xref: /openbmc/linux/fs/ecryptfs/keystore.c (revision 6ee73861)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  * In-kernel key management code.  Includes functions to parse and
4  * write authentication token-related packets with the underlying
5  * file.
6  *
7  * Copyright (C) 2004-2006 International Business Machines Corp.
8  *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
9  *              Michael C. Thompson <mcthomps@us.ibm.com>
10  *              Trevor S. Highland <trevor.highland@gmail.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of the
15  * License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
25  * 02111-1307, USA.
26  */
27 
28 #include <linux/string.h>
29 #include <linux/syscalls.h>
30 #include <linux/pagemap.h>
31 #include <linux/key.h>
32 #include <linux/random.h>
33 #include <linux/crypto.h>
34 #include <linux/scatterlist.h>
35 #include "ecryptfs_kernel.h"
36 
37 /**
38  * request_key returned an error instead of a valid key address;
39  * determine the type of error, make appropriate log entries, and
40  * return an error code.
41  */
42 static int process_request_key_err(long err_code)
43 {
44 	int rc = 0;
45 
46 	switch (err_code) {
47 	case -ENOKEY:
48 		ecryptfs_printk(KERN_WARNING, "No key\n");
49 		rc = -ENOENT;
50 		break;
51 	case -EKEYEXPIRED:
52 		ecryptfs_printk(KERN_WARNING, "Key expired\n");
53 		rc = -ETIME;
54 		break;
55 	case -EKEYREVOKED:
56 		ecryptfs_printk(KERN_WARNING, "Key revoked\n");
57 		rc = -EINVAL;
58 		break;
59 	default:
60 		ecryptfs_printk(KERN_WARNING, "Unknown error code: "
61 				"[0x%.16x]\n", err_code);
62 		rc = -EINVAL;
63 	}
64 	return rc;
65 }
66 
67 /**
68  * ecryptfs_parse_packet_length
69  * @data: Pointer to memory containing length at offset
70  * @size: This function writes the decoded size to this memory
71  *        address; zero on error
72  * @length_size: The number of bytes occupied by the encoded length
73  *
74  * Returns zero on success; non-zero on error
75  */
76 int ecryptfs_parse_packet_length(unsigned char *data, size_t *size,
77 				 size_t *length_size)
78 {
79 	int rc = 0;
80 
81 	(*length_size) = 0;
82 	(*size) = 0;
83 	if (data[0] < 192) {
84 		/* One-byte length */
85 		(*size) = (unsigned char)data[0];
86 		(*length_size) = 1;
87 	} else if (data[0] < 224) {
88 		/* Two-byte length */
89 		(*size) = (((unsigned char)(data[0]) - 192) * 256);
90 		(*size) += ((unsigned char)(data[1]) + 192);
91 		(*length_size) = 2;
92 	} else if (data[0] == 255) {
93 		/* Five-byte length; we're not supposed to see this */
94 		ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
95 				"supported\n");
96 		rc = -EINVAL;
97 		goto out;
98 	} else {
99 		ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
100 		rc = -EINVAL;
101 		goto out;
102 	}
103 out:
104 	return rc;
105 }
106 
107 /**
108  * ecryptfs_write_packet_length
109  * @dest: The byte array target into which to write the length. Must
110  *        have at least 5 bytes allocated.
111  * @size: The length to write.
112  * @packet_size_length: The number of bytes used to encode the packet
113  *                      length is written to this address.
114  *
115  * Returns zero on success; non-zero on error.
116  */
117 int ecryptfs_write_packet_length(char *dest, size_t size,
118 				 size_t *packet_size_length)
119 {
120 	int rc = 0;
121 
122 	if (size < 192) {
123 		dest[0] = size;
124 		(*packet_size_length) = 1;
125 	} else if (size < 65536) {
126 		dest[0] = (((size - 192) / 256) + 192);
127 		dest[1] = ((size - 192) % 256);
128 		(*packet_size_length) = 2;
129 	} else {
130 		rc = -EINVAL;
131 		ecryptfs_printk(KERN_WARNING,
132 				"Unsupported packet size: [%d]\n", size);
133 	}
134 	return rc;
135 }
136 
137 static int
138 write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
139 		    char **packet, size_t *packet_len)
140 {
141 	size_t i = 0;
142 	size_t data_len;
143 	size_t packet_size_len;
144 	char *message;
145 	int rc;
146 
147 	/*
148 	 *              ***** TAG 64 Packet Format *****
149 	 *    | Content Type                       | 1 byte       |
150 	 *    | Key Identifier Size                | 1 or 2 bytes |
151 	 *    | Key Identifier                     | arbitrary    |
152 	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
153 	 *    | Encrypted File Encryption Key      | arbitrary    |
154 	 */
155 	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
156 		    + session_key->encrypted_key_size);
157 	*packet = kmalloc(data_len, GFP_KERNEL);
158 	message = *packet;
159 	if (!message) {
160 		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
161 		rc = -ENOMEM;
162 		goto out;
163 	}
164 	message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
165 	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
166 					  &packet_size_len);
167 	if (rc) {
168 		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
169 				"header; cannot generate packet length\n");
170 		goto out;
171 	}
172 	i += packet_size_len;
173 	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
174 	i += ECRYPTFS_SIG_SIZE_HEX;
175 	rc = ecryptfs_write_packet_length(&message[i],
176 					  session_key->encrypted_key_size,
177 					  &packet_size_len);
178 	if (rc) {
179 		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
180 				"header; cannot generate packet length\n");
181 		goto out;
182 	}
183 	i += packet_size_len;
184 	memcpy(&message[i], session_key->encrypted_key,
185 	       session_key->encrypted_key_size);
186 	i += session_key->encrypted_key_size;
187 	*packet_len = i;
188 out:
189 	return rc;
190 }
191 
192 static int
193 parse_tag_65_packet(struct ecryptfs_session_key *session_key, u8 *cipher_code,
194 		    struct ecryptfs_message *msg)
195 {
196 	size_t i = 0;
197 	char *data;
198 	size_t data_len;
199 	size_t m_size;
200 	size_t message_len;
201 	u16 checksum = 0;
202 	u16 expected_checksum = 0;
203 	int rc;
204 
205 	/*
206 	 *              ***** TAG 65 Packet Format *****
207 	 *         | Content Type             | 1 byte       |
208 	 *         | Status Indicator         | 1 byte       |
209 	 *         | File Encryption Key Size | 1 or 2 bytes |
210 	 *         | File Encryption Key      | arbitrary    |
211 	 */
212 	message_len = msg->data_len;
213 	data = msg->data;
214 	if (message_len < 4) {
215 		rc = -EIO;
216 		goto out;
217 	}
218 	if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
219 		ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
220 		rc = -EIO;
221 		goto out;
222 	}
223 	if (data[i++]) {
224 		ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
225 				"[%d]\n", data[i-1]);
226 		rc = -EIO;
227 		goto out;
228 	}
229 	rc = ecryptfs_parse_packet_length(&data[i], &m_size, &data_len);
230 	if (rc) {
231 		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
232 				"rc = [%d]\n", rc);
233 		goto out;
234 	}
235 	i += data_len;
236 	if (message_len < (i + m_size)) {
237 		ecryptfs_printk(KERN_ERR, "The message received from ecryptfsd "
238 				"is shorter than expected\n");
239 		rc = -EIO;
240 		goto out;
241 	}
242 	if (m_size < 3) {
243 		ecryptfs_printk(KERN_ERR,
244 				"The decrypted key is not long enough to "
245 				"include a cipher code and checksum\n");
246 		rc = -EIO;
247 		goto out;
248 	}
249 	*cipher_code = data[i++];
250 	/* The decrypted key includes 1 byte cipher code and 2 byte checksum */
251 	session_key->decrypted_key_size = m_size - 3;
252 	if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
253 		ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
254 				"the maximum key size [%d]\n",
255 				session_key->decrypted_key_size,
256 				ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
257 		rc = -EIO;
258 		goto out;
259 	}
260 	memcpy(session_key->decrypted_key, &data[i],
261 	       session_key->decrypted_key_size);
262 	i += session_key->decrypted_key_size;
263 	expected_checksum += (unsigned char)(data[i++]) << 8;
264 	expected_checksum += (unsigned char)(data[i++]);
265 	for (i = 0; i < session_key->decrypted_key_size; i++)
266 		checksum += session_key->decrypted_key[i];
267 	if (expected_checksum != checksum) {
268 		ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
269 				"encryption  key; expected [%x]; calculated "
270 				"[%x]\n", expected_checksum, checksum);
271 		rc = -EIO;
272 	}
273 out:
274 	return rc;
275 }
276 
277 
278 static int
279 write_tag_66_packet(char *signature, u8 cipher_code,
280 		    struct ecryptfs_crypt_stat *crypt_stat, char **packet,
281 		    size_t *packet_len)
282 {
283 	size_t i = 0;
284 	size_t j;
285 	size_t data_len;
286 	size_t checksum = 0;
287 	size_t packet_size_len;
288 	char *message;
289 	int rc;
290 
291 	/*
292 	 *              ***** TAG 66 Packet Format *****
293 	 *         | Content Type             | 1 byte       |
294 	 *         | Key Identifier Size      | 1 or 2 bytes |
295 	 *         | Key Identifier           | arbitrary    |
296 	 *         | File Encryption Key Size | 1 or 2 bytes |
297 	 *         | File Encryption Key      | arbitrary    |
298 	 */
299 	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
300 	*packet = kmalloc(data_len, GFP_KERNEL);
301 	message = *packet;
302 	if (!message) {
303 		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
304 		rc = -ENOMEM;
305 		goto out;
306 	}
307 	message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
308 	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
309 					  &packet_size_len);
310 	if (rc) {
311 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
312 				"header; cannot generate packet length\n");
313 		goto out;
314 	}
315 	i += packet_size_len;
316 	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
317 	i += ECRYPTFS_SIG_SIZE_HEX;
318 	/* The encrypted key includes 1 byte cipher code and 2 byte checksum */
319 	rc = ecryptfs_write_packet_length(&message[i], crypt_stat->key_size + 3,
320 					  &packet_size_len);
321 	if (rc) {
322 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
323 				"header; cannot generate packet length\n");
324 		goto out;
325 	}
326 	i += packet_size_len;
327 	message[i++] = cipher_code;
328 	memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
329 	i += crypt_stat->key_size;
330 	for (j = 0; j < crypt_stat->key_size; j++)
331 		checksum += crypt_stat->key[j];
332 	message[i++] = (checksum / 256) % 256;
333 	message[i++] = (checksum % 256);
334 	*packet_len = i;
335 out:
336 	return rc;
337 }
338 
339 static int
340 parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
341 		    struct ecryptfs_message *msg)
342 {
343 	size_t i = 0;
344 	char *data;
345 	size_t data_len;
346 	size_t message_len;
347 	int rc;
348 
349 	/*
350 	 *              ***** TAG 65 Packet Format *****
351 	 *    | Content Type                       | 1 byte       |
352 	 *    | Status Indicator                   | 1 byte       |
353 	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
354 	 *    | Encrypted File Encryption Key      | arbitrary    |
355 	 */
356 	message_len = msg->data_len;
357 	data = msg->data;
358 	/* verify that everything through the encrypted FEK size is present */
359 	if (message_len < 4) {
360 		rc = -EIO;
361 		printk(KERN_ERR "%s: message_len is [%zd]; minimum acceptable "
362 		       "message length is [%d]\n", __func__, message_len, 4);
363 		goto out;
364 	}
365 	if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
366 		rc = -EIO;
367 		printk(KERN_ERR "%s: Type should be ECRYPTFS_TAG_67\n",
368 		       __func__);
369 		goto out;
370 	}
371 	if (data[i++]) {
372 		rc = -EIO;
373 		printk(KERN_ERR "%s: Status indicator has non zero "
374 		       "value [%d]\n", __func__, data[i-1]);
375 
376 		goto out;
377 	}
378 	rc = ecryptfs_parse_packet_length(&data[i], &key_rec->enc_key_size,
379 					  &data_len);
380 	if (rc) {
381 		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
382 				"rc = [%d]\n", rc);
383 		goto out;
384 	}
385 	i += data_len;
386 	if (message_len < (i + key_rec->enc_key_size)) {
387 		rc = -EIO;
388 		printk(KERN_ERR "%s: message_len [%zd]; max len is [%zd]\n",
389 		       __func__, message_len, (i + key_rec->enc_key_size));
390 		goto out;
391 	}
392 	if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
393 		rc = -EIO;
394 		printk(KERN_ERR "%s: Encrypted key_size [%zd] larger than "
395 		       "the maximum key size [%d]\n", __func__,
396 		       key_rec->enc_key_size,
397 		       ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
398 		goto out;
399 	}
400 	memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
401 out:
402 	return rc;
403 }
404 
405 static int
406 ecryptfs_find_global_auth_tok_for_sig(
407 	struct ecryptfs_global_auth_tok **global_auth_tok,
408 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
409 {
410 	struct ecryptfs_global_auth_tok *walker;
411 	int rc = 0;
412 
413 	(*global_auth_tok) = NULL;
414 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
415 	list_for_each_entry(walker,
416 			    &mount_crypt_stat->global_auth_tok_list,
417 			    mount_crypt_stat_list) {
418 		if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX) == 0) {
419 			rc = key_validate(walker->global_auth_tok_key);
420 			if (!rc)
421 				(*global_auth_tok) = walker;
422 			goto out;
423 		}
424 	}
425 	rc = -EINVAL;
426 out:
427 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
428 	return rc;
429 }
430 
431 /**
432  * ecryptfs_find_auth_tok_for_sig
433  * @auth_tok: Set to the matching auth_tok; NULL if not found
434  * @crypt_stat: inode crypt_stat crypto context
435  * @sig: Sig of auth_tok to find
436  *
437  * For now, this function simply looks at the registered auth_tok's
438  * linked off the mount_crypt_stat, so all the auth_toks that can be
439  * used must be registered at mount time. This function could
440  * potentially try a lot harder to find auth_tok's (e.g., by calling
441  * out to ecryptfsd to dynamically retrieve an auth_tok object) so
442  * that static registration of auth_tok's will no longer be necessary.
443  *
444  * Returns zero on no error; non-zero on error
445  */
446 static int
447 ecryptfs_find_auth_tok_for_sig(
448 	struct ecryptfs_auth_tok **auth_tok,
449 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
450 	char *sig)
451 {
452 	struct ecryptfs_global_auth_tok *global_auth_tok;
453 	int rc = 0;
454 
455 	(*auth_tok) = NULL;
456 	if (ecryptfs_find_global_auth_tok_for_sig(&global_auth_tok,
457 						  mount_crypt_stat, sig)) {
458 		struct key *auth_tok_key;
459 
460 		rc = ecryptfs_keyring_auth_tok_for_sig(&auth_tok_key, auth_tok,
461 						       sig);
462 	} else
463 		(*auth_tok) = global_auth_tok->global_auth_tok;
464 	return rc;
465 }
466 
467 /**
468  * write_tag_70_packet can gobble a lot of stack space. We stuff most
469  * of the function's parameters in a kmalloc'd struct to help reduce
470  * eCryptfs' overall stack usage.
471  */
472 struct ecryptfs_write_tag_70_packet_silly_stack {
473 	u8 cipher_code;
474 	size_t max_packet_size;
475 	size_t packet_size_len;
476 	size_t block_aligned_filename_size;
477 	size_t block_size;
478 	size_t i;
479 	size_t j;
480 	size_t num_rand_bytes;
481 	struct mutex *tfm_mutex;
482 	char *block_aligned_filename;
483 	struct ecryptfs_auth_tok *auth_tok;
484 	struct scatterlist src_sg;
485 	struct scatterlist dst_sg;
486 	struct blkcipher_desc desc;
487 	char iv[ECRYPTFS_MAX_IV_BYTES];
488 	char hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
489 	char tmp_hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
490 	struct hash_desc hash_desc;
491 	struct scatterlist hash_sg;
492 };
493 
494 /**
495  * write_tag_70_packet - Write encrypted filename (EFN) packet against FNEK
496  * @filename: NULL-terminated filename string
497  *
498  * This is the simplest mechanism for achieving filename encryption in
499  * eCryptfs. It encrypts the given filename with the mount-wide
500  * filename encryption key (FNEK) and stores it in a packet to @dest,
501  * which the callee will encode and write directly into the dentry
502  * name.
503  */
504 int
505 ecryptfs_write_tag_70_packet(char *dest, size_t *remaining_bytes,
506 			     size_t *packet_size,
507 			     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
508 			     char *filename, size_t filename_size)
509 {
510 	struct ecryptfs_write_tag_70_packet_silly_stack *s;
511 	int rc = 0;
512 
513 	s = kmalloc(sizeof(*s), GFP_KERNEL);
514 	if (!s) {
515 		printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
516 		       "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
517 		goto out;
518 	}
519 	s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
520 	(*packet_size) = 0;
521 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(
522 		&s->desc.tfm,
523 		&s->tfm_mutex, mount_crypt_stat->global_default_fn_cipher_name);
524 	if (unlikely(rc)) {
525 		printk(KERN_ERR "Internal error whilst attempting to get "
526 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
527 		       mount_crypt_stat->global_default_fn_cipher_name, rc);
528 		goto out;
529 	}
530 	mutex_lock(s->tfm_mutex);
531 	s->block_size = crypto_blkcipher_blocksize(s->desc.tfm);
532 	/* Plus one for the \0 separator between the random prefix
533 	 * and the plaintext filename */
534 	s->num_rand_bytes = (ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES + 1);
535 	s->block_aligned_filename_size = (s->num_rand_bytes + filename_size);
536 	if ((s->block_aligned_filename_size % s->block_size) != 0) {
537 		s->num_rand_bytes += (s->block_size
538 				      - (s->block_aligned_filename_size
539 					 % s->block_size));
540 		s->block_aligned_filename_size = (s->num_rand_bytes
541 						  + filename_size);
542 	}
543 	/* Octet 0: Tag 70 identifier
544 	 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
545 	 *              and block-aligned encrypted filename size)
546 	 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
547 	 * Octet N2-N3: Cipher identifier (1 octet)
548 	 * Octets N3-N4: Block-aligned encrypted filename
549 	 *  - Consists of a minimum number of random characters, a \0
550 	 *    separator, and then the filename */
551 	s->max_packet_size = (1                   /* Tag 70 identifier */
552 			      + 3                 /* Max Tag 70 packet size */
553 			      + ECRYPTFS_SIG_SIZE /* FNEK sig */
554 			      + 1                 /* Cipher identifier */
555 			      + s->block_aligned_filename_size);
556 	if (dest == NULL) {
557 		(*packet_size) = s->max_packet_size;
558 		goto out_unlock;
559 	}
560 	if (s->max_packet_size > (*remaining_bytes)) {
561 		printk(KERN_WARNING "%s: Require [%zd] bytes to write; only "
562 		       "[%zd] available\n", __func__, s->max_packet_size,
563 		       (*remaining_bytes));
564 		rc = -EINVAL;
565 		goto out_unlock;
566 	}
567 	s->block_aligned_filename = kzalloc(s->block_aligned_filename_size,
568 					    GFP_KERNEL);
569 	if (!s->block_aligned_filename) {
570 		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
571 		       "kzalloc [%zd] bytes\n", __func__,
572 		       s->block_aligned_filename_size);
573 		rc = -ENOMEM;
574 		goto out_unlock;
575 	}
576 	s->i = 0;
577 	dest[s->i++] = ECRYPTFS_TAG_70_PACKET_TYPE;
578 	rc = ecryptfs_write_packet_length(&dest[s->i],
579 					  (ECRYPTFS_SIG_SIZE
580 					   + 1 /* Cipher code */
581 					   + s->block_aligned_filename_size),
582 					  &s->packet_size_len);
583 	if (rc) {
584 		printk(KERN_ERR "%s: Error generating tag 70 packet "
585 		       "header; cannot generate packet length; rc = [%d]\n",
586 		       __func__, rc);
587 		goto out_free_unlock;
588 	}
589 	s->i += s->packet_size_len;
590 	ecryptfs_from_hex(&dest[s->i],
591 			  mount_crypt_stat->global_default_fnek_sig,
592 			  ECRYPTFS_SIG_SIZE);
593 	s->i += ECRYPTFS_SIG_SIZE;
594 	s->cipher_code = ecryptfs_code_for_cipher_string(
595 		mount_crypt_stat->global_default_fn_cipher_name,
596 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
597 	if (s->cipher_code == 0) {
598 		printk(KERN_WARNING "%s: Unable to generate code for "
599 		       "cipher [%s] with key bytes [%zd]\n", __func__,
600 		       mount_crypt_stat->global_default_fn_cipher_name,
601 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
602 		rc = -EINVAL;
603 		goto out_free_unlock;
604 	}
605 	dest[s->i++] = s->cipher_code;
606 	rc = ecryptfs_find_auth_tok_for_sig(
607 		&s->auth_tok, mount_crypt_stat,
608 		mount_crypt_stat->global_default_fnek_sig);
609 	if (rc) {
610 		printk(KERN_ERR "%s: Error attempting to find auth tok for "
611 		       "fnek sig [%s]; rc = [%d]\n", __func__,
612 		       mount_crypt_stat->global_default_fnek_sig, rc);
613 		goto out_free_unlock;
614 	}
615 	/* TODO: Support other key modules than passphrase for
616 	 * filename encryption */
617 	if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
618 		rc = -EOPNOTSUPP;
619 		printk(KERN_INFO "%s: Filename encryption only supports "
620 		       "password tokens\n", __func__);
621 		goto out_free_unlock;
622 	}
623 	sg_init_one(
624 		&s->hash_sg,
625 		(u8 *)s->auth_tok->token.password.session_key_encryption_key,
626 		s->auth_tok->token.password.session_key_encryption_key_bytes);
627 	s->hash_desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
628 	s->hash_desc.tfm = crypto_alloc_hash(ECRYPTFS_TAG_70_DIGEST, 0,
629 					     CRYPTO_ALG_ASYNC);
630 	if (IS_ERR(s->hash_desc.tfm)) {
631 			rc = PTR_ERR(s->hash_desc.tfm);
632 			printk(KERN_ERR "%s: Error attempting to "
633 			       "allocate hash crypto context; rc = [%d]\n",
634 			       __func__, rc);
635 			goto out_free_unlock;
636 	}
637 	rc = crypto_hash_init(&s->hash_desc);
638 	if (rc) {
639 		printk(KERN_ERR
640 		       "%s: Error initializing crypto hash; rc = [%d]\n",
641 		       __func__, rc);
642 		goto out_release_free_unlock;
643 	}
644 	rc = crypto_hash_update(
645 		&s->hash_desc, &s->hash_sg,
646 		s->auth_tok->token.password.session_key_encryption_key_bytes);
647 	if (rc) {
648 		printk(KERN_ERR
649 		       "%s: Error updating crypto hash; rc = [%d]\n",
650 		       __func__, rc);
651 		goto out_release_free_unlock;
652 	}
653 	rc = crypto_hash_final(&s->hash_desc, s->hash);
654 	if (rc) {
655 		printk(KERN_ERR
656 		       "%s: Error finalizing crypto hash; rc = [%d]\n",
657 		       __func__, rc);
658 		goto out_release_free_unlock;
659 	}
660 	for (s->j = 0; s->j < (s->num_rand_bytes - 1); s->j++) {
661 		s->block_aligned_filename[s->j] =
662 			s->hash[(s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)];
663 		if ((s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)
664 		    == (ECRYPTFS_TAG_70_DIGEST_SIZE - 1)) {
665 			sg_init_one(&s->hash_sg, (u8 *)s->hash,
666 				    ECRYPTFS_TAG_70_DIGEST_SIZE);
667 			rc = crypto_hash_init(&s->hash_desc);
668 			if (rc) {
669 				printk(KERN_ERR
670 				       "%s: Error initializing crypto hash; "
671 				       "rc = [%d]\n", __func__, rc);
672 				goto out_release_free_unlock;
673 			}
674 			rc = crypto_hash_update(&s->hash_desc, &s->hash_sg,
675 						ECRYPTFS_TAG_70_DIGEST_SIZE);
676 			if (rc) {
677 				printk(KERN_ERR
678 				       "%s: Error updating crypto hash; "
679 				       "rc = [%d]\n", __func__, rc);
680 				goto out_release_free_unlock;
681 			}
682 			rc = crypto_hash_final(&s->hash_desc, s->tmp_hash);
683 			if (rc) {
684 				printk(KERN_ERR
685 				       "%s: Error finalizing crypto hash; "
686 				       "rc = [%d]\n", __func__, rc);
687 				goto out_release_free_unlock;
688 			}
689 			memcpy(s->hash, s->tmp_hash,
690 			       ECRYPTFS_TAG_70_DIGEST_SIZE);
691 		}
692 		if (s->block_aligned_filename[s->j] == '\0')
693 			s->block_aligned_filename[s->j] = ECRYPTFS_NON_NULL;
694 	}
695 	memcpy(&s->block_aligned_filename[s->num_rand_bytes], filename,
696 	       filename_size);
697 	rc = virt_to_scatterlist(s->block_aligned_filename,
698 				 s->block_aligned_filename_size, &s->src_sg, 1);
699 	if (rc != 1) {
700 		printk(KERN_ERR "%s: Internal error whilst attempting to "
701 		       "convert filename memory to scatterlist; "
702 		       "expected rc = 1; got rc = [%d]. "
703 		       "block_aligned_filename_size = [%zd]\n", __func__, rc,
704 		       s->block_aligned_filename_size);
705 		goto out_release_free_unlock;
706 	}
707 	rc = virt_to_scatterlist(&dest[s->i], s->block_aligned_filename_size,
708 				 &s->dst_sg, 1);
709 	if (rc != 1) {
710 		printk(KERN_ERR "%s: Internal error whilst attempting to "
711 		       "convert encrypted filename memory to scatterlist; "
712 		       "expected rc = 1; got rc = [%d]. "
713 		       "block_aligned_filename_size = [%zd]\n", __func__, rc,
714 		       s->block_aligned_filename_size);
715 		goto out_release_free_unlock;
716 	}
717 	/* The characters in the first block effectively do the job
718 	 * of the IV here, so we just use 0's for the IV. Note the
719 	 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
720 	 * >= ECRYPTFS_MAX_IV_BYTES. */
721 	memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
722 	s->desc.info = s->iv;
723 	rc = crypto_blkcipher_setkey(
724 		s->desc.tfm,
725 		s->auth_tok->token.password.session_key_encryption_key,
726 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
727 	if (rc < 0) {
728 		printk(KERN_ERR "%s: Error setting key for crypto context; "
729 		       "rc = [%d]. s->auth_tok->token.password.session_key_"
730 		       "encryption_key = [0x%p]; mount_crypt_stat->"
731 		       "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
732 		       rc,
733 		       s->auth_tok->token.password.session_key_encryption_key,
734 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
735 		goto out_release_free_unlock;
736 	}
737 	rc = crypto_blkcipher_encrypt_iv(&s->desc, &s->dst_sg, &s->src_sg,
738 					 s->block_aligned_filename_size);
739 	if (rc) {
740 		printk(KERN_ERR "%s: Error attempting to encrypt filename; "
741 		       "rc = [%d]\n", __func__, rc);
742 		goto out_release_free_unlock;
743 	}
744 	s->i += s->block_aligned_filename_size;
745 	(*packet_size) = s->i;
746 	(*remaining_bytes) -= (*packet_size);
747 out_release_free_unlock:
748 	crypto_free_hash(s->hash_desc.tfm);
749 out_free_unlock:
750 	kzfree(s->block_aligned_filename);
751 out_unlock:
752 	mutex_unlock(s->tfm_mutex);
753 out:
754 	kfree(s);
755 	return rc;
756 }
757 
758 struct ecryptfs_parse_tag_70_packet_silly_stack {
759 	u8 cipher_code;
760 	size_t max_packet_size;
761 	size_t packet_size_len;
762 	size_t parsed_tag_70_packet_size;
763 	size_t block_aligned_filename_size;
764 	size_t block_size;
765 	size_t i;
766 	struct mutex *tfm_mutex;
767 	char *decrypted_filename;
768 	struct ecryptfs_auth_tok *auth_tok;
769 	struct scatterlist src_sg;
770 	struct scatterlist dst_sg;
771 	struct blkcipher_desc desc;
772 	char fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX + 1];
773 	char iv[ECRYPTFS_MAX_IV_BYTES];
774 	char cipher_string[ECRYPTFS_MAX_CIPHER_NAME_SIZE];
775 };
776 
777 /**
778  * parse_tag_70_packet - Parse and process FNEK-encrypted passphrase packet
779  * @filename: This function kmalloc's the memory for the filename
780  * @filename_size: This function sets this to the amount of memory
781  *                 kmalloc'd for the filename
782  * @packet_size: This function sets this to the the number of octets
783  *               in the packet parsed
784  * @mount_crypt_stat: The mount-wide cryptographic context
785  * @data: The memory location containing the start of the tag 70
786  *        packet
787  * @max_packet_size: The maximum legal size of the packet to be parsed
788  *                   from @data
789  *
790  * Returns zero on success; non-zero otherwise
791  */
792 int
793 ecryptfs_parse_tag_70_packet(char **filename, size_t *filename_size,
794 			     size_t *packet_size,
795 			     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
796 			     char *data, size_t max_packet_size)
797 {
798 	struct ecryptfs_parse_tag_70_packet_silly_stack *s;
799 	int rc = 0;
800 
801 	(*packet_size) = 0;
802 	(*filename_size) = 0;
803 	(*filename) = NULL;
804 	s = kmalloc(sizeof(*s), GFP_KERNEL);
805 	if (!s) {
806 		printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
807 		       "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
808 		goto out;
809 	}
810 	s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
811 	if (max_packet_size < (1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1)) {
812 		printk(KERN_WARNING "%s: max_packet_size is [%zd]; it must be "
813 		       "at least [%d]\n", __func__, max_packet_size,
814 			(1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1));
815 		rc = -EINVAL;
816 		goto out;
817 	}
818 	/* Octet 0: Tag 70 identifier
819 	 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
820 	 *              and block-aligned encrypted filename size)
821 	 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
822 	 * Octet N2-N3: Cipher identifier (1 octet)
823 	 * Octets N3-N4: Block-aligned encrypted filename
824 	 *  - Consists of a minimum number of random numbers, a \0
825 	 *    separator, and then the filename */
826 	if (data[(*packet_size)++] != ECRYPTFS_TAG_70_PACKET_TYPE) {
827 		printk(KERN_WARNING "%s: Invalid packet tag [0x%.2x]; must be "
828 		       "tag [0x%.2x]\n", __func__,
829 		       data[((*packet_size) - 1)], ECRYPTFS_TAG_70_PACKET_TYPE);
830 		rc = -EINVAL;
831 		goto out;
832 	}
833 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)],
834 					  &s->parsed_tag_70_packet_size,
835 					  &s->packet_size_len);
836 	if (rc) {
837 		printk(KERN_WARNING "%s: Error parsing packet length; "
838 		       "rc = [%d]\n", __func__, rc);
839 		goto out;
840 	}
841 	s->block_aligned_filename_size = (s->parsed_tag_70_packet_size
842 					  - ECRYPTFS_SIG_SIZE - 1);
843 	if ((1 + s->packet_size_len + s->parsed_tag_70_packet_size)
844 	    > max_packet_size) {
845 		printk(KERN_WARNING "%s: max_packet_size is [%zd]; real packet "
846 		       "size is [%zd]\n", __func__, max_packet_size,
847 		       (1 + s->packet_size_len + 1
848 			+ s->block_aligned_filename_size));
849 		rc = -EINVAL;
850 		goto out;
851 	}
852 	(*packet_size) += s->packet_size_len;
853 	ecryptfs_to_hex(s->fnek_sig_hex, &data[(*packet_size)],
854 			ECRYPTFS_SIG_SIZE);
855 	s->fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX] = '\0';
856 	(*packet_size) += ECRYPTFS_SIG_SIZE;
857 	s->cipher_code = data[(*packet_size)++];
858 	rc = ecryptfs_cipher_code_to_string(s->cipher_string, s->cipher_code);
859 	if (rc) {
860 		printk(KERN_WARNING "%s: Cipher code [%d] is invalid\n",
861 		       __func__, s->cipher_code);
862 		goto out;
863 	}
864 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&s->desc.tfm,
865 							&s->tfm_mutex,
866 							s->cipher_string);
867 	if (unlikely(rc)) {
868 		printk(KERN_ERR "Internal error whilst attempting to get "
869 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
870 		       s->cipher_string, rc);
871 		goto out;
872 	}
873 	mutex_lock(s->tfm_mutex);
874 	rc = virt_to_scatterlist(&data[(*packet_size)],
875 				 s->block_aligned_filename_size, &s->src_sg, 1);
876 	if (rc != 1) {
877 		printk(KERN_ERR "%s: Internal error whilst attempting to "
878 		       "convert encrypted filename memory to scatterlist; "
879 		       "expected rc = 1; got rc = [%d]. "
880 		       "block_aligned_filename_size = [%zd]\n", __func__, rc,
881 		       s->block_aligned_filename_size);
882 		goto out_unlock;
883 	}
884 	(*packet_size) += s->block_aligned_filename_size;
885 	s->decrypted_filename = kmalloc(s->block_aligned_filename_size,
886 					GFP_KERNEL);
887 	if (!s->decrypted_filename) {
888 		printk(KERN_ERR "%s: Out of memory whilst attempting to "
889 		       "kmalloc [%zd] bytes\n", __func__,
890 		       s->block_aligned_filename_size);
891 		rc = -ENOMEM;
892 		goto out_unlock;
893 	}
894 	rc = virt_to_scatterlist(s->decrypted_filename,
895 				 s->block_aligned_filename_size, &s->dst_sg, 1);
896 	if (rc != 1) {
897 		printk(KERN_ERR "%s: Internal error whilst attempting to "
898 		       "convert decrypted filename memory to scatterlist; "
899 		       "expected rc = 1; got rc = [%d]. "
900 		       "block_aligned_filename_size = [%zd]\n", __func__, rc,
901 		       s->block_aligned_filename_size);
902 		goto out_free_unlock;
903 	}
904 	/* The characters in the first block effectively do the job of
905 	 * the IV here, so we just use 0's for the IV. Note the
906 	 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
907 	 * >= ECRYPTFS_MAX_IV_BYTES. */
908 	memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
909 	s->desc.info = s->iv;
910 	rc = ecryptfs_find_auth_tok_for_sig(&s->auth_tok, mount_crypt_stat,
911 					    s->fnek_sig_hex);
912 	if (rc) {
913 		printk(KERN_ERR "%s: Error attempting to find auth tok for "
914 		       "fnek sig [%s]; rc = [%d]\n", __func__, s->fnek_sig_hex,
915 		       rc);
916 		goto out_free_unlock;
917 	}
918 	/* TODO: Support other key modules than passphrase for
919 	 * filename encryption */
920 	if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
921 		rc = -EOPNOTSUPP;
922 		printk(KERN_INFO "%s: Filename encryption only supports "
923 		       "password tokens\n", __func__);
924 		goto out_free_unlock;
925 	}
926 	rc = crypto_blkcipher_setkey(
927 		s->desc.tfm,
928 		s->auth_tok->token.password.session_key_encryption_key,
929 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
930 	if (rc < 0) {
931 		printk(KERN_ERR "%s: Error setting key for crypto context; "
932 		       "rc = [%d]. s->auth_tok->token.password.session_key_"
933 		       "encryption_key = [0x%p]; mount_crypt_stat->"
934 		       "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
935 		       rc,
936 		       s->auth_tok->token.password.session_key_encryption_key,
937 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
938 		goto out_free_unlock;
939 	}
940 	rc = crypto_blkcipher_decrypt_iv(&s->desc, &s->dst_sg, &s->src_sg,
941 					 s->block_aligned_filename_size);
942 	if (rc) {
943 		printk(KERN_ERR "%s: Error attempting to decrypt filename; "
944 		       "rc = [%d]\n", __func__, rc);
945 		goto out_free_unlock;
946 	}
947 	s->i = 0;
948 	while (s->decrypted_filename[s->i] != '\0'
949 	       && s->i < s->block_aligned_filename_size)
950 		s->i++;
951 	if (s->i == s->block_aligned_filename_size) {
952 		printk(KERN_WARNING "%s: Invalid tag 70 packet; could not "
953 		       "find valid separator between random characters and "
954 		       "the filename\n", __func__);
955 		rc = -EINVAL;
956 		goto out_free_unlock;
957 	}
958 	s->i++;
959 	(*filename_size) = (s->block_aligned_filename_size - s->i);
960 	if (!((*filename_size) > 0 && (*filename_size < PATH_MAX))) {
961 		printk(KERN_WARNING "%s: Filename size is [%zd], which is "
962 		       "invalid\n", __func__, (*filename_size));
963 		rc = -EINVAL;
964 		goto out_free_unlock;
965 	}
966 	(*filename) = kmalloc(((*filename_size) + 1), GFP_KERNEL);
967 	if (!(*filename)) {
968 		printk(KERN_ERR "%s: Out of memory whilst attempting to "
969 		       "kmalloc [%zd] bytes\n", __func__,
970 		       ((*filename_size) + 1));
971 		rc = -ENOMEM;
972 		goto out_free_unlock;
973 	}
974 	memcpy((*filename), &s->decrypted_filename[s->i], (*filename_size));
975 	(*filename)[(*filename_size)] = '\0';
976 out_free_unlock:
977 	kfree(s->decrypted_filename);
978 out_unlock:
979 	mutex_unlock(s->tfm_mutex);
980 out:
981 	if (rc) {
982 		(*packet_size) = 0;
983 		(*filename_size) = 0;
984 		(*filename) = NULL;
985 	}
986 	kfree(s);
987 	return rc;
988 }
989 
990 static int
991 ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
992 {
993 	int rc = 0;
994 
995 	(*sig) = NULL;
996 	switch (auth_tok->token_type) {
997 	case ECRYPTFS_PASSWORD:
998 		(*sig) = auth_tok->token.password.signature;
999 		break;
1000 	case ECRYPTFS_PRIVATE_KEY:
1001 		(*sig) = auth_tok->token.private_key.signature;
1002 		break;
1003 	default:
1004 		printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
1005 		       auth_tok->token_type);
1006 		rc = -EINVAL;
1007 	}
1008 	return rc;
1009 }
1010 
1011 /**
1012  * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok.
1013  * @auth_tok: The key authentication token used to decrypt the session key
1014  * @crypt_stat: The cryptographic context
1015  *
1016  * Returns zero on success; non-zero error otherwise.
1017  */
1018 static int
1019 decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1020 				  struct ecryptfs_crypt_stat *crypt_stat)
1021 {
1022 	u8 cipher_code = 0;
1023 	struct ecryptfs_msg_ctx *msg_ctx;
1024 	struct ecryptfs_message *msg = NULL;
1025 	char *auth_tok_sig;
1026 	char *payload;
1027 	size_t payload_len;
1028 	int rc;
1029 
1030 	rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok);
1031 	if (rc) {
1032 		printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
1033 		       auth_tok->token_type);
1034 		goto out;
1035 	}
1036 	rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
1037 				 &payload, &payload_len);
1038 	if (rc) {
1039 		ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet\n");
1040 		goto out;
1041 	}
1042 	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1043 	if (rc) {
1044 		ecryptfs_printk(KERN_ERR, "Error sending message to "
1045 				"ecryptfsd\n");
1046 		goto out;
1047 	}
1048 	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1049 	if (rc) {
1050 		ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
1051 				"from the user space daemon\n");
1052 		rc = -EIO;
1053 		goto out;
1054 	}
1055 	rc = parse_tag_65_packet(&(auth_tok->session_key),
1056 				 &cipher_code, msg);
1057 	if (rc) {
1058 		printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
1059 		       rc);
1060 		goto out;
1061 	}
1062 	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1063 	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1064 	       auth_tok->session_key.decrypted_key_size);
1065 	crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
1066 	rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code);
1067 	if (rc) {
1068 		ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
1069 				cipher_code)
1070 		goto out;
1071 	}
1072 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1073 	if (ecryptfs_verbosity > 0) {
1074 		ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
1075 		ecryptfs_dump_hex(crypt_stat->key,
1076 				  crypt_stat->key_size);
1077 	}
1078 out:
1079 	if (msg)
1080 		kfree(msg);
1081 	return rc;
1082 }
1083 
1084 static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
1085 {
1086 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1087 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1088 
1089 	list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
1090 				 auth_tok_list_head, list) {
1091 		list_del(&auth_tok_list_item->list);
1092 		kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1093 				auth_tok_list_item);
1094 	}
1095 }
1096 
1097 struct kmem_cache *ecryptfs_auth_tok_list_item_cache;
1098 
1099 /**
1100  * parse_tag_1_packet
1101  * @crypt_stat: The cryptographic context to modify based on packet contents
1102  * @data: The raw bytes of the packet.
1103  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1104  *                 a new authentication token will be placed at the
1105  *                 end of this list for this packet.
1106  * @new_auth_tok: Pointer to a pointer to memory that this function
1107  *                allocates; sets the memory address of the pointer to
1108  *                NULL on error. This object is added to the
1109  *                auth_tok_list.
1110  * @packet_size: This function writes the size of the parsed packet
1111  *               into this memory location; zero on error.
1112  * @max_packet_size: The maximum allowable packet size
1113  *
1114  * Returns zero on success; non-zero on error.
1115  */
1116 static int
1117 parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
1118 		   unsigned char *data, struct list_head *auth_tok_list,
1119 		   struct ecryptfs_auth_tok **new_auth_tok,
1120 		   size_t *packet_size, size_t max_packet_size)
1121 {
1122 	size_t body_size;
1123 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1124 	size_t length_size;
1125 	int rc = 0;
1126 
1127 	(*packet_size) = 0;
1128 	(*new_auth_tok) = NULL;
1129 	/**
1130 	 * This format is inspired by OpenPGP; see RFC 2440
1131 	 * packet tag 1
1132 	 *
1133 	 * Tag 1 identifier (1 byte)
1134 	 * Max Tag 1 packet size (max 3 bytes)
1135 	 * Version (1 byte)
1136 	 * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
1137 	 * Cipher identifier (1 byte)
1138 	 * Encrypted key size (arbitrary)
1139 	 *
1140 	 * 12 bytes minimum packet size
1141 	 */
1142 	if (unlikely(max_packet_size < 12)) {
1143 		printk(KERN_ERR "Invalid max packet size; must be >=12\n");
1144 		rc = -EINVAL;
1145 		goto out;
1146 	}
1147 	if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
1148 		printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n",
1149 		       ECRYPTFS_TAG_1_PACKET_TYPE);
1150 		rc = -EINVAL;
1151 		goto out;
1152 	}
1153 	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1154 	 * at end of function upon failure */
1155 	auth_tok_list_item =
1156 		kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache,
1157 				  GFP_KERNEL);
1158 	if (!auth_tok_list_item) {
1159 		printk(KERN_ERR "Unable to allocate memory\n");
1160 		rc = -ENOMEM;
1161 		goto out;
1162 	}
1163 	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1164 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1165 					  &length_size);
1166 	if (rc) {
1167 		printk(KERN_WARNING "Error parsing packet length; "
1168 		       "rc = [%d]\n", rc);
1169 		goto out_free;
1170 	}
1171 	if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) {
1172 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1173 		rc = -EINVAL;
1174 		goto out_free;
1175 	}
1176 	(*packet_size) += length_size;
1177 	if (unlikely((*packet_size) + body_size > max_packet_size)) {
1178 		printk(KERN_WARNING "Packet size exceeds max\n");
1179 		rc = -EINVAL;
1180 		goto out_free;
1181 	}
1182 	if (unlikely(data[(*packet_size)++] != 0x03)) {
1183 		printk(KERN_WARNING "Unknown version number [%d]\n",
1184 		       data[(*packet_size) - 1]);
1185 		rc = -EINVAL;
1186 		goto out_free;
1187 	}
1188 	ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
1189 			&data[(*packet_size)], ECRYPTFS_SIG_SIZE);
1190 	*packet_size += ECRYPTFS_SIG_SIZE;
1191 	/* This byte is skipped because the kernel does not need to
1192 	 * know which public key encryption algorithm was used */
1193 	(*packet_size)++;
1194 	(*new_auth_tok)->session_key.encrypted_key_size =
1195 		body_size - (ECRYPTFS_SIG_SIZE + 2);
1196 	if ((*new_auth_tok)->session_key.encrypted_key_size
1197 	    > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1198 		printk(KERN_WARNING "Tag 1 packet contains key larger "
1199 		       "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES");
1200 		rc = -EINVAL;
1201 		goto out;
1202 	}
1203 	memcpy((*new_auth_tok)->session_key.encrypted_key,
1204 	       &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2)));
1205 	(*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
1206 	(*new_auth_tok)->session_key.flags &=
1207 		~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1208 	(*new_auth_tok)->session_key.flags |=
1209 		ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1210 	(*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
1211 	(*new_auth_tok)->flags = 0;
1212 	(*new_auth_tok)->session_key.flags &=
1213 		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1214 	(*new_auth_tok)->session_key.flags &=
1215 		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1216 	list_add(&auth_tok_list_item->list, auth_tok_list);
1217 	goto out;
1218 out_free:
1219 	(*new_auth_tok) = NULL;
1220 	memset(auth_tok_list_item, 0,
1221 	       sizeof(struct ecryptfs_auth_tok_list_item));
1222 	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1223 			auth_tok_list_item);
1224 out:
1225 	if (rc)
1226 		(*packet_size) = 0;
1227 	return rc;
1228 }
1229 
1230 /**
1231  * parse_tag_3_packet
1232  * @crypt_stat: The cryptographic context to modify based on packet
1233  *              contents.
1234  * @data: The raw bytes of the packet.
1235  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1236  *                 a new authentication token will be placed at the end
1237  *                 of this list for this packet.
1238  * @new_auth_tok: Pointer to a pointer to memory that this function
1239  *                allocates; sets the memory address of the pointer to
1240  *                NULL on error. This object is added to the
1241  *                auth_tok_list.
1242  * @packet_size: This function writes the size of the parsed packet
1243  *               into this memory location; zero on error.
1244  * @max_packet_size: maximum number of bytes to parse
1245  *
1246  * Returns zero on success; non-zero on error.
1247  */
1248 static int
1249 parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
1250 		   unsigned char *data, struct list_head *auth_tok_list,
1251 		   struct ecryptfs_auth_tok **new_auth_tok,
1252 		   size_t *packet_size, size_t max_packet_size)
1253 {
1254 	size_t body_size;
1255 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1256 	size_t length_size;
1257 	int rc = 0;
1258 
1259 	(*packet_size) = 0;
1260 	(*new_auth_tok) = NULL;
1261 	/**
1262 	 *This format is inspired by OpenPGP; see RFC 2440
1263 	 * packet tag 3
1264 	 *
1265 	 * Tag 3 identifier (1 byte)
1266 	 * Max Tag 3 packet size (max 3 bytes)
1267 	 * Version (1 byte)
1268 	 * Cipher code (1 byte)
1269 	 * S2K specifier (1 byte)
1270 	 * Hash identifier (1 byte)
1271 	 * Salt (ECRYPTFS_SALT_SIZE)
1272 	 * Hash iterations (1 byte)
1273 	 * Encrypted key (arbitrary)
1274 	 *
1275 	 * (ECRYPTFS_SALT_SIZE + 7) minimum packet size
1276 	 */
1277 	if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) {
1278 		printk(KERN_ERR "Max packet size too large\n");
1279 		rc = -EINVAL;
1280 		goto out;
1281 	}
1282 	if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
1283 		printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n",
1284 		       ECRYPTFS_TAG_3_PACKET_TYPE);
1285 		rc = -EINVAL;
1286 		goto out;
1287 	}
1288 	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1289 	 * at end of function upon failure */
1290 	auth_tok_list_item =
1291 	    kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
1292 	if (!auth_tok_list_item) {
1293 		printk(KERN_ERR "Unable to allocate memory\n");
1294 		rc = -ENOMEM;
1295 		goto out;
1296 	}
1297 	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1298 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1299 					  &length_size);
1300 	if (rc) {
1301 		printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n",
1302 		       rc);
1303 		goto out_free;
1304 	}
1305 	if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) {
1306 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1307 		rc = -EINVAL;
1308 		goto out_free;
1309 	}
1310 	(*packet_size) += length_size;
1311 	if (unlikely((*packet_size) + body_size > max_packet_size)) {
1312 		printk(KERN_ERR "Packet size exceeds max\n");
1313 		rc = -EINVAL;
1314 		goto out_free;
1315 	}
1316 	(*new_auth_tok)->session_key.encrypted_key_size =
1317 		(body_size - (ECRYPTFS_SALT_SIZE + 5));
1318 	if ((*new_auth_tok)->session_key.encrypted_key_size
1319 	    > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1320 		printk(KERN_WARNING "Tag 3 packet contains key larger "
1321 		       "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1322 		rc = -EINVAL;
1323 		goto out_free;
1324 	}
1325 	if (unlikely(data[(*packet_size)++] != 0x04)) {
1326 		printk(KERN_WARNING "Unknown version number [%d]\n",
1327 		       data[(*packet_size) - 1]);
1328 		rc = -EINVAL;
1329 		goto out_free;
1330 	}
1331 	rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher,
1332 					    (u16)data[(*packet_size)]);
1333 	if (rc)
1334 		goto out_free;
1335 	/* A little extra work to differentiate among the AES key
1336 	 * sizes; see RFC2440 */
1337 	switch(data[(*packet_size)++]) {
1338 	case RFC2440_CIPHER_AES_192:
1339 		crypt_stat->key_size = 24;
1340 		break;
1341 	default:
1342 		crypt_stat->key_size =
1343 			(*new_auth_tok)->session_key.encrypted_key_size;
1344 	}
1345 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1346 	if (rc)
1347 		goto out_free;
1348 	if (unlikely(data[(*packet_size)++] != 0x03)) {
1349 		printk(KERN_WARNING "Only S2K ID 3 is currently supported\n");
1350 		rc = -ENOSYS;
1351 		goto out_free;
1352 	}
1353 	/* TODO: finish the hash mapping */
1354 	switch (data[(*packet_size)++]) {
1355 	case 0x01: /* See RFC2440 for these numbers and their mappings */
1356 		/* Choose MD5 */
1357 		memcpy((*new_auth_tok)->token.password.salt,
1358 		       &data[(*packet_size)], ECRYPTFS_SALT_SIZE);
1359 		(*packet_size) += ECRYPTFS_SALT_SIZE;
1360 		/* This conversion was taken straight from RFC2440 */
1361 		(*new_auth_tok)->token.password.hash_iterations =
1362 			((u32) 16 + (data[(*packet_size)] & 15))
1363 				<< ((data[(*packet_size)] >> 4) + 6);
1364 		(*packet_size)++;
1365 		/* Friendly reminder:
1366 		 * (*new_auth_tok)->session_key.encrypted_key_size =
1367 		 *         (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
1368 		memcpy((*new_auth_tok)->session_key.encrypted_key,
1369 		       &data[(*packet_size)],
1370 		       (*new_auth_tok)->session_key.encrypted_key_size);
1371 		(*packet_size) +=
1372 			(*new_auth_tok)->session_key.encrypted_key_size;
1373 		(*new_auth_tok)->session_key.flags &=
1374 			~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1375 		(*new_auth_tok)->session_key.flags |=
1376 			ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1377 		(*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */
1378 		break;
1379 	default:
1380 		ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
1381 				"[%d]\n", data[(*packet_size) - 1]);
1382 		rc = -ENOSYS;
1383 		goto out_free;
1384 	}
1385 	(*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
1386 	/* TODO: Parametarize; we might actually want userspace to
1387 	 * decrypt the session key. */
1388 	(*new_auth_tok)->session_key.flags &=
1389 			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1390 	(*new_auth_tok)->session_key.flags &=
1391 			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1392 	list_add(&auth_tok_list_item->list, auth_tok_list);
1393 	goto out;
1394 out_free:
1395 	(*new_auth_tok) = NULL;
1396 	memset(auth_tok_list_item, 0,
1397 	       sizeof(struct ecryptfs_auth_tok_list_item));
1398 	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1399 			auth_tok_list_item);
1400 out:
1401 	if (rc)
1402 		(*packet_size) = 0;
1403 	return rc;
1404 }
1405 
1406 /**
1407  * parse_tag_11_packet
1408  * @data: The raw bytes of the packet
1409  * @contents: This function writes the data contents of the literal
1410  *            packet into this memory location
1411  * @max_contents_bytes: The maximum number of bytes that this function
1412  *                      is allowed to write into contents
1413  * @tag_11_contents_size: This function writes the size of the parsed
1414  *                        contents into this memory location; zero on
1415  *                        error
1416  * @packet_size: This function writes the size of the parsed packet
1417  *               into this memory location; zero on error
1418  * @max_packet_size: maximum number of bytes to parse
1419  *
1420  * Returns zero on success; non-zero on error.
1421  */
1422 static int
1423 parse_tag_11_packet(unsigned char *data, unsigned char *contents,
1424 		    size_t max_contents_bytes, size_t *tag_11_contents_size,
1425 		    size_t *packet_size, size_t max_packet_size)
1426 {
1427 	size_t body_size;
1428 	size_t length_size;
1429 	int rc = 0;
1430 
1431 	(*packet_size) = 0;
1432 	(*tag_11_contents_size) = 0;
1433 	/* This format is inspired by OpenPGP; see RFC 2440
1434 	 * packet tag 11
1435 	 *
1436 	 * Tag 11 identifier (1 byte)
1437 	 * Max Tag 11 packet size (max 3 bytes)
1438 	 * Binary format specifier (1 byte)
1439 	 * Filename length (1 byte)
1440 	 * Filename ("_CONSOLE") (8 bytes)
1441 	 * Modification date (4 bytes)
1442 	 * Literal data (arbitrary)
1443 	 *
1444 	 * We need at least 16 bytes of data for the packet to even be
1445 	 * valid.
1446 	 */
1447 	if (max_packet_size < 16) {
1448 		printk(KERN_ERR "Maximum packet size too small\n");
1449 		rc = -EINVAL;
1450 		goto out;
1451 	}
1452 	if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
1453 		printk(KERN_WARNING "Invalid tag 11 packet format\n");
1454 		rc = -EINVAL;
1455 		goto out;
1456 	}
1457 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1458 					  &length_size);
1459 	if (rc) {
1460 		printk(KERN_WARNING "Invalid tag 11 packet format\n");
1461 		goto out;
1462 	}
1463 	if (body_size < 14) {
1464 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1465 		rc = -EINVAL;
1466 		goto out;
1467 	}
1468 	(*packet_size) += length_size;
1469 	(*tag_11_contents_size) = (body_size - 14);
1470 	if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
1471 		printk(KERN_ERR "Packet size exceeds max\n");
1472 		rc = -EINVAL;
1473 		goto out;
1474 	}
1475 	if (unlikely((*tag_11_contents_size) > max_contents_bytes)) {
1476 		printk(KERN_ERR "Literal data section in tag 11 packet exceeds "
1477 		       "expected size\n");
1478 		rc = -EINVAL;
1479 		goto out;
1480 	}
1481 	if (data[(*packet_size)++] != 0x62) {
1482 		printk(KERN_WARNING "Unrecognizable packet\n");
1483 		rc = -EINVAL;
1484 		goto out;
1485 	}
1486 	if (data[(*packet_size)++] != 0x08) {
1487 		printk(KERN_WARNING "Unrecognizable packet\n");
1488 		rc = -EINVAL;
1489 		goto out;
1490 	}
1491 	(*packet_size) += 12; /* Ignore filename and modification date */
1492 	memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
1493 	(*packet_size) += (*tag_11_contents_size);
1494 out:
1495 	if (rc) {
1496 		(*packet_size) = 0;
1497 		(*tag_11_contents_size) = 0;
1498 	}
1499 	return rc;
1500 }
1501 
1502 /**
1503  * ecryptfs_verify_version
1504  * @version: The version number to confirm
1505  *
1506  * Returns zero on good version; non-zero otherwise
1507  */
1508 static int ecryptfs_verify_version(u16 version)
1509 {
1510 	int rc = 0;
1511 	unsigned char major;
1512 	unsigned char minor;
1513 
1514 	major = ((version >> 8) & 0xFF);
1515 	minor = (version & 0xFF);
1516 	if (major != ECRYPTFS_VERSION_MAJOR) {
1517 		ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
1518 				"Expected [%d]; got [%d]\n",
1519 				ECRYPTFS_VERSION_MAJOR, major);
1520 		rc = -EINVAL;
1521 		goto out;
1522 	}
1523 	if (minor != ECRYPTFS_VERSION_MINOR) {
1524 		ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
1525 				"Expected [%d]; got [%d]\n",
1526 				ECRYPTFS_VERSION_MINOR, minor);
1527 		rc = -EINVAL;
1528 		goto out;
1529 	}
1530 out:
1531 	return rc;
1532 }
1533 
1534 int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
1535 				      struct ecryptfs_auth_tok **auth_tok,
1536 				      char *sig)
1537 {
1538 	int rc = 0;
1539 
1540 	(*auth_tok_key) = request_key(&key_type_user, sig, NULL);
1541 	if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
1542 		printk(KERN_ERR "Could not find key with description: [%s]\n",
1543 		       sig);
1544 		rc = process_request_key_err(PTR_ERR(*auth_tok_key));
1545 		goto out;
1546 	}
1547 	(*auth_tok) = ecryptfs_get_key_payload_data(*auth_tok_key);
1548 	if (ecryptfs_verify_version((*auth_tok)->version)) {
1549 		printk(KERN_ERR
1550 		       "Data structure version mismatch. "
1551 		       "Userspace tools must match eCryptfs "
1552 		       "kernel module with major version [%d] "
1553 		       "and minor version [%d]\n",
1554 		       ECRYPTFS_VERSION_MAJOR,
1555 		       ECRYPTFS_VERSION_MINOR);
1556 		rc = -EINVAL;
1557 		goto out;
1558 	}
1559 	if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
1560 	    && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
1561 		printk(KERN_ERR "Invalid auth_tok structure "
1562 		       "returned from key query\n");
1563 		rc = -EINVAL;
1564 		goto out;
1565 	}
1566 out:
1567 	return rc;
1568 }
1569 
1570 /**
1571  * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok.
1572  * @auth_tok: The passphrase authentication token to use to encrypt the FEK
1573  * @crypt_stat: The cryptographic context
1574  *
1575  * Returns zero on success; non-zero error otherwise
1576  */
1577 static int
1578 decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1579 					 struct ecryptfs_crypt_stat *crypt_stat)
1580 {
1581 	struct scatterlist dst_sg[2];
1582 	struct scatterlist src_sg[2];
1583 	struct mutex *tfm_mutex;
1584 	struct blkcipher_desc desc = {
1585 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
1586 	};
1587 	int rc = 0;
1588 
1589 	if (unlikely(ecryptfs_verbosity > 0)) {
1590 		ecryptfs_printk(
1591 			KERN_DEBUG, "Session key encryption key (size [%d]):\n",
1592 			auth_tok->token.password.session_key_encryption_key_bytes);
1593 		ecryptfs_dump_hex(
1594 			auth_tok->token.password.session_key_encryption_key,
1595 			auth_tok->token.password.session_key_encryption_key_bytes);
1596 	}
1597 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
1598 							crypt_stat->cipher);
1599 	if (unlikely(rc)) {
1600 		printk(KERN_ERR "Internal error whilst attempting to get "
1601 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1602 		       crypt_stat->cipher, rc);
1603 		goto out;
1604 	}
1605 	rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
1606 				 auth_tok->session_key.encrypted_key_size,
1607 				 src_sg, 2);
1608 	if (rc < 1 || rc > 2) {
1609 		printk(KERN_ERR "Internal error whilst attempting to convert "
1610 			"auth_tok->session_key.encrypted_key to scatterlist; "
1611 			"expected rc = 1; got rc = [%d]. "
1612 		       "auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
1613 			auth_tok->session_key.encrypted_key_size);
1614 		goto out;
1615 	}
1616 	auth_tok->session_key.decrypted_key_size =
1617 		auth_tok->session_key.encrypted_key_size;
1618 	rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
1619 				 auth_tok->session_key.decrypted_key_size,
1620 				 dst_sg, 2);
1621 	if (rc < 1 || rc > 2) {
1622 		printk(KERN_ERR "Internal error whilst attempting to convert "
1623 			"auth_tok->session_key.decrypted_key to scatterlist; "
1624 			"expected rc = 1; got rc = [%d]\n", rc);
1625 		goto out;
1626 	}
1627 	mutex_lock(tfm_mutex);
1628 	rc = crypto_blkcipher_setkey(
1629 		desc.tfm, auth_tok->token.password.session_key_encryption_key,
1630 		crypt_stat->key_size);
1631 	if (unlikely(rc < 0)) {
1632 		mutex_unlock(tfm_mutex);
1633 		printk(KERN_ERR "Error setting key for crypto context\n");
1634 		rc = -EINVAL;
1635 		goto out;
1636 	}
1637 	rc = crypto_blkcipher_decrypt(&desc, dst_sg, src_sg,
1638 				      auth_tok->session_key.encrypted_key_size);
1639 	mutex_unlock(tfm_mutex);
1640 	if (unlikely(rc)) {
1641 		printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1642 		goto out;
1643 	}
1644 	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1645 	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1646 	       auth_tok->session_key.decrypted_key_size);
1647 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1648 	if (unlikely(ecryptfs_verbosity > 0)) {
1649 		ecryptfs_printk(KERN_DEBUG, "FEK of size [%d]:\n",
1650 				crypt_stat->key_size);
1651 		ecryptfs_dump_hex(crypt_stat->key,
1652 				  crypt_stat->key_size);
1653 	}
1654 out:
1655 	return rc;
1656 }
1657 
1658 /**
1659  * ecryptfs_parse_packet_set
1660  * @crypt_stat: The cryptographic context
1661  * @src: Virtual address of region of memory containing the packets
1662  * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set
1663  *
1664  * Get crypt_stat to have the file's session key if the requisite key
1665  * is available to decrypt the session key.
1666  *
1667  * Returns Zero if a valid authentication token was retrieved and
1668  * processed; negative value for file not encrypted or for error
1669  * conditions.
1670  */
1671 int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
1672 			      unsigned char *src,
1673 			      struct dentry *ecryptfs_dentry)
1674 {
1675 	size_t i = 0;
1676 	size_t found_auth_tok;
1677 	size_t next_packet_is_auth_tok_packet;
1678 	struct list_head auth_tok_list;
1679 	struct ecryptfs_auth_tok *matching_auth_tok;
1680 	struct ecryptfs_auth_tok *candidate_auth_tok;
1681 	char *candidate_auth_tok_sig;
1682 	size_t packet_size;
1683 	struct ecryptfs_auth_tok *new_auth_tok;
1684 	unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1685 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1686 	size_t tag_11_contents_size;
1687 	size_t tag_11_packet_size;
1688 	int rc = 0;
1689 
1690 	INIT_LIST_HEAD(&auth_tok_list);
1691 	/* Parse the header to find as many packets as we can; these will be
1692 	 * added the our &auth_tok_list */
1693 	next_packet_is_auth_tok_packet = 1;
1694 	while (next_packet_is_auth_tok_packet) {
1695 		size_t max_packet_size = ((PAGE_CACHE_SIZE - 8) - i);
1696 
1697 		switch (src[i]) {
1698 		case ECRYPTFS_TAG_3_PACKET_TYPE:
1699 			rc = parse_tag_3_packet(crypt_stat,
1700 						(unsigned char *)&src[i],
1701 						&auth_tok_list, &new_auth_tok,
1702 						&packet_size, max_packet_size);
1703 			if (rc) {
1704 				ecryptfs_printk(KERN_ERR, "Error parsing "
1705 						"tag 3 packet\n");
1706 				rc = -EIO;
1707 				goto out_wipe_list;
1708 			}
1709 			i += packet_size;
1710 			rc = parse_tag_11_packet((unsigned char *)&src[i],
1711 						 sig_tmp_space,
1712 						 ECRYPTFS_SIG_SIZE,
1713 						 &tag_11_contents_size,
1714 						 &tag_11_packet_size,
1715 						 max_packet_size);
1716 			if (rc) {
1717 				ecryptfs_printk(KERN_ERR, "No valid "
1718 						"(ecryptfs-specific) literal "
1719 						"packet containing "
1720 						"authentication token "
1721 						"signature found after "
1722 						"tag 3 packet\n");
1723 				rc = -EIO;
1724 				goto out_wipe_list;
1725 			}
1726 			i += tag_11_packet_size;
1727 			if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
1728 				ecryptfs_printk(KERN_ERR, "Expected "
1729 						"signature of size [%d]; "
1730 						"read size [%d]\n",
1731 						ECRYPTFS_SIG_SIZE,
1732 						tag_11_contents_size);
1733 				rc = -EIO;
1734 				goto out_wipe_list;
1735 			}
1736 			ecryptfs_to_hex(new_auth_tok->token.password.signature,
1737 					sig_tmp_space, tag_11_contents_size);
1738 			new_auth_tok->token.password.signature[
1739 				ECRYPTFS_PASSWORD_SIG_SIZE] = '\0';
1740 			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1741 			break;
1742 		case ECRYPTFS_TAG_1_PACKET_TYPE:
1743 			rc = parse_tag_1_packet(crypt_stat,
1744 						(unsigned char *)&src[i],
1745 						&auth_tok_list, &new_auth_tok,
1746 						&packet_size, max_packet_size);
1747 			if (rc) {
1748 				ecryptfs_printk(KERN_ERR, "Error parsing "
1749 						"tag 1 packet\n");
1750 				rc = -EIO;
1751 				goto out_wipe_list;
1752 			}
1753 			i += packet_size;
1754 			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1755 			break;
1756 		case ECRYPTFS_TAG_11_PACKET_TYPE:
1757 			ecryptfs_printk(KERN_WARNING, "Invalid packet set "
1758 					"(Tag 11 not allowed by itself)\n");
1759 			rc = -EIO;
1760 			goto out_wipe_list;
1761 			break;
1762 		default:
1763 			ecryptfs_printk(KERN_DEBUG, "No packet at offset "
1764 					"[%d] of the file header; hex value of "
1765 					"character is [0x%.2x]\n", i, src[i]);
1766 			next_packet_is_auth_tok_packet = 0;
1767 		}
1768 	}
1769 	if (list_empty(&auth_tok_list)) {
1770 		printk(KERN_ERR "The lower file appears to be a non-encrypted "
1771 		       "eCryptfs file; this is not supported in this version "
1772 		       "of the eCryptfs kernel module\n");
1773 		rc = -EINVAL;
1774 		goto out;
1775 	}
1776 	/* auth_tok_list contains the set of authentication tokens
1777 	 * parsed from the metadata. We need to find a matching
1778 	 * authentication token that has the secret component(s)
1779 	 * necessary to decrypt the EFEK in the auth_tok parsed from
1780 	 * the metadata. There may be several potential matches, but
1781 	 * just one will be sufficient to decrypt to get the FEK. */
1782 find_next_matching_auth_tok:
1783 	found_auth_tok = 0;
1784 	list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1785 		candidate_auth_tok = &auth_tok_list_item->auth_tok;
1786 		if (unlikely(ecryptfs_verbosity > 0)) {
1787 			ecryptfs_printk(KERN_DEBUG,
1788 					"Considering cadidate auth tok:\n");
1789 			ecryptfs_dump_auth_tok(candidate_auth_tok);
1790 		}
1791 		rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
1792 					       candidate_auth_tok);
1793 		if (rc) {
1794 			printk(KERN_ERR
1795 			       "Unrecognized candidate auth tok type: [%d]\n",
1796 			       candidate_auth_tok->token_type);
1797 			rc = -EINVAL;
1798 			goto out_wipe_list;
1799 		}
1800 		ecryptfs_find_auth_tok_for_sig(&matching_auth_tok,
1801 					       crypt_stat->mount_crypt_stat,
1802 					       candidate_auth_tok_sig);
1803 		if (matching_auth_tok) {
1804 			found_auth_tok = 1;
1805 			goto found_matching_auth_tok;
1806 		}
1807 	}
1808 	if (!found_auth_tok) {
1809 		ecryptfs_printk(KERN_ERR, "Could not find a usable "
1810 				"authentication token\n");
1811 		rc = -EIO;
1812 		goto out_wipe_list;
1813 	}
1814 found_matching_auth_tok:
1815 	if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1816 		memcpy(&(candidate_auth_tok->token.private_key),
1817 		       &(matching_auth_tok->token.private_key),
1818 		       sizeof(struct ecryptfs_private_key));
1819 		rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1820 						       crypt_stat);
1821 	} else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1822 		memcpy(&(candidate_auth_tok->token.password),
1823 		       &(matching_auth_tok->token.password),
1824 		       sizeof(struct ecryptfs_password));
1825 		rc = decrypt_passphrase_encrypted_session_key(
1826 			candidate_auth_tok, crypt_stat);
1827 	}
1828 	if (rc) {
1829 		struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1830 
1831 		ecryptfs_printk(KERN_WARNING, "Error decrypting the "
1832 				"session key for authentication token with sig "
1833 				"[%.*s]; rc = [%d]. Removing auth tok "
1834 				"candidate from the list and searching for "
1835 				"the next match.\n", candidate_auth_tok_sig,
1836 				ECRYPTFS_SIG_SIZE_HEX, rc);
1837 		list_for_each_entry_safe(auth_tok_list_item,
1838 					 auth_tok_list_item_tmp,
1839 					 &auth_tok_list, list) {
1840 			if (candidate_auth_tok
1841 			    == &auth_tok_list_item->auth_tok) {
1842 				list_del(&auth_tok_list_item->list);
1843 				kmem_cache_free(
1844 					ecryptfs_auth_tok_list_item_cache,
1845 					auth_tok_list_item);
1846 				goto find_next_matching_auth_tok;
1847 			}
1848 		}
1849 		BUG();
1850 	}
1851 	rc = ecryptfs_compute_root_iv(crypt_stat);
1852 	if (rc) {
1853 		ecryptfs_printk(KERN_ERR, "Error computing "
1854 				"the root IV\n");
1855 		goto out_wipe_list;
1856 	}
1857 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1858 	if (rc) {
1859 		ecryptfs_printk(KERN_ERR, "Error initializing crypto "
1860 				"context for cipher [%s]; rc = [%d]\n",
1861 				crypt_stat->cipher, rc);
1862 	}
1863 out_wipe_list:
1864 	wipe_auth_tok_list(&auth_tok_list);
1865 out:
1866 	return rc;
1867 }
1868 
1869 static int
1870 pki_encrypt_session_key(struct ecryptfs_auth_tok *auth_tok,
1871 			struct ecryptfs_crypt_stat *crypt_stat,
1872 			struct ecryptfs_key_record *key_rec)
1873 {
1874 	struct ecryptfs_msg_ctx *msg_ctx = NULL;
1875 	char *payload = NULL;
1876 	size_t payload_len;
1877 	struct ecryptfs_message *msg;
1878 	int rc;
1879 
1880 	rc = write_tag_66_packet(auth_tok->token.private_key.signature,
1881 				 ecryptfs_code_for_cipher_string(
1882 					 crypt_stat->cipher,
1883 					 crypt_stat->key_size),
1884 				 crypt_stat, &payload, &payload_len);
1885 	if (rc) {
1886 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
1887 		goto out;
1888 	}
1889 	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1890 	if (rc) {
1891 		ecryptfs_printk(KERN_ERR, "Error sending message to "
1892 				"ecryptfsd\n");
1893 		goto out;
1894 	}
1895 	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1896 	if (rc) {
1897 		ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
1898 				"from the user space daemon\n");
1899 		rc = -EIO;
1900 		goto out;
1901 	}
1902 	rc = parse_tag_67_packet(key_rec, msg);
1903 	if (rc)
1904 		ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
1905 	kfree(msg);
1906 out:
1907 	kfree(payload);
1908 	return rc;
1909 }
1910 /**
1911  * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
1912  * @dest: Buffer into which to write the packet
1913  * @remaining_bytes: Maximum number of bytes that can be writtn
1914  * @auth_tok: The authentication token used for generating the tag 1 packet
1915  * @crypt_stat: The cryptographic context
1916  * @key_rec: The key record struct for the tag 1 packet
1917  * @packet_size: This function will write the number of bytes that end
1918  *               up constituting the packet; set to zero on error
1919  *
1920  * Returns zero on success; non-zero on error.
1921  */
1922 static int
1923 write_tag_1_packet(char *dest, size_t *remaining_bytes,
1924 		   struct ecryptfs_auth_tok *auth_tok,
1925 		   struct ecryptfs_crypt_stat *crypt_stat,
1926 		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
1927 {
1928 	size_t i;
1929 	size_t encrypted_session_key_valid = 0;
1930 	size_t packet_size_length;
1931 	size_t max_packet_size;
1932 	int rc = 0;
1933 
1934 	(*packet_size) = 0;
1935 	ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
1936 			  ECRYPTFS_SIG_SIZE);
1937 	encrypted_session_key_valid = 0;
1938 	for (i = 0; i < crypt_stat->key_size; i++)
1939 		encrypted_session_key_valid |=
1940 			auth_tok->session_key.encrypted_key[i];
1941 	if (encrypted_session_key_valid) {
1942 		memcpy(key_rec->enc_key,
1943 		       auth_tok->session_key.encrypted_key,
1944 		       auth_tok->session_key.encrypted_key_size);
1945 		goto encrypted_session_key_set;
1946 	}
1947 	if (auth_tok->session_key.encrypted_key_size == 0)
1948 		auth_tok->session_key.encrypted_key_size =
1949 			auth_tok->token.private_key.key_size;
1950 	rc = pki_encrypt_session_key(auth_tok, crypt_stat, key_rec);
1951 	if (rc) {
1952 		printk(KERN_ERR "Failed to encrypt session key via a key "
1953 		       "module; rc = [%d]\n", rc);
1954 		goto out;
1955 	}
1956 	if (ecryptfs_verbosity > 0) {
1957 		ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
1958 		ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
1959 	}
1960 encrypted_session_key_set:
1961 	/* This format is inspired by OpenPGP; see RFC 2440
1962 	 * packet tag 1 */
1963 	max_packet_size = (1                         /* Tag 1 identifier */
1964 			   + 3                       /* Max Tag 1 packet size */
1965 			   + 1                       /* Version */
1966 			   + ECRYPTFS_SIG_SIZE       /* Key identifier */
1967 			   + 1                       /* Cipher identifier */
1968 			   + key_rec->enc_key_size); /* Encrypted key size */
1969 	if (max_packet_size > (*remaining_bytes)) {
1970 		printk(KERN_ERR "Packet length larger than maximum allowable; "
1971 		       "need up to [%td] bytes, but there are only [%td] "
1972 		       "available\n", max_packet_size, (*remaining_bytes));
1973 		rc = -EINVAL;
1974 		goto out;
1975 	}
1976 	dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
1977 	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
1978 					  (max_packet_size - 4),
1979 					  &packet_size_length);
1980 	if (rc) {
1981 		ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
1982 				"header; cannot generate packet length\n");
1983 		goto out;
1984 	}
1985 	(*packet_size) += packet_size_length;
1986 	dest[(*packet_size)++] = 0x03; /* version 3 */
1987 	memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
1988 	(*packet_size) += ECRYPTFS_SIG_SIZE;
1989 	dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
1990 	memcpy(&dest[(*packet_size)], key_rec->enc_key,
1991 	       key_rec->enc_key_size);
1992 	(*packet_size) += key_rec->enc_key_size;
1993 out:
1994 	if (rc)
1995 		(*packet_size) = 0;
1996 	else
1997 		(*remaining_bytes) -= (*packet_size);
1998 	return rc;
1999 }
2000 
2001 /**
2002  * write_tag_11_packet
2003  * @dest: Target into which Tag 11 packet is to be written
2004  * @remaining_bytes: Maximum packet length
2005  * @contents: Byte array of contents to copy in
2006  * @contents_length: Number of bytes in contents
2007  * @packet_length: Length of the Tag 11 packet written; zero on error
2008  *
2009  * Returns zero on success; non-zero on error.
2010  */
2011 static int
2012 write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents,
2013 		    size_t contents_length, size_t *packet_length)
2014 {
2015 	size_t packet_size_length;
2016 	size_t max_packet_size;
2017 	int rc = 0;
2018 
2019 	(*packet_length) = 0;
2020 	/* This format is inspired by OpenPGP; see RFC 2440
2021 	 * packet tag 11 */
2022 	max_packet_size = (1                   /* Tag 11 identifier */
2023 			   + 3                 /* Max Tag 11 packet size */
2024 			   + 1                 /* Binary format specifier */
2025 			   + 1                 /* Filename length */
2026 			   + 8                 /* Filename ("_CONSOLE") */
2027 			   + 4                 /* Modification date */
2028 			   + contents_length); /* Literal data */
2029 	if (max_packet_size > (*remaining_bytes)) {
2030 		printk(KERN_ERR "Packet length larger than maximum allowable; "
2031 		       "need up to [%td] bytes, but there are only [%td] "
2032 		       "available\n", max_packet_size, (*remaining_bytes));
2033 		rc = -EINVAL;
2034 		goto out;
2035 	}
2036 	dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
2037 	rc = ecryptfs_write_packet_length(&dest[(*packet_length)],
2038 					  (max_packet_size - 4),
2039 					  &packet_size_length);
2040 	if (rc) {
2041 		printk(KERN_ERR "Error generating tag 11 packet header; cannot "
2042 		       "generate packet length. rc = [%d]\n", rc);
2043 		goto out;
2044 	}
2045 	(*packet_length) += packet_size_length;
2046 	dest[(*packet_length)++] = 0x62; /* binary data format specifier */
2047 	dest[(*packet_length)++] = 8;
2048 	memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
2049 	(*packet_length) += 8;
2050 	memset(&dest[(*packet_length)], 0x00, 4);
2051 	(*packet_length) += 4;
2052 	memcpy(&dest[(*packet_length)], contents, contents_length);
2053 	(*packet_length) += contents_length;
2054  out:
2055 	if (rc)
2056 		(*packet_length) = 0;
2057 	else
2058 		(*remaining_bytes) -= (*packet_length);
2059 	return rc;
2060 }
2061 
2062 /**
2063  * write_tag_3_packet
2064  * @dest: Buffer into which to write the packet
2065  * @remaining_bytes: Maximum number of bytes that can be written
2066  * @auth_tok: Authentication token
2067  * @crypt_stat: The cryptographic context
2068  * @key_rec: encrypted key
2069  * @packet_size: This function will write the number of bytes that end
2070  *               up constituting the packet; set to zero on error
2071  *
2072  * Returns zero on success; non-zero on error.
2073  */
2074 static int
2075 write_tag_3_packet(char *dest, size_t *remaining_bytes,
2076 		   struct ecryptfs_auth_tok *auth_tok,
2077 		   struct ecryptfs_crypt_stat *crypt_stat,
2078 		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
2079 {
2080 	size_t i;
2081 	size_t encrypted_session_key_valid = 0;
2082 	char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
2083 	struct scatterlist dst_sg[2];
2084 	struct scatterlist src_sg[2];
2085 	struct mutex *tfm_mutex = NULL;
2086 	u8 cipher_code;
2087 	size_t packet_size_length;
2088 	size_t max_packet_size;
2089 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2090 		crypt_stat->mount_crypt_stat;
2091 	struct blkcipher_desc desc = {
2092 		.tfm = NULL,
2093 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
2094 	};
2095 	int rc = 0;
2096 
2097 	(*packet_size) = 0;
2098 	ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
2099 			  ECRYPTFS_SIG_SIZE);
2100 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2101 							crypt_stat->cipher);
2102 	if (unlikely(rc)) {
2103 		printk(KERN_ERR "Internal error whilst attempting to get "
2104 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
2105 		       crypt_stat->cipher, rc);
2106 		goto out;
2107 	}
2108 	if (mount_crypt_stat->global_default_cipher_key_size == 0) {
2109 		struct blkcipher_alg *alg = crypto_blkcipher_alg(desc.tfm);
2110 
2111 		printk(KERN_WARNING "No key size specified at mount; "
2112 		       "defaulting to [%d]\n", alg->max_keysize);
2113 		mount_crypt_stat->global_default_cipher_key_size =
2114 			alg->max_keysize;
2115 	}
2116 	if (crypt_stat->key_size == 0)
2117 		crypt_stat->key_size =
2118 			mount_crypt_stat->global_default_cipher_key_size;
2119 	if (auth_tok->session_key.encrypted_key_size == 0)
2120 		auth_tok->session_key.encrypted_key_size =
2121 			crypt_stat->key_size;
2122 	if (crypt_stat->key_size == 24
2123 	    && strcmp("aes", crypt_stat->cipher) == 0) {
2124 		memset((crypt_stat->key + 24), 0, 8);
2125 		auth_tok->session_key.encrypted_key_size = 32;
2126 	} else
2127 		auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
2128 	key_rec->enc_key_size =
2129 		auth_tok->session_key.encrypted_key_size;
2130 	encrypted_session_key_valid = 0;
2131 	for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
2132 		encrypted_session_key_valid |=
2133 			auth_tok->session_key.encrypted_key[i];
2134 	if (encrypted_session_key_valid) {
2135 		ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
2136 				"using auth_tok->session_key.encrypted_key, "
2137 				"where key_rec->enc_key_size = [%d]\n",
2138 				key_rec->enc_key_size);
2139 		memcpy(key_rec->enc_key,
2140 		       auth_tok->session_key.encrypted_key,
2141 		       key_rec->enc_key_size);
2142 		goto encrypted_session_key_set;
2143 	}
2144 	if (auth_tok->token.password.flags &
2145 	    ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
2146 		ecryptfs_printk(KERN_DEBUG, "Using previously generated "
2147 				"session key encryption key of size [%d]\n",
2148 				auth_tok->token.password.
2149 				session_key_encryption_key_bytes);
2150 		memcpy(session_key_encryption_key,
2151 		       auth_tok->token.password.session_key_encryption_key,
2152 		       crypt_stat->key_size);
2153 		ecryptfs_printk(KERN_DEBUG,
2154 				"Cached session key " "encryption key: \n");
2155 		if (ecryptfs_verbosity > 0)
2156 			ecryptfs_dump_hex(session_key_encryption_key, 16);
2157 	}
2158 	if (unlikely(ecryptfs_verbosity > 0)) {
2159 		ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
2160 		ecryptfs_dump_hex(session_key_encryption_key, 16);
2161 	}
2162 	rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size,
2163 				 src_sg, 2);
2164 	if (rc < 1 || rc > 2) {
2165 		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2166 				"for crypt_stat session key; expected rc = 1; "
2167 				"got rc = [%d]. key_rec->enc_key_size = [%d]\n",
2168 				rc, key_rec->enc_key_size);
2169 		rc = -ENOMEM;
2170 		goto out;
2171 	}
2172 	rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size,
2173 				 dst_sg, 2);
2174 	if (rc < 1 || rc > 2) {
2175 		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2176 				"for crypt_stat encrypted session key; "
2177 				"expected rc = 1; got rc = [%d]. "
2178 				"key_rec->enc_key_size = [%d]\n", rc,
2179 				key_rec->enc_key_size);
2180 		rc = -ENOMEM;
2181 		goto out;
2182 	}
2183 	mutex_lock(tfm_mutex);
2184 	rc = crypto_blkcipher_setkey(desc.tfm, session_key_encryption_key,
2185 				     crypt_stat->key_size);
2186 	if (rc < 0) {
2187 		mutex_unlock(tfm_mutex);
2188 		ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
2189 				"context; rc = [%d]\n", rc);
2190 		goto out;
2191 	}
2192 	rc = 0;
2193 	ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes of the key\n",
2194 			crypt_stat->key_size);
2195 	rc = crypto_blkcipher_encrypt(&desc, dst_sg, src_sg,
2196 				      (*key_rec).enc_key_size);
2197 	mutex_unlock(tfm_mutex);
2198 	if (rc) {
2199 		printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
2200 		goto out;
2201 	}
2202 	ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
2203 	if (ecryptfs_verbosity > 0) {
2204 		ecryptfs_printk(KERN_DEBUG, "EFEK of size [%d]:\n",
2205 				key_rec->enc_key_size);
2206 		ecryptfs_dump_hex(key_rec->enc_key,
2207 				  key_rec->enc_key_size);
2208 	}
2209 encrypted_session_key_set:
2210 	/* This format is inspired by OpenPGP; see RFC 2440
2211 	 * packet tag 3 */
2212 	max_packet_size = (1                         /* Tag 3 identifier */
2213 			   + 3                       /* Max Tag 3 packet size */
2214 			   + 1                       /* Version */
2215 			   + 1                       /* Cipher code */
2216 			   + 1                       /* S2K specifier */
2217 			   + 1                       /* Hash identifier */
2218 			   + ECRYPTFS_SALT_SIZE      /* Salt */
2219 			   + 1                       /* Hash iterations */
2220 			   + key_rec->enc_key_size); /* Encrypted key size */
2221 	if (max_packet_size > (*remaining_bytes)) {
2222 		printk(KERN_ERR "Packet too large; need up to [%td] bytes, but "
2223 		       "there are only [%td] available\n", max_packet_size,
2224 		       (*remaining_bytes));
2225 		rc = -EINVAL;
2226 		goto out;
2227 	}
2228 	dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
2229 	/* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
2230 	 * to get the number of octets in the actual Tag 3 packet */
2231 	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2232 					  (max_packet_size - 4),
2233 					  &packet_size_length);
2234 	if (rc) {
2235 		printk(KERN_ERR "Error generating tag 3 packet header; cannot "
2236 		       "generate packet length. rc = [%d]\n", rc);
2237 		goto out;
2238 	}
2239 	(*packet_size) += packet_size_length;
2240 	dest[(*packet_size)++] = 0x04; /* version 4 */
2241 	/* TODO: Break from RFC2440 so that arbitrary ciphers can be
2242 	 * specified with strings */
2243 	cipher_code = ecryptfs_code_for_cipher_string(crypt_stat->cipher,
2244 						      crypt_stat->key_size);
2245 	if (cipher_code == 0) {
2246 		ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
2247 				"cipher [%s]\n", crypt_stat->cipher);
2248 		rc = -EINVAL;
2249 		goto out;
2250 	}
2251 	dest[(*packet_size)++] = cipher_code;
2252 	dest[(*packet_size)++] = 0x03;	/* S2K */
2253 	dest[(*packet_size)++] = 0x01;	/* MD5 (TODO: parameterize) */
2254 	memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
2255 	       ECRYPTFS_SALT_SIZE);
2256 	(*packet_size) += ECRYPTFS_SALT_SIZE;	/* salt */
2257 	dest[(*packet_size)++] = 0x60;	/* hash iterations (65536) */
2258 	memcpy(&dest[(*packet_size)], key_rec->enc_key,
2259 	       key_rec->enc_key_size);
2260 	(*packet_size) += key_rec->enc_key_size;
2261 out:
2262 	if (rc)
2263 		(*packet_size) = 0;
2264 	else
2265 		(*remaining_bytes) -= (*packet_size);
2266 	return rc;
2267 }
2268 
2269 struct kmem_cache *ecryptfs_key_record_cache;
2270 
2271 /**
2272  * ecryptfs_generate_key_packet_set
2273  * @dest_base: Virtual address from which to write the key record set
2274  * @crypt_stat: The cryptographic context from which the
2275  *              authentication tokens will be retrieved
2276  * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
2277  *                   for the global parameters
2278  * @len: The amount written
2279  * @max: The maximum amount of data allowed to be written
2280  *
2281  * Generates a key packet set and writes it to the virtual address
2282  * passed in.
2283  *
2284  * Returns zero on success; non-zero on error.
2285  */
2286 int
2287 ecryptfs_generate_key_packet_set(char *dest_base,
2288 				 struct ecryptfs_crypt_stat *crypt_stat,
2289 				 struct dentry *ecryptfs_dentry, size_t *len,
2290 				 size_t max)
2291 {
2292 	struct ecryptfs_auth_tok *auth_tok;
2293 	struct ecryptfs_global_auth_tok *global_auth_tok;
2294 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2295 		&ecryptfs_superblock_to_private(
2296 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
2297 	size_t written;
2298 	struct ecryptfs_key_record *key_rec;
2299 	struct ecryptfs_key_sig *key_sig;
2300 	int rc = 0;
2301 
2302 	(*len) = 0;
2303 	mutex_lock(&crypt_stat->keysig_list_mutex);
2304 	key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
2305 	if (!key_rec) {
2306 		rc = -ENOMEM;
2307 		goto out;
2308 	}
2309 	list_for_each_entry(key_sig, &crypt_stat->keysig_list,
2310 			    crypt_stat_list) {
2311 		memset(key_rec, 0, sizeof(*key_rec));
2312 		rc = ecryptfs_find_global_auth_tok_for_sig(&global_auth_tok,
2313 							   mount_crypt_stat,
2314 							   key_sig->keysig);
2315 		if (rc) {
2316 			printk(KERN_ERR "Error attempting to get the global "
2317 			       "auth_tok; rc = [%d]\n", rc);
2318 			goto out_free;
2319 		}
2320 		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID) {
2321 			printk(KERN_WARNING
2322 			       "Skipping invalid auth tok with sig = [%s]\n",
2323 			       global_auth_tok->sig);
2324 			continue;
2325 		}
2326 		auth_tok = global_auth_tok->global_auth_tok;
2327 		if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
2328 			rc = write_tag_3_packet((dest_base + (*len)),
2329 						&max, auth_tok,
2330 						crypt_stat, key_rec,
2331 						&written);
2332 			if (rc) {
2333 				ecryptfs_printk(KERN_WARNING, "Error "
2334 						"writing tag 3 packet\n");
2335 				goto out_free;
2336 			}
2337 			(*len) += written;
2338 			/* Write auth tok signature packet */
2339 			rc = write_tag_11_packet((dest_base + (*len)), &max,
2340 						 key_rec->sig,
2341 						 ECRYPTFS_SIG_SIZE, &written);
2342 			if (rc) {
2343 				ecryptfs_printk(KERN_ERR, "Error writing "
2344 						"auth tok signature packet\n");
2345 				goto out_free;
2346 			}
2347 			(*len) += written;
2348 		} else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
2349 			rc = write_tag_1_packet(dest_base + (*len),
2350 						&max, auth_tok,
2351 						crypt_stat, key_rec, &written);
2352 			if (rc) {
2353 				ecryptfs_printk(KERN_WARNING, "Error "
2354 						"writing tag 1 packet\n");
2355 				goto out_free;
2356 			}
2357 			(*len) += written;
2358 		} else {
2359 			ecryptfs_printk(KERN_WARNING, "Unsupported "
2360 					"authentication token type\n");
2361 			rc = -EINVAL;
2362 			goto out_free;
2363 		}
2364 	}
2365 	if (likely(max > 0)) {
2366 		dest_base[(*len)] = 0x00;
2367 	} else {
2368 		ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
2369 		rc = -EIO;
2370 	}
2371 out_free:
2372 	kmem_cache_free(ecryptfs_key_record_cache, key_rec);
2373 out:
2374 	if (rc)
2375 		(*len) = 0;
2376 	mutex_unlock(&crypt_stat->keysig_list_mutex);
2377 	return rc;
2378 }
2379 
2380 struct kmem_cache *ecryptfs_key_sig_cache;
2381 
2382 int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
2383 {
2384 	struct ecryptfs_key_sig *new_key_sig;
2385 
2386 	new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
2387 	if (!new_key_sig) {
2388 		printk(KERN_ERR
2389 		       "Error allocating from ecryptfs_key_sig_cache\n");
2390 		return -ENOMEM;
2391 	}
2392 	memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
2393 	/* Caller must hold keysig_list_mutex */
2394 	list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
2395 
2396 	return 0;
2397 }
2398 
2399 struct kmem_cache *ecryptfs_global_auth_tok_cache;
2400 
2401 int
2402 ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2403 			     char *sig, u32 global_auth_tok_flags)
2404 {
2405 	struct ecryptfs_global_auth_tok *new_auth_tok;
2406 	int rc = 0;
2407 
2408 	new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache,
2409 					GFP_KERNEL);
2410 	if (!new_auth_tok) {
2411 		rc = -ENOMEM;
2412 		printk(KERN_ERR "Error allocating from "
2413 		       "ecryptfs_global_auth_tok_cache\n");
2414 		goto out;
2415 	}
2416 	memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
2417 	new_auth_tok->flags = global_auth_tok_flags;
2418 	new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2419 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
2420 	list_add(&new_auth_tok->mount_crypt_stat_list,
2421 		 &mount_crypt_stat->global_auth_tok_list);
2422 	mount_crypt_stat->num_global_auth_toks++;
2423 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
2424 out:
2425 	return rc;
2426 }
2427 
2428