc)) {
2210 		printk(KERN_ERR "Internal error whilst attempting to get "
2211 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
2212 		       crypt_stat->cipher, rc);
2213 		goto out;
2214 	}
2215 	if (mount_crypt_stat->global_default_cipher_key_size == 0) {
2216 		struct blkcipher_alg *alg = crypto_blkcipher_alg(desc.tfm);
2217 
2218 		printk(KERN_WARNING "No key size specified at mount; "
2219 		       "defaulting to [%d]\n", alg->max_keysize);
2220 		mount_crypt_stat->global_default_cipher_key_size =
2221 			alg->max_keysize;
2222 	}
2223 	if (crypt_stat->key_size == 0)
2224 		crypt_stat->key_size =
2225 			mount_crypt_stat->global_default_cipher_key_size;
2226 	if (auth_tok->session_key.encrypted_key_size == 0)
2227 		auth_tok->session_key.encrypted_key_size =
2228 			crypt_stat->key_size;
2229 	if (crypt_stat->key_size == 24
2230 	    && strcmp("aes", crypt_stat->cipher) == 0) {
2231 		memset((crypt_stat->key + 24), 0, 8);
2232 		auth_tok->session_key.encrypted_key_size = 32;
2233 	} else
2234 		auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
2235 	key_rec->enc_key_size =
2236 		auth_tok->session_key.encrypted_key_size;
2237 	encrypted_session_key_valid = 0;
2238 	for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
2239 		encrypted_session_key_valid |=
2240 			auth_tok->session_key.encrypted_key[i];
2241 	if (encrypted_session_key_valid) {
2242 		ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
2243 				"using auth_tok->session_key.encrypted_key, "
2244 				"where key_rec->enc_key_size = [%zd]\n",
2245 				key_rec->enc_key_size);
2246 		memcpy(key_rec->enc_key,
2247 		       auth_tok->session_key.encrypted_key,
2248 		       key_rec->enc_key_size);
2249 		goto encrypted_session_key_set;
2250 	}
2251 	if (auth_tok->token.password.flags &
2252 	    ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
2253 		ecryptfs_printk(KERN_DEBUG, "Using previously generated "
2254 				"session key encryption key of size [%d]\n",
2255 				auth_tok->token.password.
2256 				session_key_encryption_key_bytes);
2257 		memcpy(session_key_encryption_key,
2258 		       auth_tok->token.password.session_key_encryption_key,
2259 		       crypt_stat->key_size);
2260 		ecryptfs_printk(KERN_DEBUG,
2261 				"Cached session key encryption key:\n");
2262 		if (ecryptfs_verbosity > 0)
2263 			ecryptfs_dump_hex(session_key_encryption_key, 16);
2264 	}
2265 	if (unlikely(ecryptfs_verbosity > 0)) {
2266 		ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
2267 		ecryptfs_dump_hex(session_key_encryption_key, 16);
2268 	}
2269 	rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size,
2270 				 src_sg, 2);
2271 	if (rc < 1 || rc > 2) {
2272 		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2273 				"for crypt_stat session key; expected rc = 1; "
2274 				"got rc = [%d]. key_rec->enc_key_size = [%zd]\n",
2275 				rc, key_rec->enc_key_size);
2276 		rc = -ENOMEM;
2277 		goto out;
2278 	}
2279 	rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size,
2280 				 dst_sg, 2);
2281 	if (rc < 1 || rc > 2) {
2282 		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2283 				"for crypt_stat encrypted session key; "
2284 				"expected rc = 1; got rc = [%d]. "
2285 				"key_rec->enc_key_size = [%zd]\n", rc,
2286 				key_rec->enc_key_size);
2287 		rc = -ENOMEM;
2288 		goto out;
2289 	}
2290 	mutex_lock(tfm_mutex);
2291 	rc = crypto_blkcipher_setkey(desc.tfm, session_key_encryption_key,
2292 				     crypt_stat->key_size);
2293 	if (rc < 0) {
2294 		mutex_unlock(tfm_mutex);
2295 		ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
2296 				"context; rc = [%d]\n", rc);
2297 		goto out;
2298 	}
2299 	rc = 0;
2300 	ecryptfs_printk(KERN_DEBUG, "Encrypting [%zd] bytes of the key\n",
2301 			crypt_stat->key_size);
2302 	rc = crypto_blkcipher_encrypt(&desc, dst_sg, src_sg,
2303 				      (*key_rec).enc_key_size);
2304 	mutex_unlock(tfm_mutex);
2305 	if (rc) {
2306 		printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
2307 		goto out;
2308 	}
2309 	ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
2310 	if (ecryptfs_verbosity > 0) {
2311 		ecryptfs_printk(KERN_DEBUG, "EFEK of size [%zd]:\n",
2312 				key_rec->enc_key_size);
2313 		ecryptfs_dump_hex(key_rec->enc_key,
2314 				  key_rec->enc_key_size);
2315 	}
2316 encrypted_session_key_set:
2317 	/* This format is inspired by OpenPGP; see RFC 2440
2318 	 * packet tag 3 */
2319 	max_packet_size = (1                         /* Tag 3 identifier */
2320 			   + 3                       /* Max Tag 3 packet size */
2321 			   + 1                       /* Version */
2322 			   + 1                       /* Cipher code */
2323 			   + 1                       /* S2K specifier */
2324 			   + 1                       /* Hash identifier */
2325 			   + ECRYPTFS_SALT_SIZE      /* Salt */
2326 			   + 1                       /* Hash iterations */
2327 			   + key_rec->enc_key_size); /* Encrypted key size */
2328 	if (max_packet_size > (*remaining_bytes)) {
2329 		printk(KERN_ERR "Packet too large; need up to [%td] bytes, but "
2330 		       "there are only [%td] available\n", max_packet_size,
2331 		       (*remaining_bytes));
2332 		rc = -EINVAL;
2333 		goto out;
2334 	}
2335 	dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
2336 	/* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
2337 	 * to get the number of octets in the actual Tag 3 packet */
2338 	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2339 					  (max_packet_size - 4),
2340 					  &packet_size_length);
2341 	if (rc) {
2342 		printk(KERN_ERR "Error generating tag 3 packet header; cannot "
2343 		       "generate packet length. rc = [%d]\n", rc);
2344 		goto out;
2345 	}
2346 	(*packet_size) += packet_size_length;
2347 	dest[(*packet_size)++] = 0x04; /* version 4 */
2348 	/* TODO: Break from RFC2440 so that arbitrary ciphers can be
2349 	 * specified with strings */
2350 	cipher_code = ecryptfs_code_for_cipher_string(crypt_stat->cipher,
2351 						      crypt_stat->key_size);
2352 	if (cipher_code == 0) {
2353 		ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
2354 				"cipher [%s]\n", crypt_stat->cipher);
2355 		rc = -EINVAL;
2356 		goto out;
2357 	}
2358 	dest[(*packet_size)++] = cipher_code;
2359 	dest[(*packet_size)++] = 0x03;	/* S2K */
2360 	dest[(*packet_size)++] = 0x01;	/* MD5 (TODO: parameterize) */
2361 	memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
2362 	       ECRYPTFS_SALT_SIZE);
2363 	(*packet_size) += ECRYPTFS_SALT_SIZE;	/* salt */
2364 	dest[(*packet_size)++] = 0x60;	/* hash iterations (65536) */
2365 	memcpy(&dest[(*packet_size)], key_rec->enc_key,
2366 	       key_rec->enc_key_size);
2367 	(*packet_size) += key_rec->enc_key_size;
2368 out:
2369 	if (rc)
2370 		(*packet_size) = 0;
2371 	else
2372 		(*remaining_bytes) -= (*packet_size);
2373 	return rc;
2374 }
2375 
2376 struct kmem_cache *ecryptfs_key_record_cache;
2377 
2378 /**
2379  * ecryptfs_generate_key_packet_set
2380  * @dest_base: Virtual address from which to write the key record set
2381  * @crypt_stat: The cryptographic context from which the
2382  *              authentication tokens will be retrieved
2383  * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
2384  *                   for the global parameters
2385  * @len: The amount written
2386  * @max: The maximum amount of data allowed to be written
2387  *
2388  * Generates a key packet set and writes it to the virtual address
2389  * passed in.
2390  *
2391  * Returns zero on success; non-zero on error.
2392  */
2393 int
2394 ecryptfs_generate_key_packet_set(char *dest_base,
2395 				 struct ecryptfs_crypt_stat *crypt_stat,
2396 				 struct dentry *ecryptfs_dentry, size_t *len,
2397 				 size_t max)
2398 {
2399 	struct ecryptfs_auth_tok *auth_tok;
2400 	struct key *auth_tok_key = NULL;
2401 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2402 		&ecryptfs_superblock_to_private(
2403 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
2404 	size_t written;
2405 	struct ecryptfs_key_record *key_rec;
2406 	struct ecryptfs_key_sig *key_sig;
2407 	int rc = 0;
2408 
2409 	(*len) = 0;
2410 	mutex_lock(&crypt_stat->keysig_list_mutex);
2411 	key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
2412 	if (!key_rec) {
2413 		rc = -ENOMEM;
2414 		goto out;
2415 	}
2416 	list_for_each_entry(key_sig, &crypt_stat->keysig_list,
2417 			    crypt_stat_list) {
2418 		memset(key_rec, 0, sizeof(*key_rec));
2419 		rc = ecryptfs_find_global_auth_tok_for_sig(&auth_tok_key,
2420 							   &auth_tok,
2421 							   mount_crypt_stat,
2422 							   key_sig->keysig);
2423 		if (rc) {
2424 			printk(KERN_WARNING "Unable to retrieve auth tok with "
2425 			       "sig = [%s]\n", key_sig->keysig);
2426 			rc = process_find_global_auth_tok_for_sig_err(rc);
2427 			goto out_free;
2428 		}
2429 		if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
2430 			rc = write_tag_3_packet((dest_base + (*len)),
2431 						&max, auth_tok,
2432 						crypt_stat, key_rec,
2433 						&written);
2434 			up_write(&(auth_tok_key->sem));
2435 			key_put(auth_tok_key);
2436 			if (rc) {
2437 				ecryptfs_printk(KERN_WARNING, "Error "
2438 						"writing tag 3 packet\n");
2439 				goto out_free;
2440 			}
2441 			(*len) += written;
2442 			/* Write auth tok signature packet */
2443 			rc = write_tag_11_packet((dest_base + (*len)), &max,
2444 						 key_rec->sig,
2445 						 ECRYPTFS_SIG_SIZE, &written);
2446 			if (rc) {
2447 				ecryptfs_printk(KERN_ERR, "Error writing "
2448 						"auth tok signature packet\n");
2449 				goto out_free;
2450 			}
2451 			(*len) += written;
2452 		} else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
2453 			rc = write_tag_1_packet(dest_base + (*len), &max,
2454 						auth_tok_key, auth_tok,
2455 						crypt_stat, key_rec, &written);
2456 			if (rc) {
2457 				ecryptfs_printk(KERN_WARNING, "Error "
2458 						"writing tag 1 packet\n");
2459 				goto out_free;
2460 			}
2461 			(*len) += written;
2462 		} else {
2463 			up_write(&(auth_tok_key->sem));
2464 			key_put(auth_tok_key);
2465 			ecryptfs_printk(KERN_WARNING, "Unsupported "
2466 					"authentication token type\n");
2467 			rc = -EINVAL;
2468 			goto out_free;
2469 		}
2470 	}
2471 	if (likely(max > 0)) {
2472 		dest_base[(*len)] = 0x00;
2473 	} else {
2474 		ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
2475 		rc = -EIO;
2476 	}
2477 out_free:
2478 	kmem_cache_free(ecryptfs_key_record_cache, key_rec);
2479 out:
2480 	if (rc)
2481 		(*len) = 0;
2482 	mutex_unlock(&crypt_stat->keysig_list_mutex);
2483 	return rc;
2484 }
2485 
2486 struct kmem_cache *ecryptfs_key_sig_cache;
2487 
2488 int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
2489 {
2490 	struct ecryptfs_key_sig *new_key_sig;
2491 
2492 	new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
2493 	if (!new_key_sig) {
2494 		printk(KERN_ERR
2495 		       "Error allocating from ecryptfs_key_sig_cache\n");
2496 		return -ENOMEM;
2497 	}
2498 	memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
2499 	new_key_sig->keysig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2500 	/* Caller must hold keysig_list_mutex */
2501 	list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
2502 
2503 	return 0;
2504 }
2505 
2506 struct kmem_cache *ecryptfs_global_auth_tok_cache;
2507 
2508 int
2509 ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2510 			     char *sig, u32 global_auth_tok_flags)
2511 {
2512 	struct ecryptfs_global_auth_tok *new_auth_tok;
2513 	int rc = 0;
2514 
2515 	new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache,
2516 					GFP_KERNEL);
2517 	if (!new_auth_tok) {
2518 		rc = -ENOMEM;
2519 		printk(KERN_ERR "Error allocating from "
2520 		       "ecryptfs_global_auth_tok_cache\n");
2521 		goto out;
2522 	}
2523 	memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
2524 	new_auth_tok->flags = global_auth_tok_flags;
2525 	new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2526 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
2527 	list_add(&new_auth_tok->mount_crypt_stat_list,
2528 		 &mount_crypt_stat->global_auth_tok_list);
2529 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
2530 out:
2531 	return rc;
2532 }
2533 
2534