xref: /openbmc/linux/fs/ecryptfs/keystore.c (revision 6abeae2a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /**
3  * eCryptfs: Linux filesystem encryption layer
4  * In-kernel key management code.  Includes functions to parse and
5  * write authentication token-related packets with the underlying
6  * file.
7  *
8  * Copyright (C) 2004-2006 International Business Machines Corp.
9  *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
10  *              Michael C. Thompson <mcthomps@us.ibm.com>
11  *              Trevor S. Highland <trevor.highland@gmail.com>
12  */
13 
14 #include <crypto/hash.h>
15 #include <crypto/skcipher.h>
16 #include <linux/string.h>
17 #include <linux/pagemap.h>
18 #include <linux/key.h>
19 #include <linux/random.h>
20 #include <linux/scatterlist.h>
21 #include <linux/slab.h>
22 #include "ecryptfs_kernel.h"
23 
24 /**
25  * request_key returned an error instead of a valid key address;
26  * determine the type of error, make appropriate log entries, and
27  * return an error code.
28  */
29 static int process_request_key_err(long err_code)
30 {
31 	int rc = 0;
32 
33 	switch (err_code) {
34 	case -ENOKEY:
35 		ecryptfs_printk(KERN_WARNING, "No key\n");
36 		rc = -ENOENT;
37 		break;
38 	case -EKEYEXPIRED:
39 		ecryptfs_printk(KERN_WARNING, "Key expired\n");
40 		rc = -ETIME;
41 		break;
42 	case -EKEYREVOKED:
43 		ecryptfs_printk(KERN_WARNING, "Key revoked\n");
44 		rc = -EINVAL;
45 		break;
46 	default:
47 		ecryptfs_printk(KERN_WARNING, "Unknown error code: "
48 				"[0x%.16lx]\n", err_code);
49 		rc = -EINVAL;
50 	}
51 	return rc;
52 }
53 
54 static int process_find_global_auth_tok_for_sig_err(int err_code)
55 {
56 	int rc = err_code;
57 
58 	switch (err_code) {
59 	case -ENOENT:
60 		ecryptfs_printk(KERN_WARNING, "Missing auth tok\n");
61 		break;
62 	case -EINVAL:
63 		ecryptfs_printk(KERN_WARNING, "Invalid auth tok\n");
64 		break;
65 	default:
66 		rc = process_request_key_err(err_code);
67 		break;
68 	}
69 	return rc;
70 }
71 
72 /**
73  * ecryptfs_parse_packet_length
74  * @data: Pointer to memory containing length at offset
75  * @size: This function writes the decoded size to this memory
76  *        address; zero on error
77  * @length_size: The number of bytes occupied by the encoded length
78  *
79  * Returns zero on success; non-zero on error
80  */
81 int ecryptfs_parse_packet_length(unsigned char *data, size_t *size,
82 				 size_t *length_size)
83 {
84 	int rc = 0;
85 
86 	(*length_size) = 0;
87 	(*size) = 0;
88 	if (data[0] < 192) {
89 		/* One-byte length */
90 		(*size) = data[0];
91 		(*length_size) = 1;
92 	} else if (data[0] < 224) {
93 		/* Two-byte length */
94 		(*size) = (data[0] - 192) * 256;
95 		(*size) += data[1] + 192;
96 		(*length_size) = 2;
97 	} else if (data[0] == 255) {
98 		/* If support is added, adjust ECRYPTFS_MAX_PKT_LEN_SIZE */
99 		ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
100 				"supported\n");
101 		rc = -EINVAL;
102 		goto out;
103 	} else {
104 		ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
105 		rc = -EINVAL;
106 		goto out;
107 	}
108 out:
109 	return rc;
110 }
111 
112 /**
113  * ecryptfs_write_packet_length
114  * @dest: The byte array target into which to write the length. Must
115  *        have at least ECRYPTFS_MAX_PKT_LEN_SIZE bytes allocated.
116  * @size: The length to write.
117  * @packet_size_length: The number of bytes used to encode the packet
118  *                      length is written to this address.
119  *
120  * Returns zero on success; non-zero on error.
121  */
122 int ecryptfs_write_packet_length(char *dest, size_t size,
123 				 size_t *packet_size_length)
124 {
125 	int rc = 0;
126 
127 	if (size < 192) {
128 		dest[0] = size;
129 		(*packet_size_length) = 1;
130 	} else if (size < 65536) {
131 		dest[0] = (((size - 192) / 256) + 192);
132 		dest[1] = ((size - 192) % 256);
133 		(*packet_size_length) = 2;
134 	} else {
135 		/* If support is added, adjust ECRYPTFS_MAX_PKT_LEN_SIZE */
136 		rc = -EINVAL;
137 		ecryptfs_printk(KERN_WARNING,
138 				"Unsupported packet size: [%zd]\n", size);
139 	}
140 	return rc;
141 }
142 
143 static int
144 write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
145 		    char **packet, size_t *packet_len)
146 {
147 	size_t i = 0;
148 	size_t data_len;
149 	size_t packet_size_len;
150 	char *message;
151 	int rc;
152 
153 	/*
154 	 *              ***** TAG 64 Packet Format *****
155 	 *    | Content Type                       | 1 byte       |
156 	 *    | Key Identifier Size                | 1 or 2 bytes |
157 	 *    | Key Identifier                     | arbitrary    |
158 	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
159 	 *    | Encrypted File Encryption Key      | arbitrary    |
160 	 */
161 	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
162 		    + session_key->encrypted_key_size);
163 	*packet = kmalloc(data_len, GFP_KERNEL);
164 	message = *packet;
165 	if (!message) {
166 		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
167 		rc = -ENOMEM;
168 		goto out;
169 	}
170 	message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
171 	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
172 					  &packet_size_len);
173 	if (rc) {
174 		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
175 				"header; cannot generate packet length\n");
176 		goto out;
177 	}
178 	i += packet_size_len;
179 	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
180 	i += ECRYPTFS_SIG_SIZE_HEX;
181 	rc = ecryptfs_write_packet_length(&message[i],
182 					  session_key->encrypted_key_size,
183 					  &packet_size_len);
184 	if (rc) {
185 		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
186 				"header; cannot generate packet length\n");
187 		goto out;
188 	}
189 	i += packet_size_len;
190 	memcpy(&message[i], session_key->encrypted_key,
191 	       session_key->encrypted_key_size);
192 	i += session_key->encrypted_key_size;
193 	*packet_len = i;
194 out:
195 	return rc;
196 }
197 
198 static int
199 parse_tag_65_packet(struct ecryptfs_session_key *session_key, u8 *cipher_code,
200 		    struct ecryptfs_message *msg)
201 {
202 	size_t i = 0;
203 	char *data;
204 	size_t data_len;
205 	size_t m_size;
206 	size_t message_len;
207 	u16 checksum = 0;
208 	u16 expected_checksum = 0;
209 	int rc;
210 
211 	/*
212 	 *              ***** TAG 65 Packet Format *****
213 	 *         | Content Type             | 1 byte       |
214 	 *         | Status Indicator         | 1 byte       |
215 	 *         | File Encryption Key Size | 1 or 2 bytes |
216 	 *         | File Encryption Key      | arbitrary    |
217 	 */
218 	message_len = msg->data_len;
219 	data = msg->data;
220 	if (message_len < 4) {
221 		rc = -EIO;
222 		goto out;
223 	}
224 	if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
225 		ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
226 		rc = -EIO;
227 		goto out;
228 	}
229 	if (data[i++]) {
230 		ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
231 				"[%d]\n", data[i-1]);
232 		rc = -EIO;
233 		goto out;
234 	}
235 	rc = ecryptfs_parse_packet_length(&data[i], &m_size, &data_len);
236 	if (rc) {
237 		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
238 				"rc = [%d]\n", rc);
239 		goto out;
240 	}
241 	i += data_len;
242 	if (message_len < (i + m_size)) {
243 		ecryptfs_printk(KERN_ERR, "The message received from ecryptfsd "
244 				"is shorter than expected\n");
245 		rc = -EIO;
246 		goto out;
247 	}
248 	if (m_size < 3) {
249 		ecryptfs_printk(KERN_ERR,
250 				"The decrypted key is not long enough to "
251 				"include a cipher code and checksum\n");
252 		rc = -EIO;
253 		goto out;
254 	}
255 	*cipher_code = data[i++];
256 	/* The decrypted key includes 1 byte cipher code and 2 byte checksum */
257 	session_key->decrypted_key_size = m_size - 3;
258 	if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
259 		ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
260 				"the maximum key size [%d]\n",
261 				session_key->decrypted_key_size,
262 				ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
263 		rc = -EIO;
264 		goto out;
265 	}
266 	memcpy(session_key->decrypted_key, &data[i],
267 	       session_key->decrypted_key_size);
268 	i += session_key->decrypted_key_size;
269 	expected_checksum += (unsigned char)(data[i++]) << 8;
270 	expected_checksum += (unsigned char)(data[i++]);
271 	for (i = 0; i < session_key->decrypted_key_size; i++)
272 		checksum += session_key->decrypted_key[i];
273 	if (expected_checksum != checksum) {
274 		ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
275 				"encryption  key; expected [%x]; calculated "
276 				"[%x]\n", expected_checksum, checksum);
277 		rc = -EIO;
278 	}
279 out:
280 	return rc;
281 }
282 
283 
284 static int
285 write_tag_66_packet(char *signature, u8 cipher_code,
286 		    struct ecryptfs_crypt_stat *crypt_stat, char **packet,
287 		    size_t *packet_len)
288 {
289 	size_t i = 0;
290 	size_t j;
291 	size_t data_len;
292 	size_t checksum = 0;
293 	size_t packet_size_len;
294 	char *message;
295 	int rc;
296 
297 	/*
298 	 *              ***** TAG 66 Packet Format *****
299 	 *         | Content Type             | 1 byte       |
300 	 *         | Key Identifier Size      | 1 or 2 bytes |
301 	 *         | Key Identifier           | arbitrary    |
302 	 *         | File Encryption Key Size | 1 or 2 bytes |
303 	 *         | File Encryption Key      | arbitrary    |
304 	 */
305 	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
306 	*packet = kmalloc(data_len, GFP_KERNEL);
307 	message = *packet;
308 	if (!message) {
309 		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
310 		rc = -ENOMEM;
311 		goto out;
312 	}
313 	message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
314 	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
315 					  &packet_size_len);
316 	if (rc) {
317 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
318 				"header; cannot generate packet length\n");
319 		goto out;
320 	}
321 	i += packet_size_len;
322 	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
323 	i += ECRYPTFS_SIG_SIZE_HEX;
324 	/* The encrypted key includes 1 byte cipher code and 2 byte checksum */
325 	rc = ecryptfs_write_packet_length(&message[i], crypt_stat->key_size + 3,
326 					  &packet_size_len);
327 	if (rc) {
328 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
329 				"header; cannot generate packet length\n");
330 		goto out;
331 	}
332 	i += packet_size_len;
333 	message[i++] = cipher_code;
334 	memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
335 	i += crypt_stat->key_size;
336 	for (j = 0; j < crypt_stat->key_size; j++)
337 		checksum += crypt_stat->key[j];
338 	message[i++] = (checksum / 256) % 256;
339 	message[i++] = (checksum % 256);
340 	*packet_len = i;
341 out:
342 	return rc;
343 }
344 
345 static int
346 parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
347 		    struct ecryptfs_message *msg)
348 {
349 	size_t i = 0;
350 	char *data;
351 	size_t data_len;
352 	size_t message_len;
353 	int rc;
354 
355 	/*
356 	 *              ***** TAG 65 Packet Format *****
357 	 *    | Content Type                       | 1 byte       |
358 	 *    | Status Indicator                   | 1 byte       |
359 	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
360 	 *    | Encrypted File Encryption Key      | arbitrary    |
361 	 */
362 	message_len = msg->data_len;
363 	data = msg->data;
364 	/* verify that everything through the encrypted FEK size is present */
365 	if (message_len < 4) {
366 		rc = -EIO;
367 		printk(KERN_ERR "%s: message_len is [%zd]; minimum acceptable "
368 		       "message length is [%d]\n", __func__, message_len, 4);
369 		goto out;
370 	}
371 	if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
372 		rc = -EIO;
373 		printk(KERN_ERR "%s: Type should be ECRYPTFS_TAG_67\n",
374 		       __func__);
375 		goto out;
376 	}
377 	if (data[i++]) {
378 		rc = -EIO;
379 		printk(KERN_ERR "%s: Status indicator has non zero "
380 		       "value [%d]\n", __func__, data[i-1]);
381 
382 		goto out;
383 	}
384 	rc = ecryptfs_parse_packet_length(&data[i], &key_rec->enc_key_size,
385 					  &data_len);
386 	if (rc) {
387 		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
388 				"rc = [%d]\n", rc);
389 		goto out;
390 	}
391 	i += data_len;
392 	if (message_len < (i + key_rec->enc_key_size)) {
393 		rc = -EIO;
394 		printk(KERN_ERR "%s: message_len [%zd]; max len is [%zd]\n",
395 		       __func__, message_len, (i + key_rec->enc_key_size));
396 		goto out;
397 	}
398 	if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
399 		rc = -EIO;
400 		printk(KERN_ERR "%s: Encrypted key_size [%zd] larger than "
401 		       "the maximum key size [%d]\n", __func__,
402 		       key_rec->enc_key_size,
403 		       ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
404 		goto out;
405 	}
406 	memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
407 out:
408 	return rc;
409 }
410 
411 /**
412  * ecryptfs_verify_version
413  * @version: The version number to confirm
414  *
415  * Returns zero on good version; non-zero otherwise
416  */
417 static int ecryptfs_verify_version(u16 version)
418 {
419 	int rc = 0;
420 	unsigned char major;
421 	unsigned char minor;
422 
423 	major = ((version >> 8) & 0xFF);
424 	minor = (version & 0xFF);
425 	if (major != ECRYPTFS_VERSION_MAJOR) {
426 		ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
427 				"Expected [%d]; got [%d]\n",
428 				ECRYPTFS_VERSION_MAJOR, major);
429 		rc = -EINVAL;
430 		goto out;
431 	}
432 	if (minor != ECRYPTFS_VERSION_MINOR) {
433 		ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
434 				"Expected [%d]; got [%d]\n",
435 				ECRYPTFS_VERSION_MINOR, minor);
436 		rc = -EINVAL;
437 		goto out;
438 	}
439 out:
440 	return rc;
441 }
442 
443 /**
444  * ecryptfs_verify_auth_tok_from_key
445  * @auth_tok_key: key containing the authentication token
446  * @auth_tok: authentication token
447  *
448  * Returns zero on valid auth tok; -EINVAL if the payload is invalid; or
449  * -EKEYREVOKED if the key was revoked before we acquired its semaphore.
450  */
451 static int
452 ecryptfs_verify_auth_tok_from_key(struct key *auth_tok_key,
453 				  struct ecryptfs_auth_tok **auth_tok)
454 {
455 	int rc = 0;
456 
457 	(*auth_tok) = ecryptfs_get_key_payload_data(auth_tok_key);
458 	if (IS_ERR(*auth_tok)) {
459 		rc = PTR_ERR(*auth_tok);
460 		*auth_tok = NULL;
461 		goto out;
462 	}
463 
464 	if (ecryptfs_verify_version((*auth_tok)->version)) {
465 		printk(KERN_ERR "Data structure version mismatch. Userspace "
466 		       "tools must match eCryptfs kernel module with major "
467 		       "version [%d] and minor version [%d]\n",
468 		       ECRYPTFS_VERSION_MAJOR, ECRYPTFS_VERSION_MINOR);
469 		rc = -EINVAL;
470 		goto out;
471 	}
472 	if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
473 	    && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
474 		printk(KERN_ERR "Invalid auth_tok structure "
475 		       "returned from key query\n");
476 		rc = -EINVAL;
477 		goto out;
478 	}
479 out:
480 	return rc;
481 }
482 
483 static int
484 ecryptfs_find_global_auth_tok_for_sig(
485 	struct key **auth_tok_key,
486 	struct ecryptfs_auth_tok **auth_tok,
487 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
488 {
489 	struct ecryptfs_global_auth_tok *walker;
490 	int rc = 0;
491 
492 	(*auth_tok_key) = NULL;
493 	(*auth_tok) = NULL;
494 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
495 	list_for_each_entry(walker,
496 			    &mount_crypt_stat->global_auth_tok_list,
497 			    mount_crypt_stat_list) {
498 		if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX))
499 			continue;
500 
501 		if (walker->flags & ECRYPTFS_AUTH_TOK_INVALID) {
502 			rc = -EINVAL;
503 			goto out;
504 		}
505 
506 		rc = key_validate(walker->global_auth_tok_key);
507 		if (rc) {
508 			if (rc == -EKEYEXPIRED)
509 				goto out;
510 			goto out_invalid_auth_tok;
511 		}
512 
513 		down_write(&(walker->global_auth_tok_key->sem));
514 		rc = ecryptfs_verify_auth_tok_from_key(
515 				walker->global_auth_tok_key, auth_tok);
516 		if (rc)
517 			goto out_invalid_auth_tok_unlock;
518 
519 		(*auth_tok_key) = walker->global_auth_tok_key;
520 		key_get(*auth_tok_key);
521 		goto out;
522 	}
523 	rc = -ENOENT;
524 	goto out;
525 out_invalid_auth_tok_unlock:
526 	up_write(&(walker->global_auth_tok_key->sem));
527 out_invalid_auth_tok:
528 	printk(KERN_WARNING "Invalidating auth tok with sig = [%s]\n", sig);
529 	walker->flags |= ECRYPTFS_AUTH_TOK_INVALID;
530 	key_put(walker->global_auth_tok_key);
531 	walker->global_auth_tok_key = NULL;
532 out:
533 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
534 	return rc;
535 }
536 
537 /**
538  * ecryptfs_find_auth_tok_for_sig
539  * @auth_tok: Set to the matching auth_tok; NULL if not found
540  * @crypt_stat: inode crypt_stat crypto context
541  * @sig: Sig of auth_tok to find
542  *
543  * For now, this function simply looks at the registered auth_tok's
544  * linked off the mount_crypt_stat, so all the auth_toks that can be
545  * used must be registered at mount time. This function could
546  * potentially try a lot harder to find auth_tok's (e.g., by calling
547  * out to ecryptfsd to dynamically retrieve an auth_tok object) so
548  * that static registration of auth_tok's will no longer be necessary.
549  *
550  * Returns zero on no error; non-zero on error
551  */
552 static int
553 ecryptfs_find_auth_tok_for_sig(
554 	struct key **auth_tok_key,
555 	struct ecryptfs_auth_tok **auth_tok,
556 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
557 	char *sig)
558 {
559 	int rc = 0;
560 
561 	rc = ecryptfs_find_global_auth_tok_for_sig(auth_tok_key, auth_tok,
562 						   mount_crypt_stat, sig);
563 	if (rc == -ENOENT) {
564 		/* if the flag ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY is set in the
565 		 * mount_crypt_stat structure, we prevent to use auth toks that
566 		 * are not inserted through the ecryptfs_add_global_auth_tok
567 		 * function.
568 		 */
569 		if (mount_crypt_stat->flags
570 				& ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY)
571 			return -EINVAL;
572 
573 		rc = ecryptfs_keyring_auth_tok_for_sig(auth_tok_key, auth_tok,
574 						       sig);
575 	}
576 	return rc;
577 }
578 
579 /**
580  * write_tag_70_packet can gobble a lot of stack space. We stuff most
581  * of the function's parameters in a kmalloc'd struct to help reduce
582  * eCryptfs' overall stack usage.
583  */
584 struct ecryptfs_write_tag_70_packet_silly_stack {
585 	u8 cipher_code;
586 	size_t max_packet_size;
587 	size_t packet_size_len;
588 	size_t block_aligned_filename_size;
589 	size_t block_size;
590 	size_t i;
591 	size_t j;
592 	size_t num_rand_bytes;
593 	struct mutex *tfm_mutex;
594 	char *block_aligned_filename;
595 	struct ecryptfs_auth_tok *auth_tok;
596 	struct scatterlist src_sg[2];
597 	struct scatterlist dst_sg[2];
598 	struct crypto_skcipher *skcipher_tfm;
599 	struct skcipher_request *skcipher_req;
600 	char iv[ECRYPTFS_MAX_IV_BYTES];
601 	char hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
602 	char tmp_hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
603 	struct crypto_shash *hash_tfm;
604 	struct shash_desc *hash_desc;
605 };
606 
607 /**
608  * write_tag_70_packet - Write encrypted filename (EFN) packet against FNEK
609  * @filename: NULL-terminated filename string
610  *
611  * This is the simplest mechanism for achieving filename encryption in
612  * eCryptfs. It encrypts the given filename with the mount-wide
613  * filename encryption key (FNEK) and stores it in a packet to @dest,
614  * which the callee will encode and write directly into the dentry
615  * name.
616  */
617 int
618 ecryptfs_write_tag_70_packet(char *dest, size_t *remaining_bytes,
619 			     size_t *packet_size,
620 			     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
621 			     char *filename, size_t filename_size)
622 {
623 	struct ecryptfs_write_tag_70_packet_silly_stack *s;
624 	struct key *auth_tok_key = NULL;
625 	int rc = 0;
626 
627 	s = kzalloc(sizeof(*s), GFP_KERNEL);
628 	if (!s)
629 		return -ENOMEM;
630 
631 	(*packet_size) = 0;
632 	rc = ecryptfs_find_auth_tok_for_sig(
633 		&auth_tok_key,
634 		&s->auth_tok, mount_crypt_stat,
635 		mount_crypt_stat->global_default_fnek_sig);
636 	if (rc) {
637 		printk(KERN_ERR "%s: Error attempting to find auth tok for "
638 		       "fnek sig [%s]; rc = [%d]\n", __func__,
639 		       mount_crypt_stat->global_default_fnek_sig, rc);
640 		goto out;
641 	}
642 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(
643 		&s->skcipher_tfm,
644 		&s->tfm_mutex, mount_crypt_stat->global_default_fn_cipher_name);
645 	if (unlikely(rc)) {
646 		printk(KERN_ERR "Internal error whilst attempting to get "
647 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
648 		       mount_crypt_stat->global_default_fn_cipher_name, rc);
649 		goto out;
650 	}
651 	mutex_lock(s->tfm_mutex);
652 	s->block_size = crypto_skcipher_blocksize(s->skcipher_tfm);
653 	/* Plus one for the \0 separator between the random prefix
654 	 * and the plaintext filename */
655 	s->num_rand_bytes = (ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES + 1);
656 	s->block_aligned_filename_size = (s->num_rand_bytes + filename_size);
657 	if ((s->block_aligned_filename_size % s->block_size) != 0) {
658 		s->num_rand_bytes += (s->block_size
659 				      - (s->block_aligned_filename_size
660 					 % s->block_size));
661 		s->block_aligned_filename_size = (s->num_rand_bytes
662 						  + filename_size);
663 	}
664 	/* Octet 0: Tag 70 identifier
665 	 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
666 	 *              and block-aligned encrypted filename size)
667 	 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
668 	 * Octet N2-N3: Cipher identifier (1 octet)
669 	 * Octets N3-N4: Block-aligned encrypted filename
670 	 *  - Consists of a minimum number of random characters, a \0
671 	 *    separator, and then the filename */
672 	s->max_packet_size = (ECRYPTFS_TAG_70_MAX_METADATA_SIZE
673 			      + s->block_aligned_filename_size);
674 	if (!dest) {
675 		(*packet_size) = s->max_packet_size;
676 		goto out_unlock;
677 	}
678 	if (s->max_packet_size > (*remaining_bytes)) {
679 		printk(KERN_WARNING "%s: Require [%zd] bytes to write; only "
680 		       "[%zd] available\n", __func__, s->max_packet_size,
681 		       (*remaining_bytes));
682 		rc = -EINVAL;
683 		goto out_unlock;
684 	}
685 
686 	s->skcipher_req = skcipher_request_alloc(s->skcipher_tfm, GFP_KERNEL);
687 	if (!s->skcipher_req) {
688 		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
689 		       "skcipher_request_alloc for %s\n", __func__,
690 		       crypto_skcipher_driver_name(s->skcipher_tfm));
691 		rc = -ENOMEM;
692 		goto out_unlock;
693 	}
694 
695 	skcipher_request_set_callback(s->skcipher_req,
696 				      CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
697 
698 	s->block_aligned_filename = kzalloc(s->block_aligned_filename_size,
699 					    GFP_KERNEL);
700 	if (!s->block_aligned_filename) {
701 		rc = -ENOMEM;
702 		goto out_unlock;
703 	}
704 	dest[s->i++] = ECRYPTFS_TAG_70_PACKET_TYPE;
705 	rc = ecryptfs_write_packet_length(&dest[s->i],
706 					  (ECRYPTFS_SIG_SIZE
707 					   + 1 /* Cipher code */
708 					   + s->block_aligned_filename_size),
709 					  &s->packet_size_len);
710 	if (rc) {
711 		printk(KERN_ERR "%s: Error generating tag 70 packet "
712 		       "header; cannot generate packet length; rc = [%d]\n",
713 		       __func__, rc);
714 		goto out_free_unlock;
715 	}
716 	s->i += s->packet_size_len;
717 	ecryptfs_from_hex(&dest[s->i],
718 			  mount_crypt_stat->global_default_fnek_sig,
719 			  ECRYPTFS_SIG_SIZE);
720 	s->i += ECRYPTFS_SIG_SIZE;
721 	s->cipher_code = ecryptfs_code_for_cipher_string(
722 		mount_crypt_stat->global_default_fn_cipher_name,
723 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
724 	if (s->cipher_code == 0) {
725 		printk(KERN_WARNING "%s: Unable to generate code for "
726 		       "cipher [%s] with key bytes [%zd]\n", __func__,
727 		       mount_crypt_stat->global_default_fn_cipher_name,
728 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
729 		rc = -EINVAL;
730 		goto out_free_unlock;
731 	}
732 	dest[s->i++] = s->cipher_code;
733 	/* TODO: Support other key modules than passphrase for
734 	 * filename encryption */
735 	if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
736 		rc = -EOPNOTSUPP;
737 		printk(KERN_INFO "%s: Filename encryption only supports "
738 		       "password tokens\n", __func__);
739 		goto out_free_unlock;
740 	}
741 	s->hash_tfm = crypto_alloc_shash(ECRYPTFS_TAG_70_DIGEST, 0, 0);
742 	if (IS_ERR(s->hash_tfm)) {
743 			rc = PTR_ERR(s->hash_tfm);
744 			printk(KERN_ERR "%s: Error attempting to "
745 			       "allocate hash crypto context; rc = [%d]\n",
746 			       __func__, rc);
747 			goto out_free_unlock;
748 	}
749 
750 	s->hash_desc = kmalloc(sizeof(*s->hash_desc) +
751 			       crypto_shash_descsize(s->hash_tfm), GFP_KERNEL);
752 	if (!s->hash_desc) {
753 		rc = -ENOMEM;
754 		goto out_release_free_unlock;
755 	}
756 
757 	s->hash_desc->tfm = s->hash_tfm;
758 
759 	rc = crypto_shash_digest(s->hash_desc,
760 				 (u8 *)s->auth_tok->token.password.session_key_encryption_key,
761 				 s->auth_tok->token.password.session_key_encryption_key_bytes,
762 				 s->hash);
763 	if (rc) {
764 		printk(KERN_ERR
765 		       "%s: Error computing crypto hash; rc = [%d]\n",
766 		       __func__, rc);
767 		goto out_release_free_unlock;
768 	}
769 	for (s->j = 0; s->j < (s->num_rand_bytes - 1); s->j++) {
770 		s->block_aligned_filename[s->j] =
771 			s->hash[(s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)];
772 		if ((s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)
773 		    == (ECRYPTFS_TAG_70_DIGEST_SIZE - 1)) {
774 			rc = crypto_shash_digest(s->hash_desc, (u8 *)s->hash,
775 						ECRYPTFS_TAG_70_DIGEST_SIZE,
776 						s->tmp_hash);
777 			if (rc) {
778 				printk(KERN_ERR
779 				       "%s: Error computing crypto hash; "
780 				       "rc = [%d]\n", __func__, rc);
781 				goto out_release_free_unlock;
782 			}
783 			memcpy(s->hash, s->tmp_hash,
784 			       ECRYPTFS_TAG_70_DIGEST_SIZE);
785 		}
786 		if (s->block_aligned_filename[s->j] == '\0')
787 			s->block_aligned_filename[s->j] = ECRYPTFS_NON_NULL;
788 	}
789 	memcpy(&s->block_aligned_filename[s->num_rand_bytes], filename,
790 	       filename_size);
791 	rc = virt_to_scatterlist(s->block_aligned_filename,
792 				 s->block_aligned_filename_size, s->src_sg, 2);
793 	if (rc < 1) {
794 		printk(KERN_ERR "%s: Internal error whilst attempting to "
795 		       "convert filename memory to scatterlist; rc = [%d]. "
796 		       "block_aligned_filename_size = [%zd]\n", __func__, rc,
797 		       s->block_aligned_filename_size);
798 		goto out_release_free_unlock;
799 	}
800 	rc = virt_to_scatterlist(&dest[s->i], s->block_aligned_filename_size,
801 				 s->dst_sg, 2);
802 	if (rc < 1) {
803 		printk(KERN_ERR "%s: Internal error whilst attempting to "
804 		       "convert encrypted filename memory to scatterlist; "
805 		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
806 		       __func__, rc, s->block_aligned_filename_size);
807 		goto out_release_free_unlock;
808 	}
809 	/* The characters in the first block effectively do the job
810 	 * of the IV here, so we just use 0's for the IV. Note the
811 	 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
812 	 * >= ECRYPTFS_MAX_IV_BYTES. */
813 	rc = crypto_skcipher_setkey(
814 		s->skcipher_tfm,
815 		s->auth_tok->token.password.session_key_encryption_key,
816 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
817 	if (rc < 0) {
818 		printk(KERN_ERR "%s: Error setting key for crypto context; "
819 		       "rc = [%d]. s->auth_tok->token.password.session_key_"
820 		       "encryption_key = [0x%p]; mount_crypt_stat->"
821 		       "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
822 		       rc,
823 		       s->auth_tok->token.password.session_key_encryption_key,
824 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
825 		goto out_release_free_unlock;
826 	}
827 	skcipher_request_set_crypt(s->skcipher_req, s->src_sg, s->dst_sg,
828 				   s->block_aligned_filename_size, s->iv);
829 	rc = crypto_skcipher_encrypt(s->skcipher_req);
830 	if (rc) {
831 		printk(KERN_ERR "%s: Error attempting to encrypt filename; "
832 		       "rc = [%d]\n", __func__, rc);
833 		goto out_release_free_unlock;
834 	}
835 	s->i += s->block_aligned_filename_size;
836 	(*packet_size) = s->i;
837 	(*remaining_bytes) -= (*packet_size);
838 out_release_free_unlock:
839 	crypto_free_shash(s->hash_tfm);
840 out_free_unlock:
841 	kfree_sensitive(s->block_aligned_filename);
842 out_unlock:
843 	mutex_unlock(s->tfm_mutex);
844 out:
845 	if (auth_tok_key) {
846 		up_write(&(auth_tok_key->sem));
847 		key_put(auth_tok_key);
848 	}
849 	skcipher_request_free(s->skcipher_req);
850 	kfree_sensitive(s->hash_desc);
851 	kfree(s);
852 	return rc;
853 }
854 
855 struct ecryptfs_parse_tag_70_packet_silly_stack {
856 	u8 cipher_code;
857 	size_t max_packet_size;
858 	size_t packet_size_len;
859 	size_t parsed_tag_70_packet_size;
860 	size_t block_aligned_filename_size;
861 	size_t block_size;
862 	size_t i;
863 	struct mutex *tfm_mutex;
864 	char *decrypted_filename;
865 	struct ecryptfs_auth_tok *auth_tok;
866 	struct scatterlist src_sg[2];
867 	struct scatterlist dst_sg[2];
868 	struct crypto_skcipher *skcipher_tfm;
869 	struct skcipher_request *skcipher_req;
870 	char fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX + 1];
871 	char iv[ECRYPTFS_MAX_IV_BYTES];
872 	char cipher_string[ECRYPTFS_MAX_CIPHER_NAME_SIZE + 1];
873 };
874 
875 /**
876  * parse_tag_70_packet - Parse and process FNEK-encrypted passphrase packet
877  * @filename: This function kmalloc's the memory for the filename
878  * @filename_size: This function sets this to the amount of memory
879  *                 kmalloc'd for the filename
880  * @packet_size: This function sets this to the the number of octets
881  *               in the packet parsed
882  * @mount_crypt_stat: The mount-wide cryptographic context
883  * @data: The memory location containing the start of the tag 70
884  *        packet
885  * @max_packet_size: The maximum legal size of the packet to be parsed
886  *                   from @data
887  *
888  * Returns zero on success; non-zero otherwise
889  */
890 int
891 ecryptfs_parse_tag_70_packet(char **filename, size_t *filename_size,
892 			     size_t *packet_size,
893 			     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
894 			     char *data, size_t max_packet_size)
895 {
896 	struct ecryptfs_parse_tag_70_packet_silly_stack *s;
897 	struct key *auth_tok_key = NULL;
898 	int rc = 0;
899 
900 	(*packet_size) = 0;
901 	(*filename_size) = 0;
902 	(*filename) = NULL;
903 	s = kzalloc(sizeof(*s), GFP_KERNEL);
904 	if (!s)
905 		return -ENOMEM;
906 
907 	if (max_packet_size < ECRYPTFS_TAG_70_MIN_METADATA_SIZE) {
908 		printk(KERN_WARNING "%s: max_packet_size is [%zd]; it must be "
909 		       "at least [%d]\n", __func__, max_packet_size,
910 		       ECRYPTFS_TAG_70_MIN_METADATA_SIZE);
911 		rc = -EINVAL;
912 		goto out;
913 	}
914 	/* Octet 0: Tag 70 identifier
915 	 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
916 	 *              and block-aligned encrypted filename size)
917 	 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
918 	 * Octet N2-N3: Cipher identifier (1 octet)
919 	 * Octets N3-N4: Block-aligned encrypted filename
920 	 *  - Consists of a minimum number of random numbers, a \0
921 	 *    separator, and then the filename */
922 	if (data[(*packet_size)++] != ECRYPTFS_TAG_70_PACKET_TYPE) {
923 		printk(KERN_WARNING "%s: Invalid packet tag [0x%.2x]; must be "
924 		       "tag [0x%.2x]\n", __func__,
925 		       data[((*packet_size) - 1)], ECRYPTFS_TAG_70_PACKET_TYPE);
926 		rc = -EINVAL;
927 		goto out;
928 	}
929 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)],
930 					  &s->parsed_tag_70_packet_size,
931 					  &s->packet_size_len);
932 	if (rc) {
933 		printk(KERN_WARNING "%s: Error parsing packet length; "
934 		       "rc = [%d]\n", __func__, rc);
935 		goto out;
936 	}
937 	s->block_aligned_filename_size = (s->parsed_tag_70_packet_size
938 					  - ECRYPTFS_SIG_SIZE - 1);
939 	if ((1 + s->packet_size_len + s->parsed_tag_70_packet_size)
940 	    > max_packet_size) {
941 		printk(KERN_WARNING "%s: max_packet_size is [%zd]; real packet "
942 		       "size is [%zd]\n", __func__, max_packet_size,
943 		       (1 + s->packet_size_len + 1
944 			+ s->block_aligned_filename_size));
945 		rc = -EINVAL;
946 		goto out;
947 	}
948 	(*packet_size) += s->packet_size_len;
949 	ecryptfs_to_hex(s->fnek_sig_hex, &data[(*packet_size)],
950 			ECRYPTFS_SIG_SIZE);
951 	s->fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX] = '\0';
952 	(*packet_size) += ECRYPTFS_SIG_SIZE;
953 	s->cipher_code = data[(*packet_size)++];
954 	rc = ecryptfs_cipher_code_to_string(s->cipher_string, s->cipher_code);
955 	if (rc) {
956 		printk(KERN_WARNING "%s: Cipher code [%d] is invalid\n",
957 		       __func__, s->cipher_code);
958 		goto out;
959 	}
960 	rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
961 					    &s->auth_tok, mount_crypt_stat,
962 					    s->fnek_sig_hex);
963 	if (rc) {
964 		printk(KERN_ERR "%s: Error attempting to find auth tok for "
965 		       "fnek sig [%s]; rc = [%d]\n", __func__, s->fnek_sig_hex,
966 		       rc);
967 		goto out;
968 	}
969 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&s->skcipher_tfm,
970 							&s->tfm_mutex,
971 							s->cipher_string);
972 	if (unlikely(rc)) {
973 		printk(KERN_ERR "Internal error whilst attempting to get "
974 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
975 		       s->cipher_string, rc);
976 		goto out;
977 	}
978 	mutex_lock(s->tfm_mutex);
979 	rc = virt_to_scatterlist(&data[(*packet_size)],
980 				 s->block_aligned_filename_size, s->src_sg, 2);
981 	if (rc < 1) {
982 		printk(KERN_ERR "%s: Internal error whilst attempting to "
983 		       "convert encrypted filename memory to scatterlist; "
984 		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
985 		       __func__, rc, s->block_aligned_filename_size);
986 		goto out_unlock;
987 	}
988 	(*packet_size) += s->block_aligned_filename_size;
989 	s->decrypted_filename = kmalloc(s->block_aligned_filename_size,
990 					GFP_KERNEL);
991 	if (!s->decrypted_filename) {
992 		rc = -ENOMEM;
993 		goto out_unlock;
994 	}
995 	rc = virt_to_scatterlist(s->decrypted_filename,
996 				 s->block_aligned_filename_size, s->dst_sg, 2);
997 	if (rc < 1) {
998 		printk(KERN_ERR "%s: Internal error whilst attempting to "
999 		       "convert decrypted filename memory to scatterlist; "
1000 		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
1001 		       __func__, rc, s->block_aligned_filename_size);
1002 		goto out_free_unlock;
1003 	}
1004 
1005 	s->skcipher_req = skcipher_request_alloc(s->skcipher_tfm, GFP_KERNEL);
1006 	if (!s->skcipher_req) {
1007 		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
1008 		       "skcipher_request_alloc for %s\n", __func__,
1009 		       crypto_skcipher_driver_name(s->skcipher_tfm));
1010 		rc = -ENOMEM;
1011 		goto out_free_unlock;
1012 	}
1013 
1014 	skcipher_request_set_callback(s->skcipher_req,
1015 				      CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
1016 
1017 	/* The characters in the first block effectively do the job of
1018 	 * the IV here, so we just use 0's for the IV. Note the
1019 	 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
1020 	 * >= ECRYPTFS_MAX_IV_BYTES. */
1021 	/* TODO: Support other key modules than passphrase for
1022 	 * filename encryption */
1023 	if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
1024 		rc = -EOPNOTSUPP;
1025 		printk(KERN_INFO "%s: Filename encryption only supports "
1026 		       "password tokens\n", __func__);
1027 		goto out_free_unlock;
1028 	}
1029 	rc = crypto_skcipher_setkey(
1030 		s->skcipher_tfm,
1031 		s->auth_tok->token.password.session_key_encryption_key,
1032 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
1033 	if (rc < 0) {
1034 		printk(KERN_ERR "%s: Error setting key for crypto context; "
1035 		       "rc = [%d]. s->auth_tok->token.password.session_key_"
1036 		       "encryption_key = [0x%p]; mount_crypt_stat->"
1037 		       "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
1038 		       rc,
1039 		       s->auth_tok->token.password.session_key_encryption_key,
1040 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
1041 		goto out_free_unlock;
1042 	}
1043 	skcipher_request_set_crypt(s->skcipher_req, s->src_sg, s->dst_sg,
1044 				   s->block_aligned_filename_size, s->iv);
1045 	rc = crypto_skcipher_decrypt(s->skcipher_req);
1046 	if (rc) {
1047 		printk(KERN_ERR "%s: Error attempting to decrypt filename; "
1048 		       "rc = [%d]\n", __func__, rc);
1049 		goto out_free_unlock;
1050 	}
1051 
1052 	while (s->i < s->block_aligned_filename_size &&
1053 	       s->decrypted_filename[s->i] != '\0')
1054 		s->i++;
1055 	if (s->i == s->block_aligned_filename_size) {
1056 		printk(KERN_WARNING "%s: Invalid tag 70 packet; could not "
1057 		       "find valid separator between random characters and "
1058 		       "the filename\n", __func__);
1059 		rc = -EINVAL;
1060 		goto out_free_unlock;
1061 	}
1062 	s->i++;
1063 	(*filename_size) = (s->block_aligned_filename_size - s->i);
1064 	if (!((*filename_size) > 0 && (*filename_size < PATH_MAX))) {
1065 		printk(KERN_WARNING "%s: Filename size is [%zd], which is "
1066 		       "invalid\n", __func__, (*filename_size));
1067 		rc = -EINVAL;
1068 		goto out_free_unlock;
1069 	}
1070 	(*filename) = kmalloc(((*filename_size) + 1), GFP_KERNEL);
1071 	if (!(*filename)) {
1072 		rc = -ENOMEM;
1073 		goto out_free_unlock;
1074 	}
1075 	memcpy((*filename), &s->decrypted_filename[s->i], (*filename_size));
1076 	(*filename)[(*filename_size)] = '\0';
1077 out_free_unlock:
1078 	kfree(s->decrypted_filename);
1079 out_unlock:
1080 	mutex_unlock(s->tfm_mutex);
1081 out:
1082 	if (rc) {
1083 		(*packet_size) = 0;
1084 		(*filename_size) = 0;
1085 		(*filename) = NULL;
1086 	}
1087 	if (auth_tok_key) {
1088 		up_write(&(auth_tok_key->sem));
1089 		key_put(auth_tok_key);
1090 	}
1091 	skcipher_request_free(s->skcipher_req);
1092 	kfree(s);
1093 	return rc;
1094 }
1095 
1096 static int
1097 ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
1098 {
1099 	int rc = 0;
1100 
1101 	(*sig) = NULL;
1102 	switch (auth_tok->token_type) {
1103 	case ECRYPTFS_PASSWORD:
1104 		(*sig) = auth_tok->token.password.signature;
1105 		break;
1106 	case ECRYPTFS_PRIVATE_KEY:
1107 		(*sig) = auth_tok->token.private_key.signature;
1108 		break;
1109 	default:
1110 		printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
1111 		       auth_tok->token_type);
1112 		rc = -EINVAL;
1113 	}
1114 	return rc;
1115 }
1116 
1117 /**
1118  * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok.
1119  * @auth_tok: The key authentication token used to decrypt the session key
1120  * @crypt_stat: The cryptographic context
1121  *
1122  * Returns zero on success; non-zero error otherwise.
1123  */
1124 static int
1125 decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1126 				  struct ecryptfs_crypt_stat *crypt_stat)
1127 {
1128 	u8 cipher_code = 0;
1129 	struct ecryptfs_msg_ctx *msg_ctx;
1130 	struct ecryptfs_message *msg = NULL;
1131 	char *auth_tok_sig;
1132 	char *payload = NULL;
1133 	size_t payload_len = 0;
1134 	int rc;
1135 
1136 	rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok);
1137 	if (rc) {
1138 		printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
1139 		       auth_tok->token_type);
1140 		goto out;
1141 	}
1142 	rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
1143 				 &payload, &payload_len);
1144 	if (rc) {
1145 		ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet\n");
1146 		goto out;
1147 	}
1148 	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1149 	if (rc) {
1150 		ecryptfs_printk(KERN_ERR, "Error sending message to "
1151 				"ecryptfsd: %d\n", rc);
1152 		goto out;
1153 	}
1154 	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1155 	if (rc) {
1156 		ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
1157 				"from the user space daemon\n");
1158 		rc = -EIO;
1159 		goto out;
1160 	}
1161 	rc = parse_tag_65_packet(&(auth_tok->session_key),
1162 				 &cipher_code, msg);
1163 	if (rc) {
1164 		printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
1165 		       rc);
1166 		goto out;
1167 	}
1168 	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1169 	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1170 	       auth_tok->session_key.decrypted_key_size);
1171 	crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
1172 	rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code);
1173 	if (rc) {
1174 		ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
1175 				cipher_code)
1176 		goto out;
1177 	}
1178 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1179 	if (ecryptfs_verbosity > 0) {
1180 		ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
1181 		ecryptfs_dump_hex(crypt_stat->key,
1182 				  crypt_stat->key_size);
1183 	}
1184 out:
1185 	kfree(msg);
1186 	kfree(payload);
1187 	return rc;
1188 }
1189 
1190 static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
1191 {
1192 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1193 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1194 
1195 	list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
1196 				 auth_tok_list_head, list) {
1197 		list_del(&auth_tok_list_item->list);
1198 		kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1199 				auth_tok_list_item);
1200 	}
1201 }
1202 
1203 struct kmem_cache *ecryptfs_auth_tok_list_item_cache;
1204 
1205 /**
1206  * parse_tag_1_packet
1207  * @crypt_stat: The cryptographic context to modify based on packet contents
1208  * @data: The raw bytes of the packet.
1209  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1210  *                 a new authentication token will be placed at the
1211  *                 end of this list for this packet.
1212  * @new_auth_tok: Pointer to a pointer to memory that this function
1213  *                allocates; sets the memory address of the pointer to
1214  *                NULL on error. This object is added to the
1215  *                auth_tok_list.
1216  * @packet_size: This function writes the size of the parsed packet
1217  *               into this memory location; zero on error.
1218  * @max_packet_size: The maximum allowable packet size
1219  *
1220  * Returns zero on success; non-zero on error.
1221  */
1222 static int
1223 parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
1224 		   unsigned char *data, struct list_head *auth_tok_list,
1225 		   struct ecryptfs_auth_tok **new_auth_tok,
1226 		   size_t *packet_size, size_t max_packet_size)
1227 {
1228 	size_t body_size;
1229 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1230 	size_t length_size;
1231 	int rc = 0;
1232 
1233 	(*packet_size) = 0;
1234 	(*new_auth_tok) = NULL;
1235 	/**
1236 	 * This format is inspired by OpenPGP; see RFC 2440
1237 	 * packet tag 1
1238 	 *
1239 	 * Tag 1 identifier (1 byte)
1240 	 * Max Tag 1 packet size (max 3 bytes)
1241 	 * Version (1 byte)
1242 	 * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
1243 	 * Cipher identifier (1 byte)
1244 	 * Encrypted key size (arbitrary)
1245 	 *
1246 	 * 12 bytes minimum packet size
1247 	 */
1248 	if (unlikely(max_packet_size < 12)) {
1249 		printk(KERN_ERR "Invalid max packet size; must be >=12\n");
1250 		rc = -EINVAL;
1251 		goto out;
1252 	}
1253 	if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
1254 		printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n",
1255 		       ECRYPTFS_TAG_1_PACKET_TYPE);
1256 		rc = -EINVAL;
1257 		goto out;
1258 	}
1259 	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1260 	 * at end of function upon failure */
1261 	auth_tok_list_item =
1262 		kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache,
1263 				  GFP_KERNEL);
1264 	if (!auth_tok_list_item) {
1265 		printk(KERN_ERR "Unable to allocate memory\n");
1266 		rc = -ENOMEM;
1267 		goto out;
1268 	}
1269 	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1270 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1271 					  &length_size);
1272 	if (rc) {
1273 		printk(KERN_WARNING "Error parsing packet length; "
1274 		       "rc = [%d]\n", rc);
1275 		goto out_free;
1276 	}
1277 	if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) {
1278 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1279 		rc = -EINVAL;
1280 		goto out_free;
1281 	}
1282 	(*packet_size) += length_size;
1283 	if (unlikely((*packet_size) + body_size > max_packet_size)) {
1284 		printk(KERN_WARNING "Packet size exceeds max\n");
1285 		rc = -EINVAL;
1286 		goto out_free;
1287 	}
1288 	if (unlikely(data[(*packet_size)++] != 0x03)) {
1289 		printk(KERN_WARNING "Unknown version number [%d]\n",
1290 		       data[(*packet_size) - 1]);
1291 		rc = -EINVAL;
1292 		goto out_free;
1293 	}
1294 	ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
1295 			&data[(*packet_size)], ECRYPTFS_SIG_SIZE);
1296 	*packet_size += ECRYPTFS_SIG_SIZE;
1297 	/* This byte is skipped because the kernel does not need to
1298 	 * know which public key encryption algorithm was used */
1299 	(*packet_size)++;
1300 	(*new_auth_tok)->session_key.encrypted_key_size =
1301 		body_size - (ECRYPTFS_SIG_SIZE + 2);
1302 	if ((*new_auth_tok)->session_key.encrypted_key_size
1303 	    > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1304 		printk(KERN_WARNING "Tag 1 packet contains key larger "
1305 		       "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1306 		rc = -EINVAL;
1307 		goto out_free;
1308 	}
1309 	memcpy((*new_auth_tok)->session_key.encrypted_key,
1310 	       &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2)));
1311 	(*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
1312 	(*new_auth_tok)->session_key.flags &=
1313 		~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1314 	(*new_auth_tok)->session_key.flags |=
1315 		ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1316 	(*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
1317 	(*new_auth_tok)->flags = 0;
1318 	(*new_auth_tok)->session_key.flags &=
1319 		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1320 	(*new_auth_tok)->session_key.flags &=
1321 		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1322 	list_add(&auth_tok_list_item->list, auth_tok_list);
1323 	goto out;
1324 out_free:
1325 	(*new_auth_tok) = NULL;
1326 	memset(auth_tok_list_item, 0,
1327 	       sizeof(struct ecryptfs_auth_tok_list_item));
1328 	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1329 			auth_tok_list_item);
1330 out:
1331 	if (rc)
1332 		(*packet_size) = 0;
1333 	return rc;
1334 }
1335 
1336 /**
1337  * parse_tag_3_packet
1338  * @crypt_stat: The cryptographic context to modify based on packet
1339  *              contents.
1340  * @data: The raw bytes of the packet.
1341  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1342  *                 a new authentication token will be placed at the end
1343  *                 of this list for this packet.
1344  * @new_auth_tok: Pointer to a pointer to memory that this function
1345  *                allocates; sets the memory address of the pointer to
1346  *                NULL on error. This object is added to the
1347  *                auth_tok_list.
1348  * @packet_size: This function writes the size of the parsed packet
1349  *               into this memory location; zero on error.
1350  * @max_packet_size: maximum number of bytes to parse
1351  *
1352  * Returns zero on success; non-zero on error.
1353  */
1354 static int
1355 parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
1356 		   unsigned char *data, struct list_head *auth_tok_list,
1357 		   struct ecryptfs_auth_tok **new_auth_tok,
1358 		   size_t *packet_size, size_t max_packet_size)
1359 {
1360 	size_t body_size;
1361 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1362 	size_t length_size;
1363 	int rc = 0;
1364 
1365 	(*packet_size) = 0;
1366 	(*new_auth_tok) = NULL;
1367 	/**
1368 	 *This format is inspired by OpenPGP; see RFC 2440
1369 	 * packet tag 3
1370 	 *
1371 	 * Tag 3 identifier (1 byte)
1372 	 * Max Tag 3 packet size (max 3 bytes)
1373 	 * Version (1 byte)
1374 	 * Cipher code (1 byte)
1375 	 * S2K specifier (1 byte)
1376 	 * Hash identifier (1 byte)
1377 	 * Salt (ECRYPTFS_SALT_SIZE)
1378 	 * Hash iterations (1 byte)
1379 	 * Encrypted key (arbitrary)
1380 	 *
1381 	 * (ECRYPTFS_SALT_SIZE + 7) minimum packet size
1382 	 */
1383 	if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) {
1384 		printk(KERN_ERR "Max packet size too large\n");
1385 		rc = -EINVAL;
1386 		goto out;
1387 	}
1388 	if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
1389 		printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n",
1390 		       ECRYPTFS_TAG_3_PACKET_TYPE);
1391 		rc = -EINVAL;
1392 		goto out;
1393 	}
1394 	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1395 	 * at end of function upon failure */
1396 	auth_tok_list_item =
1397 	    kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
1398 	if (!auth_tok_list_item) {
1399 		printk(KERN_ERR "Unable to allocate memory\n");
1400 		rc = -ENOMEM;
1401 		goto out;
1402 	}
1403 	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1404 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1405 					  &length_size);
1406 	if (rc) {
1407 		printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n",
1408 		       rc);
1409 		goto out_free;
1410 	}
1411 	if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) {
1412 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1413 		rc = -EINVAL;
1414 		goto out_free;
1415 	}
1416 	(*packet_size) += length_size;
1417 	if (unlikely((*packet_size) + body_size > max_packet_size)) {
1418 		printk(KERN_ERR "Packet size exceeds max\n");
1419 		rc = -EINVAL;
1420 		goto out_free;
1421 	}
1422 	(*new_auth_tok)->session_key.encrypted_key_size =
1423 		(body_size - (ECRYPTFS_SALT_SIZE + 5));
1424 	if ((*new_auth_tok)->session_key.encrypted_key_size
1425 	    > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1426 		printk(KERN_WARNING "Tag 3 packet contains key larger "
1427 		       "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1428 		rc = -EINVAL;
1429 		goto out_free;
1430 	}
1431 	if (unlikely(data[(*packet_size)++] != 0x04)) {
1432 		printk(KERN_WARNING "Unknown version number [%d]\n",
1433 		       data[(*packet_size) - 1]);
1434 		rc = -EINVAL;
1435 		goto out_free;
1436 	}
1437 	rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher,
1438 					    (u16)data[(*packet_size)]);
1439 	if (rc)
1440 		goto out_free;
1441 	/* A little extra work to differentiate among the AES key
1442 	 * sizes; see RFC2440 */
1443 	switch(data[(*packet_size)++]) {
1444 	case RFC2440_CIPHER_AES_192:
1445 		crypt_stat->key_size = 24;
1446 		break;
1447 	default:
1448 		crypt_stat->key_size =
1449 			(*new_auth_tok)->session_key.encrypted_key_size;
1450 	}
1451 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1452 	if (rc)
1453 		goto out_free;
1454 	if (unlikely(data[(*packet_size)++] != 0x03)) {
1455 		printk(KERN_WARNING "Only S2K ID 3 is currently supported\n");
1456 		rc = -ENOSYS;
1457 		goto out_free;
1458 	}
1459 	/* TODO: finish the hash mapping */
1460 	switch (data[(*packet_size)++]) {
1461 	case 0x01: /* See RFC2440 for these numbers and their mappings */
1462 		/* Choose MD5 */
1463 		memcpy((*new_auth_tok)->token.password.salt,
1464 		       &data[(*packet_size)], ECRYPTFS_SALT_SIZE);
1465 		(*packet_size) += ECRYPTFS_SALT_SIZE;
1466 		/* This conversion was taken straight from RFC2440 */
1467 		(*new_auth_tok)->token.password.hash_iterations =
1468 			((u32) 16 + (data[(*packet_size)] & 15))
1469 				<< ((data[(*packet_size)] >> 4) + 6);
1470 		(*packet_size)++;
1471 		/* Friendly reminder:
1472 		 * (*new_auth_tok)->session_key.encrypted_key_size =
1473 		 *         (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
1474 		memcpy((*new_auth_tok)->session_key.encrypted_key,
1475 		       &data[(*packet_size)],
1476 		       (*new_auth_tok)->session_key.encrypted_key_size);
1477 		(*packet_size) +=
1478 			(*new_auth_tok)->session_key.encrypted_key_size;
1479 		(*new_auth_tok)->session_key.flags &=
1480 			~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1481 		(*new_auth_tok)->session_key.flags |=
1482 			ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1483 		(*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */
1484 		break;
1485 	default:
1486 		ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
1487 				"[%d]\n", data[(*packet_size) - 1]);
1488 		rc = -ENOSYS;
1489 		goto out_free;
1490 	}
1491 	(*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
1492 	/* TODO: Parametarize; we might actually want userspace to
1493 	 * decrypt the session key. */
1494 	(*new_auth_tok)->session_key.flags &=
1495 			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1496 	(*new_auth_tok)->session_key.flags &=
1497 			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1498 	list_add(&auth_tok_list_item->list, auth_tok_list);
1499 	goto out;
1500 out_free:
1501 	(*new_auth_tok) = NULL;
1502 	memset(auth_tok_list_item, 0,
1503 	       sizeof(struct ecryptfs_auth_tok_list_item));
1504 	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1505 			auth_tok_list_item);
1506 out:
1507 	if (rc)
1508 		(*packet_size) = 0;
1509 	return rc;
1510 }
1511 
1512 /**
1513  * parse_tag_11_packet
1514  * @data: The raw bytes of the packet
1515  * @contents: This function writes the data contents of the literal
1516  *            packet into this memory location
1517  * @max_contents_bytes: The maximum number of bytes that this function
1518  *                      is allowed to write into contents
1519  * @tag_11_contents_size: This function writes the size of the parsed
1520  *                        contents into this memory location; zero on
1521  *                        error
1522  * @packet_size: This function writes the size of the parsed packet
1523  *               into this memory location; zero on error
1524  * @max_packet_size: maximum number of bytes to parse
1525  *
1526  * Returns zero on success; non-zero on error.
1527  */
1528 static int
1529 parse_tag_11_packet(unsigned char *data, unsigned char *contents,
1530 		    size_t max_contents_bytes, size_t *tag_11_contents_size,
1531 		    size_t *packet_size, size_t max_packet_size)
1532 {
1533 	size_t body_size;
1534 	size_t length_size;
1535 	int rc = 0;
1536 
1537 	(*packet_size) = 0;
1538 	(*tag_11_contents_size) = 0;
1539 	/* This format is inspired by OpenPGP; see RFC 2440
1540 	 * packet tag 11
1541 	 *
1542 	 * Tag 11 identifier (1 byte)
1543 	 * Max Tag 11 packet size (max 3 bytes)
1544 	 * Binary format specifier (1 byte)
1545 	 * Filename length (1 byte)
1546 	 * Filename ("_CONSOLE") (8 bytes)
1547 	 * Modification date (4 bytes)
1548 	 * Literal data (arbitrary)
1549 	 *
1550 	 * We need at least 16 bytes of data for the packet to even be
1551 	 * valid.
1552 	 */
1553 	if (max_packet_size < 16) {
1554 		printk(KERN_ERR "Maximum packet size too small\n");
1555 		rc = -EINVAL;
1556 		goto out;
1557 	}
1558 	if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
1559 		printk(KERN_WARNING "Invalid tag 11 packet format\n");
1560 		rc = -EINVAL;
1561 		goto out;
1562 	}
1563 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1564 					  &length_size);
1565 	if (rc) {
1566 		printk(KERN_WARNING "Invalid tag 11 packet format\n");
1567 		goto out;
1568 	}
1569 	if (body_size < 14) {
1570 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1571 		rc = -EINVAL;
1572 		goto out;
1573 	}
1574 	(*packet_size) += length_size;
1575 	(*tag_11_contents_size) = (body_size - 14);
1576 	if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
1577 		printk(KERN_ERR "Packet size exceeds max\n");
1578 		rc = -EINVAL;
1579 		goto out;
1580 	}
1581 	if (unlikely((*tag_11_contents_size) > max_contents_bytes)) {
1582 		printk(KERN_ERR "Literal data section in tag 11 packet exceeds "
1583 		       "expected size\n");
1584 		rc = -EINVAL;
1585 		goto out;
1586 	}
1587 	if (data[(*packet_size)++] != 0x62) {
1588 		printk(KERN_WARNING "Unrecognizable packet\n");
1589 		rc = -EINVAL;
1590 		goto out;
1591 	}
1592 	if (data[(*packet_size)++] != 0x08) {
1593 		printk(KERN_WARNING "Unrecognizable packet\n");
1594 		rc = -EINVAL;
1595 		goto out;
1596 	}
1597 	(*packet_size) += 12; /* Ignore filename and modification date */
1598 	memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
1599 	(*packet_size) += (*tag_11_contents_size);
1600 out:
1601 	if (rc) {
1602 		(*packet_size) = 0;
1603 		(*tag_11_contents_size) = 0;
1604 	}
1605 	return rc;
1606 }
1607 
1608 int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
1609 				      struct ecryptfs_auth_tok **auth_tok,
1610 				      char *sig)
1611 {
1612 	int rc = 0;
1613 
1614 	(*auth_tok_key) = request_key(&key_type_user, sig, NULL);
1615 	if (IS_ERR(*auth_tok_key)) {
1616 		(*auth_tok_key) = ecryptfs_get_encrypted_key(sig);
1617 		if (IS_ERR(*auth_tok_key)) {
1618 			printk(KERN_ERR "Could not find key with description: [%s]\n",
1619 			      sig);
1620 			rc = process_request_key_err(PTR_ERR(*auth_tok_key));
1621 			(*auth_tok_key) = NULL;
1622 			goto out;
1623 		}
1624 	}
1625 	down_write(&(*auth_tok_key)->sem);
1626 	rc = ecryptfs_verify_auth_tok_from_key(*auth_tok_key, auth_tok);
1627 	if (rc) {
1628 		up_write(&(*auth_tok_key)->sem);
1629 		key_put(*auth_tok_key);
1630 		(*auth_tok_key) = NULL;
1631 		goto out;
1632 	}
1633 out:
1634 	return rc;
1635 }
1636 
1637 /**
1638  * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok.
1639  * @auth_tok: The passphrase authentication token to use to encrypt the FEK
1640  * @crypt_stat: The cryptographic context
1641  *
1642  * Returns zero on success; non-zero error otherwise
1643  */
1644 static int
1645 decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1646 					 struct ecryptfs_crypt_stat *crypt_stat)
1647 {
1648 	struct scatterlist dst_sg[2];
1649 	struct scatterlist src_sg[2];
1650 	struct mutex *tfm_mutex;
1651 	struct crypto_skcipher *tfm;
1652 	struct skcipher_request *req = NULL;
1653 	int rc = 0;
1654 
1655 	if (unlikely(ecryptfs_verbosity > 0)) {
1656 		ecryptfs_printk(
1657 			KERN_DEBUG, "Session key encryption key (size [%d]):\n",
1658 			auth_tok->token.password.session_key_encryption_key_bytes);
1659 		ecryptfs_dump_hex(
1660 			auth_tok->token.password.session_key_encryption_key,
1661 			auth_tok->token.password.session_key_encryption_key_bytes);
1662 	}
1663 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
1664 							crypt_stat->cipher);
1665 	if (unlikely(rc)) {
1666 		printk(KERN_ERR "Internal error whilst attempting to get "
1667 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1668 		       crypt_stat->cipher, rc);
1669 		goto out;
1670 	}
1671 	rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
1672 				 auth_tok->session_key.encrypted_key_size,
1673 				 src_sg, 2);
1674 	if (rc < 1 || rc > 2) {
1675 		printk(KERN_ERR "Internal error whilst attempting to convert "
1676 			"auth_tok->session_key.encrypted_key to scatterlist; "
1677 			"expected rc = 1; got rc = [%d]. "
1678 		       "auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
1679 			auth_tok->session_key.encrypted_key_size);
1680 		goto out;
1681 	}
1682 	auth_tok->session_key.decrypted_key_size =
1683 		auth_tok->session_key.encrypted_key_size;
1684 	rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
1685 				 auth_tok->session_key.decrypted_key_size,
1686 				 dst_sg, 2);
1687 	if (rc < 1 || rc > 2) {
1688 		printk(KERN_ERR "Internal error whilst attempting to convert "
1689 			"auth_tok->session_key.decrypted_key to scatterlist; "
1690 			"expected rc = 1; got rc = [%d]\n", rc);
1691 		goto out;
1692 	}
1693 	mutex_lock(tfm_mutex);
1694 	req = skcipher_request_alloc(tfm, GFP_KERNEL);
1695 	if (!req) {
1696 		mutex_unlock(tfm_mutex);
1697 		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
1698 		       "skcipher_request_alloc for %s\n", __func__,
1699 		       crypto_skcipher_driver_name(tfm));
1700 		rc = -ENOMEM;
1701 		goto out;
1702 	}
1703 
1704 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP,
1705 				      NULL, NULL);
1706 	rc = crypto_skcipher_setkey(
1707 		tfm, auth_tok->token.password.session_key_encryption_key,
1708 		crypt_stat->key_size);
1709 	if (unlikely(rc < 0)) {
1710 		mutex_unlock(tfm_mutex);
1711 		printk(KERN_ERR "Error setting key for crypto context\n");
1712 		rc = -EINVAL;
1713 		goto out;
1714 	}
1715 	skcipher_request_set_crypt(req, src_sg, dst_sg,
1716 				   auth_tok->session_key.encrypted_key_size,
1717 				   NULL);
1718 	rc = crypto_skcipher_decrypt(req);
1719 	mutex_unlock(tfm_mutex);
1720 	if (unlikely(rc)) {
1721 		printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1722 		goto out;
1723 	}
1724 	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1725 	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1726 	       auth_tok->session_key.decrypted_key_size);
1727 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1728 	if (unlikely(ecryptfs_verbosity > 0)) {
1729 		ecryptfs_printk(KERN_DEBUG, "FEK of size [%zd]:\n",
1730 				crypt_stat->key_size);
1731 		ecryptfs_dump_hex(crypt_stat->key,
1732 				  crypt_stat->key_size);
1733 	}
1734 out:
1735 	skcipher_request_free(req);
1736 	return rc;
1737 }
1738 
1739 /**
1740  * ecryptfs_parse_packet_set
1741  * @crypt_stat: The cryptographic context
1742  * @src: Virtual address of region of memory containing the packets
1743  * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set
1744  *
1745  * Get crypt_stat to have the file's session key if the requisite key
1746  * is available to decrypt the session key.
1747  *
1748  * Returns Zero if a valid authentication token was retrieved and
1749  * processed; negative value for file not encrypted or for error
1750  * conditions.
1751  */
1752 int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
1753 			      unsigned char *src,
1754 			      struct dentry *ecryptfs_dentry)
1755 {
1756 	size_t i = 0;
1757 	size_t found_auth_tok;
1758 	size_t next_packet_is_auth_tok_packet;
1759 	struct list_head auth_tok_list;
1760 	struct ecryptfs_auth_tok *matching_auth_tok;
1761 	struct ecryptfs_auth_tok *candidate_auth_tok;
1762 	char *candidate_auth_tok_sig;
1763 	size_t packet_size;
1764 	struct ecryptfs_auth_tok *new_auth_tok;
1765 	unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1766 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1767 	size_t tag_11_contents_size;
1768 	size_t tag_11_packet_size;
1769 	struct key *auth_tok_key = NULL;
1770 	int rc = 0;
1771 
1772 	INIT_LIST_HEAD(&auth_tok_list);
1773 	/* Parse the header to find as many packets as we can; these will be
1774 	 * added the our &auth_tok_list */
1775 	next_packet_is_auth_tok_packet = 1;
1776 	while (next_packet_is_auth_tok_packet) {
1777 		size_t max_packet_size = ((PAGE_SIZE - 8) - i);
1778 
1779 		switch (src[i]) {
1780 		case ECRYPTFS_TAG_3_PACKET_TYPE:
1781 			rc = parse_tag_3_packet(crypt_stat,
1782 						(unsigned char *)&src[i],
1783 						&auth_tok_list, &new_auth_tok,
1784 						&packet_size, max_packet_size);
1785 			if (rc) {
1786 				ecryptfs_printk(KERN_ERR, "Error parsing "
1787 						"tag 3 packet\n");
1788 				rc = -EIO;
1789 				goto out_wipe_list;
1790 			}
1791 			i += packet_size;
1792 			rc = parse_tag_11_packet((unsigned char *)&src[i],
1793 						 sig_tmp_space,
1794 						 ECRYPTFS_SIG_SIZE,
1795 						 &tag_11_contents_size,
1796 						 &tag_11_packet_size,
1797 						 max_packet_size);
1798 			if (rc) {
1799 				ecryptfs_printk(KERN_ERR, "No valid "
1800 						"(ecryptfs-specific) literal "
1801 						"packet containing "
1802 						"authentication token "
1803 						"signature found after "
1804 						"tag 3 packet\n");
1805 				rc = -EIO;
1806 				goto out_wipe_list;
1807 			}
1808 			i += tag_11_packet_size;
1809 			if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
1810 				ecryptfs_printk(KERN_ERR, "Expected "
1811 						"signature of size [%d]; "
1812 						"read size [%zd]\n",
1813 						ECRYPTFS_SIG_SIZE,
1814 						tag_11_contents_size);
1815 				rc = -EIO;
1816 				goto out_wipe_list;
1817 			}
1818 			ecryptfs_to_hex(new_auth_tok->token.password.signature,
1819 					sig_tmp_space, tag_11_contents_size);
1820 			new_auth_tok->token.password.signature[
1821 				ECRYPTFS_PASSWORD_SIG_SIZE] = '\0';
1822 			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1823 			break;
1824 		case ECRYPTFS_TAG_1_PACKET_TYPE:
1825 			rc = parse_tag_1_packet(crypt_stat,
1826 						(unsigned char *)&src[i],
1827 						&auth_tok_list, &new_auth_tok,
1828 						&packet_size, max_packet_size);
1829 			if (rc) {
1830 				ecryptfs_printk(KERN_ERR, "Error parsing "
1831 						"tag 1 packet\n");
1832 				rc = -EIO;
1833 				goto out_wipe_list;
1834 			}
1835 			i += packet_size;
1836 			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1837 			break;
1838 		case ECRYPTFS_TAG_11_PACKET_TYPE:
1839 			ecryptfs_printk(KERN_WARNING, "Invalid packet set "
1840 					"(Tag 11 not allowed by itself)\n");
1841 			rc = -EIO;
1842 			goto out_wipe_list;
1843 		default:
1844 			ecryptfs_printk(KERN_DEBUG, "No packet at offset [%zd] "
1845 					"of the file header; hex value of "
1846 					"character is [0x%.2x]\n", i, src[i]);
1847 			next_packet_is_auth_tok_packet = 0;
1848 		}
1849 	}
1850 	if (list_empty(&auth_tok_list)) {
1851 		printk(KERN_ERR "The lower file appears to be a non-encrypted "
1852 		       "eCryptfs file; this is not supported in this version "
1853 		       "of the eCryptfs kernel module\n");
1854 		rc = -EINVAL;
1855 		goto out;
1856 	}
1857 	/* auth_tok_list contains the set of authentication tokens
1858 	 * parsed from the metadata. We need to find a matching
1859 	 * authentication token that has the secret component(s)
1860 	 * necessary to decrypt the EFEK in the auth_tok parsed from
1861 	 * the metadata. There may be several potential matches, but
1862 	 * just one will be sufficient to decrypt to get the FEK. */
1863 find_next_matching_auth_tok:
1864 	found_auth_tok = 0;
1865 	list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1866 		candidate_auth_tok = &auth_tok_list_item->auth_tok;
1867 		if (unlikely(ecryptfs_verbosity > 0)) {
1868 			ecryptfs_printk(KERN_DEBUG,
1869 					"Considering candidate auth tok:\n");
1870 			ecryptfs_dump_auth_tok(candidate_auth_tok);
1871 		}
1872 		rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
1873 					       candidate_auth_tok);
1874 		if (rc) {
1875 			printk(KERN_ERR
1876 			       "Unrecognized candidate auth tok type: [%d]\n",
1877 			       candidate_auth_tok->token_type);
1878 			rc = -EINVAL;
1879 			goto out_wipe_list;
1880 		}
1881 		rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
1882 					       &matching_auth_tok,
1883 					       crypt_stat->mount_crypt_stat,
1884 					       candidate_auth_tok_sig);
1885 		if (!rc) {
1886 			found_auth_tok = 1;
1887 			goto found_matching_auth_tok;
1888 		}
1889 	}
1890 	if (!found_auth_tok) {
1891 		ecryptfs_printk(KERN_ERR, "Could not find a usable "
1892 				"authentication token\n");
1893 		rc = -EIO;
1894 		goto out_wipe_list;
1895 	}
1896 found_matching_auth_tok:
1897 	if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1898 		memcpy(&(candidate_auth_tok->token.private_key),
1899 		       &(matching_auth_tok->token.private_key),
1900 		       sizeof(struct ecryptfs_private_key));
1901 		up_write(&(auth_tok_key->sem));
1902 		key_put(auth_tok_key);
1903 		rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1904 						       crypt_stat);
1905 	} else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1906 		memcpy(&(candidate_auth_tok->token.password),
1907 		       &(matching_auth_tok->token.password),
1908 		       sizeof(struct ecryptfs_password));
1909 		up_write(&(auth_tok_key->sem));
1910 		key_put(auth_tok_key);
1911 		rc = decrypt_passphrase_encrypted_session_key(
1912 			candidate_auth_tok, crypt_stat);
1913 	} else {
1914 		up_write(&(auth_tok_key->sem));
1915 		key_put(auth_tok_key);
1916 		rc = -EINVAL;
1917 	}
1918 	if (rc) {
1919 		struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1920 
1921 		ecryptfs_printk(KERN_WARNING, "Error decrypting the "
1922 				"session key for authentication token with sig "
1923 				"[%.*s]; rc = [%d]. Removing auth tok "
1924 				"candidate from the list and searching for "
1925 				"the next match.\n", ECRYPTFS_SIG_SIZE_HEX,
1926 				candidate_auth_tok_sig,	rc);
1927 		list_for_each_entry_safe(auth_tok_list_item,
1928 					 auth_tok_list_item_tmp,
1929 					 &auth_tok_list, list) {
1930 			if (candidate_auth_tok
1931 			    == &auth_tok_list_item->auth_tok) {
1932 				list_del(&auth_tok_list_item->list);
1933 				kmem_cache_free(
1934 					ecryptfs_auth_tok_list_item_cache,
1935 					auth_tok_list_item);
1936 				goto find_next_matching_auth_tok;
1937 			}
1938 		}
1939 		BUG();
1940 	}
1941 	rc = ecryptfs_compute_root_iv(crypt_stat);
1942 	if (rc) {
1943 		ecryptfs_printk(KERN_ERR, "Error computing "
1944 				"the root IV\n");
1945 		goto out_wipe_list;
1946 	}
1947 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1948 	if (rc) {
1949 		ecryptfs_printk(KERN_ERR, "Error initializing crypto "
1950 				"context for cipher [%s]; rc = [%d]\n",
1951 				crypt_stat->cipher, rc);
1952 	}
1953 out_wipe_list:
1954 	wipe_auth_tok_list(&auth_tok_list);
1955 out:
1956 	return rc;
1957 }
1958 
1959 static int
1960 pki_encrypt_session_key(struct key *auth_tok_key,
1961 			struct ecryptfs_auth_tok *auth_tok,
1962 			struct ecryptfs_crypt_stat *crypt_stat,
1963 			struct ecryptfs_key_record *key_rec)
1964 {
1965 	struct ecryptfs_msg_ctx *msg_ctx = NULL;
1966 	char *payload = NULL;
1967 	size_t payload_len = 0;
1968 	struct ecryptfs_message *msg;
1969 	int rc;
1970 
1971 	rc = write_tag_66_packet(auth_tok->token.private_key.signature,
1972 				 ecryptfs_code_for_cipher_string(
1973 					 crypt_stat->cipher,
1974 					 crypt_stat->key_size),
1975 				 crypt_stat, &payload, &payload_len);
1976 	up_write(&(auth_tok_key->sem));
1977 	key_put(auth_tok_key);
1978 	if (rc) {
1979 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
1980 		goto out;
1981 	}
1982 	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1983 	if (rc) {
1984 		ecryptfs_printk(KERN_ERR, "Error sending message to "
1985 				"ecryptfsd: %d\n", rc);
1986 		goto out;
1987 	}
1988 	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1989 	if (rc) {
1990 		ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
1991 				"from the user space daemon\n");
1992 		rc = -EIO;
1993 		goto out;
1994 	}
1995 	rc = parse_tag_67_packet(key_rec, msg);
1996 	if (rc)
1997 		ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
1998 	kfree(msg);
1999 out:
2000 	kfree(payload);
2001 	return rc;
2002 }
2003 /**
2004  * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
2005  * @dest: Buffer into which to write the packet
2006  * @remaining_bytes: Maximum number of bytes that can be writtn
2007  * @auth_tok_key: The authentication token key to unlock and put when done with
2008  *                @auth_tok
2009  * @auth_tok: The authentication token used for generating the tag 1 packet
2010  * @crypt_stat: The cryptographic context
2011  * @key_rec: The key record struct for the tag 1 packet
2012  * @packet_size: This function will write the number of bytes that end
2013  *               up constituting the packet; set to zero on error
2014  *
2015  * Returns zero on success; non-zero on error.
2016  */
2017 static int
2018 write_tag_1_packet(char *dest, size_t *remaining_bytes,
2019 		   struct key *auth_tok_key, struct ecryptfs_auth_tok *auth_tok,
2020 		   struct ecryptfs_crypt_stat *crypt_stat,
2021 		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
2022 {
2023 	size_t i;
2024 	size_t encrypted_session_key_valid = 0;
2025 	size_t packet_size_length;
2026 	size_t max_packet_size;
2027 	int rc = 0;
2028 
2029 	(*packet_size) = 0;
2030 	ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
2031 			  ECRYPTFS_SIG_SIZE);
2032 	encrypted_session_key_valid = 0;
2033 	for (i = 0; i < crypt_stat->key_size; i++)
2034 		encrypted_session_key_valid |=
2035 			auth_tok->session_key.encrypted_key[i];
2036 	if (encrypted_session_key_valid) {
2037 		memcpy(key_rec->enc_key,
2038 		       auth_tok->session_key.encrypted_key,
2039 		       auth_tok->session_key.encrypted_key_size);
2040 		up_write(&(auth_tok_key->sem));
2041 		key_put(auth_tok_key);
2042 		goto encrypted_session_key_set;
2043 	}
2044 	if (auth_tok->session_key.encrypted_key_size == 0)
2045 		auth_tok->session_key.encrypted_key_size =
2046 			auth_tok->token.private_key.key_size;
2047 	rc = pki_encrypt_session_key(auth_tok_key, auth_tok, crypt_stat,
2048 				     key_rec);
2049 	if (rc) {
2050 		printk(KERN_ERR "Failed to encrypt session key via a key "
2051 		       "module; rc = [%d]\n", rc);
2052 		goto out;
2053 	}
2054 	if (ecryptfs_verbosity > 0) {
2055 		ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
2056 		ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
2057 	}
2058 encrypted_session_key_set:
2059 	/* This format is inspired by OpenPGP; see RFC 2440
2060 	 * packet tag 1 */
2061 	max_packet_size = (1                         /* Tag 1 identifier */
2062 			   + 3                       /* Max Tag 1 packet size */
2063 			   + 1                       /* Version */
2064 			   + ECRYPTFS_SIG_SIZE       /* Key identifier */
2065 			   + 1                       /* Cipher identifier */
2066 			   + key_rec->enc_key_size); /* Encrypted key size */
2067 	if (max_packet_size > (*remaining_bytes)) {
2068 		printk(KERN_ERR "Packet length larger than maximum allowable; "
2069 		       "need up to [%td] bytes, but there are only [%td] "
2070 		       "available\n", max_packet_size, (*remaining_bytes));
2071 		rc = -EINVAL;
2072 		goto out;
2073 	}
2074 	dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
2075 	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2076 					  (max_packet_size - 4),
2077 					  &packet_size_length);
2078 	if (rc) {
2079 		ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
2080 				"header; cannot generate packet length\n");
2081 		goto out;
2082 	}
2083 	(*packet_size) += packet_size_length;
2084 	dest[(*packet_size)++] = 0x03; /* version 3 */
2085 	memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
2086 	(*packet_size) += ECRYPTFS_SIG_SIZE;
2087 	dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
2088 	memcpy(&dest[(*packet_size)], key_rec->enc_key,
2089 	       key_rec->enc_key_size);
2090 	(*packet_size) += key_rec->enc_key_size;
2091 out:
2092 	if (rc)
2093 		(*packet_size) = 0;
2094 	else
2095 		(*remaining_bytes) -= (*packet_size);
2096 	return rc;
2097 }
2098 
2099 /**
2100  * write_tag_11_packet
2101  * @dest: Target into which Tag 11 packet is to be written
2102  * @remaining_bytes: Maximum packet length
2103  * @contents: Byte array of contents to copy in
2104  * @contents_length: Number of bytes in contents
2105  * @packet_length: Length of the Tag 11 packet written; zero on error
2106  *
2107  * Returns zero on success; non-zero on error.
2108  */
2109 static int
2110 write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents,
2111 		    size_t contents_length, size_t *packet_length)
2112 {
2113 	size_t packet_size_length;
2114 	size_t max_packet_size;
2115 	int rc = 0;
2116 
2117 	(*packet_length) = 0;
2118 	/* This format is inspired by OpenPGP; see RFC 2440
2119 	 * packet tag 11 */
2120 	max_packet_size = (1                   /* Tag 11 identifier */
2121 			   + 3                 /* Max Tag 11 packet size */
2122 			   + 1                 /* Binary format specifier */
2123 			   + 1                 /* Filename length */
2124 			   + 8                 /* Filename ("_CONSOLE") */
2125 			   + 4                 /* Modification date */
2126 			   + contents_length); /* Literal data */
2127 	if (max_packet_size > (*remaining_bytes)) {
2128 		printk(KERN_ERR "Packet length larger than maximum allowable; "
2129 		       "need up to [%td] bytes, but there are only [%td] "
2130 		       "available\n", max_packet_size, (*remaining_bytes));
2131 		rc = -EINVAL;
2132 		goto out;
2133 	}
2134 	dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
2135 	rc = ecryptfs_write_packet_length(&dest[(*packet_length)],
2136 					  (max_packet_size - 4),
2137 					  &packet_size_length);
2138 	if (rc) {
2139 		printk(KERN_ERR "Error generating tag 11 packet header; cannot "
2140 		       "generate packet length. rc = [%d]\n", rc);
2141 		goto out;
2142 	}
2143 	(*packet_length) += packet_size_length;
2144 	dest[(*packet_length)++] = 0x62; /* binary data format specifier */
2145 	dest[(*packet_length)++] = 8;
2146 	memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
2147 	(*packet_length) += 8;
2148 	memset(&dest[(*packet_length)], 0x00, 4);
2149 	(*packet_length) += 4;
2150 	memcpy(&dest[(*packet_length)], contents, contents_length);
2151 	(*packet_length) += contents_length;
2152  out:
2153 	if (rc)
2154 		(*packet_length) = 0;
2155 	else
2156 		(*remaining_bytes) -= (*packet_length);
2157 	return rc;
2158 }
2159 
2160 /**
2161  * write_tag_3_packet
2162  * @dest: Buffer into which to write the packet
2163  * @remaining_bytes: Maximum number of bytes that can be written
2164  * @auth_tok: Authentication token
2165  * @crypt_stat: The cryptographic context
2166  * @key_rec: encrypted key
2167  * @packet_size: This function will write the number of bytes that end
2168  *               up constituting the packet; set to zero on error
2169  *
2170  * Returns zero on success; non-zero on error.
2171  */
2172 static int
2173 write_tag_3_packet(char *dest, size_t *remaining_bytes,
2174 		   struct ecryptfs_auth_tok *auth_tok,
2175 		   struct ecryptfs_crypt_stat *crypt_stat,
2176 		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
2177 {
2178 	size_t i;
2179 	size_t encrypted_session_key_valid = 0;
2180 	char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
2181 	struct scatterlist dst_sg[2];
2182 	struct scatterlist src_sg[2];
2183 	struct mutex *tfm_mutex = NULL;
2184 	u8 cipher_code;
2185 	size_t packet_size_length;
2186 	size_t max_packet_size;
2187 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2188 		crypt_stat->mount_crypt_stat;
2189 	struct crypto_skcipher *tfm;
2190 	struct skcipher_request *req;
2191 	int rc = 0;
2192 
2193 	(*packet_size) = 0;
2194 	ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
2195 			  ECRYPTFS_SIG_SIZE);
2196 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2197 							crypt_stat->cipher);
2198 	if (unlikely(rc)) {
2199 		printk(KERN_ERR "Internal error whilst attempting to get "
2200 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
2201 		       crypt_stat->cipher, rc);
2202 		goto out;
2203 	}
2204 	if (mount_crypt_stat->global_default_cipher_key_size == 0) {
2205 		printk(KERN_WARNING "No key size specified at mount; "
2206 		       "defaulting to [%d]\n",
2207 		       crypto_skcipher_max_keysize(tfm));
2208 		mount_crypt_stat->global_default_cipher_key_size =
2209 			crypto_skcipher_max_keysize(tfm);
2210 	}
2211 	if (crypt_stat->key_size == 0)
2212 		crypt_stat->key_size =
2213 			mount_crypt_stat->global_default_cipher_key_size;
2214 	if (auth_tok->session_key.encrypted_key_size == 0)
2215 		auth_tok->session_key.encrypted_key_size =
2216 			crypt_stat->key_size;
2217 	if (crypt_stat->key_size == 24
2218 	    && strcmp("aes", crypt_stat->cipher) == 0) {
2219 		memset((crypt_stat->key + 24), 0, 8);
2220 		auth_tok->session_key.encrypted_key_size = 32;
2221 	} else
2222 		auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
2223 	key_rec->enc_key_size =
2224 		auth_tok->session_key.encrypted_key_size;
2225 	encrypted_session_key_valid = 0;
2226 	for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
2227 		encrypted_session_key_valid |=
2228 			auth_tok->session_key.encrypted_key[i];
2229 	if (encrypted_session_key_valid) {
2230 		ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
2231 				"using auth_tok->session_key.encrypted_key, "
2232 				"where key_rec->enc_key_size = [%zd]\n",
2233 				key_rec->enc_key_size);
2234 		memcpy(key_rec->enc_key,
2235 		       auth_tok->session_key.encrypted_key,
2236 		       key_rec->enc_key_size);
2237 		goto encrypted_session_key_set;
2238 	}
2239 	if (auth_tok->token.password.flags &
2240 	    ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
2241 		ecryptfs_printk(KERN_DEBUG, "Using previously generated "
2242 				"session key encryption key of size [%d]\n",
2243 				auth_tok->token.password.
2244 				session_key_encryption_key_bytes);
2245 		memcpy(session_key_encryption_key,
2246 		       auth_tok->token.password.session_key_encryption_key,
2247 		       crypt_stat->key_size);
2248 		ecryptfs_printk(KERN_DEBUG,
2249 				"Cached session key encryption key:\n");
2250 		if (ecryptfs_verbosity > 0)
2251 			ecryptfs_dump_hex(session_key_encryption_key, 16);
2252 	}
2253 	if (unlikely(ecryptfs_verbosity > 0)) {
2254 		ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
2255 		ecryptfs_dump_hex(session_key_encryption_key, 16);
2256 	}
2257 	rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size,
2258 				 src_sg, 2);
2259 	if (rc < 1 || rc > 2) {
2260 		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2261 				"for crypt_stat session key; expected rc = 1; "
2262 				"got rc = [%d]. key_rec->enc_key_size = [%zd]\n",
2263 				rc, key_rec->enc_key_size);
2264 		rc = -ENOMEM;
2265 		goto out;
2266 	}
2267 	rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size,
2268 				 dst_sg, 2);
2269 	if (rc < 1 || rc > 2) {
2270 		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2271 				"for crypt_stat encrypted session key; "
2272 				"expected rc = 1; got rc = [%d]. "
2273 				"key_rec->enc_key_size = [%zd]\n", rc,
2274 				key_rec->enc_key_size);
2275 		rc = -ENOMEM;
2276 		goto out;
2277 	}
2278 	mutex_lock(tfm_mutex);
2279 	rc = crypto_skcipher_setkey(tfm, session_key_encryption_key,
2280 				    crypt_stat->key_size);
2281 	if (rc < 0) {
2282 		mutex_unlock(tfm_mutex);
2283 		ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
2284 				"context; rc = [%d]\n", rc);
2285 		goto out;
2286 	}
2287 
2288 	req = skcipher_request_alloc(tfm, GFP_KERNEL);
2289 	if (!req) {
2290 		mutex_unlock(tfm_mutex);
2291 		ecryptfs_printk(KERN_ERR, "Out of kernel memory whilst "
2292 				"attempting to skcipher_request_alloc for "
2293 				"%s\n", crypto_skcipher_driver_name(tfm));
2294 		rc = -ENOMEM;
2295 		goto out;
2296 	}
2297 
2298 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP,
2299 				      NULL, NULL);
2300 
2301 	rc = 0;
2302 	ecryptfs_printk(KERN_DEBUG, "Encrypting [%zd] bytes of the key\n",
2303 			crypt_stat->key_size);
2304 	skcipher_request_set_crypt(req, src_sg, dst_sg,
2305 				   (*key_rec).enc_key_size, NULL);
2306 	rc = crypto_skcipher_encrypt(req);
2307 	mutex_unlock(tfm_mutex);
2308 	skcipher_request_free(req);
2309 	if (rc) {
2310 		printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
2311 		goto out;
2312 	}
2313 	ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
2314 	if (ecryptfs_verbosity > 0) {
2315 		ecryptfs_printk(KERN_DEBUG, "EFEK of size [%zd]:\n",
2316 				key_rec->enc_key_size);
2317 		ecryptfs_dump_hex(key_rec->enc_key,
2318 				  key_rec->enc_key_size);
2319 	}
2320 encrypted_session_key_set:
2321 	/* This format is inspired by OpenPGP; see RFC 2440
2322 	 * packet tag 3 */
2323 	max_packet_size = (1                         /* Tag 3 identifier */
2324 			   + 3                       /* Max Tag 3 packet size */
2325 			   + 1                       /* Version */
2326 			   + 1                       /* Cipher code */
2327 			   + 1                       /* S2K specifier */
2328 			   + 1                       /* Hash identifier */
2329 			   + ECRYPTFS_SALT_SIZE      /* Salt */
2330 			   + 1                       /* Hash iterations */
2331 			   + key_rec->enc_key_size); /* Encrypted key size */
2332 	if (max_packet_size > (*remaining_bytes)) {
2333 		printk(KERN_ERR "Packet too large; need up to [%td] bytes, but "
2334 		       "there are only [%td] available\n", max_packet_size,
2335 		       (*remaining_bytes));
2336 		rc = -EINVAL;
2337 		goto out;
2338 	}
2339 	dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
2340 	/* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
2341 	 * to get the number of octets in the actual Tag 3 packet */
2342 	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2343 					  (max_packet_size - 4),
2344 					  &packet_size_length);
2345 	if (rc) {
2346 		printk(KERN_ERR "Error generating tag 3 packet header; cannot "
2347 		       "generate packet length. rc = [%d]\n", rc);
2348 		goto out;
2349 	}
2350 	(*packet_size) += packet_size_length;
2351 	dest[(*packet_size)++] = 0x04; /* version 4 */
2352 	/* TODO: Break from RFC2440 so that arbitrary ciphers can be
2353 	 * specified with strings */
2354 	cipher_code = ecryptfs_code_for_cipher_string(crypt_stat->cipher,
2355 						      crypt_stat->key_size);
2356 	if (cipher_code == 0) {
2357 		ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
2358 				"cipher [%s]\n", crypt_stat->cipher);
2359 		rc = -EINVAL;
2360 		goto out;
2361 	}
2362 	dest[(*packet_size)++] = cipher_code;
2363 	dest[(*packet_size)++] = 0x03;	/* S2K */
2364 	dest[(*packet_size)++] = 0x01;	/* MD5 (TODO: parameterize) */
2365 	memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
2366 	       ECRYPTFS_SALT_SIZE);
2367 	(*packet_size) += ECRYPTFS_SALT_SIZE;	/* salt */
2368 	dest[(*packet_size)++] = 0x60;	/* hash iterations (65536) */
2369 	memcpy(&dest[(*packet_size)], key_rec->enc_key,
2370 	       key_rec->enc_key_size);
2371 	(*packet_size) += key_rec->enc_key_size;
2372 out:
2373 	if (rc)
2374 		(*packet_size) = 0;
2375 	else
2376 		(*remaining_bytes) -= (*packet_size);
2377 	return rc;
2378 }
2379 
2380 struct kmem_cache *ecryptfs_key_record_cache;
2381 
2382 /**
2383  * ecryptfs_generate_key_packet_set
2384  * @dest_base: Virtual address from which to write the key record set
2385  * @crypt_stat: The cryptographic context from which the
2386  *              authentication tokens will be retrieved
2387  * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
2388  *                   for the global parameters
2389  * @len: The amount written
2390  * @max: The maximum amount of data allowed to be written
2391  *
2392  * Generates a key packet set and writes it to the virtual address
2393  * passed in.
2394  *
2395  * Returns zero on success; non-zero on error.
2396  */
2397 int
2398 ecryptfs_generate_key_packet_set(char *dest_base,
2399 				 struct ecryptfs_crypt_stat *crypt_stat,
2400 				 struct dentry *ecryptfs_dentry, size_t *len,
2401 				 size_t max)
2402 {
2403 	struct ecryptfs_auth_tok *auth_tok;
2404 	struct key *auth_tok_key = NULL;
2405 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2406 		&ecryptfs_superblock_to_private(
2407 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
2408 	size_t written;
2409 	struct ecryptfs_key_record *key_rec;
2410 	struct ecryptfs_key_sig *key_sig;
2411 	int rc = 0;
2412 
2413 	(*len) = 0;
2414 	mutex_lock(&crypt_stat->keysig_list_mutex);
2415 	key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
2416 	if (!key_rec) {
2417 		rc = -ENOMEM;
2418 		goto out;
2419 	}
2420 	list_for_each_entry(key_sig, &crypt_stat->keysig_list,
2421 			    crypt_stat_list) {
2422 		memset(key_rec, 0, sizeof(*key_rec));
2423 		rc = ecryptfs_find_global_auth_tok_for_sig(&auth_tok_key,
2424 							   &auth_tok,
2425 							   mount_crypt_stat,
2426 							   key_sig->keysig);
2427 		if (rc) {
2428 			printk(KERN_WARNING "Unable to retrieve auth tok with "
2429 			       "sig = [%s]\n", key_sig->keysig);
2430 			rc = process_find_global_auth_tok_for_sig_err(rc);
2431 			goto out_free;
2432 		}
2433 		if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
2434 			rc = write_tag_3_packet((dest_base + (*len)),
2435 						&max, auth_tok,
2436 						crypt_stat, key_rec,
2437 						&written);
2438 			up_write(&(auth_tok_key->sem));
2439 			key_put(auth_tok_key);
2440 			if (rc) {
2441 				ecryptfs_printk(KERN_WARNING, "Error "
2442 						"writing tag 3 packet\n");
2443 				goto out_free;
2444 			}
2445 			(*len) += written;
2446 			/* Write auth tok signature packet */
2447 			rc = write_tag_11_packet((dest_base + (*len)), &max,
2448 						 key_rec->sig,
2449 						 ECRYPTFS_SIG_SIZE, &written);
2450 			if (rc) {
2451 				ecryptfs_printk(KERN_ERR, "Error writing "
2452 						"auth tok signature packet\n");
2453 				goto out_free;
2454 			}
2455 			(*len) += written;
2456 		} else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
2457 			rc = write_tag_1_packet(dest_base + (*len), &max,
2458 						auth_tok_key, auth_tok,
2459 						crypt_stat, key_rec, &written);
2460 			if (rc) {
2461 				ecryptfs_printk(KERN_WARNING, "Error "
2462 						"writing tag 1 packet\n");
2463 				goto out_free;
2464 			}
2465 			(*len) += written;
2466 		} else {
2467 			up_write(&(auth_tok_key->sem));
2468 			key_put(auth_tok_key);
2469 			ecryptfs_printk(KERN_WARNING, "Unsupported "
2470 					"authentication token type\n");
2471 			rc = -EINVAL;
2472 			goto out_free;
2473 		}
2474 	}
2475 	if (likely(max > 0)) {
2476 		dest_base[(*len)] = 0x00;
2477 	} else {
2478 		ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
2479 		rc = -EIO;
2480 	}
2481 out_free:
2482 	kmem_cache_free(ecryptfs_key_record_cache, key_rec);
2483 out:
2484 	if (rc)
2485 		(*len) = 0;
2486 	mutex_unlock(&crypt_stat->keysig_list_mutex);
2487 	return rc;
2488 }
2489 
2490 struct kmem_cache *ecryptfs_key_sig_cache;
2491 
2492 int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
2493 {
2494 	struct ecryptfs_key_sig *new_key_sig;
2495 
2496 	new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
2497 	if (!new_key_sig)
2498 		return -ENOMEM;
2499 
2500 	memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
2501 	new_key_sig->keysig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2502 	/* Caller must hold keysig_list_mutex */
2503 	list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
2504 
2505 	return 0;
2506 }
2507 
2508 struct kmem_cache *ecryptfs_global_auth_tok_cache;
2509 
2510 int
2511 ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2512 			     char *sig, u32 global_auth_tok_flags)
2513 {
2514 	struct ecryptfs_global_auth_tok *new_auth_tok;
2515 
2516 	new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache,
2517 					GFP_KERNEL);
2518 	if (!new_auth_tok)
2519 		return -ENOMEM;
2520 
2521 	memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
2522 	new_auth_tok->flags = global_auth_tok_flags;
2523 	new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2524 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
2525 	list_add(&new_auth_tok->mount_crypt_stat_list,
2526 		 &mount_crypt_stat->global_auth_tok_list);
2527 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
2528 	return 0;
2529 }
2530 
2531